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ABSTRACT 
We propose an approach of automated co-evolution of the 

optimal values of attributes of active sensing (orientation, range 
and timing of activation of sensors) and the control of locomotion 
gaits of simulated snake-like robot (Snakebot) that result in a fast 
speed of locomotion in a confined environment. The experimental 
results illustrate the emergence of a contactless wall-following 
navigation of fast sidewinding Snakebots. The wall-following is 
accomplished by means of differential steering, facilitated by the 
evolutionary defined control sequences incorporating the readings 
of evolutionary optimized sensors. 
 
Categories and Subject Descriptors 
G.1.6–Global Optimization; J.2-Physics 
 
General Terms 
Algorithms, design 
 
Keywords 
Genetic programming, locomotion, Snakebot, active sensing, 
navigation 
 

1. INTRODUCTION 
Wheelless, limbless snake-like robots feature potential 

robustness characteristics beyond the capabilities of most wheeled 
and legged vehicles – ability to traverse challenging terrain that 
would pose problems for traditional wheeled or legged robots, and 
insignificant performance degradation when partial damage is 
inflicted. Some useful features of snake-like robots include 
smaller size of the cross-sectional areas, stability, ability to 
operate in difficult terrain, good traction, high redundancy, and 
complete sealing of the internal mechanisms [3, 6, 24]. Robots 
with these properties are well applicable in exploration, 
reconnaissance, medicine and inspection. However, compared to 
the wheeled and legged vehicles, snake-like robots feature (i) 
smaller payload, (ii) more difficult control of locomotion gaits and 
(iii) inferior speed characteristics.  
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Focusing on the latter two drawbacks, in this work we intend 

to address the following challenge: how to automatically develop 
the control sequences of actuators of realistically simulated snake-
like robot (Snakebot), which, incorporating the sensors’ 
information is able to achieve fast speed of locomotion in 
confined environments. 

In principle, the task of designing the controlling code of 
robots could be formalized and the formal mathematical models 
incorporated into directly programmable control strategies [2, 16, 
18, 20, 23]. However, the eventual models of the Snakebot would 
feature enormous complexity and such models are not recognized 
to have a known, analytically obtained exact optimal solution. The 
complexity of the model stems from the considerable amount of 
degrees of freedom of the Snakebot, which cannot be treated 
independently of each other. The locomotion of the Snakebot is 
viewed as an emergent property at higher level of consideration of 
a complex nonlinear, hierarchical system, comprising many 
relatively simply defined entities (morphological segments). In 
such systems the higher-level properties of the system and the 
lower-level properties of comprising entities cannot be directly 
induced from each other [14]. Therefore, while an effective 
incorporation of sensing information in fast locomotion gaits 
might emerge from intuitively defined sensing morphology and 
simple motion patterns of morphological segments, neither the 
degree of optimality of the developed code nor the way to 
incrementally improve this code is evident to the human designer 
[11]. Thus, an automated mechanism for the evaluation of solution 
and corresponding rules for incremental optimization of the 
intermediate solution(s) (e.g. based on various models of learning   
[5, 8] or evolution [7, 12, 21, 22] of species in the Nature) might 
be needed. However, most of these Nature-inspired approaches 
consider the relatively simple cases of either (i) two-dimensional 
locomotion or (ii) an open loop, sensorless control of three 
dimensional gaits. 

Integrating sensor information in the control sequences of the 
Snakebot adds to the complexity of the design of optimal 
locomotion gaits. The simplest case of sensing assumes the use of 
a single sensor (e.g., camera) mounted in the head of the 
Snakebot. Featuring a single point of failure, such a design 
compromises the robustness and redundancy which we consider 
as distinct advantages of the Snakebot over the wheeled and 
legged robots. Moreover, as suggested in [22], the most efficient 
locomotion gaits of Snakebot are not necessarily associated with 
head-first, rectilinear motions, and sidewinding might emerge as a 
fast and robust locomotion. In such case an eventual fusion of the 
readings of several sensors, mounted in the segments of the bot 
would provide the latter with the capability to perceive the 
features of surrounding environment along its whole body. In 
addition to the widening the area of the perceived surroundings, 
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multiple sensors offer the potential advantages of robustness to 
damage of some of them, dependability of the sensors’ 
information and ability to perceive the spatial features of the 
surrounding environment due to the motion parallax. 

However, integrating the signals from many sensors that are 
rigidly fixed to the segments of the Snakebot faces the challenge 
of dealing with the uncertain sensors’ readings as the latter move 
synchronously with the coupled segments of the snake. Figure 1 
illustrates how the initial, nominal orientation of the axes of the 
internal coordination systems of the segments of the bot 
dramatically differs from a sample instant orientation of these 
axes in the moving bot. A sensor, fixed to the segment of the 
moving Snakebot would constantly change its spatial orientation, 
and consequently, might alternatively perceive no signal (when 
directed upwards), a signal from the ground surface (when 
directed downwards), from another segment of the snake, or, 
eventually, from an obstacle. 

One of the methods of dealing with moving sensors is to 
employ a closed loop stabilizers of the sensors’ orientation. These 
stabilizers incorporate gyroscopes as an indicator of the difference 
between the current and desired orientations of the sensor, an 
electronic unit which estimates and electrically amplifies the 
difference, and servos, which, being controlled by the electronic 
unit move the sensor in the direction that minimizes this 
difference. Without questioning the technical feasibility of 
implementing such a system, we view it as too complex, costly, 
energy consuming and heavy. The latter two drawbacks 
additionally compromise the already mentioned small payload of 
Snakebots as (i) more powerful, heavier batteries would be needed 
and (ii) the components of the stabilizers would add to the overall 
mass of the bot.  

 
 
 
 
 
 
 
 
 
Figure 1. Initial orientation of the axes of the internal 
coordination systems of the central segment (a) and an instant 
orientation of the same segment in the moving Snakebot (b). 

 
 
Another approach of dealing with moving sensors, consonant 

with the recently emerging active sensing [15], implies an explicit 
control of the spatial orientation of the sensors in a way that 
allows the latter (regardless of the position and orientation of the 
robot) to be oriented towards the relevant objects (e.g., obstacles) 
of the surrounding environment. We view this approach as 
unfeasible due to the same payload-related problems as the above 
mentioned use of gyroscopic stabilizers. 

In this study we attempt to explore the possibility to turn the 
drawbacks of dealing with continuously moving sensors without 
explicitly controlled spatial orientation into an advantage. Our 
idea is to fix one sensor per each segment and to let the sensors 
move synchronously with the segments of the moving Snakebot. 
Because the sensors in the moving bot move, we might not need 
servos to explicitly move them towards the desired directions. The 

moving sensors might periodically, and for a short period of time 
face the desired directions of sensing. We are interested in 
whether a properly timed activation of properly placed sensors 
might be sufficient for the Snakebot to obtain the relevant 
perception information from the surrounding environment. 

 The objective of our work is to explore the feasibility of 
automated, evolutionary optimization of (i) the values of the 
relevant attributes of the sensors (such as the initial orientation, 
range, and when to activate them) and (ii) the motion patterns of 
the segments that, incorporating the sensor’s readings, yield fast 
speed of locomotion of a realistically simulated Snakebot situated 
in a confined environment. From another perspective, our work 
can be viewed as a simultaneous (co-) evolution of the strongly 
coupled (i) morphology of active sensing (i.e., the values of the 
key attributes of continuously moving sensors) and (ii) behavior 
(i.e., the locomotion gait resulting from the motion patterns of the 
segments) of Snakebot.  

We propose an approach of simultaneous use of genetic 
algorithms (GA) [4] for optimizing the sensing morphology and 
genetic programming (GP) [9] for developing the motion patterns 
of the Snakebot. This implies that both the values of the relevant 
attributes of the moving sensors and the code, which controls the 
locomotion of the Snakebot are automatically designed by a 
computer system via simulated evolution through selection and 
survival of the fittest in a way similar to the natural evolution of 
species.  

Within this context, the proposed evolutionary design of the 
simulated, rather than physical Snakebot  can be seen as a first 
step in the sequence of simulated off-line evolution (phylogenetic 
learning) on the software model, followed by on-line adaptation 
(ontogenetic learning) of evolved code on a physical robot 
situated in a real environment [13]. Off-line software simulation 
facilitates the process of Snakebot’s controller design because the 
verification of the behavior on physical Snakebot is extremely 
time consuming, costly and often dangerous for the bot and the 
surrounding environment. Moreover, as in the considered case, it 
is appropriate to initially model not only the locomotion, but also 
to co-evolve the most appropriate sensing morphology (i.e., the 
values of the main attributes of the sensors) of the artifact  [13, 
17] and only then (if appropriate) to physically implement it as a 
hardware. 

The remainder of this document is organized as follows. 
Section 2 emphasizes the main features of the evolutionary 
paradigm proposed for evolution of the Snakebot. Section 3 
discusses the experimental results. Section 4 draws a conclusion. 

 

2. EVOLUTIONARY APPROACH FOR  
CO-EVOLUTION OF MORPHOLOGY OF 
SENSORS AND LOCOMOTION GAITS 
 
2.1. Representation of Snakebot 
Snakebot is simulated as a set of identical spherical morphological 
segments (“vertebrae”), linked together via universal joints 
(Figure 2). All joints feature identical (finite) angle limits and 
each joint has two attached actuators (“muscles”). A single sensor 
– laser range finder (LRF) with a limited range is attached to the 
each of the segments in the intersection of the surface of the 
segment and the plane of both axes of the joint. The functionality 
of the LRF can be defined by the values of the following set of 
parameters: (i) orientation, measured as an angle between the 
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longitudinal axis of the sensor and the horizontal axis of the joint, 
(ii) range of the sensor (in cm), and (iii) the timing of activation, 
expressed as a threshold value of the turning angle of the 
horizontal actuator. The reading of LRF is a scalar value which 
corresponds to the distance between the sensor (if any, within the 
sensor’s range) and an object, measured along the longitudinal 
axis of the LRF. In the initial, standstill position of Snakebot the 
rotation axes of the actuators are oriented vertically (vertical 
actuator) and horizontally (horizontal actuator) and perform 
rotation of the joint in the horizontal and vertical planes 
respectively.  

Considering the representation of Snakebot, the task of 
designing the fastest locomotion can be rephrased as developing 
temporal patterns of desired turning angles of horizontal and 
vertical actuators of each segment, that result in fastest overall 
locomotion of Snakebot. The proposed representation of Snakebot 
as a homogeneous system comprising identical morphological 
segments is intended to significantly reduce the size of the search 
space of the GP. Moreover, because the size of the search space 
does not necessarily increase with the increase of the complexity 
of Snakebot (i.e. the number of morphological segment), the 
proposed approach facilitates favorable scalability characteristics 
of GP. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Morphological segments of Snakebot linked via 
universal joint. Horizontal and vertical actuators attached to 
the joint perform rotation of the segment #i-1 in vertical and 
horizontal planes respectively. A single LRF is attached to 
each of the segments in the plane of the axes of the universal 
joint. 
 
 

 
2.2 Algorithmic Paradigm 

 
2.2.1 Genetic Representation. Function Set and 
Terminal Set 
In applying GP to evolution of Snakebot, the genotype (Figure 3) 
is represented as a tripe consisting of (i) a linear chromosome 
containing the encoded values of the three relevant parameters of 
LRF, (ii) and two parse trees corresponding to the algebraic 
expressions of the temporal patterns of the desired turning angles 
of both the horizontal and vertical actuators, respectively (Figure 
3). The Snakebot is genotypically homogeneous in that the same 
triple is applied for the setup of the LRF and for the control of 
actuators of all morphological segments. The encoding of the 
parameters of LRF is elaborated in Figure 3. The same figure also 
illustrates the function set and the terminal set of the GP, 
employed to evolve the control sequences of both actuators. 
Because locomotion gaits, by definition, are periodical, we 

include the periodic functions sin and cos in the function set of 
GP in addition to the basic algebraic functions. Terminal symbols 
include the variables time, segment_ID, ADF, and LRF, 
and two constants: Pi, and a random constant within the 
range [0, 2]. The incorporation of the terminal symbol 
segment_ID (an unique index of morphological segments of 
Snakebot) allows GP to discover how to specialize (by phase, 
amplitude, frequency etc.) the genetically identical motion 
patterns of actuators of each of the morphological segments of the 
Snakebot. The introduction of variable time reflects our 
intention to develop the temporal patterns of turning angles of 
actuators.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
Figure 3.  Genotype of the Snakebot, represented as a triple 
containing the values of parameters of LRF, and two algebraic 
expressions of the temporal patterns of the desired turning 
angles of horizontal and vertical actuators, respectively. The 
genotype of Snakebot is homogeneous in that all segments 
feature the same triple.  

 
The rationale of employing automatically defined function 

(ADF) is based on the observation that the evolvability of 
straightforward, independent encoding of desired turning angles 
of both horizontal and vertical actuators is poor, although it allows 
GP to adequately explore the potentially large search space and 
ultimately, to discover the areas which correspond to fast 
locomotion gaits in the solution space.  We discovered that not 
only the motion patterns of adjacent segments are correlated, but 
the motion patterns of horizontal and vertical actuators of each 
segment in fast locomotion gaits are highly correlated (e.g. by 

Desired turning angle 
of horizontal actuator 

Desired turning angle 
of vertical actuator 
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LRF1 

LRF14 
   .  . . Range 

Orientation 

Desired_Angle_H Desired_Angle_V LRF_Parameters 
... 
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Encoded value:  
An integer O within the range [ -6 … 6 ]. 

Interpretation: 
An angle A is set to (45+O*6) degrees. 

(2) Range 
Encoded value: 

An integer r within the range [ 1 … 8 ]. 
Interpretation: 

Range R is set to (r*d*2.5), where d=6cm is 
the diameter of the spherical segment of the 
Snakebot. 

(3) Timing of Activation 
Encoded value: 

 An integer T within the range [ 0…50 ] 
Interpretation:  

    Activating the LRF in the current time step  
if the ascending actual turning angle of hori-
zontal actuator had just exceeded the value 
of T in degrees. The reading of LRF is set to 
0 if there is no object within its range R and to 
( R – D + 1 ) otherwise, where D is the 
measured distance to the detected object 

Algebraic expression (parse tree) 
Function set:   

{sin, cos, nop, +, -, *, /  } 
Terminal set:  

{time, segment_ID, Pi,  
random constant, LRF} 

Algebraic expression (parse tree) 
Function set:   

{sin, cos, nop, +, -, *, /  } 
Terminal set:  

{ADF, time, segment_ID, Pi,  
random constant,  LRF} 
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frequency, direction, etc.) too. Moreover, discovering and 
preserving such correlation by GP is associated with enormous 
computational effort. ADF, as a way of introducing modularity 
and reuse of code in GP [10] is employed in our approach to allow 
GP to explicitly evolve the correlation between motion patterns of 
horizontal and vertical actuators as shared fragments in algebraic 
expressions of desired turning angles of both actuators. Moreover, 
we observed that the best result is obtained by (i) allowing the use 
of ADF as a terminal symbol in algebraic expression of desired 
turning angle of vertical actuator only, and (ii) by evaluating the 
value of ADF by equalizing it to the value of currently evaluated 
algebraic expression of desired turning angle of horizontal 
actuator. The main parameters of the GP, used to evolve the 
temporal patterns of control sequences of actuators, are 
summarized in Table 1. 

Table 1. Main parameters of GP 

Category Value 

Genotype 

Triple  
(i)  LRF parameters  (linear chromosome), 
(ii) Desired turning angle of horizontal actuator,  

(parse tree), and 
(iii) Desired turning angle of vertical actuator 

(parse tree) 

Population 
size 

200 individuals 

Selection  
Binary tournament, selection ratio: 0.1, 
reproduction ratio: 0.9 

Elitism Best 4 individuals 

Mutation Random mutation, ratio 0.01 

Fitness Velocity of simulated Snakebot during the trial 

Trial 
interval 

500 time steps, each time step accounts for 40ms 
of “real” time (Total 20s of real time) 

Termination 
criterion 

(Generations>40) or (no improvement of fitness 
for 16 generations) 

 

2.2.2 Fitness Evaluation  
The fitness function is based on the velocity of Snakebot, 
estimated from the distance, which the center of the mass of 
Snakebot travels during the trial. As we shall elaborate later in 
Section 3, the confined environment that the Snakebot need to 
clear during the trial is simulated by a bended narrow corridor 
(Figure 4). The length of the corridor is set to seven lengths of the 
bot. The velocity of locomotion, needed to reach the end of the 
corridor for the given time of the trial (20s) corresponds to the 
fitness value of 150. 

2.2.3 Genetic Operations 
Selection is a binary tournament. A single point crossover is 
employed, and the position of the crossover point is randomly 
(with the same probability) selected between all three components 
(as shown in Figure 3) of the genotype. Crossover is implemented 
in a strongly typed way in that only the nodes of the same type 
from the same components of the triple of genetic representation 

of parents can be swapped. The mutation randomly alters either a 
value of allele in the linear chromosome representing the 
parameters of LRF, or a sub-tree in one of the two parse tress that 
correspond to the temporal patterns of the control sequences of 
actuators. 

2.2.4 Open Dynamics Engine 
We have chosen Open Dynamics Engine (ODE) [19] to provide a 
realistic simulation of physics in applying actuating forces to the 
segments of the Snakebot. ODE is a free, industrial quality 
software library for simulating articulated rigid body dynamics. It 
is fast, flexible and robust, and it has built-in collision detection. 
The main ODE-related parameters of the simulated Snakebot are 
listed in Table 2.  

Table 2. ODE-related parameters of Snakebot 

Parameter Value 

Number of segments in Snakebot 15 
Model of the segments Sphere 
Radius of the segments, cm 3 
Overlap between segments, % 25 
Length of the Snakebot, cm 66 
Volume of the segment, cm3 113 
Density of the segment, g/cm3  0.9 
Mass of the segment, g  100 
Type of joint between segments Universal 
Initial alignment of segments in 
Snakebot 

Along Y-axis of the world 

Number of actuators per joint 2 

Orientation of axes of actuators 
Horizontal – along X-axis 
and Vertical – along Z-axis 
of the world 

Operational mode of actuators dAMotorEuler 
Max torque of actuators, gcm 12000 
Max angular velocity of actuators,  
degrees/s 

100 

Actuators stops (angular limits), 
degrees 

±55 

Coefficient of friction between 
segments and ground surface 

0.5 

Coefficient of friction between 
segments and walls 

0.5 

Friction model 
Pyramid approximation of 
Coloumb friction model 

Sampling interval of simulation, ms 40 
 
 

3. EXPERIMENTAL RESULTS 
This section discusses experimental results verifying the 

feasibility of co-evolution of the optimal (i) morphology of active 
sensing and (ii) the control of locomotion gaits (incorporating 
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sensors information) that yield fast speed of locomotion of the bot 
situated in a confined environment. 

We modeled the confined environment as a narrow slightly 
bended corridor formed by eight pairs of immobile boxes 
(“walls”) placed along the X-axis of the world (Figure 4). The bot 
is initially situated at the left (dead) end of the corridor, with its 
longitudinal axis perpendicular to the intended direction of 
moving. The width of the corridor, measured between the first 
pair of blocks (near the initial position of the bot) is exactly the 
same as the length of the bot. The width, measured between the 
remaining seven pairs of blocks is set to 90% of the bot’s length. 
The length, estimated from the initial position of the bot to the 
right end of the corridor is seven times the length of the bot. The 
right hand wall gradually “protrudes” to about 45% of the width 
of the corridor forming a slight right-hand bend. The average 
velocity, required to successfully reach the end of the corridor for 
the allocated time of the trial (500 time steps, or 20s of “real” 
time) corresponds to the fitness value of 150. 

The initial perpendicular orientation of the longitudinal axes 
of Snakebot and the corridor is influenced by the results of the 
related work suggesting that the sidewinding (defined as 
locomotion predominantly perpendicular to the longitudinal axis 
of the bot) is by far the fastest and most robust locomotion gait for 
sensorless snake-like artifacts with analogous morphology [22]. 
Therefore, we expect that in the real-world situations a fast, 
sidewinding Snakebot would enter the corridor featuring much 
similar spatial orientation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The experimental setup of the scene viewed from 
above (a) and towards the intended moving direction 
(indicated by the arrows) (b). The scene comprises a narrow 
bended corridor and a Snakebot initially positioned near its 
dead end. The length of the corridor is seven times the length 
of the bot.  

The fitness convergence of 20 independent evolutionary runs 
is shown in Figure 5. As Figure 5 depicts, in the most (14 out of 
20) of the runs the best-of-run Snakebot, evolved for no more than 
40 generations, successfully reaches the end of the corridor for the 
given time of the trial. Investigating these successful runs, we 
observed the emergence of the following behavioral strategies: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Fitness convergence characteristics of 20 
independent evolutionary runs. The dashed horizontal line 
(fitness = 150) corresponds to the velocity of Snakebot, needed 
to reach the end of the corridor for the allocated time of the 
trial (20s). 

 
 
 
  “Move fast sidewinding; keep close and occasionally 

bump from the left side wall of the corridor”. As illustrated 
in Figures 6a),  6b) and 6c), during the grounded phase of 
its motion, the head of the sidewinding Snakebot 
simultaneously slips towards the wall and rotates towards 
the direction of motion. The head then slips back towards 
the center of gravity (COG) of the bot (i.e., away from the 
wall), elevates and moves alongside the wall and towards 
the moving direction. This characteristic motion pattern 
implies that the surface of the head collides with the wall 
during its grounding phase at nearly zero velocity, thus 
causing no significant degradation of the overall velocity of 
the bot. It should be noted that such wall-following strategy 
emerges both as a result of the incorporation of the sensors 
data in the control of locomotion and a sensorless (open 
loop) control. In the latter case, the bot inherently turns 
slightly towards the left walls due to the asymmetry of the 
amplitudes of the oscillating segments. This strategy is 
observed in 4 (out of 14) successful runs.  

 “Move fast sidewinding; occasionally bump from either 
wall of the corridor”. As the snapshot of the evolved gait 
reveals (Figure 6d), this strategy is associated with the 
emergence of characteristic locomotion trait – a wide 
winding angle which results in a reduced cross-section of 
the sidewinding Snakebot. The more compact posture of 
the sensorless bot in this case minimizes the probability of 
collision with unperceived obstacles (e.g., walls of the 
corridor). Moreover, even if the bot occasionally collides 
with the walls, the impact of the collision on the velocity 
and orientation of the bot is marginal due to the proximity 
of the impact point to the COG of the bot. This proximity 
implies a very low rotational momentum of the forces 
resulting from the friction between the bot and the wall. 

a) 

b) 
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The observed result of the artificial evolution is analogous 
to the solutions discovered by Nature – it is recognized that 
natural snakes also change the winding angle of their 
locomotion gaits in order to adapt themselves to various 
environmental conditions. We noticed the widening of 
winding angle of sensorless bot in 6 (out of 14) successful 
runs.  

The abovementioned sensorless strategies emerge as a result 
of several factors, such as the characteristics of both the Snakebot 
and the environment, and the design of the fitness function. The 
latter tries to holistically estimate the performance of the bot (i.e., 
its velocity) in achieving some low-level objective (i.e. what is 
required to be done) regardless of the way this objective is 
achieved. The emergence of these strategies illustrates the ability 
of the evolving Snakebot to learn how to accomplish the required 
objective without being explicitly taught about the means to do so. 
Such know-how, acquired automatically and autonomously, can be 
viewed as a demonstration of an emergent intelligence [1], in that 
the domain-specific knowledge of how to accomplish the task 
emerges in the Snakebot solely from the interaction of the 
problem solver and the fitness function. 
 
 
 
 
 
 
 
 
 
Figure 6. Emergent locomotion traits of the sidewinding 
Snakebot: bouncing from the left-side wall of the corridor (a, 
b, and c) and bumping from either left- or right- side walls (or 
both). In the latter case the detrimental effects of the impact 
on the velocity is minimized by the reduced cross section of the 
moving bot (d). In both cases the Snakebot doesn’t need to 
incorporate the readings of its sensors in the control of the 
locomotion gaits. Arrows indicate the moving direction. 
 

We suppose that by modifying either the fitness function 
(e.g., explicitly penalizing the bot for colliding with the walls, or 
for making no use of the sensors’ data) or the characteristics of the 
environment (e.g., including narrower passages and/or sharper 
turns in the corridor, increasing the coefficient of friction between 
the bot and the walls, etc.), the sensorless strategies might cease to 
emerge as winning ones. In our current implementation however, 
the evolving bot is only implicitly penalized for its eventual 
collisions with the walls by the naturally occurring degradation of 
its moving velocity. Therefore, from another viewpoint, the 
emergence of the discussed strategies can be seen as an 
illustration of the ability of the bot to learn how to minimize the 
degree of such degradation. 

The best-of-run Snakebots, evolved of the remaining 4 (out 
of 14) successful runs is of special interest for us, as the emergent 
behavioral traits demonstrate the incorporation of sensors’ 
information for the steering of the bot in a contactless wall 
following navigation. The snapshots of such Snakebot in four 
most principal instants of 5.05s, 10s, 13s and 20s into the trial are 

shown in Figure 7a). The moving trajectory of the bot is 
illustrated in Figure 7b).  

The evolved sensing morphology in the illustrated sample 
Snakebot is as follows: the range of LRF is equal to 45 cm (i.e., 
75% of the length of the bot), initially oriented at 51 degrees, and 
activated instantly when the ascending turning angle of horizontal 
actuator reaches 31 degrees. This sample Snakebot features an 
overall genotypic complexity of 186 tree nodes. Not uncommon 
for the cases of automatically evolved solutions, the complexity of 
the evolved algebraic expressions that define the temporal patterns 
of actuators is beyond the ability of the authors to comprehend the 
underlying mechanisms of the incorporation of sensor information 
into the control sequences of the bot. Rather, we shall elaborate on 
the sensors readings and the resulting dynamics of the actual 
turning angles of actuators of three segments of the bot for the 
four principal instants of 5.05s, 10s, 13s and 20s respectively. The 
considered three segments are the #1 (next to the head), #7 (the 
central segment) and #13 (next to the tail). 

As figure 7a) illustrates, 5.05s into the trial the bot moves 
slightly closer to the left-, and away from the right side wall of the 
corridor, resulting in the corresponding increase of the signal from 
LRF #7 and decrease of the signal from LRF #13 (Figure 7c). 
This, in turn inflicts an imbalance between the amplitudes of 
oscillations (i.e., actual turning angles of the actuators) of the 
corresponding segments, as the amplitude of the segment #1 is 
higher than that of segments #7 and #13 (Figure 7e). The effect of 
this imbalance is a right-hand differential steering of the bot away 
from the approaching left-side wall of the corridor.  Analogous, 
both right-side and left-side differential steering can be observed 
at instants corresponding to 10s (right-hand) and 13s (left-hand) 
respectively. Near the end of the corridor (i.e., 20s into the trial) 
the peak values of the turning angles of actuators of the 
considered segments are very similar, resulting in virtually no 
differential steering of the bot. 

Sidewinding locomotion, featuring different winding angle, 
different wavelength, and different frequency of oscillation 
emerged in the all four bots that demonstrate a successful, fast 
wall-following navigation. However, no distinct pattern in the 
corresponding sensing morphologies of these four bots could be 
observed. This reinforces our belief that the intricate interplay 
between the active sensing morphology and the locomotion, rather 
than some independently considered value of their respective 
attributes, is responsible for the observed behavioral traits. 

 

4. CONCLUSION 
We presented an approach of automated co-evolution of the 

optimal values of the attributes of active sensing (e.g., orientation, 
range and timing of activation of sensors) and the control of 
locomotion gaits of simulated Snakebot resulting in a fast speed of 
locomotion in a confined environment. The experimental results 
demonstrate the emergence of a contactless wall-following 
navigation of a fast sidewinding bot. Such navigation is 
accomplished by differential steering, facilitated by the 
evolutionary defined control sequences incorporating the readings 
of evolutionary optimized sensors. 

In our future work we are contemplating an investigation of 
the robustness of the evolved gaits and the feasibility of their 
adaptation to changeable environmental conditions (e.g., different 
friction coefficients, rugged terrain, or sharper turns) and 
Snakebot’s capabilities (e.g., partial damage inflicted to some of 
the actuators and sensors).  
 

t = 4s 

a) 

t = 4.4s 

b) 

t = 4.6s 

c) d)
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Figure 7. The snapshots (a), moving trajectory (b), readings of LRF attached to segments #1 (next to the head of the Snakebot), #7 
(the central segment) and #13 (next to the tail)  (c), oscillating patterns (d) and peak values (e) of actual turning angle of horizontal 
actuators of the same three segments of the sample best-of-run Snakebot. The turning angle of vertical actuator (not shown) is well 
coordinated with the horizontal one, and features analogous patterns. The four snapshots shown in (a) corresponds to four 
principal instants of the trial. These instants are indicated by corresponding circles on the abscises of (b), (c), (d) and (e).  
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