Skip to main content

Detection of Frailty Using Genetic Programming

The Case of Older People in Piedmont, Italy

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12101))

Abstract

Frailty appears to be the most problematic expression of elderly people. Frail older adults have a high risk of mortality, hospitalization, disability and other adverse outcomes, resulting in burden to individuals, their families, health care services and society. Early detection and screening would help to deliver preventive interventions and reduce the burden of frailty. For this purpose, several studies have been conducted to detect frailty that demonstrates its association with mortality and other health outcomes. Most of these studies have concentrated on the possible risk factors associated with frailty in the elderly population; however, efforts to identify and predict groups of elderly people who are at increased risk of frailty is still challenging in clinical settings. In this paper, Genetic Programming (GP) is exploited to detect and define frailty based on the whole elderly population of the Piedmont, Italy, using administrative databases of clinical characteristics and socio-economic factors. Specifically, GP is designed to predict frailty according to the expected risk of mortality, urgent hospitalization, disability, fracture, and access to the emergency department. The performance of GP model is evaluated using sensitivity, specificity, and accuracy metrics by dividing each dataset into a training set and test set. We find that GP shows competitive performance in predicting frailty compared to the traditional machine learning models. The study demonstrates that the proposed model might be used to screen future frail older adults using clinical, psychological and socio-economic variables, which are commonly collected in community healthcare institutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kojima, G., Liljas, A., Iliffe, S.: Frailty syndrome: implications and challenges for health care policy. Risk Manag. Healthc. Policy 12, 23–30 (2019). https://doi.org/10.2147/RMHP.S168750

    Article  Google Scholar 

  2. Comans, T.A., Peel, N.M., Hubbard, R.E., Mulligan, A.D., Gray, L.C., Scuffham, P.A.: The increase in healthcare costs associated with frailty in older people discharged to a post-acute transition care program. Age Ageing 45, 317–320 (2016). https://doi.org/10.1093/ageing/afv196

    Article  Google Scholar 

  3. Clegg, A., Young, J., Iliffe, S., Rikkert, M.O., Rockwood, K.: Frailty in elderly people. Lancet 381, 752–762 (2013). https://doi.org/10.1016/S0140-6736(12)62167-9

    Article  Google Scholar 

  4. Wennberg, D., Siegel, M., Darin, B., Filipova, N.: Combined predictive model: final report and technical documentation (2006)

    Google Scholar 

  5. Lally, F., Crome, P.: Understanding frailty (2007). https://doi.org/10.1136/pgmj.2006.048587

  6. Fried, L.P., et al.: Frailty in older adults: evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 56, M146–M157 (2001). https://doi.org/10.1093/gerona/56.3.M146

  7. Rockwood, K., et al.: A global clinical measure of fitness and frailty in elderly people. CMAJ 173, 489–495 (2005). https://doi.org/10.1503/cmaj.050051

    Article  Google Scholar 

  8. Kotsiantis, S.B., et al.: Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26, 159–190 (2006). https://doi.org/10.1007/s10462-007-9052-3

    Article  Google Scholar 

  9. Rockwood, K., Andrew, M., Mitnitski, A.: A comparison of two approaches to measuring frailty in elderly people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 62, 738–743 (2007). https://doi.org/10.1093/gerona/62.7.738

    Article  Google Scholar 

  10. Blodgett, J., Theou, O., Kirkland, S., Andreou, P., Rockwood, K.: Frailty in NHANES: comparing the frailty index and phenotype. Arch. Gerontol. Geriatr. 60, 464–470 (2015). https://doi.org/10.1016/j.archger.2015.01.016

    Article  Google Scholar 

  11. Theou, O., Brothers, T.D., Mitnitski, A., Rockwood, K.: Operationalization of frailty using eight commonly used scales and comparison of their ability to predict all-cause mortality. J. Am. Geriatr. Soc. 61, 1537–1551 (2013). https://doi.org/10.1111/jgs.12420

    Article  Google Scholar 

  12. Katz, A., Wong, S., Williamson, T., Taylor, C., Peterson, S.: Identification of frailty using EMR and admin data: a complex issue. Int. J. Popul. Data Sci. 3 (2018). https://doi.org/10.23889/ijpds.v3i4.832

  13. Chen, C.-Y., Wu, S.-C., Chen, L.-J., Lue, B.-H.: The prevalence of subjective frailty and factors associated with frailty in Taiwan. Arch. Gerontol. Geriatr. 50, S43–S47 (2010). https://doi.org/10.1016/s0167-4943(10)70012-1

    Article  Google Scholar 

  14. Lee, D.H., Buth, K.J., Martin, B.J., Yip, A.M., Hirsch, G.M.: Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery. Circulation 121, 973 (2010). https://doi.org/10.1161/CIRCULATIONAHA.108.841437

    Article  Google Scholar 

  15. Homer, M.L., Palmer, N.P., Fox, K.P., Armstrong, J., Mandl, K.D.: Predicting falls in people aged 65 years and older from insurance claims. Am. J. Med. 130, 744.e17–744.e23 (2017). https://doi.org/10.1016/j.amjmed.2017.01.003

    Article  Google Scholar 

  16. Bertini, F., Bergami, G., Montesi, D., Veronese, G., Marchesini, G., Pandolfi, P.: Predicting frailty condition in elderly using multidimensional socioclinical databases. Proc. IEEE 106, 723–737 (2018). https://doi.org/10.1109/JPROC.2018.2791463

    Article  Google Scholar 

  17. Amari, S.: Machine learning. In: Amari, S. (ed.) Information Geometry and Its Applications. AMS, vol. 194, pp. 231–278. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8_11

    Chapter  MATH  Google Scholar 

  18. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6, 429–449 (2018). https://doi.org/10.3233/ida-2002-6504

    Article  MATH  Google Scholar 

  19. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recogn. 36, 849–851 (2003). https://doi.org/10.1016/S0031-3203(02)00257-1

    Article  Google Scholar 

  20. McCarthy, K., Zabar, B., Weiss, G.: Does cost-sensitive learning beat sampling for classifying rare classes? In: Proceedings of the 1st International Workshop on Utility-based Data Mining - UBDM 2005, pp. 69–77. ACM Press, New York (2005). https://doi.org/10.1145/1089827.1089836

  21. Chen, J.X., Cheng, T.H., Chan, A.L.F., Wang, H.Y.: An application of classification analysis for skewed class distribution in therapeutic drug monitoring - the case of vancomycin. In: Proceedings - IDEAS Workshop on Medical Information Systems: The Digital Hospital, IDEAS 2004-DH (2005)

    Google Scholar 

  22. Orriols, A., Bernadí-Mansilla, E.: Class imbalance problem in UCS classifier system: fitness adaptation. In: 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Proceedings (2005)

    Google Scholar 

  23. Azimlu, F., Rahnamayan, S., Makrehchi, M., Kalra, N.: Comparing genetic programming with other data mining techniques on prediction models. In: 2019 14th International Conference on Computer Science & Education (ICCSE), pp. 785–791. IEEE (2019). https://doi.org/10.1109/ICCSE.2019.8845381

  24. Amal, S., Periwal, V., Scaria, V.: Predictive modeling of anti-malarial molecules inhibiting Apicoplast formation. BMC Bioinf. 14, 55 (2013). https://doi.org/10.1186/1471-2105-14-55

    Article  Google Scholar 

  25. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017). https://doi.org/10.1016/j.eswa.2016.12.035

    Article  Google Scholar 

  26. Kang, Q., Chen, X.S., Li, S.S., Zhou, M.C.: A noise-filtered under-sampling scheme for imbalanced classification. IEEE Trans. Cybern. 47, 4263–4274 (2017). https://doi.org/10.1109/TCYB.2016.2606104

    Article  Google Scholar 

  27. Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 1–30 (2018). https://doi.org/10.1186/s40537-018-0151-6

    Article  Google Scholar 

  28. Han, J., Kamber, M., Pei, J.: Data Mining. Elsevier, Amsterdam (2012). https://doi.org/10.1016/C2009-0-61819-5

  29. Volrathongchai, K., Brennan, P.F., Ferris, M.C.: Predicting the likelihood of falls among the elderly using likelihood basis pursuit technique. In: AMIA Annual Symposium, Proceedings (2005)

    Google Scholar 

  30. Bannister, C.A., Halcox, J.P., Currie, C.J., Preece, A., Spasić, I.: A genetic programming approach to development of clinical prediction models: a case study in symptomatic cardiovascular disease. PLoS One (2018). https://doi.org/10.1371/journal.pone.0202685

  31. Bannister, C.A., Currie, C.J., Preece, A., Spasic, I.: Automatic development of clinical prediction models with genetic programming: a case study in cardiovascular disease. Value Health 17, A200–A201 (2014). https://doi.org/10.1016/j.jval.2014.03.1171

    Article  Google Scholar 

  32. Poli, R., Koza, J.: Genetic programming. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 143–185. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_6

    Chapter  Google Scholar 

  33. HeuristicLab homepage. https://dev.heuristiclab.com/trac.fcgi/wiki

  34. Vluymans, S.: Learning from imbalanced data. In: Studies in Computational Intelligence, pp. 81–110 (2019). https://doi.org/10.1007/978-3-030-04663-7_4

  35. Ulloa-Cazarez, R.L., López-Martín, C., Abran, A., Yáñez-Márquez, C.: Prediction of online students performance by means of genetic programming. Appl. Artif. Intell. 32, 858–881 (2018). https://doi.org/10.1080/08839514.2018.1508839

    Article  Google Scholar 

  36. Can, B., Heavey, C.: A comparison of genetic programming and artificial neural networks in metamodeling of discrete-event simulation models. Comput. Oper. Res. 39, 424–436 (2012). https://doi.org/10.1016/j.cor.2011.05.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adane Tarekegn or Mario Giacobini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarekegn, A., Ricceri, F., Costa, G., Ferracin, E., Giacobini, M. (2020). Detection of Frailty Using Genetic Programming. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44094-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44093-0

  • Online ISBN: 978-3-030-44094-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics