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Abstract

In the recent years, Machine Learning techniques have emerged as a new way to obtain solutions for a
given problem, the novelty of the Machine Learning approach lies in the ability to automatically learn
solutions by only looking at the observations of phenomena or examples of the expected behaviour.
Machine learning methods are, in other words, able to generate models, rules or programs starting from
a descriptive set of data for the given problem. Besides, Machine Learning techniques may be adopted
when the problem exceeds the human ability to find out a solution and are, at the present time, a viable
solution also in fields that were previously dominated by the human intelligence: language translation,
image recognition, car driving, sentiment analysis, computer programming and also arts and creativity. At
present time the Machine Learning tools are often a cost-effective alternative to employing human experts.

In this thesis we will describe the work developed at the Machine Learning Lab1 at University of
Trieste, consisting in novel Machine Learning techniques aimed at the solution of real world problems of
practical interest: automatic synthesis of regular expressions for text extraction and text classification tasks;
an approach for the continuous reauthentication of web users; design of algorithms for author verification
for text documents; author profiling for text messages; automatic generation of fake textual reviews.
Among them the main contribution of this thesis is the design and implementation of new algorithms for
the automatic generation of regular expressions for text extraction, based solely on examples of the desired
behavior [21, 23, 31]. This is a long-standing problem where we aim at generating a regular expression
that generalizes the extraction behavior represented by some examples, i.e., strings annotated by a user
with the desired portions to be extracted. The proposed algorithms are based on an evolutionary approach
called Genetic Programming (GP), that is an evolutionary computing paradigm which implements an
heuristic search, in a space of candidate solution, in a way that mimic the natural evolution process.

The results demonstrate that our new algorithms have higher effectiveness than previous proposals and
demonstrate that our algorithms are able to generate regular expressions in a way that is competitive with
human experts both in terms of effectiveness and generation time [24, 33]. Thanks to these achievements,
the proposed method has been awarded with the Silver Medal at the 13th Annual ”Humies” Award2, an
international competition that establishes the state of the art in genetic and evolutionary computation
and is open to human-competitive results that are ”equal to or better than the most recent human-created
solution to a long-standing problem”. The result of our research has been also released as an opensource
framework3 and as a web application demo4 where users are free to provide text extraction examples to
the application and obtain the corresponding regular expression.

Later in this thesis we will extend our work on automatic generation of regular expressions for text
extraction from examples in order to operate in an Active learning scenario. In this scenario the user is not
required to annotate all the examples at once but the Active learning tool interacts with the user in order
to assist him during the annotation of the extractions in examples. We will propose our Active learning
method [22, 26] that is based on our previous GP algorithms and the results will demonstrate that our

1http://machinelearning.inginf.units.it/
2http://gecco-2016.sigevo.org/index.html/Humies
3https://github.com/MaLeLabTs/RegexGenerator
4http://regex.inginf.units.it/
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active learning tool reduces the user annotation effort while providing comparable effectiveness for the
generated regular expressions.

Moreover, in this thesis we will consider two applications of the proposed regular expressions
generator, adapted in order to cope with text categorization problems that are different from text extraction:
(i) the Regex Golf game and (ii) the identification of Genic Interactions in sentences. The Regex Golf is a
game where the player should write he shortest regular expression that accepts the strings in a positive set
and does not accept strings in a negative set. We will show that our GP algorithm is able to play this game
effectively and we will demonstrate that our algorithm is competitive with human players [20]. In the
second case, we will consider the problem of automatically identifying sentences that contain interactions
between genes and proteins inside a text document [30]. Our proposal requires solely a dictionary of genes
and proteins and a small set of sample sentences in natural language. The proposed method generates
a model in form of regular expressions that represents the relevant syntax patterns in terms of standard
part-of-speech annotations. We will assess our approach on realistic datasets and show an accuracy that is
sufficiently high to be of practical interest and that is in line with significant baseline methods.

The following contributions leave the field of the Genetic Programming algorithms and will propose
solutions based on other Machine Learning methodologies, ranging from Grammatical Evolution to
Support Vector Machines and Random Forests to Recurrent Neural Networks.

We will propose a methodology for predicting the accuracy of the text extractor [25] that may be
inferred with the proposed GP method. We will employ several prediction techniques and the results
suggest that reliable predictions for tasks of practical complexity may indeed be obtained quickly and
without actually generating the entity extractor. Later, we will approach the problem of the automatic text
extraction from another perspective and we will propose a novel learning algorithm that is able to generate
a string similarity function tailored to problems of syntax-based entity extraction from unstructured text
streams [27]. The proposed algorithm, based on an evolutionary paradigm named Grammatical Evolution,
takes in input pairs of strings along with an indication of whether they adhere or not adhere to the same
syntactic pattern. The results suggest that the proposed approach is indeed feasible and that the learned
similarity function is more effective than the Levenshtein distance and the Jaccard similarity index. Hence,
we will propose a system for continuous reauthentication of web users based on the observed mouse
dynamics [144]; the key feature of our proposal is that no specific software needs to be installed on
client machines. We obtain accuracy in the order of 97%, which is aligned with earlier proposals. Then,
we will approach the user authentication problem [14], this task consists in determining if an unknown
document was authored by the same author of a set of documents with the same author. Our methods
has been submitted to the 2015 PAN competition and achieved the first position in the final rank for
the Spanish language. Hence, we will approach the user profiling problem [19], this task consists in
predicting some attributes of an author–i.e gender, age– analyzing a set of his/her Twitter tweets. We
consider several sets of stylometric and content features, and different decision algorithms. Finally, we will
investigate the feasibility of two tools capable of generating (i) fake reviews for a given scientific paper
automatically [28] and (ii) fake consumer reviews for a restaurant automatically [29]. We experimentally
assessed our methods on human subjects and the results highlight the ability of our methods to produce
reviews that often look credible and may subvert the human decision.



Riassunto

Negli ultimi anni le tecniche di Machine Learning si sono affermate come un nuovo modo per trovare
soluzioni ad un dato problema, la novità dell’approccio Machine Learning sta nella capacità di determinare
le soluzioni dalle sole osservazioni di un fenomeno o da esempi del comportamento desiderato. In altre
parole, i metodi di Machine Learning sono capaci di generare regole o programmi a partire da un insieme di
dati descrittivi per un dato problema. Inoltre, i metodi di Machine Learning possono essere adottati quando
il problema supera l’umana capacità di determinare una soluzione e sono, al momento, una soluzione
praticabile anche in campi precedentemente dominati dall’intelligenza umana: traduzione, riconoscimento
di immagini, guida di veicoli, analisi emotiva di testi (sentiment analysis), programmazione di computer e
anche arte e creatività. Al giorno d’oggi gli strumenti di Machine Learning risultano spesso un’alternativa
conveniente all’impiego di esperti umani.

In questa tesi descriveremo il lavoro svolto presso il Machine Learning Lab5 dell’Università degli
Studi di Trieste e che consiste in nuove tecniche di Machine Learning volte alla soluzione di problemi
reali e di interesse pratico: la sintesi automatica di espressioni regolari finalizzate alla estrazione di testo o
alla classificazione di testo; un approccio per la ri-autenticazione continua di utenti web; l’ideazione di
algoritmi per la verifica dell’autore di documenti testuali; la profilazione di autore di messaggi testuali;
la generazione automatica di false recensioni testuali. Fra queste, il contributo principale della tesi è
il progetto e la realizzazione di nuovi algoritmi per la generazione automatica di espressioni regolari
per l’estrazione di testo a partire da soli esempi del comportamento desiderato [21, 23, 31]. Questo è
un problema di lunga data nel quale si desidera generare una espressione regolare che generalizzi il
comportamento di estrazione rappresentato in alcuni esempi–i.e. stringhe annotate dall’utente eviden-
ziando le porzioni da estrarre. Gli algoritmi proposti sono basati su un approccio evolutivo denominato
Programmazione Genetica (GP), si tratta di un paradigma del calcolo evolutivo che implementa una
ricerca euristica all’interno di uno spazio di soluzioni candidate, in una maniera che imita il processo di
evoluzione naturale.

I risultati ottenuti dimostrano che il nostro algoritmo raggiunge un’efficacia migliore delle proposte
precedenti e dimostrano che il nostro algoritmo è in grado di generare espressioni regolari tali da renderlo
competitivo con gli umani esperti, sia in termini di efficacia che di tempo per la generazione [24,33]. Grazie
a questi risultati il metodo proposto è stato premiato con la medaglia d’argento alla 13a competizione
annuale “Humies”6, una competizione internazionale che stabilisce lo stato dell’arte nel calcolo genetico
ed evolutivo, aperta a risultati che sono competitivi con l’uomo ovvero che sono “uguali o migliori
delle più recenti soluzioni create dall’uomo per un problema di lunga data”. Il risultato della ricerca è
stato anche rilasciato come framework opensource7 e come una applicazione web demo8 dove gli utenti
possono fornire esempi testuali di estrazioni all’applicazione e ottenere la corrispondente espressione
regolare.

5http://machinelearning.inginf.units.it/
6http://gecco-2016.sigevo.org/index.html/Humies
7https://github.com/MaLeLabTs/RegexGenerator
8http://regex.inginf.units.it/
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Nel prosieguo della tesi illustreremo il nostro lavoro sulla generazione automatica di espressioni
regolari per l’estrazione di testo da esempi in uno scenario Active Learning. In questo scenario non
è richiesto all’utente di annotare in anticipo e completamente tutti gli esempi ma lo strumento Active
Learning interagisce con l’utente, assistendolo durante la annotazione delle estrazioni negli esempi.
Proporremo un metodo Active Learning [22,26] che è basato sui nostri precedenti algoritmi GP e i risultati
dimostreranno che il nostro strumento active learning riduce lo sforzo di annotazione dell’utente pur
mantenendo un’efficacia delle espressioni regolari comparabile.

Inoltre, in questa tesi considereremo due applicazioni dei proposti generatori di espressioni regolari,
ma adattati in modo da far fronte a problemi di categorizzazione di testo invece che di estrazione di testo:
(i) il gioco Regex Golf e (ii) l’identificazione di interazioni geniche in sequenze. Il Regex Golf è un gioco
dove il giocatore deve scrivere l’espressione regolare più corta che accetti le stringhe in un insieme positivo
e non accetti le stringhe in un insieme negativo. Mostreremo che il nostro algoritmo GP è effettivamente
capace di affrontare questo gioco e dimostreremo che il nostro algoritmo è competitivo con i giocatori
umani [20]. Nella seconda applicazione considereremo il problema della identificazione automatica
all’interno di documenti testuali di frasi che contengono interazioni tra geni e proteine [30]. La nostra
proposta richiede solamente un dizionario di geni e proteine e un piccolo campione di frasi in linguaggio
naturale. Il metodo proposto genera un modello nella forma di espressione regolare che rappresenta i
pattern sintattici rilevanti nella forma di annotazioni standard part-of-speech(POS). Verificheremo il nostro
approccio su dei dataset realistici e dimostreremo una accuratezza che è in linea con importanti metodi di
riferimento e sufficientemente alta da essere di interesse pratico.

I contributi che seguono, abbandonano il campo della Programmazione Genetica e propongono
soluzioni basate su altre metodologie di Machine Learning, che spaziano dalla Grammatical Evolution
alle Support Vector Machine e dalle Random Forests alle Recurrent Neural Networks.

Proporremo un metodo per la predizione della accuratezza per gli estrattori di testo [25] che vengono
generati dai metodi GP precedentemente proposti. Utilizzeremo diverse tecniche di predizione e i risultati
suggeriranno che predizioni affidabili, per problemi di complessità pratica, possono essere effettivamente
ottenuti, velocemente e senza in realtà generare l’estrattore di entità testuali. Nel prosieguo affronteremo il
problema della estrazione automatica di testo da un’altra prospettiva e proporremo un nuovo algoritmo in
grado di generare una funzione di similarità tra stringhe ottimizzata per l’estrazione di entità da un flusso di
testo non strutturato [27]. Di seguito proporremo un sistema per la ri-autenticazione continua degli utenti
web basata sulle dinamiche osservate del mouse [144]; la caratteristica chiave della nostra proposta è che
non necessita l’installazione di alcun software sulle macchine client. Abbiamo ottenuto un’accuratezza
dell’ordine del 97% che è allineato con le proposte precedenti. Successivamente, affronteremo il problema
della verifica dell’autore [14], questo problema consiste nel determinare se un documento sconosciuto è
stato scritto dallo stesso autore di un insieme di documenti noti di uno stesso autore. Il nostro metodo
è stato inviato alla competizione PAN 2015 e ha conseguito il primo posto nella graduatoria finale per
la lingua spagnola. Affronteremo quindi il problema di profilazione di un utente [19], questo problema
consiste nel predire alcune caratteristiche di un autore–i.e sesso, età– analizzando un insieme dei suoi
tweets di Twitter. Consideriamo molti insiemi di feature stilometriche e di contenuto, e differenti algoritmi
di decisione. Infine, investigheremo la fattibilità di due strumenti capaci di generare automaticamente
(i) false review per un dato articolo scientifico [28] e (ii) false recensioni di clienti per un ristorante [29].
Abbiamo verificato sperimentalmente i nostri metodi su soggetti umani che hanno evidenziato l’abilità del
nostro metodo di produrre recensioni che risultano spesso credibili e in grado di sovvertire la decisione
finale del lettore umano.



Chapter 1
Introduction

The machine learning methods allow the computer to automatically generate programs starting from a set
of data that represents the expected behaviour, in other words machine learning methods can automatically
infer knowledge only by looking at examples of the expected behaviour or observations of phenomena. In
recent years, the machine learning techniques have evolved in a way that are currently able to perform
some tasks with the same effectiveness and greater reliability than the human being, for example, machine
learning techniques are now employed in applications like language translation, fraud detection, drug
design, recommender system, medical diagnoses, assisted and autonomous car driving, image and face
recognition. In fact machine learning tools have proven to be a cost-effective and reliable alternative to
human intelligence on a broad set of problems.

An effective machine learning technique is Genetic Programming (GP) which is a framework inspired
by biological evolution [120]. With GP, a solution for a problem is represented as a computer program
that is usually encoded as a tree structure–or abstract syntax tree, at start, the GP algorithm randomly
generates a population of such computer programs, composed only by a predefined set of building blocks,
each program is called an individual. Given a set of examples of the expected program behaviour, the
GP algorithm assess the effectiveness of each individual by evaluating a fitness function which returns a
number that represents the ability of the individual to solve the problem of interest. Hence, individuals
are randomly selected from the current population and recombined through certain genetic operators
called “crossover” and “mutation” in order to generate new ones, these new individuals are inserted in a
new population, a key point of this process is the individual selection that favors individuals that exhibit
a better fitness. The population obtained at each iteration of this process is called generation, and this
process is iterated until a satisfactory solution is found or until some termination criterion is met.

In this thesis we will describe the work developed at the Machine Learning Lab1 at University of
Trieste, consisting in novel machine learning techniques aimed at the solution of real world problems of
practical interest. The main contribution of this thesis is the application of GP for the automatic inference
of regular expressions both for text extraction [20, 21, 22, 23, 26, 30, 31] and classification tasks. Our
proposals improve over existing state-of-the art and the results shown in this thesis demonstrate that our
GP tools are able to solve these complex problems with the same effectiveness than human experts and
in a comparable amount of time [24, 33]; these results have been published in international conferences
and journals and have been awarded with the Silver Medal at the 13th Annual ”Humies” Award2, an
international competition that establishes the state of the art in genetic and evolutionary computation.

1http://machinelearning.inginf.units.it/
2http://gecco-2016.sigevo.org/index.html/Humies
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1.1 Thesis outline

A large class of entity extraction tasks from text that is either semistructured or fully unstructured may
be addressed by regular expressions, because in many practical cases the relevant entities follow an
underlying syntactical pattern and this pattern may be described by a regular expression. Writing a regular
expression capable of guaranteeing high precision and recall for a given extraction task is tedious, difficult
and requires specific technical skills.

In chapter 2 we consider the long-standing problem of synthesizing such expressions automatically,
based solely on examples of the desired behavior. We present the design and implementation of a
system capable of addressing extraction tasks of realistic complexity [21, 23, 31]. Our system is based
on an evolutionary procedure carefully tailored to the specific needs of regular expression generation by
examples. The procedure executes a search driven by a multiobjective optimization strategy aimed at
simultaneously improving multiple performance indexes of candidate solutions while at the same time
ensuring an adequate exploration of the huge solution space. We assess our proposal experimentally in
great depth, on a number of challenging datasets. The accuracy of the obtained solutions seems to be
adequate for practical usage and improves over earlier proposals significantly. Most importantly, our
results are highly competitive even with respect to human operators. A prototype is available as a web
application at http://regex.inginf.units.it.

As mentioned, building a regular expression involves a considerable amount of skill, expertise and
creativity, in chapter 3 we investigate whether the GP algorithm, proposed in chapter 2, may effectively
surrogate these qualities and construct automatically regular expressions, for tasks of realistic complexity,
in a way that is competitive with expert human users [24, 33]. We performed a large scale experiment
involving more than 1700 users on 10 challenging tasks [33]. We compared the solutions constructed by
these users to those constructed by our tool based on Genetic Programming. This large-scale experiment
confirmed the preliminary results of chapter 2 the quality of automatically-constructed solutions turned out
to be similar to the quality of those constructed by the most skilled user group and the time for automatic
construction was similar to the time required by human users.

Hence in chapter 4 we study the automatic generation of regular expressions for text extraction from
examples in an active learning scenario in which the user annotates only one desired extraction and then
merely answers extraction queries generated by the system. The resulting framework [22, 26] is attractive
because it is the system, not the user, which digs out the data in search of the samples most suitable to the
specific learning task. We base our proposals on our state-of-the-art GP learner—described in chapter 2—
based on Genetic Programming and we assess them experimentally on a number of challenging tasks
of realistic complexity. The results indicate that active learning is indeed a viable framework in this
application domain and may thus significantly decrease the amount of costly annotation effort required.

In chapter 5 we propose a methodology for predicting the accuracy of the extractor that may be
inferred with the methods proposed in chapter 2. We propose several prediction techniques and analyze
experimentally our proposals in great depth [25], with reference to the extractors consisting of regular
expressions. The results suggest that reliable predictions for tasks of practical complexity may indeed be
obtained quickly and without actually generating the entity extractor.

In the following two chapters we apply our, GP based, regex inference engine at two text classification
problems. In chapter 6 we develop an artificial player [20] for the Regex Golf game; Regex golf has
recently emerged as a specific kind of code golf, i.e., unstructured and informal programming competitions
aimed at writing the shortest code solving a particular problem. A problem in regex golf consists in
writing the shortest regular expression which matches all the strings in a given list and does not match any
of the strings in another given list. The regular expression is expected to follow the syntax of a specified
programming language, e.g., Javascript or PHP. We propose a regex golf player internally based on a
variant of the Genetic Programming regex inference engine described in the paper [16] that is an ancestor
of the one we describe in chapter 2. We assess experimentally our player on a popular regex golf challenge
consisting of 16 problems and compare our results against those of a recently proposed algorithm—the
only one we are aware of. Our player obtains scores which improve over the baseline and are highly
competitive also with respect to human players. The time for generating a solution is usually in the order

http://regex.inginf.units.it
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of tens minutes, which is arguably comparable to the time required by human players.
In chapter 7 we look at the development of techniques for automatic relation extraction from unstruc-

tured text, which is a problem attracting growing interest. The biomedical domain, in particular, is a sector
that may greatly benefit from those techniques due to the huge and ever increasing amount of scientific
publications describing observed phenomena of potential clinical interest. In our work, we consider the
problem of automatically identifying sentences that contain interactions between genes and proteins,
based solely on a dictionary of genes and proteins and a small set of sample sentences in natural language.
We propose an evolutionary technique for learning a classifier that is capable of detecting the desired
sentences within scientific publications with high accuracy. The key feature of our proposal [30], that is
internally based on Genetic Programming, is the construction of a model of the relevant syntax patterns in
terms of standard part-of-speech annotations. The model consists of a set of regular expressions that are
learned automatically despite the large alphabet size involved. We assess our approach on two realistic
datasets and obtain 74% accuracy, a value sufficiently high to be of practical interest and that is in line
with significant baseline methods.

Hence, in chapter 8 we approach the syntax-based entity extraction from examples from a different
perspective and we propose a similarity learning algorithm tailored to problems of syntax-based entity
extraction from unstructured text streams. Several research efforts have shown that a similarity function
synthesized from examples may capture an application-specific similarity criterion in a way that fits the
application needs more effectively than a generic distance definition. The proposed algorithm takes in
input pairs of strings along with an indication of whether they adhere or not adhere to the same syntactic
pattern. Our approach [27] is based on Grammatical Evolution and explores systematically a similarity
definition space including all functions that may be expressed with a specialized, simple language that we
have defined for this purpose. We assessed our proposal on patterns that are a subset of ones employed in
chapter 2. The results suggest that the proposed approach is indeed feasible and that the learned similarity
function is more effective than the traditional Levenshtein distance and the Jaccard similarity index.

In the final chapters we leave entity extraction and text classification problems to face different
challenges like (i) the continuous reauthentication of web users based on the observed mouse movements,
(ii) the authentication of the author for text documents, (iii) the prediction of attributes–i.e: age, gender–for
an author of Twitter messages, (iv) the automatic generation of fake scientific reviews and (v) the automatic
generation of fake restaurant reviews

In chapter 9 we propose a system for continuous reauthentication of web users based on the observed
mouse dynamics [144]. Key feature of our proposal is that no specific software needs to be installed on
client machines, which allows to easily integrate continuous reauthentication capabilities into the existing
infrastructure of large organizations. We assess our proposal with real data from 24 users, collected during
normal working activity for several working days. We obtain accuracy in the order of 97%, which is
aligned with earlier proposals requiring instrumentation of client workstations for intercepting all mouse
activity—quite a strong requirement for large organizations. Our proposal may constitute an effective
layer for a defense-in-depth strategy in several key scenarios: web applications hosted in the cloud, where
users authenticate with standard mechanisms; organizations which allow local users to access external
web applications, and enterprise applications hosted in local servers or private cloud facilities.

In chapter 10 we describe an approach for the author identification task [14]. The task consists in
determining if an unknown document was authored by the same author of a set of documents with the
same author. We propose a machine learning approach based on a number of different features that
characterize documents from widely different points of view. We construct non-overlapping groups of
homogeneous features, use a random forest regressor for each features group, and combine the output of
all regressors by their arithmetic mean. We train a different regressor for each language. Our approach
achieved the first position in the final rank for the Spanish language in the 2015 PAN competition [196].

In chapter 11 we describe an approach for the author profiling task [19]. The task consists in
predicting some attributes of an author analyzing a set of his/her Twitter tweets. We consider several sets
of stylometric and content features, and different decision algorithms: we use a different combination of
features and decision algorithm for each language-attribute pair, hence treating it as an individual problem.
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Hence, in chapter 12 we investigate the feasibility of a tool capable of generating fake reviews for a
given scientific paper automatically [28]. While a tool of this kind cannot possibly deceive any rigorous
editorial procedure, it could nevertheless find a role in several questionable scenarios and magnify the
scale of scholarly frauds. Peer review is widely viewed as an essential step for ensuring scientific quality
of a work and is a cornerstone of scholarly publishing. On the other hand, the actors involved in the
publishing process are often driven by incentives which may, and increasingly do, undermine the quality
of published work, especially in the presence of unethical conduits. A key feature of our tool is that it is
built upon a small knowledge base, which is very important in our context due to the difficulty of finding
large amounts of scientific reviews. We experimentally assessed our method with 16 human subjects
and we presented to these subjects a mix of genuine and machine generated reviews and we measured
the ability of our proposal to actually deceive subjects judgment. The results highlight the ability of our
method to produce reviews that often look credible and may subvert the decision. Moreover, we like
to emphasize that the scientific article [28] that describes this work, has also attracted much interest on
magazines3.

In the last chapter 13 we explore the feasibility of a tool capable of generating fake reviews for a
restaurant automatically [29]. Consumer reviews are an important information resource for people and a
fundamental part of everyday decision-making. Product reviews have an economical relevance which may
attract malicious people to commit a review fraud, by writing false reviews. In this work, we investigate
the possibility of generating hundreds of false restaurant reviews automatically and very quickly. We
propose and evaluate a method for automatic generation of restaurant reviews tailored to the desired
rating and restaurant category. A key feature of our work is the experimental evaluation which involves
human users. We assessed the ability of our method to actually deceive users by presenting to them sets
of reviews including a mix of genuine reviews and of machine-generated reviews. Users were not aware
of the aim of the evaluation and the existence of machine-generated reviews. As it turns out, it is feasible
to automatically generate realistic reviews which can manipulate the opinion of the user.

3https://www.timeshighereducation.com/news/robot-written-reviews-fool-academics, http://retractionwatch.com/
2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-
peer-reviews/,http://www.powerlineblog.com/archives/2016/09/academic-absurdity-of-the-week-fake-peer-reviews.
php?,https://www.insidehighered.com/news/2016/09/22/many-academics-are-fooled-robot-written-peer-reviews

https://www.timeshighereducation.com/news/robot-written-reviews-fool-academics
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http://retractionwatch.com/2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-peer-reviews/
http://retractionwatch.com/2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-peer-reviews/
http://www.powerlineblog.com/archives/2016/09/academic-absurdity-of-the-week-fake-peer-reviews.php?
http://www.powerlineblog.com/archives/2016/09/academic-absurdity-of-the-week-fake-peer-reviews.php?
https://www.insidehighered.com/news/2016/09/22/many-academics-are-fooled-robot-written-peer-reviews
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Chapter 2
Inference of Regular Expressions for
Text Extraction

2.1 Overview

A regular expression is a means for specifying string patterns concisely. Such a specification may be
used by a specialized engine for extracting the strings matching the specification from a data stream.
Regular expressions are a long-established technique for a large variety of application domains, including
text processing, and continue to be a routinely used tool due to their expressiveness and flexibility. A
large class of entity extraction tasks, in particular, may be addressed by regular expressions, because
in many practical cases the relevant entities follow an underlying syntactical pattern and this pattern
may be described by a regular expression. However, the construction of regular expressions capable of
guaranteeing high precision and high recall for a given extraction task is tedious, difficult and requires
specific technical skills.

In this chapter, we consider the problem of synthesizing a regular expression automatically, based
solely on examples of the desired behavior. This problem has attracted considerable interest, since a long
time and from different research communities. A wealth of research efforts considered classification
problems in formal languages [45, 77, 78, 84, 117, 199]—those results are not immediately useful for text
extraction. Essentially, the problem considered by those efforts consisted in inferring an acceptor for a
regular language based on positive and negative sample strings, i.e., of strings described by the language
and of strings not described by the language. Learning of deterministic finite automata (DFA) from
examples was also a very active area, especially because of competitions that resulted in several important
insights and algorithms, e.g. [60,126]. Such research, however, usually considered problems that were not
inspired by any real world application [60] and the applicability of the corresponding learning algorithms
to other application domains is still largely unexplored [40]. For example, the so-called Abbadingo
competition was highly influential in this area and considered short sequences of binary symbols, with
training data drawn uniformly from the input space. Settings of this sort do not fit the needs of practical
text processing applications, which have to cope with much longer sequences of symbols, from a much
larger alphabet, not drawn uniformly from the space of all possible sequences. Furthermore, regular
expressions used in modern programming languages allow specifying more various extraction tasks than
those which can be specified using a DFA.

A text extraction problem was addressed by researchers from IBM Almaden and the University of
Michigan, which developed a procedure for improving an initial regular expression to be provided by the
user based on examples of the desired functioning [133]. The cited work is perhaps the first one addressing
entity extraction from real text of non trivial size and complexity: the entities to be extracted included
software names, email addresses and phone numbers while the datasets were unstructured and composed
of many thousands of lines. A later proposal by researchers from IBM India and Chennai Mathematical
Institute still required an initial regular expression but was more robust toward initial expressions of
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modest accuracy and noisy datasets [10]. Refinement of a given regular expression was also considered
by an IBM Research group, which advocated involvement of a human operator for providing feedback
during the process [152]. The need of an initial solution was removed by researchers from SAP AG that
demonstrated the practical feasibility of inferring a regular expression from scratch, based solely on a
set of examples derived from enterprise data, such as, e.g., a product catalog or historical invoices [44].
A more recent proposal of ours has obtained further significant improvements in this area, in terms of
precision and recall of the generated solutions as well as in terms of smaller amount of training data
required [15, 17]. Regular expressions for text extraction tasks of practical complexity may now be
obtained in a few minutes, based solely on a few tens of examples of the desired behavior.

In this work we present a system that aims at improving the state-of-the-art in this area. Our proposal
is internally based on Genetic Programming (GP), an evolutionary computing paradigm which implements
a heuristic search in a space of candidate solutions [120]. We execute a search driven by a multiobjective
optimization strategy aimed at simultaneously improving multiple performance indexes of candidate
solutions while at the same time ensuring an adequate exploration of the huge solution space. Our proposal
is a significant improvement and redesign of the approach in [17], resulting in a system that generates
solutions of much better accuracy. The improvements include: (a) a radically different way of quantifying
the quality of candidate solutions; (b) inclusion, in the starting points of the search, of candidate solutions
built based on an analysis of the training data, rather than being fully random; (c) a strategy for restricting
the solution space by defining potentially useful “building blocks” based on an analysis of the training
data; and (d) a simple mechanism for enforcing structural diversity of candidate solutions.

Furthermore, the redesign features several novel properties which greatly broaden the scope of
extraction tasks that may be addressed effectively:

• Support for the or operator. In many cases learning a single pattern capable of describing all the
entities to be extracted may be very difficult—e.g., dates may be expressed in a myriad of different
formats. Our system is able to address such scenarios by generating several regular expressions
that are all joined together with or operators to form a single, larger regular expression. We
implement this functionality by means of a separate-and-conquer procedure [13, 91, 163]. Once a
candidate regular expression provides adequate accuracy on a subset of the examples, the expression
is inserted into the set of final solutions and the learning process continues on a smaller set of
examples including only those not yet solved adequately [21]. The key point is that the system is
able to realize automatically how many regular expressions are needed.

• Context-dependent extraction. It is often the case that a text snippet must or must not be extracted
depending on the text surrounding the snippet—e.g., an email address might have to be extracted
only when following a Reply-To: header name. Modern regular expression engines provide several
constructs for addressing these needs but actually taking advantage of those constructs is very
challenging: the more the available constructs, the larger the search space. Our system is able
to generate regular expressions which exploit lookaround operators effectively, i.e., operators
specifying constraints on the text that precedes or follows the text to be extracted.

• No constraints on the size of training examples. We place no constraints on the size of training
examples: the training data may consist of either a single, potentially very large, file with an
annotation of all the desired extractions, or of a set of lines with zero or more extractions in each
one. This seemingly minor detail may in fact be quite important in practice: the cited work [17]
was not able to exploit training examples including multiple extractions correctly (this point will be
discussed in detail later), thus the training data had to be segmented in units containing at most one
extraction and in such a way that desired extractions did not span across adjacent units. The need
for such a tricky operation is now removed. Accommodating the possibility of multiple extractions
in each training example has required significant changes in the search strategy internally used by
the system.

We assess our proposal experimentally in great depth, on a number of challenging datasets of realistic
complexity and with a very small portion of the dataset available for learning. We compare precision and
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recall of the regular expressions generated by our system to significant baseline methods proposed earlier
in the literature. The results indicate a clear superiority of our proposal and the obtained accuracy values
seem to be adequate for practical usage. Our results are highly competitive also with respect to a pool
of more than 70 human operators, both in terms of accuracy and of time required for building a regular
expression. Indeed, we are not aware of any proposal for automatic generation of regular expressions in
which human operators were used as a baseline.

We made publicly available the source code of our system (https://github.com/MaLeLabTs/
RegexGenerator) and deployed an implementation as a web app (http://regex.inginf.units.it).

2.2 Related work

In this section we discuss further proposals that, beyond those already discussed in the overview, may be
useful to place our work in perspective with respect to the existing literature. As pointed out by [133], the
learning of regular expressions for information extraction prior to the cited work focused on scenarios
characterized by alphabet sizes much smaller than those found in natural language text. Rather than
attempting to infer patterns over the text to be extracted, the usual approach consisted on learning patterns
over tokens generated with various text processing techniques, e.g., POS tagging, morphological analysis,
gazetteer matching [61, 177, 209].

An attempt at learning regular expressions over real text was proposed in [55]. The cited work
considered reduced forms of regular expressions (a small subset of POSIX rules) and, most importantly,
considered a simple classification problem consisting in the detection of HTML lines with a link to other
web documents. Text classification and text extraction are related but different problems, though. The
former assumes an input stream segmented in units to be processed one at a time; one has to detect
whether the given input unit contains at least one interesting substring. The latter requires instead the
ability to identify, in the (possibly very long) input stream, the boundaries of all the relevant substrings, if
any. Furthermore, text extraction usually requires the ability to identify a context for the desired extraction,
that is, a given sequence of characters may or may not have to be extracted depending on its surroundings.
Interestingly, the approach in [17] was developed for extraction but delivered better results than in [55]
also in classification.

Further proposals for addressing classification problems have been developed but tailored to very
specific scenarios, recent examples include email spam campaigns [168, 210] and clinical symptoms [48].

There have been other proposals for regular expression learning aimed at information extraction from
real text, specifically web documents [12]. The cited work provides an accuracy in URL extraction from
real web documents that is quite low—the reported value for F-measure being 27% (on datasets that are
not public). In this respect, it is useful to observe that the latest proposal [17] obtained accuracy well
above 90% in the 12 datasets considered; moreover, two of those datasets were used also in [44, 133]
and in those cases it obtained similar or much better accuracy with a training set smaller by an order of
magnitude.

The problem of learning a regular expression by examples of the desired extraction behavior could be
seen as a very specific problem in the broader category of programming by examples, where a program
in a given programming language is to be synthesized based on a set of input-output pairs [190]. In
particular, the problem is an under-specified task [62] in the sense that there may usually be many different
solutions whose behavior on the training data is identical while their behavior on unseen data is different.
The cited work considers the generation of regular expressions for classification tasks on phone numbers,
dates, email addresses and URLs—tasks that are considered to be tricky even for expert developers and to
lack an easy-to-formalize specification. It advocates the writing of solutions by several expert developers
based on some examples, an assessment of their behavior on unseen data made in crowd-sourcing, and an
evolutionary optimization of the available solutions based on the feedback from the crowd. Our proposal
generates a regular expression in a fully automatic way. Furthermore, we assess our work on datasets
that are orders of magnitude larger than those considered in [62] and on tasks that seems fair to define
much more challenging. Of course, we make these observations in the attempt of clarifying our proposal

https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
http://regex.inginf.units.it


2. Inference of Regular Expressions 14

and by no means we intend to criticize the cited work: besides, the cited work investigates the possibility
of crowd-sourcing difficult programming tasks and is not meant to propose a method for the automatic
generation of regular expressions from examples. It is useful to observe, though, that the authors of the
cited work were not aware of any approach suitable for learning regular expressions capable of handling
the large alphabet sizes occurring in real-world text files, while such functionality was demonstrated
in [15, 17, 44].

As pointed out above, learning a program from examples of the desired behavior is an intrinsically
under-specified task—there might be many different solutions with identical behavior over the examples.
Furthermore, in practice, there is usually not even any guarantee that a solution which perfectly fits all the
examples actually exists. The common approach for addressing this issue, which is also our approach,
aims at an heuristic balance between generalization and overfitting: we attempt to infer from the examples
what is the actual desired behavior, without insisting on obtaining perfect accuracy on the training set.
It may be worth mentioning that coding challenges exist (and occasionally become quite popular in
programming forums) which are instead aimed at overfitting a list of examples [20, 157]. The challenge1

consists in writing the shortest regular expression that matches all strings in a given list and does not match
any string in another given list. Our proposal is not meant to address these scenarios. From the point of
view of our discussion, scenarios of this sort differ from text extraction in several crucial ways. First,
they are a classification problem rather than an extraction problem. Second, they place no requirements
on how strings not listed in the problem specification should be classified—e.g., strings in the problem
specification followed or preceded by additional characters. Text extraction requires instead a form of
generalization, i.e., the ability of inducing a general pattern from the provided examples.

Finally, we mention a recent proposal for information extraction from examples [129]. The cited work
describes a powerful and sophisticated framework for extracting multiple different fields automatically in
semi-structured documents. As such, the framework encompasses a much broader scenario than our work.
A tool implementing this framework has been publicly released as part of Windows Powershell2. The
tool does not generate a regular expression; instead, it generates a program in a specified algebra of string
processing operators that is to be executed by a dedicated engine. We decided to include this tool in our
experimental evaluation in order to obtain further insights into our results.

2.3 Scenario

We are concerned with the task of generating a regular expression which can generalize the extraction
behavior represented by some examples, i.e., by strings annotated with the desired portions to be extracted.
In this section we define the problem statement in detail along with the notation which will be used
hereafter.

We focus on the regular expression implementation which is provided by the Java standard libraries.
A deep comparison of different flavours of regular expressions is beyond the scope of our work [89],
yet it is worth to mention that Java regular expressions provide more constructs than POSIX extended
regular expressions (ERE)—e.g., lookarounds (see Section 2.4.1)—which allow to define patterns in a
more compact form.

2.3.1 Definitions

A snippet xs of a string s is a substring of s, identified by the starting and ending index in s. For readability,
we refer to snippets using their textual content followed by their starting index as subscript—e.g., ex5,
extra5 and traction7, are three different snippets of the string text extraction. We denote by Xs the set of all
the snippets of s. Let xs, x1s P Xs. A total order is defined among snippets in Xs based on their starting
index: xs precedes x1s if the starting index of the former is strictly lower than the starting index of the
latter. We say that xs is a supersnippet of x1s if the indexes interval of xs strictly contains the indexes

1https://www.google.it/search?q“regex`golf
2Windows Management Framework 5.0 Preview, November 2014.

https://www.google.it/search?q=regex+golf
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interval of x1s: in this case, x1s is a subsnippet of xs. Finally, we say that xs overlaps x1s if the intersection
of their index intervals is not empty. For instance, ex1, ex5, extra5 and traction7, are snippets of the string
text extraction: extra5 is a supersnippet of ex5 (but not of ex1), extra5 precedes and overlaps traction7.

A regular expression r applied on a string s deterministically extracts zero, one or more snippets. We
denote the (possibly empty) set of such snippets, that we call extractions, by rXssr.

2.3.2 Problem statement

The problem input consists of a set of examples, where an example ps,Xsq is a string s associated with a
(possibly empty) set of non-overlapping snippets Xs Ă Xs. String s may be, e.g., a text line, or an email
message, or a log file and so on. Set Xs represents the desired extractions from s, whereas snippets in
XszXs are not to be extracted.

Intuitively, the problem consists in learning a regular expression r̂ whose extraction behavior is
consistent with the provided examples—r̂ should extract from each string s only the desired extractions
Xs. Furthermore, r̂ should capture the pattern describing the extractions, thereby generalizing beyond the
provided examples. In other words, the examples constitute an incomplete specification of the extraction
behavior of an ideal and unknown regular expression r‹. The learning algorithm should aim at inferring
the extraction behavior of r‹ rather than merely obtaining from the example strings exactly the desired
extractions. We formalize this intuition as follows.

Let E and E‹ be two different sets of examples, both representing the extraction behavior of a target
regular expression r‹. The problem consists in learning, from only the examples in E, a regular expression
r̂ which maximizes its F-measure on E‹, i.e., the harmonic mean of precision and recall w.r.t. the desired
extractions from the examples in E‹:

Precpr̂, E‹q :“

ř

ps,XsqPE‹
|rXssr̂ XXs|

ř

ps,XsqPE‹
|rXssr̂|

Recpr̂, E‹q :“

ř

ps,XsqPE‹
|rXssr̂ XXs|

ř

ps,XsqPE‹
|Xs|

The greater the F-measure of r̂ on E‹, the more similar the extraction behaviour of r̂ and r‹.
We call the pair of sets of examples pE,E‹q a problem instance. In our experimental evaluation we

built several problem instances starting from quite complex target expressions r‹ and strings consisting of
real world datasets (e.g., logs, HTML lines, Twitter posts, and alike). Of course, in a practical deployment
of the system set E‹ is not available because the target expression r‹ is not known.

Observations on the problem statement

We point out that characterizing the features of a problem instance which may impact the quality of
a generated solution is beyond the scope of our work. Assessing the difficulty of a given problem
instance, either in general or when solved by a specific approach, is an important theoretical and practical
problem. Several communities have long started addressing this specific issue, e.g., in information
retrieval [66, 104] or in pattern classification [54, 110]. Obtaining practically useful indications, though,
is still a largely open problem, in particular, in evolutionary computing [96] as well as in more general
search heuristics [191, 192].

A notable class of problem instances is the one which we call with context. Intuitively, these are the
problem instances in which a given sequence of characters is the textual content of snippet to be extracted
and also the textual content of a snippet which is not to be extracted. For example, consider a problem
instance with the two examples pI have 12 dogs,Hq and pToday is 7-12-11, t1211uq. This problem instance
is with context because the sequence of characters 12 is not to be extracted from the first example but is to
be extracted from the second example. The discriminant between the two cases is in the portion of the
string surrounding the sequence 12, that is, in its context. Of course, similar scenarios could occur with
respect to sequences of characters in the same example rather than in different examples—e.g., assuming
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an email message is an example, one might want to extract only the email addresses following a Reply-To:
header name.

2.4 Our approach

Our approach is based on Genetic Programming (GP) [120]. GP is an evolutionary computing paradigm
in which candidate solutions for a target problem, called individuals, are encoded as trees. A problem-
dependent numerical function, called fitness, must be defined in order to quantify the ability of each
individual to solve the target problem. This function is usually implemented by computing a performance
index of the individual on a predefined set of problem instances, called the learning set. A GP execution
consists of an heuristic and stochastic search in the solution space, looking for a solution with optimal fit-
ness. To this end, an initial population of individuals is built, usually at random, and an iterative procedure
is performed which consists in (i) building new individuals from existing ones using genetic operators
(usually crossover and mutation), (ii) adding new individuals to the population, and (iii) discarding worst
individuals. The procedure is repeated a predefined number of times or until a predefined condition is met
(e.g., a solution with perfect fitness is found).

We carefully adapted the general framework outlined above to the specific problem of regular
expression generation from examples. Our GP procedure is built upon our earlier proposal [17]—the
numerous improvements were listed in the introduction. We describe this procedure in detail in the
next sections: encoding of regular expressions as trees (Section 2.4.1), fitness definition (Section 2.4.1),
construction of the initial population and its evolution for exploring the solution space (Section 2.4.1).
Next, we describe our separate-and-conquer strategy (Section 2.4.1) and the overall organization of GP
searches (Section 2.4.2).

2.4.1 GP search

We designed a GP search which takes a training set T as input and outputs a regular expression r̂. The
training set is composed of tuples ps,Xd

s , X
u
s q, the components of each tuple being as follows: (i) a

string s; (ii) a set of snippets Xd
s representing the desired extractions from s; (iii) a set of snippets Xu

s

representing the undesired extractions from s, i.e., no snippet of s overlapping a snippet in Xu
s should be

extracted. The training set T must be constructed such that @s P T (i) Xd
s XX

u
s “ H, and, (ii) snippets

in Xd
s YXu

s must not overlap each other. The goal of a GP search is to generate a regular expression
r such that @s P T , Xd

s “ rXssr. We recall that, from a broader point of view, the generated regular
expression r should generalize beyond the examples in T (see Section 2.3.2).

Tree representation

In our proposal an individual is a tree which represents a regular expression r. Each node in a tree is
associated with a label, which is a string representing basic components of a regular expressions that are
available to the GP search (discussed in detail below). Labels of non-leaf nodes include the placeholder
symbol •: each children of a node is associated with an occurrence of symbol • in the label of that node.
The regular expression represented by a tree is the string constructed by means of a depth-first post-order
visit of the tree. In detail, we execute a string transformation of the root node of that tree. The string
transformation of a node is a string obtained from the node label where each • symbol is replaced by the
string transformation of the associated child. Figure 2.1 shows two examples of tree representations of
regular expressions.

Available labels are divided in two sets: a set of predefined labels which represent regular expression
constructs, and a set of T -dependent labels constructed as described below. In other words, unlike the
previous work in [17], the GP search explores a space composed of candidate solutions assembled from
general regular expression constructs and from components constructed before starting the GP search
by analyzing the provided examples. The rationale for T -dependent labels consists in attempting to
shrink the size of the solution space by identifying those sequences of characters which occurs often in
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the desired extractions (or “around” them) and making these sequences available to the GP search as
unbreakable building blocks. For instance, in the task of generating a regular expression for extracting
URLs, the string http could be an useful such block.

Predefined labels are the following: character classes (\d, \w), predefined ranges (a-z, A-Z), digits (0, . . . ,
1), predefined characters (\., :, ,, ;, , =, ”, ’, \\, /, \?, \!, \}, \{, \(, \), \[, \],<,>, @, #, ), concatenator (••),
set of (un)possible matches ([•], [ˆ•]), possessive quantifiers (•*+, •++, •?+, •{•,•}+), non-capturing group
((?:•)), and lookarounds ((?<=•), (?<!•), (?=•), (?!•)). We include possessive quantifiers and we do not include
greedy and lazy quantifiers3 because greedy and lazy quantifiers have worst-case exponential complexity,
which results in execution times for fitness evaluation too long to be practical [17]. Unlike the previous
work in [17], we include lookarounds for addressing problem instances with context, i.e., scenarios where
a given sequence of characters has or has not to be extracted depending on its surroundings (Section 2.3.2).
Lookaround is a shorthand for regular expression constructs which allow defining constraints on the text
that either precedes or follows the snippet to be extracted, in the form of text that must or must not be
present (see [89] for details). For instance, the regular expression r “ (?<=\d\d-\d\d-)\d++ contains a
lookaround operator, the positive lookbehind operator, that specifies which text must precede the snippet
to be extracted. Given the string s “ born: 02-03-1979, graduated: 21-07-04, age: 35, the set of extractions
rXssr contains 197912 and 0437, but not 3544. Some notable regular expression implementations (namely
JavaScript) does not work with lookbehind.

Note that the mere addition of one or more regular expression operators does not necessarily broaden
the scope of the system. The more the available constructs, the larger the search space: a system with too
many operators to choose from may end up generating poor solutions. In fact, during our early redesign
with the proposal in [17] we were unable to exploit lookaround operators effectively.

The set of T -dependent labels contains token labels and partial range labels.
Token labels are generated as follows. A multiset T d of candidate tokens is built by applying the

regular expression \w+|\s+|[ˆ\w\s]+ to each desired extraction in T : that is, T d contains all the extractions
obtained by that regular expression on each element of

Ť

ps,Xd
s ,X

u
s qPT X

d
s . Then, the occurrency rate

of each candidate token is computed as its multiplicity in T d divided by |
Ť

ps,Xd
s ,X

u
s qPT X

d
s |. Finally,

candidate tokens with an occurrency rate which is greater than 80% are retained as token labels. The same
procedure is executed with respect to candidate tokens obtained from undesired extractions (only in tuples
ps,Xd

s , X
u
s q for which Xd

s ‰ H).
Partial range labels are obtained as the largest intervals of alphanumeric characters whose elements

occur in the desired extractions (i.e., in
Ť

ps,Xd
s ,X

u
s qPT X

d
s ). For instance, a-c and l-n are two partial ranges

labels obtained from the strings cabin and male.

Fitness

The fitness definition, i.e., how to quantify the quality of a candidate solution for the problem being
solved, is a fundamental design decision in GP. Several practical applications are based on a multiobjective
approach, where the quality of a candidate solution is assessed by means of two fitness indexes: one for
quantifying performance, the other for quantifying a complexity index of the solution, typically its size.
Such an approach has proven to be very effective at preventing bloat, i.e., the proliferation of candidate
solutions that grow bigger in size without any corresponding improvement in performance [71].

We developed a fitness definition in which the performance of the solution is taken into account by two
performance indexes (differently from the single one used in [17]): one considers examples at the level of
full extractions; the other considers instead each example as a character sequence where each character,
specified by its value and position, is to be classified between extracted vs. non extracted. The aim of
the latter is to rewards small improvements at the character level in the extraction behavior, even when
they do not result in new full snippets correctly extracted. The same aim motivated the fitness definition
of [17], but here we accomodate a scenario with multiple extractions for each example, which was not

3Greedy quantifiers: •* •+ •? •{•,•}. Lazy quantifiers: •*? •+? •?? •{•,•}?
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tailored by the cited paper. We couple the two performance indexes with length of the regular expression,
thereby resulting in three fitness indexes.

Our fitness definition requires comparing the actual extractions generated by a regular expression to
the desired extractions. To this end, we define two operators over sets of snippets. Let Xs and X 1s be
two sets of snippets of s. The snippet set difference Xs aX

1
s is the set composed of each snippet in Xs

which satisfies the following conditions: (i) is a subsnippet of, or is equal to, one or more snippets in
Xs, (ii) does not overlap any snippet in X 1s, (iii) is not a subsnippet of any snippet which meets the two
previous conditions. For instance, consider string s “ I said I wrote a ShortPaper and the sets of snippets
Xs “ tI0, I7, ShortPaper17u, and X 1s “ tI0, Pap22u. It will be Xs aX

1
s “ tI7, Short17, er25u. The snippet set

intersection Xs [X
1
s is defined in the same way except that condition ii requires to be a subsnippet of, or

to be equal to, one or more snippets in X 1s. In the previous example it will be Xs [X
1
s “ tI0, Pap22u.

Each individual r is associated with a fitness tuple fprq :“ pPrecpr, T q,Accpr, T q, `prqq. The first
component Precpr, T q of the fitness is the precision on the tuples in T :

Precpr, T q :“

ř

ps,Xd
s ,X

u
s qPT

ˇ

ˇrXssr XXd
s

ˇ

ˇ

ř

ps,Xd
s ,X

u
s qPT |rXssr [ pX

d
s YX

u
s q|

The second component Accpr, T q is the average of the True Positive Character Rate (TPCR) and True
Negative Character Rate (TNCR):

TPCRpr, T q :“

ř

ps,Xd
s ,X

u
s qPT

›

›rXssr [Xd
s

›

›

ř

ps,Xd
s ,X

u
s qPT }X

d
s }

TNCRpr, T q :“

ř

ps,Xd
s ,X

u
s qPT }pts0u a rXssrq [X

u
s }

ř

ps,Xd
s ,X

u
s qPT }X

u
s }

where }X} is the sum of the length of all the snippets in X and s0 is the snippet consisting of the whole
string s.

Finally, the latter component `prq is the length of the regular expression r (this index has to be
minimized, unlike the other two indexes which have to be maximized).

We rank individuals based on their fitness tuples as follows. An individual a Pareto-dominates another
individual b if a is better than b on at least one fitness element and not worse on the other elements. An
individual belongs to the ith frontier if and only if it is Pareto-dominated only by individuals belonging to
jth frontier, with j ă i (individuals in the first frontier are not Pareto-dominated by any other individual).
Based on these definitions, we first sort individuals based on the Pareto frontier they belong to. Second, we
establish a total order among individuals belonging to the same Pareto frontier based on a lexicographic
ordering among fitness indexes.

Initialization and evolution

Our GP search operates on a fixed-size population of npop individuals. We build the initial population
basing on the training set T , unlike the usual approach in GP which consists of building the entire
population at random (as in [17]). We generate 4 individuals from each snippet in each example, all
generated so as to extract that snippet. The rationale is to provide a sort of good starting point and useful
genetic material for the search.

In detail, for each snippet xs in
Ť

ps,Xd
s ,X

u
s qPT X

d
s , we generate 4 individuals as described below—

Figure 2.1 shows an example of the procedure applied to a single snippet.

a) A tree is generated from the textual content of xs using, whenever possible and with decreasing
priority, (i) nodes with token label to represent the corresponding tokens, (ii) nodes with the label \d to
represent digits, (iii) subtrees corresponding to [a-zA-Z] to represent alphabetic characters, (iv) nodes
with predefined characters labels to represent corresponding characters, and (v) nodes with the label .
for all other characters.
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b) A tree is generated as in a, then subtrees composed only of nodes with two labels, one being the
concatenator •• and the other a generic label l, are replaced by the subtree corresponding to l++.

c) Two snippets xbehind
s and xahead

s are considered such that their length is at most 10`pxsq and they imme-
diately precede (xbehind

s ) or succeed (xahead
s ) xs in the corresponding tuple—they are not considered if

xs stays at the beginning or at the end of the string, respectively. Then, a tree for each snippet xbehind
s ,

xs, and xahead
s is built as in a. Finally, a tree is built such that it corresponds to the concatenation of

(i) a lookbehind node whose child is the tree obtained from xbehind
s , (ii) the tree obtained from xs, and

(iii) a lookahead node whose child is the tree obtained from xahead
s .

d) A tree is generated as in c and then modified as in b, by compacting subtrees of repeated leaf nodes. For
lookbehind trees, subtrees are replaced by l{1,m}+, rather than l++, where l is the repeated label and m
is the number of its occurrences in the subtree. This change is made to accommodate a limitation of
common regular expression libraries which do not allow for ++ and *+ to occur within lookbehinds.

s1 “ height: 174.5cm s2 “ height: n.a.
xs1 “ 174.58
ra “ \d\d\d\.\d
rb “ \d++\.\d
rc “ (?<=height: )\d\d\d\.\d(?=[A-Za-z][A-Za-z])
rd “ (?<=height: )\d++\.\d(?=[A-Za-z]{1,2}+)

(a) Individuals generated for xs.

••

\d••

••

\.\d

••

\d\d
(b) Tree for ra.

••

••

(?=•)

•{•,•}+

21[A-Za-z]

••

••

\d\.

•++

\d

(?<=•)

••

••

:

height

(c) Tree for rd.

Figure 2.1: Example of the population initialization from a training set of 2 examples: 4 individuals ra, rb, rc, rd
are generated from the only desired extraction xs1 . The trees corresponding to 2 of them are shown: note that, in rd,
height is a token label (see Section 2.4.1). The subscript of the individuals (a–d) corresponds to the specific points
described in Section 2.4.1.

If the number of individuals generated from the training set T is greater than npop, exceeding
individuals are removed at random; otherwise, missing individuals are generated at random with a
Ramped half-and-hald method [120], each one with a tree depth chosen randomly within the interval
2–15. Whenever an individual is generated whose string transformation is not a valid regular expression,
it is discarded and a new one is generated.

Once the initial population is built, it is evolved iteratively as follows. At each iteration (called
generation), npop new individuals are generated: 80% by crossover of pairs of individuals of the current
population, 10% by mutation of individuals of the current population, 10% generated randomly with a
Ramped half-and-half method. Crossover is a genetic operator which takes two individuals and outputs
two new individuals that are identical to the input individuals except for two randomly selected subtrees
that are swapped. Mutation is a genetic operator which takes an individual and outputs a new individual
identical to the input inividual except for a randomly selected subtree that is replaced by a new randomly
generated subtree. The choice of an individual (or a pair of individuals) to undergo mutation (or crossover)
is made with a tournament selection: 7 individuals are randomly picked in the current population and the
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one with the best fitness is selected. A new population is built from the resulting 2npop individuals, by
retaining only the best npop of them.

The above procedure includes a genotypic diversity enforcement criterion, which was not present
in [17], (a very similar mechanism is used in [128]): whenever an individual r1 is generated whose string
transformation is the same as one of an existing individual r2 (i.e., one in the current population or one
previously generated in the current iteration), r1 is discarded and a new one is generated.

The iterative procedure is repeated until one of the two following conditions is met: (i) a number of
ngen iterations have been performed, or (ii) the fitness tuple of the best individual has remained unchanged
for nstop consecutive iterations. The string transformation of the best individual of the population at the
end of the last iteration is the outcome of the GP search.

Separate-and-conquer

A problem instance may include desired extractions which are structurally very different from each
other. For example, dates may be expressed in a myriad of different formats and learning a single pattern
capable of expressing all these formats may be very difficult. While problem instance of this sort could
be theoretically addressed by including the or operator | among the building blocks available to the GP
search for building candidate solutions, in practice such a design choice is ineffective. As it turned out
from our analyses, that we omit for brevity, inclusion of the or operator generally leads to poor solutions,
probably because of the much increased size of the solution space along with the difficulty of figuring out
when such operator is actually needed and at which exact point of a candidate solution.

To address this important practical problem we designed a separate-and-conquer search procedure
(which we previously sketched in [21]) that does not require the or operator yet is able to realize
automatically whether multiple patterns are required and, in that case, to actually generate such patterns
with an appropriate trade-off between specificity and generality.

A separate-and-conquer search consists of an iterative procedure in which, at each iteration, a GP
search is performed and the snippets correctly extracted by the set of regular expressions generated so
far are removed from the training set for the next iteration. This general scheme [91] is useful to cope
with scenarios in which several problem sub-instances that are not explicitly delimited could be identified,
such as in various forms of rule inference [13, 145, 163]. In detail, initially the target regular expression r̂
is set to the empty string, then the following sequence of steps is repeated:

1. Perform a GP search on T and obtain r.

2. If Precpr, T q “ 1, then assign r̂ :“ r̂|r (i.e., concatenate r̂, the regular expression or operator |, and
r), otherwise terminate.

3. For each ps,Xd
s , X

u
s q P T , assign Xd

s :“ Xd
s zrXssr̂;

4. If
Ť

ps,Xd
s ,X

u
s qPT X

d
s is empty, then terminate.

In other words, at each iteration we require the currently generated regular expression r to have perfect
precision (step 2): i.e., r must extract only snippets which are indeed to be extracted, but it might miss
some other snippets. Since r̂ is built up with the or operator, it extracts every snippet which is extracted
by at least one of its components: it follows that r̂ will have perfect precision and a recall greater than
each of its components. The constraint on perfect precision of step 2 is indeed the reason for which we
chose to favor the precision among individuals of the same Pareto frontier (see Section 2.4.1): the most
prominent objective is exactly to maximize Precpp, T q. Subsequent iterations will target the snippets still
missed by r̂ (step 3).

The GP search at step 1 is performed with nstop ! ngen, so as to leave “difficult” examples for
subsequent iterations of the separate-and-conquer procedure (by allowing an early termination of the
search) and to avoid to over-focus on a training set when no significant improvements appear to be
achievable.
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2.4.2 High level organization of GP searches

Since a GP execution is a stochastic procedure, we follow a common approach in evolutionary algorithms
which consists in executing multiple independent searches on the same training set and then selecting one
of the solutions according to a predefined criterion.

In detail, we proceed as follows.

1. We partition the set E of examples available for learning in two sets Et and Ev.

2. We build the training set T of the GP search based on Et (see below) and keep Ev not available to
the search.

3. We execute 2njob independent GP searches, all with the same T but each with a different random
seed. We call each such search a job. Execution of this step generates a pool of 2njob solutions.

4. We compute the F-measure of each of the 2njob solutions on the full set of learning examples
E “ Et Y Ev and select the solution with best F-measure.

In other words, we use Ev as a validation set for assessing the generalization ability of a proposed solution
on examples that were not available to the learning process —i.e., to prevent overfitting while promoting
generalization.

The partitioning of E is made randomly so that the number of the snippets in Et and Ev are roughly
the same, i.e.,

ř

ps,XsqPEt
|Xs| «

ř

ps,XsqPEv
|Xs|. The training set T for jobs is built simply: for each

ps,Xsq P Et, a triplet ps,Xs, ts0u aXsq is inserted in T (i.e., Xd
s :“ Xs and Xu

s :“ ts0u aXs).
In order to broaden the spectrum of problem instances that can be addressed effectively, we do not

execute all the 2njob jobs in the same way. Instead, we execute njob jobs according to separate-and-conquer,
while each of the other njob jobs consist of a single GP search where all the available generations (i.e.,
nstop “ ngen) are devoted to learning a single pattern on the full training set T .

2.5 Experimental evaluation

We carried out a thorough experimental evaluation for addressing the following questions: 1. How does
our method perform on realistic problem instances, even w.r.t. manual authorship of regular expressions?
2. How do other relevant methods perform compared to ours? 3. What is the role of some of the key
features of our proposal? We analyze each question in the following subsections.

We implemented the method here proposed as a Java application4 in which jobs are executed in
parallel. The implementation includes some significant optimizations aimed at speeding up executions: a
full description can be found in section 2.6. We tuned the values for the parameters njob, npop, ngen and
nstop (the latter actually matters only in separate-and-conquer jobs) after exploratory experimentation
and taking into account the abundant state of the art about GP. We set njob “ 16 (4 for the web version),
npop “ 500, ngen “ 1000 and nstop “ 200.

2.5.1 Extraction tasks and datasets

We considered 20 different extraction tasks defined by relevant combinations of 17 entity types to be
extracted from 12 text corpora. We made available5 part of the extraction tasks: we excluded those
previously used in other works and those which cannot be included for privacy issues (e.g., those
containing email addresses).

Table 2.2 (four leftmost columns) shows salient information about the 20 extraction tasks: number of
examples |E0|, their overall length (in thousands of characters)

ř

ps,XsqPE0
`psq, and overall number of

4The source code is available on https://github.com/MaLeLabTs/RegexGenerator. A web-based version of the application
is available on http://regex.inginf.units.it.

5http://machinelearning.inginf.units.it/data-and-tools/annotated-strings-for-learning-text-extractors

https://github.com/MaLeLabTs/RegexGenerator
http://regex.inginf.units.it
http://machinelearning.inginf.units.it/data-and-tools/annotated-strings-for-learning-text-extractors
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snippets
ř

ps,XsqPE0
|Xs|. The name of each extraction task is composed of the name of the corpus (see

below) followed by the name of the entity type to be extracted. Entity names should be self-explanatory:
Username corresponds to extracting only the username from Twitter citations (e.g., only MaleLabTs instead
of @MaleLabTs); Email-ForTo corresponds to extracting email addresses appearing after the strings for:
or to: (possibly capitalized). It seems fair to claim that these extraction tasks are quite challenging and
representative of real world applications. Names ending with a ˚ suffix indicate extraction tasks with
context (Section 2.3.2).

The text corpora are listed below. Some of them have been used in previous works about text extraction
with the same (or similar) entity types to be extracted—all corpora but the last three ones have been used
also in [17].

ReLIE-Web: portions of several web pages from the publicly available University of Michigan Web page
collection. Used in [133].

ReLIE-Email: portions of the body of several emails from the publicly available Enron email collection.
Used in [44, 133].

Cetinkaya-HTML: lines of the HTML source of 3 web pages. Used in [55].

Cetinkaya-Web: lines of plain text taken from 3 web pages after rendering. Used in [55].

Twitter: 50 000 Twitter messages collected using the Twitter Streaming API.

Log: 20 000 log entries collected from our lab gateway server running the vuurmuur firewall software.

Email-Headers: 101 headers obtained from several emails collected from personal mail boxes of our lab
staff.

NoProfit-HTML: lines of the HTML source of the address book web page of a local nonprofit association.

Web-HTML: lines of the HTML source of several pages.

CongressBills: 600 US Congress bills from the THOMAS online database. In order to vary the format of
the dates, we changed the format of the dates as to obtain 9 different formats—including 3 formats
in which the month is expressed by name rather than by number.

BibTeX: 200 bibliographic references in the form of BibTeX elements obtained with Google Scholar.

Reference: 198 bibliographic references (the same of the BibTeX corpus with two removals) formatted
according to the Springer LNCS format.

Table 2.1 shows the entity types along with the corresponding regular expressions. Entity names
should be self-explanatory (left column): Username corresponds to extracting only the username from
Twitter citations (e.g., only MaleLabTs instead of @MaleLabTs); Email-ForTo corresponds to extracting email
addresses appearing after the strings for: or to: (possibly capitalized). It seems fair to claim that these
extraction tasks are quite challenging and representative of real world applications.

2.5.2 Proposed method effectiveness

We evaluated our method as follows. For each extraction task we built several problem instances pE,E‹q
differing in the overall number of snippets

ř

ps,XsqPE
|Xs| available for learning. In each problem instance

we partitioned the set of examples E0 in a learning set E and a testing set E‹ “ E0zE. We experimented
with the values 24, 50, 100 for the number of snippets in E. We applied our method 5 times for each of
those values, by randomly varying the composition of E and hence E‹, and averaged the obtained figures
of precision and recall over the 5 repetitions. Hence, we analyzed 300 problem instances—5 repetitions
for each of the 60 different combinations of extraction task and number of snippets for learning.
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Table 2.2 summarizes our main results. The table has 60 rows, one for each combination of extraction
task and number of snippets for learning. Sixth and seventh columns contain the number of snippets for
learning and the learning ratio (LR) defined as the ratio between the number of snippets for learning
and the number of snippets in the full extraction task E0. The remaining columns on the left illustrate
performance indexes of the learned regular expression r̂: F-measure on the learning data E and, most
importantly, precision, recall, and F-Measure on the testing dataE‹. The two last columns provide indexes
for assessing the computational effort: EC is the overall number of characters which have been evaluated
by candidate regular expressions—e.g., a population of 100 individuals applied to a setE including strings
totaling 1000 characters for 100 generations corresponds to EC “ 107. Figures in the table are expressed
in multiples of 1010. TtL is the time required for solving a problem instance: we used a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with 32 GB of RAM.

The key outcome of this experimental campaign is that F-measure on testing data is very high in nearly
all scenarios analyzed. This result is particularly relevant in itself and becomes even more relevant in light
of the very low LR values of our experimental setting, which indicate that our method is indeed able to
find solutions that generalize effectively. It can also be seen that, in many extraction tasks, F-measure is
very high also when the learning information includes only 24 snippets. This suggests that the proposed
method can be very effective even with few examples.

The only extraction task in which F-measure is definitely unsatisfactory—in the range 35.8–48.3%—is
ReLIE-Email/Phone-Number. This task was executed with LR in the range 0.5–1.9%. We executed
this task again with LR « 80%, a value much closer to the values usually used in machine learning
literature and obtained a much higher F-measure on the testing data E‹: « 85%. We believe that this
result demonstrates the quality of our approach even for this task. We carefully analyzed the results for
ReLIE-Email/Phone-Number and we believe that this task is unlikely to be solved effectively with a
very low LR. In particular, it can be seen from Table 2.2 that the generated regular expressions exhibit a
rather high recall (92.6–98.3%) and a low precision (37.1–22.7%) on E‹—i.e., they tend to extract all
the relevant snippets but also unrelevant portions of the strings in E‹. We manually inspected the learning
data E and verified that they are not adequately representative of the data that are not to be extracted: they
did not contain substrings which look like, but are not, phone numbers.

Concerning the impact of the number of snippets available for learning, results of Table 2.2 generally
confirm that the more information available for learning, the better the obtained F-measure. There are
indeed a few anomalies to this trend which, we believe, are due to the very low LR values and the highly
challenging nature of the extraction tasks.

With respect to the computational effort (i.e., EC and TtL), our experimental evaluation shows that
the time needed to learn a regular expression for a problem instance is often in the order of a few tens
of minutes. We also found, as expected, that TtL depends approximately linearly from EC, which
itself strongly depends on the aggregate “size” of the learning information in terms of characters, i.e.,
ř

ps,XsqPE
`psq. While the absolute value of TtL would seem to discourage the on-the-fly usage of

our method, our experience with its web-based implementation suggests that TtLs do not hamper the
practicality of our tool. Moreover, we believe that TtL should be assessed from a relative point of view:
a user highly skilled in regular expression writing probably would not even use our tool, while a user
moderately skilled or unskilled at all may solve problems that would otherwise be unable to solve—see
also Section 2.5.4 for a preliminary analysis and chapter 3 for an extensive study.

We found that tasks which may take advantage of modern regular expression constructs (lookarounds,
possessive quantifiers) tend to require a longer execution time. We think this finding is motivated by
the fact that our tool operates with a real-world regular expression engine (the one included in the Java
platform): that engine cannot guarantee that the processing time of every regular expression grows linearly
with the input string length, because the previously mentioned constructs cannot be implemented using
automata; it follows that tasks in which the evolution tends to favor regular expressions with modern
constructs, take much longer times to be solved. A list of the generated regular expressions is available in
the following subsection.
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Table 2.2: Results and salient information about the extraction tasks. The overall length
ř

ps,XsqPE0
`psq of

examples is expressed in thousands of characters. EC is expressed in 1010 evaluated characters; TtL is expressed in
minutes.

On E On E‹

Extraction task E0 |E0|
ř

E0
`psq

ř

E0
|Xs|

ř

E |Xs| LR Fm Prec Rec Fm EC TtL

ReLIE-Web/All-URL 3877 4240 502
24 5.0 99.2 90.0 91.9 90.9 2.6 15
50 10.0 99.2 92.1 95.0 93.5 6.4 35

100 19.9 98.9 94.8 96.5 95.6 13.7 71

ReLIE-Web/HTTP-URL 3877 4240 499
24 5.0 99.2 86.3 89.0 87.6 2.5 11
50 10.0 99.0 91.0 93.3 92.2 5.8 32

100 20.0 98.8 92.9 96.8 94.8 13.1 66

ReLIE-Email/Phone-Number 41 832 8805 5184
24 0.5 97.7 37.1 92.6 48.3 3.4 8
50 1.0 99.0 29.9 96.6 43.3 6.0 16

100 1.9 98.9 22.7 98.3 35.8 14.4 39

Cetinkaya-HTML/href 3425 154 214
24 11.7 100.0 98.7 99.2 98.9 2.5 12
50 23.4 100.0 98.1 98.7 98.4 4.9 26

100 46.7 99.8 98.4 99.1 98.8 9.0 59

Cetinkaya-HTML/href-Content˚ 3425 154 214
24 11.7 98.4 74.9 98.7 80.6 2.4 16
50 23.4 98.5 85.1 98.8 88.2 4.8 29

100 46.7 98.5 83.2 96.8 86.2 10.5 67

Cetinkaya-Web/All-URL 1234 39 168
24 14.9 99.2 99.4 98.8 99.1 1.7 3
50 29.8 100.0 95.5 98.6 96.9 3.2 8

100 59.5 99.5 98.8 98.8 98.8 5.2 16

Twitter/Hashtag+Citation 50 000 4344 56 994
24 0.1 100.0 98.8 100.0 99.4 1.2 3
50 0.1 99.6 99.2 100.0 99.6 2.2 4

100 0.2 99.8 99.0 100.0 99.5 4.6 7

Twitter/All-URL 50 000 4344 14 628
24 0.2 100.0 94.7 98.5 96.6 1.8 3
50 0.3 100.0 96.2 98.3 97.2 3.4 8

100 0.7 99.4 96.1 98.0 97.0 7.7 16

Twitter/Username˚ 50 000 4344 42 352
24 0.1 100.0 99.3 100.0 99.7 1.2 2
50 0.1 100.0 99.2 100.0 99.6 2.2 2

100 0.2 99.9 99.3 100.0 99.7 4.6 2

Log/IP 20 000 4126 75 958
24 0.1 100.0 99.8 100.0 99.9 1.3 2
50 0.1 100.0 99.7 100.0 99.8 2.3 2

100 0.2 100.0 99.8 100.0 99.9 4.6 3

Log/MAC 20 000 4126 38 812
24 0.1 100.0 100.0 100.0 100.0 2.0 2
50 0.1 100.0 100.0 99.4 99.7 4.3 3

100 0.3 100.0 100.0 99.4 99.7 8.3 6

Email-Headers/IP 101 261 848
24 2.9 97.5 86.7 87.9 86.9 5.9 18
50 5.9 92.7 90.9 82.2 86.0 14.0 56

100 11.8 94.5 95.2 84.9 89.6 28.5 89

Email-Headers/Email-ForTo˚ 101 261 331
24 7.6 78.5 70.7 52.5 59.3 17.9 131
50 15.1 71.5 76.4 52.8 62.0 33.7 398

100 30.2 79.8 90.4 66.6 76.4 65.5 429

NoProfit-HTML/Email 25 590 860 1094
24 2.3 100.0 83.2 100.0 85.5 0.9 2
50 4.6 100.0 100.0 100.0 100.0 1.9 3

100 9.1 100.0 100.0 100.0 100.0 3.7 7

Web-HTML/Heading 49 026 4541 1083
24 2.3 99.2 93.1 89.4 91.2 7.6 30
50 4.6 96.2 93.3 90.2 91.7 15.3 83

100 9.2 99.2 98.2 96.2 97.2 29.7 256

Web-HTML/Heading-Content˚ 49 026 4541 1083
24 2.3 93.6 95.5 80.1 86.6 6.6 76
50 4.6 95.9 99.1 85.8 91.8 13.6 168

100 9.2 98.9 99.4 96.1 97.7 28.0 379

CongressBill/Date 600 16 511 3085
24 0.8 64.5 57.1 52.3 50.0 2.1 30
50 1.6 72.1 55.4 81.3 64.1 6.9 584

100 3.2 76.1 62.7 81.4 69.7 11.3 513

BibTeX/Title 200 54 200
24 12.5 89.6 79.1 65.1 70.7 5.1 43
50 25.0 90.3 82.6 74.3 78.0 11.1 141

100 50.0 82.0 84.8 63.4 72.1 21.5 218

BibTeX/Author 200 54 589
24 4.2 92.9 90.5 78.1 83.1 2.0 8
50 8.5 93.9 89.9 86.1 87.7 4.1 20

100 17.0 90.7 91.9 81.6 86.2 7.5 34

References/First-Author˚ 198 30 198
24 12.6 99.0 99.7 96.0 97.8 2.8 12
50 25.3 96.3 99.6 93.6 96.5 5.4 26

100 50.5 100.0 100.0 100.0 100.0 12.4 56
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2.5.3 Learned regular expressions

Table 2.3 shows samples of the learned regular expressions (for configurations with
ř

ps,XsqPE
|Xs| “ 100).

Since we executed 5 repetitions for each configuration, the table shows the expression r̂ that was generated
more times or, in case of tie, the one learned first. A domain-expert user would perhaps appreciate that,
in several cases, r̂ looks as if it had been generated by a human operator: e.g., for Twitter/Username˚,
BibTeX/Title˚, or ReLIE-Web/HTTP-URL. This is an interesting result, because we did not inclue in our
tool any mechanism aimed at favoring readability, other than simply penalizing long regular expressions
(which was motivated by the need of avoiding bloating). It can also be seen that, for some extraction tasks,
the generated regular expressions contain the or operator |: this occurred, in particular, in those problem
instances in which the snippets to be extracted indeed exhibited different formats, e.g., CongressBill/date,
ReLIE-Email/Phone-Number.

Table 2.3: Learned regular expressions with
ř

E |Xs| “ 100. Long regular expressions are split in two or more
lines of the same cell.

Extraction task r̂

ReLIE-Web/All-URL http(?:\w*+\.*+[ˆ\\> ])*+\w++|http:/([ˆ ]\w++/?+)++
ReLIE-Web/HTTP-URL http([ˆ ][\w/]++)++
ReLIE-Email/Phone-Number \(\w++\) \w++\-\w++|\w\w\w\-\w++\-\w++|\d++[ˆ ][ˆ8]\d++[ˆ ]\d++
Cetinkaya-HTML/href href=”[ˆ”]*+”|href[ˆ> ]++
Cetinkaya-HTML/href-Content˚ (?<=href=”)[ˆ”]++|(?<==’)[\w\./]++[<’]++
Cetinkaya-Web/All-URL ftp:[ˆ ]*+
Twitter/Hashtag+Citation [@#]\w++
Twitter/All-URL \w++://\w\.co/\w++
Twitter/Username˚ (?<=@)\w++
Log/IP (\w++\.)++\w++
Log/MAC \w++:(\w\w:)++\w++
Email-Headers/IP (?<!@)(?<!\.)(?<!\w)(?:2012)*+6?+\d++\̇w*+\.\d++\.\d++
Email-Headers/Email-ForTo˚ (?<=To: )[\w\.\-]++@[\w\.]++|(?<=\-\w\w\w\w\w\-To: <)

[\+\w\-]++@[ˆ>]++
NoProfit-HTML/Email [ˆ@]++[ˆ<]++
Web-HTML/Heading <\w\d(?:[ˆ;][ˆ>][ˆ\d]*+)*+\w>
Web-HTML/Heading-Content˚ (?<=>)(<*+[ˆ<]++(?=<))++(?=</\w\d)
CongressBill/Date \w++ \w{1,2}+, [ˆ>]*+\d++|\w++/\w\w/\w++|

\w++\.\w\w\.\w++|\w++\-\w\w\-\w++|
\d++, \w\w\w\w\w\w++ \w\d++

BibTeX/Title˚ (?<=title=\{)[ˆ\}]++
BibTeX/Author˚ (?<= )\w++, [\ˆ ]++(?: \w++(?= and))?+(?= and)|

\w++, \w\w++(?<![year])(?: \w++(?!(?! and) ))*+(?! and \w++ )
Reference/First-Author˚ (?<=\. )[ˆ,]*+, (?:\w\.)++

2.5.4 Comparison with human operators

In order to assess the ability of our method to compete with human operators, we executed an experiment
using a web application which we crafted ad hoc.

The web app presented concise instructions about the experiment (“write a regular expression for
extracting text portions which follow a pattern specified by examples”) and then asked the user to indicate
the level of familiarity with regular expressions—one among novice, intermediate, and experienced. The
web app then proposed a sequence of extraction tasks: for each task the web app showed a text on which
the snippets to be extracted were highlighted; the user could write and modify a regular expression in
an input field at will; the web app immediately highlighted the snippets actually extracted by the current
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Table 2.4: F-measure for
ř

E |Xs| “ 24 obtained by human operators (novice (SN), intermediate (SI), and
experienced (SE)) and our approach (O).

F-measure on E F-measure on E‹ Time spent/TtL
Extraction task SN SI SE O SN SI SE O SN SI SE O
ReLIE-Web/All-URL 83.6 96.2 87.2 100.0 74.7 90.2 80.6 95.5 3 3 2 15
ReLIE-Web/HTTP-URL 86.4 89.3 91.3 95.8 77.3 83.0 76.6 82.3 20 8 9 11
ReLIE-Email/Phone-Number 88.5 96.3 100.0 100.0 70.2 84.7 91.0 34.6 8 6 6 11
Cetinkaya-HTML/href 91.9 99.6 99.8 100.0 91.6 98.8 98.8 100.0 4 2 3 12
Cetinkaya-Web/All-URL 96.9 100.0 100.0 100.0 95.2 98.3 98.6 99.0 80 2 1 3
Log/IP 91.3 100.0 100.0 100.0 91.0 100.0 100.0 100.0 5 1 2 2
Log/MAC 87.6 91.7 100.0 100.0 87.6 91.7 100.0 100.0 6 6 4 2
Web-HTML/Heading 87.6 99.5 99.6 100.0 82.3 90.9 95.6 90.0 7 5 2 30
BibTeX/Author˚ 71.3 55.2 88.7 100.0 64.6 50.1 81.4 90.3 20 10 10 8

expression along with the corresponding extraction mistakes (if any). The web app also showed the
F-measure and the user was informed that a value of 100% meant a perfect score on the task. The user
was not required to obtain a perfect F-measure before going to the next task—i.e., he could give up on a
task. In the limit, he could also not write any regular expression for a task (unanswered task). The web
app recorded, for each task and for each user, the authored regular expression and the overall time spent.

We included in the web app 9 of the extraction tasks presented in the Section 2.5.1. For each task, we
chose exactly the E set we used while experimenting with our method for repetition 1 and

ř

E |Xs| “ 24.
We spread a link to the web app among CS graduate and undergraduate students of our University. Each
user interacted with the web app autonomously and in an unconstrained enviroment—in particular, users
were allowed to (and not explicitly instructed not to) refer to any knowledge base concerning regular
expressions.

We gathered results from 73 users—60% novice, 20% intermediate, and 20% experienced. Several
tasks were left unanswered: 42% for novice, 40% for intermediate, and 12% for experienced. The average
time for solving the answered tasks was 16.1 min, 4.8 min, and 4.7 min, respectively. As a comparison,
our method on the very same data required TtL “ 10.4 min on the average.

The key finding is in Table 2.4, which shows the F-measure on E‹ for each task. It can be seen that the
F-measure obtained by our method is almost always greater than or equal to the one obtained by human
users (on the average). The only exceptions are: the ReLIE-Email/Phone-Number task (whose peculiarity
has been analyzed in Section 2.5.2); the Web-HTML/Heading task, in which our method improves over
novice users and is only sligthly worse than intermediate users. We believe this result is remarkable
and highly encouraging. Indeed, we are not aware of any proposal for automatic generation of regular
expressions in which human operators were used as a baseline.

2.5.5 Comparison with other methods

The previous section considered a baseline in terms of human operators. In this section we consider a
baseline in terms of other approaches for learning text extractors from examples: Smart State Labeling DFA
Learning (SSL-DFA) [140], FlashExtract [129], and GP-Regex [17]. These methods are representative of
the state of the art for learning syntactical patterns (see also Section 2.2), but differ in the actual nature of
the learned artifact: SSL-DFA produces Deterministic Finite Automata (DFA), FlashExtract produces
extraction programs expressed in a specific language, and GP-Regex produces regular expressions.

SSL-DFA

We chose to consider SSL-DFA because the problem of DFA learning from examples is long established
and several solutions have been proposed. In particular, SSL-DFA was developed a few years after a
competition that was highly influential in the grammar learning community and outperformed (optimized
versions of) the winners of the competition, on the same class of problems [60, 126] and even in the
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presence of noisy data. Another reason for our choice is because, in our experience at conferences and
received reviews, we were often told that the problem considered in this work is not interesting because
DFA learning is a solved problem.

Three notable differences exist between the DFA learning scenario usually considered in literature
and the text extraction scenario here considered. First, DFA learning methods are tailored to short strings
defined over a binary alphabet, whereas in text extraction one needs to cope with longer strings defined
over a much larger alphabet (in general, UTF-8). Second, DFA learning methods assume that the examples
are drawn uniformly from the input space, whereas in text extraction this assumption is hard to be verified
in practice. Third, learned DFA are intended as classifiers, i.e., given an input string, their outcome states
if the whole string is accepted or rejected by the DFA: some adaptation is hence needed in order to use
a DFA for extraction. DFA learning and text extraction are thus quite different problems. An approach
designed for the former problem may or may not perform well for the latter. Thus, it would not be
surprising if approaches explicitly designed for text extraction outperformed SSL-DFA—our experimental
evaluation suggests that this is indeed the case.

The SSL-DFA method described in [140] takes as input a triplet pSA, SR, nq, where SA is a set of
strings which should be accepted, SR is a set of strings which should be rejected, and n is the number of
states of the DFA to be learned; the output is a DFA with n states. Given a problem instance pE,E‹q,
we obtain pSA, SR, nq as follows. Initially, we set SA “ SR “ H; then, for each example ps,Xsq in
E, we add to SA the textual content of each snippet in Xs and we add to SR the textual content of each
snippet in XsaXs; finally, we set n “ maxsPSA

`psq. With respect to the experimental setting considered
in [140], the learning information available to SSL-DFA in our experiments is not balanced (i.e., in general,
|SR| " |SA|): we verified experimentally that attempting to balance it by sampling the strings in SR did
not lead to better performance.

Concerning the actual extraction, we define the set eds of the extractions obtained by applying a DFA
d to a string s as the set of all the non-overlapping snippets of maximal length which are accepted by d.
We implemented this method in C++ basing on the description in [140].

FlashExtract

FlashExtract is s a powerful and sophisticated framework for extracting multiple different fields automati-
cally in semi-structured documents [129]. It consists of an inductive synthesis algorithm for synthesizing
data extraction programs from few examples, in which programs are expressed in any underlying domain-
specific language supporting a predefined algebra of few core operators. The cited work presents also a
language designed to operate on text which perfectly fits the extraction problem considered in this chapter.
The findings of [129] resulted in a tool included in the Windows Powershell as the ConvertFrom-String
command: we used this tool to perform the experiments.

The current FlashExtract implementation does not allow reusing a program induced by a given set
of examples. Thus, in our experimentation the two phases of learning and testing were not separated:
we invoked the tool by specifying as input the examples in E and the strings in E‹; we obtained as
output a set of substrings extracted from E‹ based on the description in E (which we had to recast in the
syntax required by the tool). In many cases the tool crashed, thereby preventing the extraction to actually
complete. We highlighted these cases in the results.

GP-Regex

GP-Regex is the method we proposed in [17] and the base for the research here presented. The numerous
differences between our method and GP-Regex were listed in the introduction. We emphasize again that
in GP-Regex each example consists of a string and at most one single snippet to be extracted from that
string. In order to build learning examples suitable for GP-Regex, we considered for each ps,Xsq, only
the leftmost snippet in Xs, if any.

It may be useful to remark that in [17] an experimental comparison was made against the approaches
of [44, 133] on two datasets previously used by the latter: the proposal in [17] exhibited better accuracy,
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even when the amount of available learning examples was smaller by more than order of magnitude. More-
over, the authors of [44, 133] showed that their approaches exhibited performance similar to Conditional
Random Fields.

Comparison results

We selected 7 extraction tasks including tasks with context and tasks in which snippets exhibit widely
differing formats. We exercised all methods with the same experimental settings described in section 2.5.2,
thereby obtaining 105 problem instances—5 repetitions for each of the 21 different combinations of
extraction task and number of snippets for learning.

Table 2.5 shows the results in terms of F-measure and TtL. The foremost outcome of this comparison is
that our method clearly outperforms all the other three methods (except for ReLIE-Email/Phone-Number,
discussed below).

Table 2.5: Results. TtL is expressed in minutes. Missing values for FlashExtract, denoted with ´, correspond to
problem instances for which no repetition completed successfully (see text).

SSL-DFA FlashExtract GP-Regex Our proposal
Extraction task

ř

E |Xs| Fm TtL Fm TtL Fm TtL Fm TtL
ReLIE-Web/All-URL 24 13.8 1 15.2 1 78.3 5 90.9 15
ReLIE-Web/All-URL 50 18.2 1 25.2 3 88.0 10 93.5 35
ReLIE-Web/All-URL 100 18.1 2 21.5 3 93.0 16 95.6 71
ReLIE-Email/Phone-Number 24 27.7 1 69.5 1 84.0 5 48.3 8
ReLIE-Email/Phone-Number 50 11.3 2 ´ ´ 91.7 13 43.3 16
ReLIE-Email/Phone-Number 100 15.9 2 ´ ´ 90.2 18 35.8 39
Cetinkaya-HTML/href 24 21.2 1 23.5 1 46.9 13 98.9 12
Cetinkaya-HTML/href 50 12.0 1 28.7 1 81.6 26 98.4 26
Cetinkaya-HTML/href 100 9.2 2 32.3 3 89.6 44 98.8 59
Cetinkaya-Web/All-URL 24 18.5 1 33.9 71 83.4 8 99.1 3
Cetinkaya-Web/All-URL 50 14.7 1 52.2 52 92.7 18 96.9 8
Cetinkaya-Web/All-URL 100 17.6 1 61.8 25 94.9 31 98.8 16
Twitter/Hashtag+Citation 24 14.5 1 ´ ´ 94.8 3 99.6 3
Twitter/Hashtag+Citation 50 21.8 1 ´ ´ 97.3 5 99.5 4
Twitter/Hashtag+Citation 100 28.4 1 ´ ´ 100.0 8 99.6 7
Web-HTML/Heading-Content˚ 24 11.9 1 10.6 4 4.4 34 86.6 76
Web-HTML/Heading-Content˚ 50 11.9 2 10.2 3 5.0 196 91.8 168
Web-HTML/Heading-Content˚ 100 18.2 3 ´ ´ 10.2 672 97.7 379
CongressBill/Date 24 37.4 1 ´ ´ 29.8 361 64.1 30
CongressBill/Date 50 25.2 3 ´ ´ 27.8 432 69.7 584
CongressBill/Date 100 46.5 4 ´ ´ 38.0 386 70.7 513

The performance gap with both SSL-DFA and FlashExtract is substantial—at the expense of a much
longer TtL, though. Concerning SSL-DFA, we believe this finding is interesting because both SSL-DFA
and our method are based, broadly speaking, on evolutionary computation and SSL-DFA is representative
of the state-of-the-art in its field. On the other hand, based on the previous considerations about the
significant differences between typical settings for DFA learning and text extraction, we do not find
this result particularly surprising either. Indeed, as pointed out earlier by different authors, benchmark
problems for DFA learning from examples are not inspired by any real world application [60] and
the applicability of the corresponding learning algorithms to other application domains is still largely
unexplored [40].

Concerning FlashExtract, the fact that we obtain much better accuracy in all settings (with the only
exception of ReLIE-Email/Phone-Number, discussed below) is also very interesting. We are not able to
provide any principled interpretation for this result. We may only speculate that our approach is perhaps
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Table 2.6: F-measure for
ř

E |Xs| “ 100 with our fitness (O) and with the F-measure based fitness (F).

Extraction task O F ∆Fm
ReLIE-Web/All-URL 95.6 11.7 83.9
ReLIE-Web/HTTP-URL 94.8 14.8 80.0
Cetinkaya-HTML/href 98.8 98.6 0.2
BibTeX/Title˚ 72.1 3.3 68.8
BibTeX/Author˚ 86.2 24.9 61.3
References/First-Author˚ 100.0 NaN NaN

more suitable for coping with loosely structured or unstructured datasets than FlashExtract. We also
noticed that, for many problem instances, the ConvertFrom-String tool crashed, thereby preventing the
extraction to actually complete. For the extraction tasks for which at least one on 5 repetition completed
without errors, Table 2.5 shows the performances (F-measure and TtL) averaged across the completed
executions. In the other cases, we were not able to obtain any extraction program, neither splitting the
testing set in small chunks: those cases are denoted with an en dash in the table.

Concerning GP-Regex, we should isolate two groups of extraction tasks: (i) those that requires
either a context (Web-HTML/Heading-Content˚) or the ability to learn widely differing patterns (Con-
gressBill/Date), (ii) all the other tasks. The key observation is that our current proposal improves over
GP-Regex in all cases (except for ReLIE-Email/Phone-Number), the improvement being substantial in
case i. Indeed, our current proposal makes it possible to handle both Web-HTML/Heading-Content˚

and CongressBill/Date with good accuracy, while GP-Regex does not. It is also interesting to observe
that in case ii GP-Regex provides much better accuracy than SSL-DFA and FlashExtract, while in case i
GP-Regex is either comparable to those methods or worse.

Finally, concerning the ReLIE-Email/Phone-Number extraction task, we observe that this is the same
task with a sort of anomalous behavior already discussed in the previous section. In particular, we remark
that when executing our method on this task with a learning ratio6 LR « 80% we obtained « 85%
F-measure on the testing data. We could not execute FlashExtract in those conditions because it always
crashed: the only result that we could obtain is in Table 2.5, where F-measure (with very few examples
available for learning) is 69%. The reason why GP-Regex happens to deliver better accuracy on this task is
because it tends to overfit the snippets to be extracted more than the method here presented. As discussed
in the previous section, processing this task with a very small LR value incurs in a poor representativeness
of the text that is not to be extracted; as it turns out, thus, the slightly overfitting behavior exhibited by
GP-Regex in this case turns out to be a pro.

2.5.6 Assessment of specific contributions

In order to gain further insights into our proposal, we executed a further suite of experiments on a subset
of the extraction tasks aimed at assessing the effect of: (i) choice of the fitness, (ii) initialization of the
population from E, and (iii) separate-and-conquer jobs.

Fitness

We built a variant of our method in which the fitness tuple of a solution consists in the F-measure
on the examples in the training set and the length of the corresponding regular expression: fprq :“
pFmpr, T q, `prqq. In other words, we replace snippet-level precision and character-level accuracy (see
Section 2.4.1 for the exact definition) by snippet-level F-measure, i.e., by the main performance index
desired by the solution.

Table 2.6 presents the results. The rightmost column shows the improvement ∆Fm obtained by our
proposal w.r.t. the method with the fitness modified as above. It can be seen that the modified method leads

6Learning ratio (LR) is defined as the ratio between the number of snippets for learning and the number of snippets in the full
extraction task E0.
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Table 2.7: F-measure with
ř

E |Xs| “ 100 with and without initialization.

Extraction task w/ w/o ∆Fm
ReLIE-Web/All-URL 95.6 73.6 22.0
ReLIE-Web/HTTP-URL 94.8 82.6 12.2
Cetinkaya-HTML/href 98.8 48.8 50.0
BibTeX/Title˚ 72.1 65.1 7.0
BibTeX/Author˚ 86.2 67.2 19.0
References/First-Author˚ 100.0 78.7 21.3

to a much worse F-measure, despite F-measure being exactly the index optimized by that method: our
proposal leads to an improvement, on the average, around ∆Fm « 60% (

ř

E |Xs| “ 100 P t24, 50, 100u).
In other words, driving the evolutionary search by the key index of interest is not the optimal fitness
choice. This finding corroborates some arguments made in [17] and augments them with an experimental
evaluation.

It is worth to note that for the References/First-Author˚ task, the modified method is simply unable to
produce a solution which can correctly extract at least one snippet. Our explanation is that the solving
regular expression for that task is rather complex, since it includes multiple lookaround operators: light
modifications to a regular expression which includes operators of this kind may result in very different
extraction behaviors. In such a case, a fitness based on full snippets rather than individual characters does
not acknowledge for small improvements and is not hence able to drive the evolution—in other words, it
imposes an excessive evolutionary pressure.

Initialization

We built a variant of our method in which the initial population is totally built at random, instead of being
partially generated using the snippets of the training set.

Table 2.7 shows the comparison results, which clearly indicate that the unmodified version is much
more effective (∆Fm « 25%, on the average for

ř

E |Xs| P t24, 50, 100u). The rationale of the
population initialization from the examples was to start the evolutionary search from a “good” point in the
solution space. For this reason we inserted in the initial population individuals which fitted the snippets
to be extracted while at the same time generalizing beyond them, e.g., we insert the regular expression
\d++-\d++-\d++ from the snippet 07-02-2011 (see Section 2.4.1).

Separate-and-conquer

We built a variant of our method in which all the 2njob jobs are executed without the separate-and-conquer
strategy, i.e., all jobs consist of a single GP search for which nstop “ ngen.

Table 2.8 shows the comparison results. For this comparison, we considered also an extraction task
(CongressBill/Date) in which the snippets to be extracted exhibit widely differing formats. As expected,
the unmodified method clearly outperforms the modified one on CongressBill/Date (∆Fm « 30% for
ř

E |Xs| P t24, 50, 100u). On the other hand, it can be seen that some not negligible improvement can be
obtained also for other tasks, namely BibTeX/Title˚ and BibTeX/Author˚. We think that the motivation
is in that those tasks are more difficult and hence the possibility, enabled by the separate-and-conquer
strategy, to split a problem in smaller subproblems may allow the method to better cope with such
difficulty.
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Table 2.8: F-measure with
ř

E |Xs| “ 100 with and without separate-and-conquer.

Extraction task w/ w/o ∆Fm
ReLIE-Web/All-URL 95.6 89.5 6.1
ReLIE-Web/HTTP-URL 94.8 87.6 7.2
Cetinkaya-HTML/href 98.8 95.3 3.5
CongressBill/Date 69.7 32.7 37.0
BibTeX/Title˚ 72.1 62.0 10.1
BibTeX/Author˚ 86.2 71.5 14.7
References/First-Author˚ 100.0 97.3 2.7

2.6 Implementation

We implemented the method here proposed as a Java application7 in which jobs are executed in parallel.
We tuned the values for the parameters njob, npop, ngen and nstop (the latter actually matters only in
separate-and-conquer jobs) after exploratory experimentation and taking into account the abundant state
of the art about GP. We set njob “ 16, npop “ 500, ngen “ 1000 and nstop “ 200. For the web-based
version, we set njob “ 4 to save computing resources and support an higher number of concurrent usages.

Our application includes two significant optimizations aimed at speeding up executions. We imple-
mented a caching mechanism for reducing repeated evaluations of the same regular expression. This
mechanism consists of a Java WeakHashMap8, in which the key is the string transformation of an individ-
ual and the value is the set of extractions of that individual in the training data. When a given individual
continues to exist across many generations, thus, the corresponding regular expression will be applied to
all training data only once, rather than at each generation. Furthermore, this data structure is shared among
all jobs in a search. It follows that the cached extractions may be exploited even for identical individuals
that come into existence in different jobs We found experimentally that this caching mechanism allows to
save roughly 50% of the computation time, on the average.

The second optimization comes into play in those problem instances in which the overall length of the
examples is very large. This optimization consists in a procedure, that we call shrinking, aimed at reducing
the overall length of the examples while not affecting the salient information available for learning the
regular expression. The procedure transforms the set of examples E in another set of examples Eshrunk in
such a way that long strings in E are transformed into much smaller strings in Eshrunk while preserving
the content around each snippet (and dropping examples with Xs “ H, i.e., without any snippet to be
extracted). More in detail, for each example ps,Xsq P E, a subset E1 Ă Eshrunk exists such that (i) each
snippet in Xs occurs exactly once in E1, (ii) each string s of an example in E1 contains at most 10`pxsq
characters before and 10`pxsq characters after each snippet xs. Of course, the shrinking procedure leads
to a loss of information in the training data. However, we found that this heuristic works well in practice,
in particular, because large training data are usually highly unbalanced, with relatively few snippets to be
extracted surrounded by very many characters that are not to be extracted. Indeed, the shrinking procedure
makes it possible to handle datasets that could hardly be processed otherwise. We chose to trigger the
procedure when

ř

ps,XsqPE
`psq ě 107 characters, as training data of such size lead to a processing time

that is too long to be practical.

2.7 Remarks

We have described a system for synthesizing a regular expression automatically, based solely on examples
of the desired behavior. The regular expression is meant to be used for extraction problems of practical
complexity, from text streams that are either loosely structured or fully unstructured. As such, our

7The source code is available on https://github.com/MaLeLabTs/RegexGenerator. A web-based version of the application
is available on http://regex.inginf.units.it.

8https://docs.oracle.com/javase/7/docs/api/java/util/WeakHashMap.html

https://github.com/MaLeLabTs/RegexGenerator
http://regex.inginf.units.it
https://docs.oracle.com/javase/7/docs/api/java/util/WeakHashMap.html
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approach is able to handle potentially large alphabets effectively, thereby overcoming one of the principal
limitations of much existing work in this area, and has been designed to address such practical needs as
context-dependent extractions, widely different formats, and potentially large and unsegmented input
streams.

We have analyzed our proposal experimentally in depth, by applying it on 20 challenging extraction
tasks of realistic size and complexity, with a very small portion of the dataset available for learning.
The results have been very good and compared very favorably with significant baseline methods. Most
importantly, the results are highly competitive also with respect to a pool of more than 70 human operators.

We made publicly available the source code of our system (https://github.com/MaLeLabTs/
RegexGenerator) and deployed an implementation as a web app (http://regex.inginf.units.it).

While our work may certainly be improved and enriched in several ways—faster learning, interactive
learning procedures capable of starting with a very small number of snippets, even better accuracy, just to
name a few—we do believe that our work may constitute a useful solution to a practically relevant and
highly challenging problem.

https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
http://regex.inginf.units.it




Chapter 3
Can A Machine Replace Humans
In Building Regular Expressions?

3.1 Overview

Regular expressions are routinely used in a variety of different application domains and are widely viewed
as one of the fundamental tools that should be in a programmer’s toolbox. Building a regular expression
tailored to a specific problem is often difficult, tricky and time-consuming, though. In March 2016 web site
Stack Overflow, the most popular Question & Answer programming forum, features more than 140, 000
questions on this topic with “regex” being the 25-th most popular question tag in a set including more
than 44, 000 tags. Nearly all of the question tags which are more popular than “regex” refer to a specific
programming language or library—“arrays” is the only general tag more popular than “regex”, while
“ajax” and “json” are only slightly more popular than “regex”.

There is no doubt that writing a regular expression requires a considerable amount of skill, expertise
and creativity by the programmer. In this chapter we investigate whether a machine may surrogate these
qualities and construct automatically regular expressions for tasks of realistic complexity. We address
this question based on a large scale experiment involving more than 1700 users on 10 challenging tasks.
We asked users to construct a regular expression based on a few examples of the desired behavior and
then compared their solutions to those obtained with an automatic tool that we recently developed and
described in full detail in earlier works [46, 77]. Our tool is based on Genetic Programming. Both the
users and the tool were given the very same information: examples of the desired behavior without any
hint about the structure of the target expression. We compared the results along two axes: quality of the
solution assessed on a hold-out testing set and the time required for constructing the solution.

The quality of automatically-constructed solutions was very similar to the quality of solutions con-
structed by (self-proclaimed) experienced users; and, the time that our tool took to construct a solution
was similar to that of humans performing the same task. The machine was thus able to indeed surrogate
expertise and creativity of programmers in a traditionally difficult synthesis activity (see also the sidebar).

3.2 Problem Statement

Regular expressions are often used for binary classifying strings, depending on whether a string matches
or does not match the pattern encoded by the expression. We consider instead extraction problems in
which it is also required to identify all the substrings matching the specified pattern. Extraction is more
general than classification in the sense that a solution to the former is also a solution to the latter, while
the opposite is not true—a string could include many instances of the specified pattern; the knowledge
that at least one instance of the pattern occurs somewhere in the string may not help very much in actually
locating all those instances.

35
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To specify the problem we need a few definitions. A regular expression applied on a string s
deterministically extracts zero or more substrings from s, that we call extractions. The problem input
consists of a set of examples, where an example is a string s coupled with a (possibly empty) set Xs of
non-overlapping substrings of s. Set Xs represents the desired extractions from s, i.e., all the substrings
in Xs are to be extracted whereas any other substring of s is not to be extracted. We do not make any
assumptions on either the length or the internal structure of string s, which may be a text line, or an email
message, or a log file, and so on. In practice, substrings in Xs may be specified easily by annotating
portions of s with a GUI (see next section).

The problem consists of learning a regular expression whose extraction behavior is consistent with the
provided examples: for each example, should extract from each string s all and only the desired extractions
Xs. Furthermore, should capture the pattern describing the extractions, thereby generalizing beyond the
provided examples. In other words, the examples constitute an incomplete specification of the extraction
behavior of an ideal and unknown regular expression . The learning algorithm should infer the extraction
behavior of .

3.3 Out tool

Our tool is available as a live web app1 and in source code on GitHub2. Internally it is based on Genetic
Programming (GP) and and described in full detail in [46, 77]. Chapter 3 provides all the details about our
tool, here we provide only a brief outline, for convenience of the reader.

Our tool works as follows, we evolve a population of 500 regular expressions, represented by abstract
syntax trees, by applying classical genetic operators such as mutation and crossover for 1000 iterations.
We generate the initial population partly at random and partly based on the desired extractions, i.e., for
each desired extraction x we generate 4 different regular expressions with a deterministic heuristics
ensuring that all these expressions extract x. We drive evolution by means of a multiobjective optimization
algorithm based on the length of regular expressions (to be minimized) and their extraction performance
computed on the learning data (to be maximized). We use a separate-and-conquer heuristics for discovering
automatically whether the extraction task may be solved by a single regular expression or whether a set R
of multiple regular expressions, to be eventually joined by an “or” operator, is required [77]. In particular,
every 200 iterations we check whether the currently best regular expression ri exhibits perfect precision
on a subset X of the desired extractions. In that case, we remove X from the set of desired extractions,
we insert ri in R and we let the search continue (R is initially empty). Finally, we join all the elements in
R and the best regular expression upon the end of the search by an “or” operator.

A screenshot of the web app is given in Figure 3.1. The user may load examples as UTF-8 files
and then annotate text in these files graphically to identify desired extractions. The number of examples
is irrelevant; what matters is the number of desired extractions: 10–20 usually suffice to obtain good
solutions. We used 24 in the experiment described below. Examples and the resulting expressions may be
saved for later analysis and reuse. systems.

3.4 The Challenge Platform

For our experiment, we developed a challenge web app for assisting human operators in the task of
developing a regular expression for text extraction based on examples of the desired behavior3. The
challenge web app starts by presenting concise instructions (“write a regular expression for extracting text
portions which follow a pattern specified by examples”) and asks the user to indicate his/her perceived
level of familiarity with regular expressions: novice, intermediate, or experienced. Then, the challenge
web app proposes a sequence of extraction tasks. Each task is presented as a text area in which the
substrings to be extracted are highlighted.

1http://regex.inginf.units.it/
2https://github.com/MaLeLabTs/RegexGenerator
3http://play.inginf.units.it/

http://regex.inginf.units.it/
https://github.com/MaLeLabTs/RegexGenerator
http://play.inginf.units.it/


37 Procedure

Figure 3.1: Snapshot of our tool taken during a search. The tool shows the best solution currently found.

The user writes a regular expression in a dedicated input field and the challenge web app highlights,
with negligible latency, the substrings extracted by the expression along with the corresponding extraction
mistakes. An example is in Figure3.2. The user may refine the regular expression interactively, that is, he
may modify the expression at will and obtain an immediate feedback about the modified expression. We
emphasize that the interactive nature of the challenge web app should make it easier for human operators
to solve the proposed tasks, both in terms of quality of solutions and time required for their construction.

The challenge web app also shows the F-measure on the current task. To avoid the need of understand-
ing what the F-measure actually represents, the user is informed that a value of 100% means a perfect
score on the task. The user is not required to obtain a perfect F-measure before going to the next task
and could even leave a task completely unanswered. Furthermore, the user need not execute all the tasks
in a single session: when connecting, the challenge web app presents to the user the extraction task he
was working on when disconnecting. The challenge web app records, for each task and for each user, the
authored regular expression and the overall time spent on the task, excluding disconnection intervals.

In practice, users craft regular expressions in many ways. They may describe them using natural
language, examples of matching strings, or with a combination of both. Users’ descriptions may be
underspecified, in the sense that they do not specify how every possible input sequence should be
classified, and their descriptions can be refined during several iterations. The challenge web app specifies
an extraction tasks solely by means of examples. This is necessarily an approximation of user behavior,
but it nevertheless preserves the essence of the problem of constructing a regular expression, and it is
simple for users to understand. The annotations can be done quickly, which is important because the
challenge web app presented examples already annotated but a user willing to use our tool instead of
crafting a regex would have to annotate examples. In the experiments described in the next section, we
considered extraction tasks specified with 24 desired extractions; annotating the corresponding data took
1.5–2.5 minutes, depending on the task.

3.5 Procedure

We constructed 10 challenging extraction tasks, summarized in Table 3.1 and Table 3.2. Task names
consist of the corpus name followed by the name of the entity type to be extracted: ReLIE-HTML:
portions of a subset of the 50, 000 web pages obtained from the publicly available University of Michigan
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Figure 3.2: Snapshot of the challenge web app presented to users. The user has inserted the regex \w+\W \w+ and
the webapp highlights the extractions of this regex in blue: it can be seen that this regex results in undue extractions
(i.e., highlighted text outside of the dashed boxes) and missed extractions (i.e., non highlighted text within the
dashed boxes).

Web page collection (used also in [46, 85]). ReLIE-Email: portions of the 10, 000 emails obtained from
the publicly available Enron email collection (used also in [85, 127]). Cetinkaya-HTML: full HTML
source of 3 web pages (used also in [46, 60]). Cetin [46, 60]). Log: log entries collected from our lab
firewall (used also in [46]). Web: full HTML source of a richer collection of web pages than Cetinkaya.
BibTeX: BibTeX elements obtained by querying Google Scholar. References: references in the Springer
LNCS format obtained from the BibteX corpus.

For each task, we randomly selected a set of examples containing 24 desired extractions (note that this
corresponds, for each task, to a very small portion of the full corpus) and embedded the corresponding set
in the web app. We published a post on Reddit encouraging users to challenge themselves 4. Next, we
executed our tool by using the very same set of examples as the learning set. We repeated each execution
four times and averaged the performance indexes (see next section).

We chose not to distribute different sets of examples to different users because we did not expect to
receive thousands of submissions and in a preliminary experiment we observed that many tasks were left
unanswered. We thought that presenting different data to different users might have not allowed collecting
a meaningful set of results. We have assessed the performance of our tool also with different learning sets,
by executing a 5-fold procedure on each task. The resulting slight difference in the actual values of the
indexes was negligible. We included two simple tasks at the beginning of the task sequence aimed solely
at allowing users to practice and familiarize with the web app interface. We did not include these tasks in
the analysis (their results are qualitatively similar to those of the other tasks, though).

4https://www.reddit.com/r/programming/comments/3eblji/how good are you in writing regex challange/

https://www.reddit.com/r/programming/comments/3eblji/how_good_are_you_in_writing_regex_challange/
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3.6 Results

We gathered results from a large population: 1, 764 users participating from July 23-rd 2015 to September
20-th 2015. These users qualified themselves as follows: 44% novice, 38% intermediate, and 18%
experienced. Users completed 10, 439 out of the 17, 640 tasks. Novice users completed 52% of the tasks,
intermediate users 61%, and experienced users 71%.

We analyze results along two axes: quality of the solution assessed with F-measure and the time
required for constructing the solution. We report average values for each category of users by taking
into account only completed tasks with construction time between percentiles 1% and 99% (Figure3.3).
Execution times for our tool have been obtained on a 6-core Intel Xeon 2.4 GHz with 32 GB RAM.

The key finding is that, on average, our tool delivered solutions with F-measure almost always greater
than or equal to the one obtained by each category of human users, both on the learning data and on the
testing data. Furthermore, on average, the time required by our tool was almost always smaller than the
time required by human operators. We believe these results are remarkable and highly significant. Indeed,
we are not aware of any similar tool exhibiting such human-competitive performance indexes.

By looking at the actual distributions of F-measure2, one may always find a significant fraction of
humans which obtain better results than our tool. In other words, while our tool is not systematically
better than humans, it does deliver F-measure that is comparable to humans and that, on average, is even
better. Actual distributions of construction time indicate that our tool tends to be systematically faster
than most humans on most tasks. This indication is also statistically significant.

Figure 3.3: F-measure on the learning set (upper chart), F-measure on the remaining part of each dataset, i.e., on a
hold-out testing set (middle), and the construction time (lower chart).

The only task in which our tool delivers unsatisfactory F-measure on the testing data, despite a very
good value on training data, is ReLIE-Email/Phone-Number. A closer inspection of the dataset shows that,
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for this task, the training data happens not to be adequately representative of the testing data, in particular,
concerning substrings that look like phone numbers but are not. Executing our tool on a larger training set
result in F-measure around 85%.

Table 3.1: Datasets Summary

Task name Number of characters (x103) Number of desired extractions

ReLIE-HTML/All-URL 4240 502
ReLIE-Email/Phone-Number 4240 499
Cetinkaya-HTML/HREF 154 214
Cetinkaya-Text/All-URL 39 168
Log/IP 4126 75958
Log/MAC 4126 38812
Web-HTML/Heading 4541 1083
Web-HTML/Heading-Content 4541 1083
Bibtex/Author 54 589
References/Lead-Author 30 198

Table 3.2: Datasets Snippets

Task name example

ReLIE-HTML/All-URL Click here to access index history
<http://www.intcx.com/SubscriberServlet/subscriber
servlet.class?operation=powerIndexForm\&hub=All>.
* volume represents sell-side only * Hub High
Low Wtd Avg Index Change (\$) Vol (Mwh) Ciner

ReLIE-Email/Phone-Number 3784 SSWB<br> (734) 763-6276<br> <a
href=\mailto:ddavies@umich.edu\>ddavies@umich.edu
</a> </td> abs Client Services Center
at:</FONT><TD align=middle><FONT face=Arial
size=2> 734/936-2598 (Local), 800/862-7284
(Michigan Only) or 800/537-7284 (Outside
Michigan) </FONT> </TD>

Cetinkaya-HTML/HREF <a href="http://www.gutenberg.org/"
target="\ parent">Project Gutenberg</a> <a
href="http://www.scitation.org" target="\ -
parent">Scitation</a>

Cetinkaya-Text/All-URL Fedora Extras http ftp rsync
ftp://ftp7.br.FreeBSD.org/pub/FreeBSD/ (ftp)
ftp://ftp3.de.FreeBSD.org/pub/FreeBSD/ (ftp)
ftp://ftp.is.FreeBSD.org/pub/FreeBSD/ (ftp /
rsync)

Log/IP Jan 13 05:49:47: ACCEPT service dns from
74.125.189.23 to firewall(pub-nic-dns), prefix:
"none" (in: eth0 74.125.189.23(00:80:38:fa:8a:7e)
:51027 -> 140.105.63.158(00:00:76:fe:75:e2):53
UDP len:80 ttl:49)
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Table 3.2: Datasets Snippets

Task name example

Log/MAC Jan 13 17:44:52: DROP service 68->67(udp)
from 172.45.240.237 to 217.70.177.60,
prefix: "spoof iana-0/8" (in: eth0
216.34.90.16(00:21:91:fe:a2:6f):68 ->
69.43.85.253(00:07:e1:7c:53:db):67 UDP len:328
ttl:64)

Web-HTML/Heading e se non fosse che ’n sul passo d’Arno<br/>
<h2><span class="editsection">[<a href="/w/index
.php?title=Torino\&amp;action=edit\&amp;section=
47" title="Modifica la sezione Infrastrutture e
trasporti">modifica</a>]</span> <span class="mw-
headline" id="Infrastrutture\ e\ trasporti">Infra
strutture e trasporti</span></h2>
<h5>Visite</h5> Libero.HF.adjust800 = function
() \{

Web-HTML/Heading-Content e se non fosse che ’n sul passo d’Arno<br/>
<h2><span class="editsection">[<a href="/w/index
.php?title=Torino\&amp;action=edit\&amp;section=
47" title="Modifica la sezione Infrastrutture e
trasporti">modifica</a>]</span> <span class="mw-
headline" id="Infrastrutture\ e\ trasporti">Infra
strutture e trasporti</span></h2>
<h5>Visite</h5> Libero.HF.adjust800 = function
() \{

Bibtex/Author @inproceedings\{arellano2004study, title=\{Study
of the structure changes caused by earthquakes
in Chile applying the lineament analysis
to the Aster (Terra) satellite data.\},
author=\{Arellano-Baeza, A and Zverev, A
and Malinnikov, V}, booktitle=\{35th COSPAR
Scientific Assembly\},

References/Lead-Author 130. Andrews, D.G., Holton, J.R., Leovy,
C.B.: Middle atmosphere dynamics. Number 40.
Academic press (1987)

3.7 Remarks

While we do not claim that a tool like ours may be effective in each and every possible application of
regular expressions, we do believe to have provided strong indications that a machine may indeed constitute
a practically viable tool for synthesizing regular expressions from scratch. In our challenging tasks, the
machine has proven its ability to surrogate the expertise and skills required by human programmers. We
believe that this result is relevant in itself and, more broadly, as a further demonstration of the practical
capabilities of Genetic Programming techniques even on commodity hardware.

An issue that we have not yet addressed is readability of the solutions. While this property is
orthogonal to F-measure, it may nevertheless be important in practice: users might not trust a result that
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they do not fully understand or whose behavior in corner cases might be difficult to predict. As an aside,
these remarks apply also to other popular machine learning paradigms, e.g., neural networks. Manual
inspection of a few solutions suggest that human operators tend to construct shorter solutions, but we
could not find any clear cut between the categories: even automatically-constructed solutions may be very
compact and highly readable; and, there is ample variability between operators with task difficulty playing
a key role.

We plan to assess readability of the solutions as part of a broader investigation on this important
question: what are the key differences between solutions constructed by human programmers and
automatically-constructed solutions? Is it possible to distill such differences—for example including
readability—into a fitness definition capable of driving the evolutionary search toward regions of the
solution space closer to those explored by human operators? We believe that ideas of this kind may
provide an exciting line of research in evolutionary computing.



Chapter 4
Regex-based Entity Extraction with
Active Learning

4.1 Overview

A large class of entity extraction tasks from unstructured data may be addressed by regular expressions,
because in many practical cases the relevant entities follow an underlying syntactical pattern and this
pattern may be described by a regular expression. A long-standing problem in this area consists in the
automatic generation of a regular expression suitable for a specific task based solely on examples of the
desired behavior.

A wealth of research efforts in this area considered classification problems either in formal languages
[45, 77, 78, 84, 117, 199] or in the realm of deterministic finite automata (DFA) [40, 60, 126, 140]. Those
results considered scenarios that do not fit practical text processing applications, which have to cope with
much longer sequences of symbols drawn from a much larger alphabet. Text extraction problems of non
trivial size and complexity were first considered in a procedure that automatically optimized an initial
regular expression to be provided by the user based on examples of the desired functioning [133]. Later
proposals still required an initial regular expression but were more robust toward initial expressions of
modest accuracy and noisy datasets [10, 152]. The need of an initial solution was later removed in several
proposal [12, 44, 55]. A more recent proposal based on Genetic Programming advanced significantly over
earlier approaches and is capable of addressing text extraction tasks of practical complexity effectively,
with a few tens of examples of the desired behavior [15, 17].

In this chapter, we investigate the feasibility of an active learning approach for relieving the user from
the need of examining the full input text (i.e., the dataset) in search of all the desired extractions to be
annotated for learning [6, 52, 139, 186, 194]. We develop and evaluate experimentally a framework in
which the user initially marks only one snippet of the input text as desired extraction. A learner based
on Genetic Programming then constructs a solution, digs into the (possibly very long) input text, selects
the most appropriate snippet to be used for improving the current model and presents it to the user as an
extraction query. The user merely answers the query by specifying whether the selected snippet has to be
extracted or not extracted and the process continues iteratively, improving the solution at each query.

The resulting framework is highly attractive and may greatly broaden the potential scope of automatic
regex generation from examples. On the other hand, actually implementing this framework is challenging
because the scenario presents significant differences from successful applications of active learning.

Active learning approaches usually consider datasets where each item is an input instance and thus
a candidate query. This property is shared also by approaches based on Genetic Programming [70, 113,
155]. Our case is different because the dataset is a single, possibly long, input text without any native
segmentation in smaller units. Depending on the application, it may consist of one very long line or
several lines with possibly variable length; furthermore, more than one desired extractions may occur
within a single line (e.g., IP addresses in network logs) or a single desired extraction may span across

43
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t I was born in 1979 and he was born in 1974.
sq I was born in 1979 and he was born in 1974.

M,U I was born in 1979 and he was born in 1974.

Figure 4.1: Oracle annotation example: desired (undesired) extractions are in dark (light) gray; the query is boxed.

several lines (e.g., HTML elements including their content). Assuming that the text is natively segmented
in lines or in sentences (as in, e.g., [82]) would severely restrict the scope of possible applications of the
system. Moreover, the size of the query to be presented to the user should be chosen carefully. Presenting
a large snippet (e.g., one or more entire lines) to the user for annotation may nullify the objective of
minimizing user annotation effort. On the other extreme, repeatedly asking the user to annotate very short
snippets may not be effective.

In other words, not only we have the problem of choosing the next query among candidate queries,
we also have the problem of constructing candidate queries out of the available input text. In this respect,
it is useful to remark that the number of possible queries in (i.e., the number of snippets of) an input
text grows quadratically with the text size and becomes huge very quickly—e.g., even if we assume that
the learner cannot generate queries ex novo and can only query a snippet of the input text, if the latter
size is just 105characters then there are « 1010 candidate queries. Furthermore, active learning usually
targets scenarios with hundreds of queries (e.g., [52, 139, 194]) whereas we must be able to improve over
a random query chooser and provide solutions of good quality even with a few tens of examples, similarly
to [113].

Our contribution consists in: (a) a model for the external oracle that may participate in the construction
of queries, which improves the quality of annotation information while at the same time maintaining a
behavior very intuitive to unskilled users; (b) a technique for constructing queries suitable to regex-based
entity extraction from unstructured text, which does not assume any internal segmentation of input text;
(c) an implementation of several active learning approaches taking into account the need of constructing
candidate queries; (d) a novel variant for the learner in which the number of generations executed between
consecutive queries may vary dynamically depending on the quality of the current solution; and, (e) an
experimental analysis on a number of challenging datasets of several active learning approaches, which
target different accuracy/annotation effort regions of the design space.

4.2 Our approach

The problem consists in generating a regular expression automatically based on examples of the desired
extraction behavior on a text t. Such examples are annotations: snippets of t that are to be extracted
(matches) or snippets of t that are not to be extracted (unmatches).

We propose an approach based on active learning, as follows. Initially an external oracle, i.e., the user,
annotates an extremely small portion of t—we experimented with only one match. The learner consists of
three components: the solver, which generates a regular expression suited to the matches and unmatches
annotated by the oracle so far; the query trigger, which determines when a query has to be proposed to the
oracle; and the query builder, which constructs candidate queries and determines which query should be
proposed to the oracle.

Each query consists of a snippet of t, denoted sq, to be annotated by the oracle. We propose the
following behavior for the oracle: the oracle’s answer is a pair M,U , where M is the (possibly empty) set
of all matches which overlap sq and U is the (possibly empty) set of maximal subsnippets of sq which are
unmatches—Figure 4.1 shows an example of annotation.

In other words, we propose an oracle that may modify the received query slightly and then answer
the modified query. With most active learning approaches the user is required to provide the class of
queried data and is not allowed to modify those data. The proposed behavior for the oracle is very
practical and is easily implemented with a GUI, though. When the queried snippet consists exactly of a
desired extraction or does not contain any desired extraction, one single click suffices to answer the query.
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Figure 4.2: Screenshots of the web-based prototype developed for our framework: query submitted to the user
(left), learning based on the currently available annotations (right).

Otherwise, when the query partly overlaps a match, the user is expected to expand the query on either or
both sides—an action which is more intuitive to unskilled users, nevertheless results in answers which are
more informative to the learner.

We developed a web-based prototype with a GUI that efficiently implements the proposed interaction
model. Figure 4.2 shows how the user interface appears when a query is made (left) and while the learning
algorithm is running (right). In the first case, a query is shown as a highlighted portion of the text (in
purple) t and the user is presented with 3 buttons: ‘Extract”, “Do not extract” and “Edit”. When the query
corresponds exactly to a desired extraction or does not contain any desired extraction, then one single
click suffices to answer the query (button “Extract” or “Do not extract”, respectively). Otherwise, when
the user has to describe a more complex answer, by clicking the “Edit” button the user may extend the
selection boundaries of the query and delimit desired extractions precisely. The GUI also highlights (in
green) the extractions of the current best solution, in order to help the user in understanding the behaviour
of the current solution. The state of the current solution is reported also while the search is in progress, as
illustrated in the left part of Figure 4.2. The aim of this design is to help the user in deciding when to stop
the regex search—i.e., when the user is satisfied by the current solution.

The solver is based on the proposal in [17, 23], whose code is publicly available1. The proposal is
based on Genetic Programming [120]: a population of regular expressions, represented by abstract syntax
trees, is iteratively evolved by applying the genetic operators across many iterations (generations). A
multiobjective optimization algorithm drives evolution of regular expressions according to their length
(to be minimized) and their extraction performance computed on the matches and unmatches (to be
maximized). We refer the reader to the cited paper for full details.

We considered two variants for the query trigger. The Const variant has been used in other active
learning proposals for Genetic Programming [70, 113, 155] and generates a new query whenever a
predefined number of generations of the solver has been executed. W experimented with 30 and with 200
generations. The Solved variant is an optimization that we explore in this work. This variant triggers the
query builder when the best regular expression in the population, as assessed on the current set of matches
and unmatches, has remained unchanged for a predefined number of generations of the solver—i.e., a new
query is triggered when no further progress seems to be achievable with the available annotations. We
experimented with 200 generations, i.e., one of the values selected for the Const variant, in order to assess
the accuracy/speed trade-off of the two variants.

The query builder constructs candidate queries based on the notion of disagreement: given a set C of
regular expressions (the committee), we define as disagreement of C on a character c of the input text
t the quantity dCpcq “ 1´ 2abs

´

1
2 ´

|Cc|

|C|

¯

, where Cc Ď C is the subset of regular expressions which

1https://github.com/MaLeLabTs/RegexGenerator

https://github.com/MaLeLabTs/RegexGenerator
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extract c—dCpcq “ 1 if half of the committee extracts c (maximum disagreement), dCpcq “ 0 if the all
committee agrees on the processing of c (minimum disagreement). Note that we quantify disagreement
based on the class chosen by each candidate solution in C (extracted vs. not extracted) [141] without any
reference to forms of confidence value, margin or probability [131, 147]. As we pointed out already in the
introduction, such notions are not made available by the solver that we have chosen to use.

The procedure for constructing candidate queries takes a set of regular expressions C as parameter
and determines the character c˚ P t with maximal disagreement dCpc˚q in the full input set t. Next, the
procedure determines the set S of candidate queries as the set composed of all snippets of t which meet
the following conditions: they (a) are extracted by at least a regular expression in C, (b) overlap c˚, and
(c) do not overlap any available annotation.

We implemented two variants of a query builder. The Query by committee (QbC) variant works
as follows: (a) construct the set S of candidate queries using the full population as committee C,
(b) compute, for each snippet in S, the average disagreement among the characters of the snippet, and
(c) choose the snippet with minimal average disagreement as query. The Query by restricted committee
(rQbC) variant is similar to QbC except that the committee C contains only the best 25% of the current
population (ranking being based on the current set of matches and unmatches).

QbC and rQbC are based on a principle widely used in active learning [160, 186], i.e., on the
assumption that the query for which an ensemble of competing hypotheses exhibits maximal disagreement
is the most informative for the learning task [187]. Such a principle has been used also in active learning
for Genetic Programming [70, 113, 155]—in those scenarios there is the problem of choosing a candidate
query but not the one of constructing queries, though. Indeed, the proposal in [113] augments this principle
by also taking into account a measure of diversity between each candidate query and queries already
answered. Our preliminary exploration of this additional principle, that we do not illustrate for space
reasons, has not delivered satisfactory results. We believe the reason consists in the difficulty of finding
a diversity measure for text snippets correlated with diversity between regular expressions—e.g., two
text snippets could be very different while at the same time they could be captured by the same regular
expression or by regular expressions that are very similar.

Concerning query builders we also observe that a wealth of active learning approaches choose queries
based on uncertainty of the current solution, especially when the learner is not based on an ensemble of
competing hypotheses [131, 160, 180, 194]. On the other hand, such approaches do not fit the state-of-the-
art regex learner that we use in our system, because such a learner does not provide any confidence level
about the handling of a given snippet (i.e., extracted vs. not extracted) by the current solution.

We also implemented a third query builder that randomly chooses an unannotated snippet. We place
an upper bound to the maximum length of the query that may be generated: we set the actual bound value
in our experimental evaluation to the maximum size of a desired extraction across all our datasets (few
hundreds characters). The upper bound causes this query builder to filter out candidate queries which are
too long, which hence advantages this builder w.r.t. one which selects a truly random snippet of t. For this
reason, we call this builder SmartRand.

4.3 Experiments

We focused on the extraction performance of the regular expression generated for a given amount of user
annotation effort. We quantify extraction performance with F-measure (Fm), which is the harmonic mean
of precision (ratio between the number of correctly extracted snippets and the number of all the extracted
snippets) and recall (ratio between the number of correctly extracted snippets and the number of all the
snippets which should have been extracted). We chose to quantify user annotation effort by the number of
annotated characters (AC).

We evaluated all the 9 combinations between the proposed design variants and we considered 11
challenging extraction tasks used in [17]. For each extraction task, we randomly selected a subset of
the original corpus containing approximately 100 desired extractions. The name of each extraction task
can be seen—along with the size of the input text expressed in number of characters—in Table 4.1: it is
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Table 4.1: The F-measure obtained with each variant on each task. The average F-measure, CE and AC are also
shown.

QbC QbC QbC SmartRand SmartRand SmartRand rQbC rQbC rQbC
Task Size Const30 Const200 Solved Const30 Const200 Solved Const30 Const200 Solved

ReLIE-HTML/All-URL 16 655 0.61 0.82 0.76 0.75 0.86 0.82 0.69 0.84 0.85
ReLIE-Email/Phone-Num. 18 123 0.97 0.99 0.99 0.57 0.95 0.70 0.97 0.98 0.99
Cetinkaya-HTML/href 14 922 0.77 0.87 0.88 0.95 1.00 1.00 0.81 1.00 1.00
Cetinkaya-Text/All-URL 7573 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
Twitter/Hashtag+Citation 5308 0.91 0.93 0.98 0.98 0.99 0.99 0.92 0.99 0.99
Twitter/All-URL 9537 0.92 0.92 1.00 1.00 0.92 1.00 0.92 1.00 1.00
Log/IP 5766 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Log/MAC 10 387 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Email-Headers/IP 36 925 0.89 0.80 0.94 0.39 0.85 0.53 0.69 0.71 0.77
NoProfit-HTML/Email 4651 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Web-HTML/Heading 37 678 0.51 0.54 0.54 0.81 0.75 0.82 0.52 0.83 0.60

Average Fm 0.87 0.89 0.91 0.86 0.94 0.89 0.86 0.94 0.92
Average AC 3311 3202 2734 2997 2864 2646 3238 2506 2525

Average CE (ˆ109) 6.5 45.4 44.2 4.3 33.6 27.3 7.2 40.0 27.2

composed of the name of the corpus followed by the name of the entity type to be extracted.
We assessed our system variants as follows. For each task and variant, we chose a random desired

extraction as the only starting annotated snippet and executed the variant with a simulated oracle. We
repeated the above procedure 15 times, with 5 different starting matches and 3 different random seeds.
We terminated each execution upon the query for which either at least 25% of the available characters was
annotated or the F-measure on the full input text (i.e., not only on the annotated portion) was 1. Although
a real deployment cannot quantify F-measure on a yet unannotated input text, we chose to include the
latter condition in the termination criterion in order to provide a fair assessment of variants which are
able to generate perfect solutions before reaching the predefined annotation budget. We chose 25% of the
available characters as annotation budget because we have found that, with these datasets, it corresponds
to a few minutes of actual annotation.

Table 4.1 shows the main results (statistical significance is analyzed in more detail later). For each
task, Fm is computed on the full input text and averaged across the 15 repetitions of each experiment.
Values in the bottom rows of the table are averaged across all tasks. We define the computational effort
(CE) as the number of characters analyzed for fitness evaluations across an execution. This quantity is a
hardware-independent performance index. Execution times are in the order of minutes, similarly to [17],
we do not list them in detail for space reasons: the time taken by the query trigger and the query builder is
negligible w.r.t. the time taken by the solver.

It can be seen that for nearly all tasks several of our active learning variants are able to generate regular
expressions of very good quality. This result is significant because it strongly suggests that active learning
is indeed a viable framework for the task of automatic generation of regular expressions.

Another important outcome is that the rQbC query builder tends to deliver better F-measure than the
SmartRand query builder while requiring less annotations—∆Fm between 0.05 and 0.1 on the average.
In many applications of active learning, a random query chooser is often quite effective and often turns
out to be a challenging baseline for more sophisticated query choice strategies [9, 86, 194]. Although
we may observe this phenomenon also in our scenario (in which the random selection is enhanced by a
lenght-based filtering, see Section 4.2), we also observe a clear superiority of approaches based on rQbC.
The QbC query builder, on the other hand, is not effective as it tends to exhibit worse results from the
three points of view summarized in the table: F-measure, annotation effort, computational effort.

We speculate that the superiority of rQbC over SmartRand may become even more apparent with
datasets in which the density of desired extractions is smaller than ours—in our datasets, the likelihood
of randomly choosing a snippet that partly overlaps a desired extraction is not very small. We need to
investigate this conjecture further, however.

Concerning the behavior of query triggers with rQbC, it can be seen that each of the three options
analyzed belongs to a different region of the design space. The Const30 query trigger is much faster (CE)
at the expense of obtaining a relatively good but smaller F-measure, while at the same time requiring more
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annotations (AC). Const200 and Solved represent more useful trade-offs because they deliver the best
average F-measure: they require the same amount of annotations, trading a small difference in F-measure
for a substantial difference in computational effort.

In order to illustrate the significance of these results further, we executed the state-of-the-art learner
proposed in [17] on the same tasks. This learner requires a training set fully annotated before starting
execution. For each task we randomly generated 5 training sets, each one with 25% of the available
characters and with a random generation procedure carefully tailored so as to ensure that each training set
contains approximately 25% of the desired extractions. It may be useful to emphasize that the size of the
training set corresponds to the size of the training set of active learning upon the last query: in this case
the training set is instead available to the solver for the full execution; furthermore, in active learning the
user need not take any effort to dig out an adequate amount of desired extractions from the (potentially
large) available data. We executed each task 5 times, each execution using one of the 5 different training
sets. We obtained, on average, Fm “ 0.97, CE “ 29.8ˆ 109 and AC “ 3748, i.e., 49% more annotated
characters than rQbC-Const200 and 48% more than rQbC-Solved.

We performed an analysis of the statistical significance of the results based on the Wilcoxon signed-
rank test: we chose this test since it is non-parametric and does not require the population to be normally
distributed. The results are in Table 4.2 (F-measure, above, and annotated characters, AC, below)—we
omit results about CE for space reasons. In each table, cell pi, jq contains the difference in the average
value of the corresponding performance index between variant in row i and variant in row j. Statistical
significance of performance index comparison is indicated for varying p-values of the test and highlighted
with asterisks.

These results confirm the analysis of Table 4.1, but they also indicate that the rQbC/Const200
and rQbC/Solved actually does not guarantee any statistically significant improvement in Fm over
SmartRand/Const200. On the other hand, there is indeed some statistically significant evidence of an im-
provement in terms of smaller annotation effort—12.5% for rQbC/Const200 and 11.8% for rQbC/Solved.
Concerning CE (not shown for space reasons), rQbC/Const200 requires 19% more character evaluations
but this result is not statistically significant; rQbC/Solved instead requires 19% less character evaluations
with the strongest statistical significance.

Figure 4.3 illustrates the trade-off AC vs. F-measure (left) and AC vs. CE (right). The figure contains
one point for each task; the different query triggers are represented as points of different colors while the
different query builders are represented with different shapes. For each point, F-measure, AC and CE are
averaged among 15 experiment repetitions—5 folds and 3 different random seeds.

In the left figure it can be seen that points representing the Const30 query trigger—light grey points—
tend to be distributed in the rightmost and lower part of the figure—i.e., this query trigger requires high
AC but obtains low F-measure. Points representing the Const200 and Solved query trigger—dark gray
and black points—tend instead to be distributed in the leftmost and higher part of the figure, i.e., for each
AC value we may obtain high F-measure values. Concerning query builders, the graphical distribution of
points does not provide any significant insights; in this respect, the other analyses discussed previously
are more effective. In the right figure shows for each point the average CE vs the average AC for one task
it can be seen that points representing the Const200 and Solved query triggers tend to be distributed in the
highest part of the figure, as expected Const200 and Solved query triggers require CE values higher than
the Const30 ones. We may note that the points representing the SmartRand query builder tend to occupy
the highest part of the figure, in other words SmartRand query builders require CE values higher than the
QbC and rQbC ones.

Finally, in Table 4.3 we report the detailed execution trace of two significant experiments based on
the rQbC/Solved configuration: one for the Twitter/Hashtag+Citation task and another for the Email-
Headers/IP task. The table contains one row for each query constructed by the system. Each row contains:
the sequential number of the query; the number of annotated matches |

Ť

M | and unmatches |
Ť

U |,
available to the learning algorithm; the content of the query sq; the response provided by the user in terms
of desired matches M and desired unmatches U . Each row also contains the currently best solution, along
with the F-measure associated with such solution and the total amount of AC.
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Table 4.2: Average differences of Fm and AC of pairs of the proposed variants. For each pair, the statistical
significance is shown: *: p ă 0.1, **: p ă 0.05, ***: p ă 0.01 (the last condition corresponds to the strongest
statistical significance; absence of any asterisk indicates that the comparison is not statistically significant, i.e.,
p ě 0.1).

F-measure (Fm)
QbC QbC QbC SmartRand SmartRand SmartRand rQbC rQbC rQbC

Variant Const30 Const200 Solved Const30 Const200 Solved Const30 Const200 Solved

QbC/Const30 ´0.03*** ´0.05*** 0.01 ´0.07*** ´0.03** 0.01* ´0.07*** ´0.05***
QbC/Const200 0.03*** ´0.02* 0.04** ´0.04** 0.00 0.03*** ´0.04*** ´0.03***
QbC/Solved 0.05*** 0.02* 0.06*** ´0.02 0.02 0.05*** ´0.02** ´0.01***
SmartRand/Const30 ´0.01 ´0.04** ´0.06*** ´0.08*** ´0.04*** ´0.01 ´0.08*** ´0.07***
SmartRand/Const200 0.07*** 0.04** 0.02 0.08*** 0.04*** 0.07*** 0.00 0.01
SmartRand/Solved 0.03** 0.00 ´0.02 0.04*** ´0.04*** 0.03** ´0.04*** ´0.03***
rQbC/Const30 ´0.01* ´0.03*** ´0.05*** 0.01 ´0.07*** ´0.03** ´0.07*** ´0.06***
rQbC/Const200 0.07*** 0.04*** 0.02** 0.08*** 0.00 0.04*** 0.07*** 0.01
rQbC/Solved 0.05*** 0.03*** 0.01*** 0.07*** ´0.01 0.03*** 0.06*** ´0.01

Annotated characters (AC)
QbC QbC QbC SmartRand SmartRand SmartRand rQbC rQbC rQbC

Variant Const30 Const200 Solved Const30 Const200 Solved Const30 Const200 Solved

QbC/Const30 109*** 577*** 314*** 447*** 665*** 73** 805*** 786***
QbC/Const200 ´109*** 468*** 205** 338*** 556*** ´35 696*** 677***
QbC/Solved ´577*** ´468*** ´263** ´129 88 ´503*** 228** 209**
SmartRand/Const30 ´314*** ´205** 263** 133*** 351*** ´240*** 491*** 472***
SmartRand/Const200 ´447*** ´338*** 129 ´133*** 218*** ´374*** 358* 338*
SmartRand/Solved ´665*** ´556*** ´88 ´351*** ´218*** ´592*** 140 120
rQbC/Const30 ´73** 35 503*** 240*** 374*** 592*** 732*** 712***
rQbC/Const200 ´805*** ´696*** ´228** ´491*** ´358* ´140 ´732*** ´19***
rQbC/Solved ´786*** ´677*** ´209** ´472*** ´338* ´120 ´712*** 19***

Table 4.3: Sequences of queries generated for two different experiments. For each query are reported the total
number of matches and unmatches annotated, the query sq, the user answer in terms of M and U , the current best
solution, the corresponding F-measure and the current AC.

# |
Ť

M | |
Ť

U | sq M U Best regex F-m AC

1 1 0 #20topsongsever #20topsongsever #\w++ 0.39 24
2 2 0 #hacking #hacking #\w++ 0.39 32
3 3 0 #ti #tips #\w++ 0.39 37
4 4 0 #O #OpPiggyBank #\w++ 0.39 49
5 5 0 #plurfamily #plurfamily #\w++ 0.39 60
6 6 1 #FF mee !!!” #FF mee !!!” #\w++ 0.39 72
7 7 2 #bast@Rd #bast @Rd #\w++ 0.39 80
8 8 2 @Callum @Callum Rose [@#]\w++ 1.00 92

1 1 0 199.87 199.87.247.43 199\.87\.247\.43 0.08 26
2 2 0 209.85.216.170 209.85.216.170 \w++\.\w++\.\w++\.\w++ 0.77 40
3 3 0 10.2 10.231.24.9 \w++\.\w++\.\w++\.\w++ 0.77 51
4 4 2 : by 10.231.102.195 with SMTP 10.231.102.195 : by with SMTP (?:\d++\.)++\d++ 0.68 80
5 5 2 10.236.195.3 10.236.195.34 (?:\w++\.)++\d++ 0.66 93
6 5 3 go2mr11586177wib.22 go2mr11586177wib.22 \w++\.\w++\.\w++\.\w++ 0.77 112
7 5 4 etPan.528e775f.6ce90669.a etPan.528e775f.6ce90669.a \d++\.\d++\.\d++\.\d++ 0.92 137
8 6 4 199.7.202.190 199.7.202.190 \d++\.\d++\.\d++\.\d++ 0.92 150
9 7 4 199.7.202.190 199.7.202.190 \d++\.\w++\.\w++\.\w++ 0.84 163

10 7 5 Exim 4.80.1 Exim 4.80.1 \d++\.\w++\.\w++\.\w++ 0.84 174
11 7 6 h6mr48792qew.9 h6mr48792qew.9 \w++\.\w++\.\w++\.\d++ 0.87 188
12 7 7 5.1gphBQfkbkwG8rjXKOhM 5.1gphBQfkbkwG8rjXKOhM \w++\.\w++\.\w++\.\d++ 0.87 210
13 7 8 x8mr5889809oek.49.1 x8mr5889809oek.49.1 \w++\.\w++\.\w++\.\d++ 0.87 229
14 7 9 jx4mr3506406vec.35.1 jx4mr3506406vec.35.1 \w++\.\w++\.\w++\.\d++ 0.87 249
15 7 10 6.0.3790.4 6.0.3790.4 \w\w++\.\w++\.\d++\.\d++ 0.91 259
16 7 11 1.2013.11.11 1.2013.11.11 \w\d++\.[ˆ1]\w*+\.(?!3)\d++\.\d++ 0.80 271
18 8 13 217.12.10.166; 217.12.10.166 ; \w\d++\.\w++\.\d*+\.\d++ 0.95 360
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Figure 4.3: AC vs. F-measure (left) or vs. CE (right): one point for each task (corresponding to the average index
across the repetitions).
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4.4 Remarks

In this chapter we have proposed several active learning approaches tailored to the automatic generation
of regular expressions for entity extraction from unstructured text. We have assessed these approaches
experimentally on a number of challenging extraction tasks that have been previously used in the literature.
The results indicate that active learning, starting with only one annotated match, is indeed a viable
framework for this application domain and may thus significantly decrease the amount of costly user
annotation effort. We have also identified design options and explored the design space, in terms of
computational effort and annotation effort, while delivering very good F-measure. We believe that our
results are significant and highly promising.

As future work we intend to broaden the experimental analysis by taking into account more facets of
the user effort, including a measure of the user annotation time as a function of the number, length and
complexity of individual queries. We also intend to devise a suitable metric for taking into account the
user cost broadly involved in the elapsed time between consecutive queries. In the following chapters we
may explore the feasibility of an online estimate of the difficulty of obtaining a suitable regular expression
given the current set of annotations.





Chapter 5
Predicting the Effectiveness of
Pattern-based Entity Extractor
Inference

5.1 Overview

An essential component of any workflow leveraging digital data consists in the identification and extraction
of relevant patterns from a data stream. This task occurs routinely in virtually every sector of business,
government, science, technology, and so on. In this chapter we are concerned with extraction from an
unstructured text stream of entities that adhere to a syntactic pattern. We consider a scenario in which an
extractor is obtained by tailoring a generic tool to a specific problem instance. The extractor may consist,
e.g., of a regular expression, or of an expression in a more general formalism [98], or of full programs
suitable to be executed by NLP tools [119, 169]. The problem instance is characterized by a dataset from
which a specified entity type is to be extracted, e.g., VAT numbers, IP addresses, or more complex entities.

The difficulty of generating an extractor is clearly dependent on the specific problem. However,
we are not aware of any methodology for providing a practically useful answer to questions of this
sort: generating an extractor for describing IP addresses is more or less difficult than generating one for
extracting email addresses? Is it possible to generate an extractor for drug dosages in medical recipes,
or for ingredients in cake recipes, with a specified accuracy level? Does the difficulty of generating an
extractor for a specified entity type depend on the properties of the text that is not to be extracted? Not
only answering such questions may provide crucial insights on extractor generation techniques, it may
also be of practical interest to end users. For example, a prediction of low effectiveness could be exploited
by providing more examples of the desired extraction behavior; the user might even decide to adopt a
manual approach, perhaps in crowdsourcing, for problems that appear to be beyond the scope of the
extractor generation technique being used.

In this work we propose an approach for addressing questions of this sort systematically. We consider
on a scenario of increasing interest in which the problem instance is specified by examples of the desired
behavior and the target extractor is generated based on those examples automatically [17,21,23,31,44,62,
69, 129, 134]. We propose a methodology for predicting the accuracy of the extractor that may be inferred
by a given extraction inference engine from the available examples. Our prediction methodology does not
depend on the inference engine internals and can in principle be applied to any inference engine: indeed,
we validate it on two different engines which infer different forms of extractors.

The basic idea is to use string similarity metrics to characterize the examples. In this respect, an “easy”
problem instance is one in which (i) strings to be extracted are “similar” to each other, (ii) strings not to
be extracted are “similar” to each other, and (iii) strings to be extracted are not “similar” to strings not
to be extracted. Despite its apparent simplicity, implementing this idea is highly challenging for several
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reasons.
To be practically useful, a prediction methodology shall satisfy these requirements: (a) the prediction

must be reliable; (b) it must be computed without actually generating the extractor; (c) it must be computed
very quickly w.r.t. the time taken for inferring the extractor. First and foremost, predicting the performance
of a solution without actually generating the solution is clearly very difficult (see also the related work
section).

Second, it is not clear to which degree a string similarity metric can capture the actual difficulty in
inferring an extractor for a given problem instance. Consider, for instance, the Levenshtein distance
(string edit distance) applied to a problem instance in which entities to be extracted are dates. Two dates
(e.g., 2-3-1979 and 7-2-2011, whose edit distance is 6) could be as distant as a date and a snippet not to
be extracted (e.g, 2-3-1979 and 19.79$, whose edit distance is 6 too); yet dates could be extracted by an
extractor in the form of regular expression that is very compact, does not extract any of the other snippets
and could be very easy to generate (\d+-\d+-\d+). However, many string similarity metrics exist and their
effectiveness is tightly dependent on the specific application [58, 65]. Indeed, one of the contributions of
our proposal is precisely to investigate which metric is the most suitable for assessing the difficulty of
extractor inference.

Third, the number of snippets in an input text grows quadratically with the text size and becomes
huge very quickly—e.g., a text composed of just 105 characters includes « 1010 snippets. It follows that
computing forms of similarity between all pairs of snippets may be feasible for snippets that are to be
extracted but is not practically feasible for snippets that are not to be extracted.

We propose several prediction techniques and analyze experimentally our proposals in great depth,
with reference to a number of different similarity metrics and of challenging problem instances. We
validate our techniques with respect to a state-of-the-art extractor generator1 approach that we have
recently proposed [17, 21, 23]; we further validate our predictor on a worse-performing alternative
extractor generator [140] which works internally in a different way. The results are highly encouraging
suggesting that reliable predictions for tasks of practical complexity may indeed be obtained quickly.

5.2 Related work

Although we are not aware of any work specifically devoted to predicting the effectiveness of a pattern-
based entity extractor inference method, there are several research fields that addressed similar issues.
The underlying common motivation is twofold: inferring a solution to a given problem instance may be a
lengthy procedure; and, the inference procedure is based on heuristics that cannot provide any optimality
guarantees. Consequently, lightweight methods for estimating the quality of a solution before actually
generating that solution are highly desirable.

In combinatorial optimization a wealth of research efforts have been devoted to the problem of
estimating the difficulty of a given problem instance [192]. Such efforts may be broadly categorized in
two classes: identifying features of a problem instance which may impact difficulty in terms of quality of
a solution; and, identifying problem instance-independent features that may help in characterizing the
difficulty of a task in general.

The work in [165] considers a specific class of combinatorial optimization tasks (TSP: travelling
salesman problem) and follows a different line of research aimed at identifying features of a problem
instance that may be helpful in choosing from a portfolio of algorithms the best one for that instance.
The cited work actually considers only two such algorithms and assesses the ability of several classifiers,
trained on a number of problem instances, to predict the relative performance of these two algorithms.

A recent proposal in this area followed a common approach consisting in the generation of a number of
problem instances for a specific problem class (TSP) by means of a parametrized generation method [135].
A regressor for the solutions was then generated by using features of each problem instance that included

1A web based version is available on http://regex.inginf.units.it/; the source code is published on https://github.com/
MaLeLabTs/RegexGenerator.

http://regex.inginf.units.it/
https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
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values for the generation parameter. Our approach is similar except that we address a radically different
task, thereby calling for radically different features.

An indirect but strong indication that the problem that we are addressing is amenable only to heuristic
solutions without any formal guarantee is provided in [106], which considers optimization problems and
proves that predictive measures that run in polynomial time do not exist.

Problem difficulty prediction is a very important research topic in evolutionary computation: an
excellent survey can be found in [96]. The cited work presents a general method for estimating performance
of evolutionary program induction algorithms with an experimental evaluation on two important classes of
tasks, i.e., symbolic regression and Boolean function induction. The method is based on regressors trained
on features extracted from problem instances. Features are defined over forms of distances computed
over input-output pairs of the problem instance. We are not aware of any instantiation of this method for
application domains involving string similarity computations, where there are many metrics that can be
used and their effectiveness is tightly dependent on the specific task (e.g., [130, 205]).

A systematic analysis of a number of measures aimed at characterizing the difficulty of a classification
problem is presented in [110]. In principle, this analysis could be applied also to text extraction problems,
because such problems require classifying each individual character in a stream depending on whether the
character is to be extracted. On the other hand, the cited work focuses on the geometrical properties of
classification, considering measures that may highlight the separation between classes in the measurement
space. Text extraction problems are generally not suitable to interpretations of this kind.

Performance prediction is an important research topic in information retrieval, aimed at assessing
effectiveness of a query before or during early stages of retrieval [94, 137, 172, 176]. Methods in this area
generally require an indexing phase of the document corpus and then emit a prediction for a query based
on a quick comparison between query terms and various indexed structures [104] (a corpus-independent
approach is proposed in [116]).

As mentioned above, the effectiveness of a given string similarity metrics is usually highly dependent
on the specific class of task. For this reason, we apply our proposal on a number of different metrics
following an approach taken in other application domains. Several preprocessing strategies in combination
with a variety of similarity metrics were assessed with reference to ontology alignment task [58]. The
focus was finding the combination which exhibits best performance on a wide selection of problem
instances representative of the ontology alignment task. A number of similarity metrics proposed by
various research communities were applied to the task of matching entity names to database records [65].
The focus was finding the metric most suitable to the specific task. The key difference from our approach
is that we investigate different string metrics as a tool for predicting the quality of a solution. The solution
itself, i.e., the extractor tailored to a specific task instance, is built with a method which does not use string
metrics in any way.

The availability of an estimate of costly data elaborations may be desirable also when dealing with
data quality. For instance, the authors of [108] propose a method for estimating the number of duplicates
in a dataset, before actually applying more complex specific duplicate detection algorithms. As in our
case, a key requirement for the practicality of their proposal is that the estimation procedure has to run
much faster than the actual algorithm.

5.3 Problem statement and motivations

5.3.1 Pattern-based entity extraction

The application problem consists in extracting entities that follow a syntactic pattern from a potentially
large text. Extraction is performed by means of an extractor tailored to the specific pattern of interest. We
consider a scenario in which the extractor is generated automatically by an extraction inference engine,
based on examples of the desired behavior in the form of snippets to be extracted (i.e., the entities) and of
snippets not to be extracted. Such examples usually consist of user-provided annotations on the text to be
processed by the extractor.
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A snippet X of a string s is a substring of s, identified by the starting and ending indexes in s. We
denote by X the set of all snippets of string s. An example ps,Xq is a string s associated with a (possibly
empty) set of non-overlapping snippets X Ă X . We do not make any assumption on the length or internal
structure of string s, which may be, e.g., a text line, or an email message, or a collection of email messages,
or a log file and so on. Set X represents all and only the desired extractions from s, i.e., snippets in X zX
are not to be extracted.

The extractor inference engine takes an example ps,Xq as input and outputs an extractor e whose
extraction behavior is consistent with the provided example—e should extract from s only the desired
extractions X . Furthermore, e should capture the pattern describing the extractions, thereby generalizing
beyond the actual examples. In other words, ps,Xq constitutes an incomplete specification of the extraction
behavior of an ideal and unknown extractor e‹ and the extractor inference engine should aim at inferring
an extractor with the same extraction behavior of e‹.

To quantify the quality of a solution e, another example ps1, X 1q is used such that both ps,Xq and
ps1, X 1q represent the extraction behavior of e‹. The extraction behavior of e is compared against that
of e‹ in terms of its F-measure (harmonic mean of precision and recall) on ps1, X 1q: F-measure is 1 if
and only if e extracts all and only the snippets X 1 from s1. We emphasize that ps,Xq is the input of the
extraction inference engine, that is, ps1, X 1q is not required for actually generating e. We use ps1, X 1q only
for assessing the quality of a generated extractor.

Let ps,Xq, ps1, X 1q be a pair representing the extraction behavior of the target unknown extractor
e‹. We define the tuple ps,X, s1q to be a problem instance. Let f 1 be the F-measure on ps1, X 1q of the
extractor e generated from ps,Xq by the extraction inference engine. We define the tuple ps,X, s1, X 1, f 1q
to be a solved problem instance.

5.3.2 Effectiveness prediction

With reference to a pair ps,Xq, ps1, X 1q representing the extraction behavior of the target unknown
extractor e‹, let e denote the extractor generated by the extractor inference engine. The prediction problem
consists in predicting F-measure f 1 of e on ps1, X 1q based solely on ps,X, s1q—that is, neither e nor
X 1 are available for constructing the prediction. Prediction reliability may be measured in terms of the
prediction error on a set of solved problem instances: we present the specific indexes that we used to
this purpose in Section 5.5.2. In general, we are interested in minimizing the prediction error, i.e., the
difference between the predicted value f̂ 1 and the actual value f 1, which, clearly, is not available while
computing the prediction.

This problem statement models the practical scenario in which the user has annotated some text for
generating the extractor e and is interested in assessing the quality that will be obtained by applying e on
a given unannotated text, before actually generating e.

In order to train the predictor, we assume that a set of solved problem instances are available. Note
that knowledge of e for solved problem instances is not required.

Our overall framework do not make any assumptions on the implementation of the extractor inference
engine or on the nature of the text extractor itself. However, our interest in this problem as well as
the detailed experimental assessment in this work are based on evolutionary generation of extractors
consisting of regular expressions. In particular, we will consider solved problem instances obtained from
the extraction inference engine in [17]. However, we further validate our framework by applying it also
on a different extraction engine which generates extractors in the form of Deterministic Finite Automata
(DFA) [140].

5.4 Our prediction method

Our prediction method consists of three steps. First, we transform the input ps,X, s1q in an intermediate
representation which is suitable to be processed using string similarities. Second, we extract a set
of numerical features consisting in several statistics of similarities among strings of the intermediate
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Tokenization
Features

computation
Regression

ps,X, s1q pP,N,Uq features f̂ 1

Figure 5.1: An overview of our prediction method. The input is a problem instance and the output is an estimate
f̂ 1 of the F-measure on ps1, X 1q.

s “ The file has been sent on 11.10.2013 and has been received
on 15-10-2013; the content has been written on 7/2/2011.

X “ t11.10.2013, 15-10-2013, 7-2-2011u
s1 “ Today is 18-12-2015; nice!

(a) Problem instance ps,X, s1q.

S0 “ t , ;, .u
S1 “ t u ñ |T1 XX| “ 1

S “ S2 “ t , ;u ñ |T2 XX| “ 2

S3 “ t , ;, .u ñ |T3 XX| “ 2

(b) Choice of the separators set S.

P “ t11.10.2013, 15-10-2013, 7-2-2011u
N “ tThe, file, has, . . . , onu
U “ tToday, is, 18-12-2015, nice!u

(c) Tokenization outcome pP,N,Uq.

Figure 5.2: Tokenization example.

representation. Finally, we apply a regressor to the vector of features and obtain an estimate f̂ 1 of the
F-measure f 1 which an extractor would have on X 1.

In the following sections, we describe each step in detail. Figure 5.1 shows an overview of the
prediction method.

5.4.1 Tokenization

We transform the input ps,X, s1q into a triplet pP,N,Uq whose elements are multisets of strings among
which similarities can be computed. Multiset P (positives) includes all the snippets in X (i.e., all the
desired extractions). Multisets N (negatives) and U (unlabeled) are obtained after splitting s and s1 in
tokens, according to the tokenization procedure described below. In particular, N includes all the tokens
of s which do not overlaps snippets in X while U includes all the tokens of s1.

The aim of tokenization is to split strings in tokens whose length and content is “appropriate” with
respect to the specific problem instance. To this end, we construct a set S of characters acting as token
separators as follows. First, we construct the set of characters S0 including each character immediately
preceding or immediately following each snippet in X . Second, we sort S0 in descending order according
to the number of occurrences of each character. Third, we iterate the following steps starting from i “ 1:
(i) we construct the set Si of the first i characters of S0, and (ii) we build the set Ti Ă X of tokens obtained
by splitting s with the separators in Si. Finally, we assign S to the set Si for which the number of tokens
which are snippets to be extracted is maximal, i.e., S :“ Si˚ , with i˚ “ arg maxi |Ti XX|—in case of
tie, we choose the set Si with smallest size.

Having determined the set of characters S acting as token separators, we split s and s1 in tokens
accordingly. Figure 5.2 shows an example of the tokenization procedure applied to a problem instance
concerning the extraction of dates. In particular, Figure 5.2b shows the iterative procedure used to build
the set of separators S: in this case, S is assigned to S2 “ t , ;u; the dot character is not considered as as
a separator because in that case the snippet 11.10.2013 would be split.

5.4.2 Features computation

Given a triplet pP,N,Uq and a string similarity metric m (see next section), we want to obtain a set of
numerical features which are relevant to characterize the problem instance difficulty, and hence affect the
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effectiveness of the extractor inference on that instance. As outlined in the introduction, the basic idea
consists in computing some statistics from similarity measurements able to capture aggregate differences
between strings to be extracted and strings not to be extracted. In particular, we should compute the
similarity among the strings in P , N , and U ; next across strings in P and N as well in P and U ; finally,
we could compute some statistics among all these computations. However, the size of the involved
multisets (N and U in particular) would make an approach of this sort not feasible. Hence, we propose
two different methods to drastically reduce the amount of similarity computations.

In the first method, which we call Sample, we proceed as follows. We construct a subset N 1 Ă N by
randomly sampling |P | elements from N and a subset U 1 Ă U by randomly sampling |P | elements from
U . Then, we compute the similarity values for all pairs of strings in P ˆ P , P ˆN 1, P ˆ U 1, N 1 ˆN 1,
and U 1 ˆ U 1 and compute 6 statistics for each of the 5 sets of measurements: min, max, mean, median,
25th-percentile, and 75th-percentile—max is not taken into account for pairs of strings of the same set
(P ˆ P , N 1 ˆN 1 and U 1 ˆ U 1). We predict f 1 by using as features |P |, |N |, |U | and all the previously
computed figures—3` 6 ¨ 5´ 3 “ 30 features.

In the second method, which we call Rep, we build a set P 1 containing 3 representatives of the
positives in P , as follows. We compute, for each p P P , its average similarity to all the other positives (i.e.,
m̄ppq :“ 1

|P |

ř

p1PP mpp, p
1q); then, we insert in P 1: (1) the positive with the lowest m̄; (2) the positive

with the greatest m̄; and, (3) the positive with the m̄ closest to 1
|P |

ř

pPP m̄ppq (i.e., the average value
for the average similarity). Finally, we compute the similarity values for all pairs of strings in P 1 ˆ P 1,
P 1ˆN , P 1ˆU and the same 6 statistics as above—max is not taken into account for P 1ˆP 1. We predict
f 1 by using as features |P |, |N |, |U | and all the previously computed figures—3` 6 ¨ 3´ 1 “ 20 features.

String similarity metrics

Several different string similarity metrics exist. In order to limit the number of possible prediction
method variants by considering only the more promising metrics, we referred to previous studies which
compared string metrics [39, 58, 63] and we chose the most promising ones: Jaccard, Jaro, JaroWinkler,
Levenshtein, NeedlemanWunsch, SmithWaterman, SoftTFIDF, UnsmoothedJS. We used the SecondString
Java library [64] to actually implement the metric computation. We provide below a high-level overview
of each metric and refer the reader to [65] and to the documentation of the SecondString library for full
details.

The Jaccard similarity index between two strings a and b is computed by considering a string as
a set of characters or bigrams (as in our case) and is the ratio between the intersection and the union
of the two sets a, b. The Jaro similarity index takes into account matching characters, i.e., characters
appearing in both a and b at an offset smaller than a certain quantity, and transpositions, i.e., number
of matching characters appearing in a different order in the two strings. The JaroWinkler index is a
modified Jaro index in which similarity grows for strings that share a common prefix. Levenshtein takes
into account the minimum number of single-character edits required to make a and b identical, i.e., it is a
form of edit distance. NeedlemanWunsch is a form of edit distance which assigns different costs to edit
operations (we used the standard cost configuration of the SecondString library). SmithWaterman is a
variant of NeedlemanWunsch assigning lower costs to sequences of insertions or deletions. SoftTFIDF
is a form of cosine similarity weighing substrings appearing in both a and b and substrings of either
string for which a substring of the other exists that is sufficiently similar according to the JaroWinkler
metric. Finally, UnsmoothedJS (Jensen-Shannon) is a similarity index taking into account the loss of
information when representing either string with the other, where the loss of information is quantified by
the Kullback-Leibler divergence.

5.4.3 Regression

We explored three different options: a linear model (LM), random forests (RF) regression, and support
vector machines (SVM) regression. In particular, we used the gaussian kernel and C “ 1 for SVM [56],
and we used the algorithm proposed in [47] with ntree “ 500 for RF. In all cases we set the actual predicted
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value to 1 if the model output is larger than 1 and to 0 if it is lower than 0—f 1 values are intrinsically
defined in r0, 1s.

5.5 Experimental evaluation

We constructed and assessed experimentally all the 48 prediction model variants resulting from the
combination of: 2 feature set construction methods (Sample and Rep, Section 10.3.1); 8 string similarity
metrics (Section 5.4.2); 3 regressors (LM, RF, and SVM, Section 5.4.3). We trained each model variant
with a set of solved problem instances Etrain and assessed the resulting predictor on a set of solved problem
instances disjoint from Etrain, as detailed in the next sections.

5.5.1 Data

We consider 19 challenging extraction tasks built over a text corpus fully annotated with the entities
to be extracted. We use a selection of the tasks used in [17], summarized in Table 5.1. The name of
each extraction task is composed of the name of the corpus followed by the name of the entity type to
be extracted. Entity names should be self-explanatory: Username corresponds to extracting only the
username from Twitter citations (e.g., only MaleLabTs instead of @MaleLabTs); Email-ForTo corresponds to
extracting email addresses appearing after the strings for: or to: (possibly capitalized). Names ending with
a ˚ suffix indicate extraction tasks with context. These are extraction tasks in which a text snippet must or
must not be extracted depending on the text surrounding the snippet—e.g., an email address might have to
be extracted only when following a Reply-To: header name.

Each extraction task consists of a string s0 annotated with all the desired extractions. Table 5.1 shows,
for each extraction task, the length `ps0q of the string s0 (in thousands of characters) and the number
|X0| of snippets corresponding to entities to be extracted. The construction of problem instances from
extraction tasks is described in the next section. The table shows also the average F-measure obtained by
the approach of [17] on those tasks see next section for more details) and the average time taken to learn
the extractor.

5.5.2 Experimental procedure

We aimed at investigating the prediction effectiveness at varying difficulty of extraction, in particular
concerning: (a) the amount of data available for learning; (b) the complexity of the pattern of the involved
entity; and (c) the degree of representativeness of the learning data w.r.t. all the other data. To this end, we
built a number of different solved problem instances ps,X, s1, X 1, f 1q from our 19 extraction tasks, as
follows.

Concerning the amount of data available for learning, we considered three values for the number nX
of snippets to be extracted, t25, 50, 100u. Then, for each extraction task and each nX value, we built
5 solved problem instances ps,X, s1, X 1, f 1q (repetitions): (i) we randomly chose a substring s of s0
containing nX snippets to be extracted; (ii) we generated an extractor from ps,Xq with the method in [17];
(iii) we randomly chose a substring s1 of s0 non-overlapping s and such that |X 1| “ 500; (iv) we assessed
the f-measure f 1 of the generated extractor on ps1, X 1q. Concerning step ii, we used the tool described
in chapter 2, in [17, 23], and available at https://github.com/MaLeLabTs/RegexGenerator: the tool
generates a regular expression which aims at extracting from s all and only the snippets in X while trying
to generalize the learning data. The regular expression is generated by means of an evolutionary procedure
which searches the space of the regular expressions driven by a multiobjective optimization strategy—we
refer the reader to chapter 2 and the cited paper for full details. Table 5.1 shows the average value of
f 1—i.e., the F-measure on ps1, X 1q obtained by the regular expression generated by the cited tool from the
examples in ps,Xq—over the 5 repetitions for each task and each value of nX .

Next, we used the 285 solved problem instances for assessing our 48 model variants. In particular, we
executed a 5-fold cross validation of the behavior of each model variant for each pair extraction task and
nX value. That is, we trained each model variant on 4 of the 5 repetitions and assessed the prediction

https://github.com/MaLeLabTs/RegexGenerator
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Table 5.1: Salient information about the 19 extraction tasks. The length `ps0q of the string s0 is expressed in
thousands of characters. The four rightmost columns show average values for f 1 for different values of the number
of snippets to be extracted nX (columns 4–6) and the average time tl (in min) taken by the inference engine to learn
an extractor for nX “ 50.

f 1

Extraction task `ps0q |X0| 25 50 100 tl

BibTeX/Author˚ 54 589 0.80 0.85 0.85 20
BibTeX/Title˚ 54 200 0.69 0.70 0.73 141
Cetinkaya-HTML/href 154 214 0.98 0.98 0.99 26
Cetinkaya-HTML/href-Content˚ 154 214 0.74 0.73 0.80 29
Cetinkaya-Text/All-URL 39 168 0.99 0.99 0.99 8
CongressBills/Date 16 511 3085 0.42 0.63 0.64 584
Email-Headers/Email 261 1244 0.64 0.64 0.73 224
Email-Headers/Email-To-For˚ 261 331 0.61 0.56 0.78 398
Email-Headers/IP 261 848 0.86 0.86 0.91 89
Log/IP 4126 75 958 1.00 1.00 1.00 2
Log/MAC 4126 38 812 1.00 1.00 1.00 3
NoProfit-HTML/Email 860 1094 0.86 1.00 1.00 3
Reference/First-Author˚ 30 198 0.97 0.97 1.00 26
ReLIE-Email/Phone-Number 8805 5184 0.79 0.80 0.78 16
ReLIE-HTML/All-URL 4240 502 0.88 0.92 0.95 35
ReLIE-HTML/HTTP-URL 4240 499 0.88 0.91 0.92 32
Twitter/All-URL 4344 14 628 0.98 0.98 0.98 8
Twitter/Hashtag+Citation 4344 56 994 1.00 1.00 1.00 4
Twitter/Username˚ 4344 42 352 1.00 1.00 1.00 2

on the remaining one. The rationale for partitioning the dataset of solved problem instances based on
repetitions is the need of ensuring the presence in the training data of at least one problem instance for
each extraction task. Such a partitioning corresponds to the scenario in which the data available for
calibrating the prediction method are representative of a wide range of different extraction tasks. That
scenario could be implemented in a real setting easily, as it would suffice to re-train the predictor after
each new run of the engine. We remark, however, that none of the problem instances used for assessing
the prediction method was available in the training phase. Later, in Section 5.5.3, we analyze the much
more challenging scenario in which a novel extraction task arises.

For assessing the predictor, we computed the following indexes:

• Mean absolute error (MAE), which measures the average value of the absolute difference between
the predicted value f̂ 1 and the actual value f 1:

MAE “
1

|E |
ÿ

E

∣∣∣f̂ 1 ´ f 1∣∣∣
where E is the set of solved problem instances on which the predictor is assessed.

• Relative mean absolute error (RMAE), which is the average value of the ratio between the absolute
error and the actual value:

RMAE “
1

|E |
ÿ

E

∣∣∣∣∣ f̂ 1 ´ f 1f 1

∣∣∣∣∣
• Performance-class accuracy (CA), which measures accuracy on a classification task in which

problem instances are partitioned in 3 difficulty classes, easy, medium, and hard, corresponding
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to values of f 1 in the intervals s0.95, 1s, s0.8, 0.95s, and r0, 0.8s, respectively. In our setting,
this partitioning corresponds to roughly 32%, 29%, and 39% problem instances in the respective
performance classes.

CA “

ˇ

ˇ

ˇ

!

Cpf 1q “ Cpf̂ 1q
)
ˇ

ˇ

ˇ

|E |
where C : r0, 1s Ñ ts0.95, 1s, s0.8, 0.95s, r0, 0.8su is the function which assigns the performance-
class to a given value of F-measure. In other words, CA is the ratio between the number of instances
for which the predicted value f̂ 1 and the actual value f 1 belong to the same performance-class and
the number of all instances.

MAE and RMAE are indexes commonly used for assessing predictors of continuous values; we defined
the latter index (CA) in order to capture the ability of the proposed predictor in providing a coarser
indication of the difficulty of a problem instance.

5.5.3 Results and discussion

Table 5.2 shows the values of MAE, RMAE, and CA for all the 48 model variants, averaged over all
prediction problems. The table provides the values of the three indexes computed on the problem instances
which has not been used for training the model (denoted by Evalidate); for completeness of analysis, the
table also shows indexes values on the solved problem instances used for training the model (denoted by
Etrain).

Since we could not identify any baseline method from the literature, we chose to use the following
prediction as baseline method. Concerning f 1, the predicted value is the average value across all the solved
problem instances in Etrain; concerning the performance-class, the predicted value is the most occurring
class in Etrain.

The table shows also the average time tt for training the predictor on Etrain and the average time tp for
computing features for a single problem instance, both expressed in ms. All the experiments have been
carried out on a workstation equipped with 8 GB and a Intel Core2 Quad CPU 2.5 GHz. It can be seen
that a prediction can be obtained, in many cases, in less than a second: for reference, the inference of a
regular expression by means of the method of chapter 2, as seen in [17], for the same tasks requires much
longer times—ranging from « 2 min to « 500 min (see rightmost column of Table 5.1).

By analyzing the experimental results of Table 5.2, several considerations can be made.
It can be seen that the best prediction is quite good: RMAE “ 9.1% for the RF-Sample-NeedlemanWunsch

combination. This value corresponds to an average absolute error MAE “ 0.056. Moreover, RMAE ď
10% for 6 combinations, all based on RF and evenly distributed between Sample and Rep. To place this
figure in perspective, we observe that the RMAE for the baseline predictor obtained 19.8%—that is, our
prediction methodology halves the error w.r.t. the baseline. In order to investigate if the effectiveness
is limited to the specific inference engine here considered, we also applied it to a different engine. The
detailed results are presented at the end of this section: in brief, they confirm that that our methodology
outperforms the baseline.

Quality of the prediction is good also when assessed in terms of accuracy of the performance-class
prediction (CA): 80.9% for the RF-Sample-NeedlemanWunsch combination. Moreover, CA ě 75% for
12 combinations, mostly based on RF-Sample. To place this figure in perspective, we observe that the CA
for baseline class predictor is 33.8%.

Prediction based on the Sample method for feature construction tends to be more effective than
prediction based on the Rep method. We speculate that choosing a few representative positives may
succeed to capture diversity between positives, but fails at capturing the overall variability of the text
which has to be processed, which is what actually matter in making a problem more or less hard to solve.
It can also be observed that computing features takes in general longer for Rep.

With respect to the prediction model, RF appears to be the best performing choice and obtains in
general better figures for all the indexes. Moreover, it appears to be more robust to the other factors
involved—metric and feature computation method.
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Table 5.2: Results with the 5-fold cross validation on repetitions.

f 1 on Etrain f 1 on Evalidate tt tp
Metric m MAE RMAE CA MAE RMAE CA [ms] [ms]

R
F-

Sa
m

pl
e

Jaccard 0.026 4.2 89.5 0.062 10.0 78.0 1053 585
Jaro 0.026 4.3 89.0 0.065 10.5 74.9 856 49
JaroWinkler 0.027 4.4 87.8 0.066 10.5 74.2 854 49
Levenstein 0.024 4.0 90.1 0.059 9.6 79.8 999 492
NeedlemanWunsch 0.023 3.8 89.8 0.056 9.1 80.9 985 487
SmithWaterman 0.025 4.0 87.8 0.058 9.4 78.8 838 559
SoftTFIDF 0.029 4.6 88.6 0.066 10.6 76.0 724 227
UnsmoothedJS 0.029 4.7 87.3 0.065 10.5 72.8 729 88

R
F-

R
ep

Jaccard 0.027 4.4 89.1 0.064 10.3 77.4 742 6072
Jaro 0.027 4.4 87.4 0.064 10.3 73.9 650 324
JaroWinkler 0.028 4.5 86.1 0.064 10.2 76.0 643 320
Levenstein 0.026 4.2 88.6 0.061 9.8 74.6 699 2245
NeedlemanWunsch 0.026 4.2 89.0 0.062 9.9 75.6 711 2247
SmithWaterman 0.026 4.3 87.8 0.058 9.5 78.8 636 2329
SoftTFIDF 0.032 5.1 87.5 0.070 11.1 69.3 570 1425
UnsmoothedJS 0.034 5.4 85.6 0.073 11.4 66.4 561 862

SV
M

-S
am

pl
e

Jaccard 0.050 8.5 85.2 0.064 10.6 75.9 59 585
Jaro 0.089 11.0 9.2 0.144 20.0 21.6 46 49
JaroWinkler 0.089 11.0 9.2 0.144 20.0 21.6 46 49
Levenstein 0.053 8.9 79.1 0.071 11.6 72.8 59 492
NeedlemanWunsch 0.050 8.4 83.0 0.066 10.7 78.1 56 487
SmithWaterman 0.089 10.8 8.5 0.144 20.1 21.2 51 559
SoftTFIDF 0.089 11.0 9.2 0.144 20.0 21.6 43 227
UnsmoothedJS 0.089 11.0 9.2 0.144 20.0 21.6 45 88

SV
M

-R
ep

Jaccard 0.052 8.9 80.7 0.065 10.7 73.9 49 6072
Jaro 0.089 11.0 8.8 0.144 20.0 21.6 37 324
JaroWinkler 0.089 11.0 8.8 0.144 20.0 21.6 40 320
Levenstein 0.058 9.9 77.2 0.066 11.1 71.4 46 2245
NeedlemanWunsch 0.058 9.9 77.2 0.066 11.1 71.4 49 2247
SmithWaterman 0.089 10.8 9.1 0.143 20.0 21.2 44 2329
SoftTFIDF 0.089 11.0 8.8 0.144 20.0 21.6 36 1425
UnsmoothedJS 0.089 11.0 8.9 0.144 20.0 21.6 36 862

L
M

-S
am

pl
e

Jaccard 0.075 11.1 66.0 0.085 12.7 62.1 17 585
Jaro 0.081 11.9 53.0 0.089 13.1 50.2 15 49
JaroWinkler 0.087 12.7 50.2 0.094 13.7 44.5 15 49
Levenstein 0.082 12.0 57.3 0.096 14.2 54.4 16 492
NeedlemanWunsch 0.073 10.5 58.0 0.091 12.9 52.7 17 487
SmithWaterman 0.082 11.8 51.4 0.091 13.3 53.8 15 559
SoftTFIDF 0.082 11.8 52.7 0.088 12.9 48.8 15 227
UnsmoothedJS 0.084 12.2 51.9 0.089 13.2 49.1 14 88

L
M

-R
ep

Jaccard 0.079 11.8 59.7 0.083 12.5 57.2 11 6072
Jaro 0.087 12.7 51.0 0.091 13.3 50.5 12 324
JaroWinkler 0.084 12.4 55.5 0.091 13.3 51.6 11 320
Levenstein 0.083 12.0 56.4 0.096 13.7 53.4 10 2245
NeedlemanWunsch 0.083 12.0 56.4 0.096 13.7 53.4 10 2247
SmithWaterman 0.087 12.7 53.6 0.094 13.8 52.3 11 2329
SoftTFIDF 0.093 13.6 47.5 0.096 14.2 45.9 11 1425
UnsmoothedJS 0.090 13.2 49.6 0.093 13.7 47.0 11 862

Baseline 0.135 19.8 53.0 0.135 19.8 53.0
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Concerning the string similarity metrics our experiments suggest that NeedlemanWunsch is the best
one. Good results can be obtained with Levenshtein and SmithWaterman metrics as well, however: this
finding is not surprising because these 3 metrics are closely related (see Section 5.4.2).

Depending on the specific scenario in which a prediction should be provided, efficiency could play
a role almost as important as effectiveness: a faster and slightly less accurate prediction may be more
useful than a longer and more accurate one. In this sense, we observe that RF-Sample-Jaro allows
computing features in just a tenth of the time required by RF-Sample-NeedlemanWunsch, with a moderate
decrease in CA: 74.9%, roughly ´6% less than the best combination. In fact, the time for obtaining a
prediction mostly consists in the time taken to compute the features, since the regressor application time
is negligible—tt is the time taken to train rather than to apply the regressor.

Table 5.3 shows the results of the best performing method (i.e., RF-Sample-NeedlemanWunsch)
for each considered extraction task: besides MAE, RMAE, and CA, the table also shows the mean and
standard deviation of the actual (f 1) and predicted (f̂ 1) values of the F-measure obtained for each task.
It can be seen that for the majority of the tasks, the prediction is indeed accurate, being RMAE ď 5%.
On the other hand, there are 3 on 19 tasks for which RMAE is greater than 20%: two of them, including
the one for which the predictor is less effective, are tasks with context (see Section 5.5.1). Indeed, our
prediction methodology bases only on the similarities between snippets to be extracted and snippets not to
be extracted—the context around snippets is not taken into account. In this respect, we manually inspected
several snippets in the tasks Email-Headers/Email-To-For˚ and Cetinkaya-HTML/href-Content˚ and
found that (i) snippets are in general longer than other tasks and (ii) some snippets to be extracted are
similar to some snippets not to be extracted (e.g., the same email address can be present in both categories
in Email-Headers/Email-To-For˚): these factors can indeed make the string similarity-based prediction
harder.

Concerning the performance-class accuracy CA, it can be observed that, in addition to the two tasks
mentioned above, the figure is unsatisfactory also for ReLIE-Email/Phone-Number (46.7%), for which,
instead, RMAE is lower than the average. We believe that this result is an artifact deriving from the choice
of the performance-class intervals and the specific f 1 values observed for that task—they lie right around
0.8, which is the bound between two performance classes (see Table 5.1).

In order to investigate on which features are most relevant for the prediction, we performed a feature
ablation procedure. We focused on the RF-Sample-NeedlemanWunsch variant (i.e., the best one) and
repeated the experiment several times by removing one by one each feature. Table 5.4 shows the results
(MAE, RMAE, and CA) for each removed feature: the rows are sorted according to decreasing RMAE—
i.e., the feature whose removal causes the greatest drop in RMAE comes first. Despite the figures do
not allow to draw sharp conclusions, it can be seen that |U | and |P | appear to play an important role in
the prediction, followed by the median and mean of similarities among negatives and among positives,
respectively. From another point of view, all the statistics about similarities appear to capture the overall
difficulty of the extraction task. Moreover, we interpret the importance of |U | and |P | as a measure of how
“big” is the unknown data w.r.t. the data which was available for learning—a respect which impacts the
representativeness of learning data for the chosen task, which is a crucial factor in all machine learning
applications.

In order to gain further insights on our proposal, we performed two additional experimental campaigns
aimed at (i) assessing the method in the challenging scenario where a novel extraction task arises; and,
(ii) validating the method when applied to a different extractor inference technique.

Concerning the former aim, we considered the best variant (RF-Sample-NeedlemanWunsch) and
modified the experimental procedure (Section 5.5.2) as follows: instead of executing a 5-fold cross
validation on the repetition number, we executed a 19-fold cross validation on the extraction task. That is,
for each extraction task, we trained our prediction model on the 270 solved problem instances of the other
tasks and assessed the resulting predictor on the 15 instances of that task. Table 5.5 presents the results
with the same structure of Table 5.3. It can be seen that, for the majority of the tasks, the RMAE still
remains lower than 10%; moreover, for 6 tasks, the performance-class accuracy is larger than 66%. On
average, as expected, the prediction is less reliable than in the scenario where the predictor is trained on
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Table 5.3: Results of RF-Sample-NeedlemanWunsch for f 1 on Evalidate for different tasks.

f 1 f̂ 1

Extraction task MAE RMAE CA avg sd avg sd

BibTeX/Author˚ 0.060 7.4 73.3 0.837 0.026 0.829 0.021
BibTeX/Title˚ 0.079 12.2 86.7 0.705 0.095 0.716 0.014
Cetinkaya-HTML/href 0.022 2.3 86.7 0.984 0.007 0.964 0.010
Cetinkaya-HTML/href-Cont.˚ 0.230 37.9 40.0 0.757 0.189 0.759 0.035
Cetinkaya-Text/All-URL 0.012 1.2 100.0 0.991 0.006 0.981 0.003
CongressBills/Date 0.082 18.6 100.0 0.563 0.053 0.594 0.014
Email-Headers/Email 0.091 17.6 93.3 0.671 0.077 0.738 0.019
Email-Headers/Email-To-For˚ 0.113 23.9 86.7 0.649 0.068 0.677 0.041
Email-Headers/IP 0.066 8.1 86.7 0.878 0.050 0.880 0.016
Log/IP 0.014 1.4 100.0 1.000 0.000 0.987 0.005
Log/MAC 0.005 0.5 100.0 0.999 0.001 0.996 0.002
NoProfit-HTML/Email 0.104 20.9 33.3 0.952 0.107 0.924 0.038
References/First-Author˚ 0.016 1.6 100.0 0.978 0.009 0.979 0.003
ReLIE-Email/Phone-Number 0.055 6.9 46.7 0.788 0.051 0.786 0.005
ReLIE-HTML/All-URL 0.029 3.1 60.0 0.917 0.031 0.898 0.027
ReLIE-HTML/HTTP-URL 0.043 4.9 80.0 0.901 0.042 0.903 0.020
Twitter/All-URL 0.007 0.7 93.3 0.981 0.003 0.975 0.004
Twitter/Hashtag+Citation 0.014 1.4 93.3 0.999 0.001 0.984 0.018
Twitter/Username˚ 0.013 1.3 100.0 1.000 0.000 0.985 0.017

Average 0.056 9.1 80.9 0.871 0.043 0.871 0.016

problem instances from all the extraction tasks: MAE and RMAE roughly double, whereas CA roughly
halves.

Finally, we applied our proposal (in the RF-Sample-NeedlemanWunsch variant) also to another
inference engine which generates extractors in the form of Deterministic Finite Automata (DFA) [140].
We built the engine by implementing the method described in the cited paper and applied it to a selection
of 6 extraction tasks: Cetinkaya-HTML/href, Cetinkaya-Text/All-URL, CongressBills/Date, ReLIE-
Email/Phone-Number, ReLIE-HTML/All-URL, and Twitter/Hashtag+Citation—we hence obtained 90
solved problem instances. In this case the inference engine produces DFAs which tend to be much
less effective than the extractors considered in the previous experiments, i.e., those generated by the
engines in [17] and in chapter 2. We thus redefined the performance classes as s0.25, 1s, s0.15, 0.25s,
and r0, 0.15s, which roughly correspond to 20%, 45%, and 35% problem instances, respectively. We
executed the same 5-fold cross validation described in Section 5.5.2—i.e., the predictor is trained on 4
repetitions and assessed on the remaining one—and obtained 0.065, 57.2, and 55.9 for MAE, RMAE,
and CA, respectively. We verified that our predictor scored better than the baseline (`10% for CA). On
the other hand, the figures are in general worse than those obtained for the inference engine of [17]. We
speculate that this difference is mostly motivated by the fact that the effectiveness of [140] is poor in
general and appears to be only slightly affected by the specific problem instance.

5.6 Remarks

In this chapter we have considered a scenario in which an extraction inference engine generates an
extractor automatically from user-provided examples of the entities to be extracted from a dataset. We
have addressed the problem of predicting the accuracy of the extractor that may be inferred from the
available examples, by requiring that the prediction be obtained very quickly w.r.t. the time required for
actually inferring the extractor. This problem is highly challenging and we are not aware of any earlier
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Table 5.4: Results of RF-Sample-NeedlemanWunsch on Evalidate according to the feature ablation procedure.

Removed feature MAE RMAE CA

|U | 0.058 9.3 81.6
|P | 0.057 9.3 80.9
medianN 1ˆN 1 0.057 9.2 79.8
meanPˆP 0.057 9.2 81.3
minPˆP 0.057 9.2 82.0
maxPˆN 1 0.057 9.2 80.9
maxPˆU 1 0.057 9.2 80.2
75th-percentileU 1ˆU 1 0.057 9.2 81.2
medianPˆU 1 0.056 9.2 80.2
75th-percentilePˆN 1 0.057 9.2 80.9
medianU 1ˆU 1 0.056 9.2 80.9
75th-percentilePˆP 0.056 9.2 81.2
|N | 0.057 9.2 80.2
25th-percentilePˆU 1 0.056 9.2 80.9
25th-percentilePˆP 0.056 9.2 80.2
25th-percentileN 1ˆN 1 0.056 9.2 81.2
25th-percentilePˆN 1 0.056 9.1 81.3
75th-percentilePˆU 1 0.056 9.1 80.5
75th-percentileN 1ˆN 1 0.056 9.1 80.2
minPˆU 1 0.056 9.1 80.9
medianPˆN 1 0.056 9.1 80.9
minU 1ˆU 1 0.056 9.1 81.2
meanN 1ˆN 1 0.056 9.1 80.2
minN 1ˆN 1 0.056 9.1 81.3
minPˆN 1 0.056 9.1 79.8
meanU 1ˆU 1 0.056 9.1 81.6
meanPˆN 1 0.056 9.1 81.2
meanPˆU 1 0.056 9.0 81.2
25th-percentileU 1ˆU 1 0.056 9.0 82.0
medianPˆP 0.055 9.0 80.9

No removals 0.056 9.1 80.9

proposal in this respect. With reference to extractors consisting of regular expressions, we have proposed
several techniques and analyzed them experimentally in depth. The results suggest that reliable predictions
for tasks of practical complexity may indeed be obtained quickly and without actually generating the
extractor.
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Table 5.5: Results, in the novel extraction task scenario, of RF-Sample-NeedlemanWunsch for f 1 on Evalidate for
different tasks.

f 1 f̂ 1

Extraction task MAE RMAE CA avg sd avg sd

BibTex-Author˚ 0.066 8.0 53.3 0.837 0.067 0.811 0.043
BibTex-Title˚ 0.189 29.8 6.7 0.705 0.115 0.871 0.012
Cetinkaya-HTML/href 0.134 13.6 6.7 0.984 0.020 0.861 0.021
Cetinkaya-HTML/href-Cont.˚ 0.218 36.6 53.3 0.757 0.253 0.760 0.014
Cetinkaya-Text/All-URL 0.133 13.4 0.0 0.991 0.006 0.866 0.039
CongressBills-Date 0.239 51.1 40.0 0.563 0.122 0.804 0.013
Email-Headers/Email 0.134 25.6 69.2 0.672 0.136 0.795 0.061
Email-Headers/Email-To-For˚ 0.136 28.7 80.0 0.649 0.151 0.746 0.037
Email-Headers/IP 0.076 9.3 66.7 0.878 0.075 0.902 0.054
Log/IP 0.067 6.7 20.0 1.000 0.000 0.926 0.013
Log/MAC 0.214 21.4 0.0 0.999 0.003 0.800 0.010
NoProfit-HTML/Email 0.365 41.9 6.7 0.952 0.186 0.629 0.034
References/First-Author˚ 0.040 4.1 60.0 0.978 0.021 0.963 0.033
ReLIE-Email/Phone-Number 0.063 8.4 60.0 0.788 0.063 0.827 0.069
ReLIE-HTML/All-URL 0.039 4.2 60.0 0.917 0.050 0.886 0.032
ReLIE-HTML/HTTP-URL 0.044 5.0 73.3 0.901 0.051 0.909 0.033
Twitter/All-URL 0.093 9.5 0.0 0.981 0.004 0.889 0.006
Twitter/Hashtag+Citation 0.025 2.5 73.3 0.999 0.003 0.972 0.027
Twitter/Username˚ 0.025 2.5 100.0 1.000 0.000 0.976 0.012

Average 0.121 17.0 43.6



Chapter 6
Regex golf

6.1 Overview

Regex golf has recently emerged as a specific kind of code golf, i.e., unstructured and informal program-
ming competitions aimed at writing the shortest code solving a particular problem. A problem in regex
golf usually consists in writing the shortest regular expression which matches all the strings in a given list
and does not match any of the strings in another given list. Examples of such lists could be the names
of all winners of an US presidential election and of the names of all losers (the specific constraints on
the contents of these lists will be clarified later, e.g., their intersection must be empty). A trivial way for
generating systematically a regular expression with these requirements consists in building a disjunction
of all the desired matches—i.e., all the matches glued together by the | character which, in common regex
syntax, means “or”. To reward non trivial solutions, the score assigned to a given solution is higher for
more compact expressions.

There has recently been a growing interest toward regex golf in the programmers’ communities,
motivated more by the challenge itself than by the actual utility of any given problem. Such interest
has been fueled further by a blog post of a famous researcher—Peter Norvig—in which a simple yet
powerful algorithm for solving regex golf problems systematically is proposed [157]. Norvig points out
that problems of this sort are related to set cover problems, which are known to be NP-hard, and describes
a greedy algorithm which is very efficient and works well in a number of cases, while at the same time
identifying the fundamental trade-offs made in his proposal.

In this thesis work, we propose a methodology based on Genetic Programming (GP) for generating
solutions to regex golf problems—a regex golf player. We generate a population of candidate regular
expressions represented as trees and constructed with carefully selected regular expression operators and
constants. We evolve such population based on a multi-objective fitness which maximizes the correct
handling of the provided matches and unmatches while minimizing the length of the regular expression
represented by the individual.

We implemented our proposal and assessed its performance on a recently proposed suite of 16 regex
golf problems which is very popular. We used as baseline the algorithm proposed by Norvig—the only
one we are aware of—and the GP-based system for generating regular expressions for text extraction tasks
by examples [16]—the only GP-based system that was available when we perfomed the experimental
capaign. Our proposal compares very favorably to the baseline and obtains the highest score on the full
suite. We also attempted the construct a baseline based on scores obtained by human players, which is
difficult because no structured collections of human players results are available: however, we collected
several results by crawling the web and found that our proposal is ranked in the top positions.

A prototype of our regex golf player is available at http://regex.inginf.units.it/golf.

67
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6.2 Related Work

The only algorithm explicitly designed for solving regex golf-related problems which we are aware of
is the one by Peter Norvig mentioned in the introduction. We used this algorithm as baseline for our
proposal.

Several proposals for learning regular expressions from examples exist for text extraction problems [11,
15, 16, 44, 118, 133, 209]. Text extraction from examples is radically different from regex golf in several
crucial points. First, regex golf assumes an input stream segmented so that the input strings listed in
the problem specification are processed by the solution one segment at a time. Text extraction requires
instead the ability to identify and extract specific portions from a longer stream. In other words, regex
golf consists in binary classifying input strings whereas text extraction requires the identification in the
input string of the boundaries of the substring(s) to extract, if any. Second, a regex golf problem places
no requirements on how strings not listed in the problem specification will be classified. Text extraction
requires instead a form of generalization, i.e., the ability of inducing a general pattern from the provided
examples. Third, text extraction requires the ability to identify a context for the desired extraction, that
is, a given sequence of characters may or may not constitute a match depending on its surroundings. A
requirement of this form is not meaningful in regex golf.

For example, a regex golf problem requiring the match of all winners of US presidential elections and
no loser may be solved with a disjunction of ls and several short regexes [157]. Such a regular expression
is not useful for the text extraction problem, because applying it to a superstring of a winner would
provide no information about the substring which actually identifies the winner. Furthermore, any string
containing the substring ls will thus be matched by the regex. On the other hand, a regex generated for
text extraction might be applied to regex golf but it would be largely suboptimal: the solution generation
process must induce a general pattern and there is clearly no syntactical pattern capable of predicting the
names of future US presidents. In other words, learning approaches tailored to text extraction purposefully
attempt to prevent any overfitting of the examples which is instead a necessity in regex golf.

Our proposal builds on the text extraction method in [16], which we modified and specialized by
taking the specific requirements of regex golf into account. We included the cited method in the baseline
because, although it was designed for a different problem, it is available as a webapp1 and its inclusion
demonstrates that solving regex golf effectively calls for a specialized solution.

Another proposal for learning regular expressions from examples is [55], but this work considers a
problem whose requirements are a mix of regex golf and text extraction. On the one hand, the problem
consists in merely classifying input strings without the need of identifying the boundaries of the matching
substrings. On the other hand, the problem assumes input streams not necessarily segmented in advance
at the granularity of the desired matches and unmatches. Moreover, and most importantly, the cited work
aims at inferring a general pattern capable of solving the desired task beyond the provided examples.

Since a regular expression may be obtained from a deterministic finite automata (DFA), approaches
for learning a DFA from labelled examples and counterexamples could be used (e.g., [40, 140]; see [60]
for a survey). On the other hand, such proposals assume the number of states of the target DFA is known
and, most importantly, they are not concerned with minimizing the length of the regular expression
corresponding to the generated DFA. While approaches of this form may deserve further investigation,
they do not appear to match the specific requirements of regex golf. Similar remarks may be applied also
to proposals for induction of non-deterministic finite automata (NFA) from labelled examples [92, 207].

Finally, regex golf might be seen as a problem in the broader category of programming by examples
(PBE), where a program in a given programming language is to be synthesized based on a set of
input-output pairs. Notable results in this area have been obtained recently for problems of string
manipulation [99, 148] and some of the corresponding algorithms have been included in the latest release
of Microsoft Excel (Flash-Fill functionality). While such approaches are able to deal with context-free
grammars and are thus potentially able to solve classification problems of the form encountered in regex
golf, they use an underlying language which is much richer than regular expressions and thus may not

1http://regex.inginf.units.it

http://regex.inginf.units.it


69 The Problem

generate solutions useful for regex golf.

6.3 The Problem

While the term “regex golf” may indicate any challenge requiring the generation of a regular expression,
its usual meaning is the one described in the introduction and formalized as follows.

We consider strings constructed over a large alphabet α “ UTF-8. Strings may potentially include
arbitrary characters in the alphabet, including spaces, newline and so on. A problem instance is defined by
I “ pM,Uq, where M and U are sets of strings whose intersection is empty.

The problem consists in generating a regular expression which:

1. matches all strings in M ;

2. does not match any string in U ; and,

3. is shorter than the regular expression constructed as a disjunction2 of all strings in M .

Note that, for a given problem instance, it might not be known whether a regular expression satisfying the
above requirements actually exists. Furthermore, given a solution r1 satisfying the three requirements, it
might not be known whether there exists a shorter solution r2 satisfying requirements 1 and 2.

Solutions may satisfy requirements 1 and 2 in part. That is, a solution might fail to match one or more
strings in M and/or match one or more strings in U . Solutions are thus given a score quantifying their
behavior in terms of the desired matches and unmatches, as well as their compactness.

We use the score definition in http://regex.alf.nu, from which we have also collected the suite of
problem instances for our experimental evaluation. The definition is as follows. Let r be a candidate
solution, let nM and nU denote the number of elements in M and U , respectively, which are matched by
r. The score of r on instance I “ pM,Uq is:

wIpnM ´ nU q ´ lengthprq

where wI is a statically defined value which is meant to weigh the “difficulty” of the problem instance
I. Note that the numerical value of the score, as well as the range of possible values, is problem
instance-dependent and that a solution may obtain a negative score.

6.4 Our Approach

The system requires a description of the problem instance I “ pM,Uq and generates a Javascript-
compatible regular expression. A prototype is available at http://regex.inginf.units.it/golf.

Our proposal builds on the text extraction method in [16], which we modified and specialized by
taking the specific requirements of regex golf into account. We will summarize the differences at the end
of this section.

Every individual of the GP search process is a tree τ , where labels of leaf nodes are taken from a
specified terminal set and labels of internal nodes from a specified function set as follows.

The function set consists of the following regular expressions operators (the central dot ¨ represents a
placeholder for a child node): possessive quantifiers (¨*+, ¨++, ¨?+ and ¨{¨,¨}+), group (¨), character
class [¨] and negated character class [ˆ¨], concatenator ¨¨—a binary node which concatenates its
children—and disjunction ¨|¨. We did not include greedy or lazy quantifiers [89] because, as indicated
in [16], these operators lead to execution times which are not practically acceptable.

The terminal set consists of a set of terminals which do not depend on the problem instance I and
other terminals which depend on I. Instance independent terminals are: the alphabetical ranges a-z and

2More precisely, the disjunction of all strings in M , where each string is prefixed by the “start of string” anchor ˆ and
postfixed by the “end of string” anchor $.

http://regex.alf.nu
http://regex.inginf.units.it/golf
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Table 6.1: Salient information for the 16 problems.

Problem name |M | |U | wI Ideal score
1 Plain strings 21 21 10 210
2 Anchors 21 21 10 210
3 Ranges 21 21 10 210
4 Backrefs 21 21 10 210
5 Abba 21 22 10 210
6 A man, a plan 19 21 10 190
7 Prime 20 20 15 300
8 Four 21 21 10 210
9 Order 21 21 10 210

10 Triples 21 21 30 630
11 Glob 21 21 20 420
12 Balance 32 32 10 320
13 Powers 11 11 10 110
14 Long count 1 20 270 270
15 Long count v2 1 21 270 270
16 Alphabetical 17 17 20 340

Total 4320

A-Z, the start of string anchor ˆ and the end of string anchor $, and the wildcard character .. Instance
dependent terminals are: all characters appearing in M , partial ranges appearing in M , and n-grams.

Partial ranges are obtained as follows. We (i) build the sequence C of all characters appearing in M
(without repetitions), sorted according to natural order; (ii) for each maximal subsequence of C which
includes all characters between subsequence head ch and tail ct, build a partial range ch-ct. For example,
if M “ tbar,den,foo,canu, then the partial ranges are a-e and n-o.

n-grams are obtained as follows. We (i) build the set N of all n-grams occurring in M and U strings,
with 2 ď n ď 4; (ii) give a score to each n-gram as follows: `1 for each string in M which contains
the n-gram and ´1 for each string U which contains the n-gram; (iii) sort N according to descending
score and (iv) select the smallest subset N 1 of all top-scoring n-grams such that the sum of their scores
is at least |M | and each individual score is positive. For example, if M “ tcan,banana,and,ballu
and U “ tindy,call,name,manu, then the n-grams are an and ba, as they are the two top-scoring
n-grams and the sum of their scores is 2` 2.

A tree τ is transformed into a string rτ which represents a regular expression by means of a depth-first
post order visit—Figure 6.1 shows an example of a tree and the corresponding regular expression (in
the caption). In our implementation, each regular expression is evaluated by the Java regular expression
engine, which works with possessive quantifiers. However, the regex golf competition being considered
accepts only Javascript-compatible regular expressions and Javascript regular expression engine does not
work with possessive quantifiers. Hence, we further transform rτ into a Javascript-compatible regular
expression by means of a mechanical transformation [89].

The initial population is generated as follows. Let nP “ 500 be the size of the population to be
generated. For each string s in M , we generate an individual corresponding to s, built using only the
concatenator node and single characters of s as terminals. We generate the remaining nP´|M | individuals
randomly, with the ramped half-and-half method and depth of 1–5 levels.

We drive the evolutionary search based on two fitness indexes associated with each individual. Let
r be an individual and let nM and nU be the number of elements in M and U , respectively, which are
matched by r. The two fitness indexes are: nM ´ nU , which has to be maximized (the upper bound being
|M |), and the length of r (in the Javascript-compatible version), which has to be minimized. We use
the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [75] to rank individuals according to their
fitness values.
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Table 6.2: Best human score and solutions for the 16 problems.

Problem name Best human score Best human solution
1 Plain strings 207 foo

2 Anchors 208 k$

3 Ranges 202 ˆ[a-f]*$

4 Backrefs 201 (...).*\1
5 Abba 193 ˆ(?!.*(.)(.)\2\1)
6 A man, a plan 177 ˆ(.)[ˆp].*$

7 Prime 286 ˆ(?!(..+)\1$
8 Four 199 (.)(.\1){3}
9 Order 199 ˆ.5[ˆe]?$

10 Triples 596 00($|3|6|9|12|15)|4.2|.1.+4|55|.17

11 Glob 397 ai|c$|ˆp|[bcnrw][bnopr]

12 Balance 289 ˆ(<(<(<(<<?>?>|.9)>)>)>)$
13 Powers 93 ˆ(?!(.(..)+)\1*$)
14 Long count 254 ((.+)0 \2?1 ){7}
15 Long count v2 254 ((.+)0 \2?1 ){7}
16 Alphabetical 317 .r.{32}r|a.{10}te|n.n..

Total 4072

|

(¨) (¨)

foo ¨¨

¨¨

b ¨++

r

a

Figure 6.1: Tree representation of the regular expression (foo)|(ba++r).
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We evolve the population for a number of generations ng “ 1000, according to the following iterative
procedure. Let P be the current population. We generate an evolved population P 1 as follows: 10% of
the individuals are generated at random, 10% of the individuals are generated by applying the genetic
operator “mutation” to individuals of P , and 80% of the individuals are generated by applying the genetic
operator “crossover” to a pair of individuals of P . We select individuals for mutation and crossover with a
tournament of size 7, i.e., we pick 7 individuals at random and then select the best individual in this set,
according to NSGA-II. Finally, we generate the next population by choosing the individuals with highest
fitness among those in P and P 1. The size of the population is kept constant during the evolution. Upon
generation of a new individual, we check the syntactic correctness of the corresponding expression: if the
check fails, we discard the individual and generate a new one.

In order to generate a solution for a problem instance I, we evolve ne “ 32 independent populations,
with different random seeds, obtaining 32 candidate regular expressions. Finally, we choose the regular
expression with the highest score.

We remark the key features of our proposal (w.r.t. [16]):

1. a method for constructing the terminal set based on the problem instance I, rather than being
defined once and for all;

2. a method for initializing the population based on the problem instance I, rather than being com-
pletely random;

3. a different functions set which includes, in particular, a disjunction operator—which is difficult to
use in text extraction because it tends to promote overfitting;

4. fitness definitions based on the number of examples handled correctly—definitions proven to be
inadequate for text extraction [16];

5. usage of all learning information for synthesizing candidate solutions, that is, without reserving any
partition as validation set for assessing the generalization capabilities of those solutions.

6.5 Experimental Evaluation

We considered the 16 problem instances along with the accompanying scores proposed in http://regex.alf.
nu. Salient properties of these instances are summarized in Table 6.1 and 6.2. The Table 6.1 shows, for
each problem instance, the ideal score—i.e., the score equal to wI |M | which could be obtained with a
zero-length regular expression matching all strings in M and no strings in U . The Table 6.2 shows, for
each problem instance, the highest score obtained by (different) human players3 and the corresponding
regular expression.

6.5.1 Baseline

We used as baseline the algorithm by Peter Norvig, which we call Norvig-RegexGolf, and the system for
generating regular expressions for text extraction presented in [16], which we call GP-RegexExtract.

We provide a brief outline of Norvig-RegexGolf below. Full details, including the (partially for fun)
motivations and design trade-offs can be found in [157]. The solution for a given problem instance
I “ pM,Uq is obtained as a disjunction of a set of components, a component being a short regular
expression which matches at least one string in M and does not match any string in U . Initially, a
pool of components is built with several heuristics, including the generation of a component for each
n-gram of each string in M (up to n=4) and, for each such component, the generation of a component for
every possible substitution of a single character with the dot character (meaning “match any” in regular
expression syntax). Next a set of components from that pool is built, such that each string in M is matched

3The information is obtained from https://gist.github.com/jonathanmorley/8058871.

http://regex.alf.nu
http://regex.alf.nu
https://gist.github.com/jonathanmorley/8058871
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Table 6.3: Results of the Norvig-RegexGolf as score, score %, score % w.r.t. to best human score and competitive
ratio (C.R., see text). For each problem, the score of the best algorithm is shown in bold.

Norvig-RegexGolf
Problem Score Score % Hum. % C.R.

1 207 98.6 100.0 66.3
2 208 99.1 100.0 105.5
3 191 91.0 94.6 8.5
4 175 83.3 87.0 8.0
5 186 88.6 96.4 11.5
6 157 82.6 88.7 5.1
7 ´398 ă 0 ă 0 1.0
8 192 91.4 96.5 17.5
9 190 90.5 95.5 8.7

10 589 93.5 98.8 6.1
11 392 93.3 98.7 25.2
12 ´1457 ă 0 ă 0 1.0
13 ´1969 ă 0 ă 0 1.0
14 189 70.0 74.4 1.0
15 189 70.0 74.4 1.0
16 294 86.5 92.7 18.8

Total ´665 - - -

by at least one component in the set. Components in the resulting set are then glued together by the or
regular expression operator |.

Concerning GP-RegexExtract, we reimplemented the algorithm according to the details presented
in [16] (see also Section 6.2). We set those parameters which determine the computational weight of GP to
the same values for GP-RegexExtract and GP-RegexGolf, in order to allow a fair comparison of the results
w.r.t. computational weight: ne “ 32, ng “ 500 and nP “ 500. Note that GP-RegexExtract requires that
examples are partitioned in a training set and a validation set: while using it as a regex golf player, we
chose to use half of M and half of U strings as training set, and the remaining string as validation set.

6.5.2 Results

We executed each of the algorithms on each problem instance and computed the score of the corresponding
solution. Tables 6.3, 6.4 and 6.5 summarize the resulting scores, which are presented as absolute value and
as the percentage of the ideal and the best human score associated with each problem instance. Table 6.6
shows the regular expressions generated by GP-RegexGolf for each problem.

It can be seen that GP-RegexGolf outperforms both Norvig-RegexGolf and GP-RegexExtract: 3090
vs. ´665 and 249, respectively. In particular, considering individual problem instances, GP-RegexGolf
performs better than Norvig-RegexGolf in 6 problems, worse in 8 problems and obtains the same score in
2 problems. Despite obtaining a better score in 8 problems, Norvig-RegexGolf obtains a negative score on
the full suite because on three problems (7, 12 and 13) it is not able to generate a non trivial solution: in
these problems, the regular expression generated by Norvig-RegexGolf is the disjunction of all the M
strings. Our algorithm, on the contrary, generates non trivial solutions for these problems. Concerning
GP-RegexExtract, both its score on the full suite and its score on individual instances make it clear that
this approach does not the requirements of regex golf.

Tables 6.3, 6.4 and 6.5 list also, for each algorithm, the competitive ratio of the solutions [157], defined
as the ratio between the length of a trivial solution (disjoining all the strings in M ) and the length of the
corresponding solution. Note that this index does not take matches or unmatches into account. It can be
seen that both Norvig-RegexGolf and GP-RegexGolf generate solutions which are much shorter than the
trivial solution for several problems: regular expressions generated by GP-RegexGolf are shorter than
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Table 6.4: Results of the GP-RegexGolf algorithm as score, score %, score % w.r.t. to best human score and
competitive ratio (C.R., see text). For each problem, the score of the best algorithm is shown in bold.

GP-RegexGolf
Problem Score Score % Hum. % C.R.

1 207 98.6 100.0 66.3
2 208 99.1 100.0 105.5
3 195 92.9 96.5 10.7
4 138 65.7 68.7 6.7
5 184 87.6 95.3 17.2
6 136 71.6 76.8 7.0
7 188 35.3 37.0 24.1
8 183 87.1 92.0 11.7
9 186 88.6 93.5 7.3

10 430 68.3 72.2 12.6
11 340 81.0 85.6 17.7
12 130 40.6 45.0 11.1
13 51 46.4 54.8 109.4
14 191 70.7 75.2 1.0
15 191 70.7 75.2 1.0
16 132 38.8 41.6 8.0

Total 3090 - - -

Table 6.5: Results of the Gp-RegexExtract algorithm as score, score %, score % w.r.t. to best human score and
competitive ratio (C.R., see text). For each problem, the score of the best algorithm is shown in bold.

GP-RegexExtract
Problem Score Score % Hum. % C.R.

1 170 81.0 82.1 5.0
2 185 88.1 88.9 8.4
3 107 51.0 53.0 7.0
4 ´70 ă 0 ă 0 4.0
5 77 36.7 39.9 4.4
6 ´246 ă 0 ă 0 0.7
7 ´52 ă 0 ă 0 13.4
8 ´45 ă 0 ă 0 7.0
9 ´39 ă 0 ă 0 4.5

10 ´106 ă 0 ă 0 2.4
11 ´163 ă 0 ă 0 4.3
12 ´85 ă 0 ă 0 20.9
13 ´47 ă 0 ă 0 44.2
14 191 70.7 75.2 1.0
15 191 70.7 75.2 1.0
16 181 53.2 57.1 11.0

Total 249 - - -
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Table 6.6: Regular expressions generated by GP-RegexGolf.

Problem Regular expression
1 foo

2 k$

3 (ˆ..[a-f][a-f])

4 v|[ˆb][ˆo][ˆp]t|ngo|lo|[n]o|rp|rb|ro|ro|rf

5 z|.u|nv|st|ca|it

6 oo|x|ˆk|ed|ˆm|ah|ˆr|v|ˆt

7 ˆ(?=((?:x[A-Zx])+))\1x
8 ell|j|W|ele|o.o|Ma|si|de|do

9 ch|[l-p]o|ad|fi|ac|ty|os

10 24|55|02|54|00|95|17

11 lo|ro|ˆp|(?=((c)+))\1r|en|ˆw|y.|le|ˆp|rr
12 ((?=((?:<<\>\>\>)*))\2(?=((?:<<<(?=(<*))\4\>\><<<<)*))\3

(?=((?:<<<<<\>\>\>(?=(<*))\6\>\>\>)*))\5(?=((?:<<<<<<)*))
\7ˆ(?=((?:<<\><<)*))\8(?=((?:<<<\>\>\>)*))\9<<)

13 ˆ(?=(((x|ˆ)x)+))\1$
14 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

1011 1100 1101 1110 1111

15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

1011 1100 1101 1110 1111

16 tena|[ˆet][ˆetren](?=((?:(?:ren|eren.(?=((?:(?:ren|[ˆren]

))+))\2|eren.(?=((?:(?:ren|[ˆren]))+))\3))+))\1|eas

those of Norvig-RegexGolf in 9 problems, longer in 5 problems and with the same length in 2 problems.
Table 6.7 shows the time required by GP-RegexGolf and GP-RegexExtract for generating a solution.

It is similar for all the problems (around 50 min) with the exception of 13, 14 and 15. For the latter
problems, in which M is composed by very long strings, GP-RegexExtract attempts to generate a regular
expression which extracts (rather than just matching) the each M string entirely: this leads to a population
composed by very long regular expressions which require long times to be evaluated. The time required
by Norvig-RegexGolf is practically negligible (less than a second per problem). All the experiments have
been performed on a quad core Intel Xeon E5-2440 (2.40GHz) with 4 GB of RAM.

We wanted to investigate whether our approach can achieve better scores at the expense of increased
computational weight. To this end, we repeated the experiments by setting nP “ 1000 and nP “ 1500,
i.e., with an enlarged population: Table 6.8 shows the results in terms of score and competitive ratio.
It can be seen that the full score does improve for larger values of nP . Moreover, with nP “ 1500,
the number of problems for which GP-RegexGolf score is not worse than Norvig-RegexGolf score is
11 vs. 8 with nP “ 500. The computation time for the full suite goes from 820 min for nP “ 500 to
1551 min and 2611 min for np “ 1000 and np “ 1500, respectively. As expected, with higher values for
nP GP-RegexGolf takes longer to generate a solution: yet, it is fair to claim that even such longer times
may be acceptable for playing to a game of this kind.

Finally, we attempted to assess the performance of our proposal with respect to scores of highly skilled
human players. We remark that there are several caveat concerning the assessment of the results obtained
by human players. The web site hosting the challenge does not, at the time of this writing, provide a score
ranking computed on the full suite of problems—on the other hand, there exists a collection of “Best
possible answers collected so far for regex golf” (see Table 6.1) which shows, for each problem, the best
solution. Results by human players are advertised on web forums by players themselves, often without
providing any actual evidence of their results. On the other hand, there are players which do make some
very good solutions publicly available, thereby simplifying the job of other players, which may either
attempt to improve those solutions further or may use them for the corresponding problem instance while
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Table 6.7: Execution times of GP-RegexGolf and GP-RegexExtract algorithms in minutes.

Problem GP-RegexGolf GP-RegexExtract
1 53 51
2 52 52
3 53 65
4 38 25
5 34 18
6 20 23
7 33 43
8 19 27
9 46 21

10 45 25
11 44 47
12 56 71
13 71 269
14 94 289
15 95 173
16 66 64

Total 820 1262

Table 6.8: Scores and competitive ratio (C.R.) of GP-RegexGolf with different values for nP .

nP “ 1000 nP “ 1500
Problem Score C.R. Score C.R.

1 207 66.3 207 66.3
2 208 105.5 208 105.5
3 196 11.5 197 12.4
4 146 5.2 147 6.5
5 188 12.5 186 11.5
6 142 6.0 151 4.3
7 188 24.1 188 24.1
8 183 11.7 180 10.5
9 190 8.7 190 8.7

10 456 10.5 354 27.2
11 355 28.2 522 3.2
12 36 7.3 223 26.5
13 65 46.2 40 29.7
14 191 1.0 191 1.0
15 191 1.0 191 1.0
16 259 21.1 237 10.4

Total 3201 - 3412 -
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Table 6.9: Total scores obtained by the 10 best humans and by the three algorithms.

Player Score
Total ideal score 4320
Best human score 4072

1 geniusleonid 4006
2 k hanazuki 3785
3 bisqwit 3753
4 AlanDeSmet 3736
5 adamhiker 3693

GP-RegexGolf (nP “ 1500) 3412
GP-RegexGolf (nP “ 1000) 3201

6 adamschwartz 3181
7 flyingmeteor 3171

GP-RegexGolf (nP “ 500) 3090
8 jpsim 3060
9 ItsIllak 2939

10 bg666 2683
GP-RegexExtract 249
Norvig-RegexGolf ´665

focusing their efforts on the remaining instances. In other words, the score obtained by a given player may
actually result from efforts by multiple players. Finally, human players generally do not care to indicate
the time they spent for generating a solution.

We collected several human players scores on the full suite from different web locations (including
Reddit, Hacker News, Github) which we obtained by querying Google and Twitter with the search string
“regex golf”. Table 6.9 shows the 10 best scores we found, along with the total ideal score (i.e., the sum of
ideal scores on the 16 problems), the best human score (i.e., the sum of the highest human player scores
on the 16 problems) and the score of the three considered algorithms.

It can be seen that GP-RegexGolf would rank from 6th to 8th among human players (with nP “ 1500
and nP “ 500, respectively), whereas the scores of the other two algorithms are significantly lower than
those of human players. In other words, leaving aside any caveat about how we gathered human scores,
GP-RegexGolf is in the top ten of worldwide regex golf players.

6.6 Remarks

We have proposed and assessed experimentally an approach based on Genetic Programming for playing
regex golf automatically, i.e., for generating automatically solutions to challenges which have recently
become popular in the programmers’ communities. The challenges consist in writing the shortest regular
expression that matches all strings in a given list and does not match any string in another given list.

Our approach collects a score that is highly competitive against human players and improve signifi-
cantly over a challenging baseline including a recently proposed algorithm tailored to this specific problem
class and the proposal for automatic generation of regular expressions tailored to text extraction tasks
presented in [16]. The time for generating a solution is in the order of tens of minutes and a prototype is
available at http://regex.inginf.units.it/golf.

We think that our work shows how a GP-based approach running on modern IT machinery may deliver
results, at least for this task, which are practically useful and can compete with humans.

http://regex.inginf.units.it/golf




Chapter 7
Evolutionary Learning of Syntax
Patterns for Genic Interaction
Extraction

7.1 Overview

A huge amount of knowledge is expressed in natural language text and the recent years have seen
an explosion of interest in automated techniques capable of extracting such knowledge effectively.
Biomedical information extraction, in particular, is a vast and rapidly growing field facing many important
challenges [49,101,122,166,204,214,217]. A problem that has captured much attention is the construction
of a systematic and structured description of the observed interactions between entities of biomedical
interest reported in the scientific literature [90, 102, 132].

In this chapter, we investigate the feasibility of using evolutionary computing for attacking a chal-
lenging problem in this area: how to identify automatically, in scientific papers, sentences that contain
interactions between genes and proteins, based on a dictionary of genes, proteins, interactors, and a
small set of example sentences [49, 166, 217]. The problem is challenging because the mere occurrence
of dictionary words in a sentence does not imply that the sentence is to be extracted (see Table 7.1).
Evolutionary computing techniques have been applied to several problems in Natural Language Processing
(NLP), including text summarization [136], sentence alignment for statistical machine translation [175],
part-of-speech tagging [7], grammar induction from an annotated corpus [74, 185], word sense disam-
biguation [76]. A very good and broad review of evolutionary approaches to NLP is [8]. The binary
classification of sentences that we consider here, though, has received very little attention so far and
we are aware of only one evolutionary proposal in this area [42]. The cited work advocates the use of
a probabilistic model called the hypernetwork classifier meant to capture the correlation between sets
of words and the class in which a sentence containing those words belongs to. Actual values for the
correlation between triplet of words and the output class in a learning corpus are computed by means
of a stochastic procedure. The experimental evaluation considered 1 200 000 such triplets and executed
some preprocessing operations on the text that were not fully described, including deletion of so-called
redundant components and insignificant words, as well as conversion of string values into numerical
values using a customized dictionary.

In this chapter we propose a different evolutionary technique based on Genetic Programming (GP).
We learn a model of the syntax patterns that occur in the sentences of each class and classify sentences
accordingly. Such patterns are expressed in terms of regular expressions over standard part-of-speech
annotations. We solve the difficult problem of actually learning those regular expressions despite the
large alphabet size involved, by leveraging on recent results in this area [18]. Working at the abstraction
level of part-of-speech annotations has important practical advantages: one may build upon the existing

79



7. Syntax Patterns for Genic Interaction 80

state-of-the-art in NLP annotators, as well as switch to an annotator for a different language or incorporate
any advances in annotation technology, without any changes in the framework.

We strove to design our framework without incorporating heuristic rules or findings from previous
solutions to this problem. For example, part-of-speech patterns of interest are usually very short and
include 2–4 words before and after entities of interest (i.e., genes or proteins) [101, 102]. Furthermore,
one could refine a tentative pattern by carefully assigning different costs to each component of the pattern
depending on its type—40 coefficients are proposed in [102] for weighing the contribution of 12 groups of
part-of-speech tags depending on whether they are aligned correctly with a sample and, if not, depending
on the nature of mismatch. We chose to not rely on any problem-specific heuristics because we were more
interested in assessing the potential of evolutionary computation in this area than in squeezing accuracy
figures. The opposite choice would have made it difficult to isolate the merit of evolutionary learning of
syntax patterns from problem-specific heuristics—which of course deserve further investigation.

We remark that our evolutionary learning of syntax patterns is not aimed at grammar induction, a
problem that has received much attention in the literature, both for natural text and for formal languages [8,
72]. Grammar induction aims at inferring a set of rules which describe the input data at differing granularity
levels and, in the case of natural language, have a hierarchical structure [8, 79]. Usually, although not
necessarily, the quality of a solution is assessed from a gold truth of rules [8]. Here we aim instead at
partitioning text at the granularity level of full sentences, rules need not have any specific structure, no
gold truth of rules exists and only the desired partitioning is specified. Of course, techniques for grammar
induction could be useful in our scenario as well but it must be emphasized that grammar induction and
binary classification of sentences are different problems.

A wealth of literature exist for building classifiers based on Genetic Programming [81], but natural
text is outside of the scope of most proposals. Furthermore, classification of natural text is usually done at
the level of full documents and such a granularity is excessively coarse in our context [109].

We assess our approach on a realistic dataset and compare the resulting accuracy to significant baseline
methods. The results indicate that our GP-based proposal indeed learns syntax patterns from examples
effectively, even in NLP scenarios of practical interest.

7.2 The Problem

We aim at generating a classifier C that takes a natural language sentence s in input and performs a binary
classification based on whether s contains a genic-protein interaction.

We generate the classifier based on two learning sets S`L , S
´
L : sentences in S`L contain a genic-protein

interaction whereas sentences in S´L do not. Two dictionaries are also available of genes/proteins and
interactors, as usually done in in applications of this sort [90, 101, 102].

In order to better appreciate nature and difficulty of the problem, it is useful to emphasize that sets
S`L , S

´
L , are not labelled automatically based on some predefined pattern that is kept hidden to the

classifier generation process. Instead, the labelling is done by domain experts which read and analyze the
meaning of every single sentence as a whole. Domain experts do not choose the class for a sentence using
a predefined pattern—a pattern suitable for classifying sentences as desired may not even exist.

7.3 Our Approach

We aim at inferring a classifier capable of detecting syntax patterns of the sentences to be extracted, beyond
the mere co-occurrence of relevant words. The classifier operates on sequences of Unicode characters
which we call φ-strings. In a nutshell, we transform each sentence to a sequence of Part-of-Speech
(POS) annotations, we group annotations of genes/proteins and interactors, and map each annotation to
an arbitrarily chosen Unicode character. Full details of this procedure are provided in Section 7.3.1, an
example is given in Figure 7.1.

The target classifier C consists of a set of regular expressions tr‹1, r
‹
2, . . . u. The output of C for an input

φ-string x will be positive (i.e., C deems that the sentence corresponding to x contains a genic-protein
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Sentences w/ genic-protein interaction
In this mutant, expression of the
spoIIG gene, whose transcription
depends on both sigma(A) and the
phosphorylated Spo0A protein, Spo0A-P,
a major transcription factor during
early stages of sporulation, was
greatly reduced at 43 degrees C.

These results suggest that YfhP may
act as a negative regulator for the
transcription of yfhQ, yfhR, sspE and
yfhP.

These results demonstrate that
sigmaK-dependent transcription of gerE
initiates a negative feedback loop
in which GerE acts as a repressor to
limit production of sigmaK.

In this study, we used footprinting
and gel mobility retardation assays
to reveal that bacterially sinthetized
Zta fusion proteins bound directly to
six TGTGCAA-like motifs within DSL.

Sentences w/o genic-protein interaction
From day 10, a significant increase
in platelet count was observed in
eight of the ten patients treated with
heparin (p < 0.05), with return to the
initial value after heparin cessation
in six of the responders.

Two phosphopeptides, identified
as RS-[32P]SGASGLLTSEHHSR and
S-[32P]SGASGLLTSEHHSR, were obtained
after stoichiometric phosphorylation
and trypsinization of the peptide.

Levels of TSG-14 protein (also termed
PTX-3) become elevated in the serum of
mice and humans after injection with
bacterial lipopolysaccharide, but in
contrast to conventional acute phase
proteins, the bulk of TSG-14 synthesis
in the intact organism occurs outside
the liver.

No mutations were found in follicular
adenomas.

Table 7.1: Eight sentences of the corpus used in our experimentation, 4 which include (left) and 4 which do not
include (right) genic-protein interactions. For the sake or comprehension, we highlighted in bold those words
belonging to the Dgenes dictionary and in italic those belonging to the Dinteractors dictionary (see Section 7.3.1).
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interaction) if at least one r‹i is matched by x or by a non-empty substring of x.
We attack the complex problem of actually generating r‹i by means of a Genetic Programming (GP)

procedure inspired by recent proposals for learning regular expressions from examples [15, 18]. The cited
proposals are designed for solving text extraction problems at the level of short text snippets. We had to
modify and tailor these proposals for a classification problem in a different domain—properties of text
snippets and of POS sequences seem to be quite different. In particular, there are two significant differences
between the two scenarios. First, regular expressions include constructs which enable generalization
and compactness when applied on actual text but that are not very meaningful on sequences of POS
annotations, i.e., character classes \w and \d. Second, the cited works assume that the examples consist
of exactly the text snippets to be extracted, whereas in our context the examples consist of full sentences:
the information to be captured by the target regular expression is much more noisy and diluted.

The number of regular expressions in the set C is not determined in advance and is instead discovered
automatically. Specifically, we generate regular expressions one at a time by means of a separate-and-
conquer procedure. Initially, we generate the first regular expression by using all the available data. Then,
once a regular expression is found that provides adequate performance on a subset of the examples, we
restart the evolutionary search from the scratch by using only the remaining examples that are not yet
solved adequately. This procedure is also inspired by a recent proposal designed for extraction of short
text snippets [21]: differently from the cited paper, here we focus on classification instead of extraction
and allow the generation of regular expressions that do not exhibit perfect precision.

7.3.1 Sentence representation

Let Dgenes and Dinteractors be the statically available dictionaries of words representing genes and inter-
actors, respectively: Table 7.2 shows portions of the two dictionaries which we actually used in our
experimentation. We transform each sentence s into a φ-string x, as follows. For ease of presentation, in
the following we will always use the term “gene” to mean either a gene or a protein.

1. We split s into a sequence tt1, . . . , tnu of tokens according to the Penn-Treebank procedure1.

2. We execute a Part-of-Speech (POS) annotator over tt1, . . . , tnu and obtain a sequence ta1, . . . , anu
of annotations, with ai P A. The set A of possible annotations depends on the specific POS
annotator being used; we assume that three disjoint subsets Averb, Aadj, Anoun of A exist which
correspond to verbs, adjectives, and nouns, respectively—A may include other elements not
contained in Averb Y Aadj Y Anoun. In our experiments we used the annotator developed by the
Stanford Natural Language Processing Group2: Table 7.3 shows a partial list of the elements of the
set A corresponding to this POS annotator.

3. We modify the sequence ta1, . . . , anu of annotations, as follows. We say that t P˚ D if t is equal to
or starts with an element ofD—e.g., ifD “ tsigmaB,katXu, then sigmaB-dependent P˚ D
and katX P˚ D. For each i,

• if ti P˚ Dgenes, we set ai :“ GENEPTN;

• if ti P Dinteractors and ai P Averb, we set ai :“ IVERB;

• if ti P Dinteractors and ai P Aadj, we set ai :“ IADJ;

• Finally, if ti P Dinteractors and ai P Anoun, we set ai :“ INOUN.

We denote with A1 “ A Y tGENEPTN, IVERB,IADJ,INOUNu the set of possible annotations
after this step.

1http://www.cis.upenn.edu/„treebank
2http://nlp.stanford.edu/software/tagger.shtml

http://www.cis.upenn.edu/~treebank
http://nlp.stanford.edu/software/tagger.shtml
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Dgenes

amyE
bmrUR
ComK
DksA
Esig29
GerE
katX
KinC
sigmaH
SpoIIAB

others

Dinteractors

abrogation
activation

destabilization
expression
repression

affect
bind

destabilize
exhibit
regulate

others

Table 7.2: Portions of the two dictionaries of genes/proteins and interactors used in our experimentation.
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Figure 7.1: Example of sentence representation. The original textual sentence s (top) is transformed into a φ-string
x (bottom) through two cascaded transformations: one producing a sequence of POS annotations and another where
certain annotations are modified using the dictionaries (Section 7.3.1).

4. Let U be the set of characters including digits, lowercase letters and uppercase letters and let
φ : A1 Ñ U be an injective function which maps annotations to characters (see rightmost col-
umn of Table 7.3). We obtain the φ-string x from ta1, . . . , anu by concatenating the characters
resulting from the application of φ to each element of the sequence of annotations, i.e., we set
x “ φpa1q . . . φpanq.

Figure 7.1 shows the intermediate and final outcomes of the procedure here described when applied to
an example sentence.

7.3.2 Regular expression generation

We here describe our procedure based on GP for obtaining a regular expression r‹ from two training sets
X`, X´ of φ-strings. The aim of this procedure is to generate a regular expression r‹ such that: (i) for
each φ-string x in X`, x, or a non-empty substring of x, match r‹; and (ii) for each φ-string x in X´, x
and all the substrings of x do not match r‹. The relation between the training sets and the learning sets
available for synthesizing the classifier (Section 7.2) will be clarified later.

Solution representation and fitness definition

We represent a candidate solution, i.e., an individual, with a tree. Each tree represents a regular expression,
as follows. The set of terminal nodes is composed of the wildcard character . and of each character
in rangepφq, i.e., each character in U which corresponds to an annotation in A1. The set of function
nodes is composed of: the concatenator ••; the character class [•] and negated character class [ˆ•];
the possessive quantifiers •*+, •++, •?+ and •{•,•}+; and the non-capturing group (?:•). A tree
represents a regular expression by means of a depth-first visit in which each ◊ symbol in a non-terminal
node is replaced by the representation the corresponding child node.

The fitness of an individual r quantifies the behavior of the individual over the training sets. We
define the fitness as a tuple fprq :“ pFPRpr,X´q ` FNRpr,X`q,FPRpr,X´q, `prqq, where `prq is the
length of the regular expression represented by r and FPRpr,X´q and FNRpr,X`q are the False Positive
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a Meaning Subset φpaq

VB verb, base form

Averb

0
VBD verb, past tense 1
VBG verb, pres. part. or gerund 2
VBN verb, past participle 3
VBP verb, pres. tense,  3rd p. s. 4
VBZ verb, pres. tense, 3rd p. s. 5
JJ adjective or numeral, ordinal

Aadj

6
JJR adjective, comparative 7
JJS adjective, superlative 8
NN noun, common, sing. or mass

Anoun

9
NNP noun, proper, singular a
NNPS noun, proper, plural b
NNS noun, common, plural c
CC conjunction, coordinating d
CD numeral, cardinal e
DT determiner f

other annotations
GENEPTN gene or protein

A1zA

G
IVERB verb interactor R
IADJ adjective interactor P
INOUN noun interactor J

Table 7.3: A partial list of the elements of A1: for space constraints, only a subset of AzpAverb YAadj YAnounq is
shown.

Rate and False Negative Rate, respectively, of r on the training sets. In more detail, FPRpr,X´q is the
percentage of φ-strings x P X´ for which x, or a non-empty substring of x, match r; FPRpr,X`q is
the percentage of φ-strings x P X` for which x and all the substrings of x do not match r. For all the
elements of the fitness tuple, the lower, the better. The first objective (i.e., FPRpr,X´q ` FNRpr,X`q) is
a proxy for the accuracy of classification of r on the examples in X´, X`. We chose not to use accuracy
in order to accommodate possibly unbalanced learning sets (our experimental evaluation used balanced
sets, though).

We rank individuals based on their fitness tuples according to Pareto-dominance and lexicographic
order, as follows. First, individuals are sorted by their Pareto frontier: an individual belongs to the i-th
frontier if and only if it is Pareto-dominated only by individuals, if any, belonging to j-th frontier, with
j ă i—–an individual Pareto-dominates another individual if it is better on at least one fitness element
and not worse on the other two elements. Second, a total ordering is established among individuals in
the same Pareto frontier: individuals with lower FPR ` FNR come first; in case of equal FPR ` FNR
individuals with lower FPR come first; in case of equal FPR` FNR and equal FPR individuals with lower
` come first.

As pointed out in the introduction, we purposefully avoided to include any problem-specific knowledge
in the fitness definition—e.g., part-of-speech tags associated with either genes or interactors do not have
any special status. We use a multiobjective approach aimed at maximizing accuracy while promoting
compact solutions for preventing bloat [71]. We add a third objective beyond accuracy and length because,
as detailed in Section 7.3.3, the classifier does not consist of a single regular expression and is instead
composed of a set of regular expressions generated from progressively smaller training sets. A form of
evolutionary pressure on the FPR of each member of the set turns out to be beneficial to the aggregate
FPR of the full set.
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Search procedure

We execute the GP search with a population of npop individuals. The initial population is composed of
a portion of randomly generated individuals and a portion of individuals designed to match at least one
φ-string in X`. In detail, we build 3 individuals generated from each x P X`:

1. an individual r representing a regular expression which is equal to the φ-string x;

2. an individual r1 obtained by replacing in r each leaf node not included in tφpGENEPTNq, φpIVERBq, φpIADJq,
φpINOUNquwith a subtree corresponding to the regular expression [ˆφpGENEPTNqφpIVERBqφpIADJqφpINOUNq],
i.e., with the character class which excludes characters corresponding to genes and interactions;

3. an individual r2 obtained by replacing in r1 consecutive repetitions of the character class which
excludes genes and interactions with [ˆφpGENEPTNqφpIVERBqφpIADJq, φpINOUNq]++, i.e.,
with the subtree corresponding to one or more repetitions of the character class.

If the number of individuals generated by this procedure is greater than npop, then we remove exceeding
individuals chosen at random (this event does not occur in our experimental setting); otherwise, we
generate missing individuals at random with a ramped half-and-half method.

We evolve the initial population by means of the following procedure. At each iteration (or generation),
we generate npop new individuals: 80% of them by crossover between individuals in the current population;
10% of them by mutation of individuals in the current population; 10% of them at random with a ramped
half-and-half method. We build the new current population by retaining only the npop individuals with
best fitness from the resulting 2npop individuals (current population and new generated individuals). We
select individuals for either crossover or mutation by means of a tournament selection of size 7. Whenever
we generate an individual which represents a not valid regular expression, we discard that individual and
generate a new one.

We enforce genotypic diversity among candidate solutions, i.e., whenever an individual r1 is generated
which represents the same regular expression represented by another individual r2 in the current population,
then r1 is discarded and another individual is generated—a similar mechanism is used in [128] for
preventing the creation of duplicated solutions. We chose to include this simple mechanism in the
search—not present in [18]—because our earlier experiments clearly demonstrated its effectiveness in our
scenario, the quality of generated solutions being substantially improved without any significant increase
in processing time. Such an improvement is perhaps not surprising, because we do not start the search
with a fully random population and because a multiobjective GP search may greatly benefit from an
explicit mechanism for promoting forms of diversity among candidate solutions, either at the genotypic
level or in the objective space or in their behavior [50, 71]. However, we remark that the mechanism
that we have chosen is extremely easy to implement and, in particular, does not involve the problem of
choosing how to quantify the amount of diversity between individuals. Furthermore, it does not involve
the need of defining diversity as a further objective to be taken into account during the search, which might
be difficult to achieve in our scenario since the resulting fitness would be composed of four indexes and
thus more radical changes to the evolutionary strategy could be required [112]. A detailed analysis of the
effectiveness of this mechanism, as well as of other possible diversity enforcement criteria (e.g., [50, 71]),
is beyond the scope of this work, though.

The search terminates when one of the following occurs: (i) a predefined number of ngen iterations has
been executed; or, (ii) the fitness tuple of the best individual has remained unchanged for nstop consecutive
iterations. The regular expression represented by the best individual of the final population is the outcome
of the search procedure.

7.3.3 Classifier generation

We apply the procedure described in Section 7.3.1 and transform the learning sets S`L , S
´
L to sets of

φ-strings X`L , X
´
L , respectively. Then, we randomly sample X`L , X

´
L to build the training sets X`, X´,

respectively, ensuring that |X
`|

|X´|
“
|X`L |

|X´L |
.
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We start from an initially empty set of regular expressions (C “ H) and repeat the following iterative
procedure (τFPR is a predefined threshold): 1) execute a search on X`, X´ and obtain r‹; 2) if either
FPRpr‹, X´q ď τFPR or the search terminated after executing ngen generations, then assign C :“ CYtr‹u,
otherwise terminate; 3) remove from X` the φ-strings x for which x, or a substring of x, match r‹; 4) if
X` is empty, then terminate, otherwise go to step 1. The outcome of this procedure is a classifier C.

We perform njob independent executions of the procedure, all starting with the same training sets
X`, X´ but with different random seeds. Thus, we obtain njob (possibly) different classifiers and choose
the one with lowest error rate on the learning sets X`L , X

´
L . In other words, we validate the njob classifiers

on data which was not available during the training in order to prevent overfitting the data.
In our experimentation, we set τFPR “ 0.3, ngen “ 1000, nstop “ 200, npop “ 1000, and njob “ 8;

we chose these values after preliminary experimentation and basing (in particular for ngen, npop, and njob
parameters) on the abundant literature about GP.

7.4 Experimental Evaluation

7.4.1 Datasets and baselines

We used a corpus of 456 sentences built by joining two corpora, both derived from genic-protein inter-
actions extraction challenges of biomedical interest3. Each sentence was labelled by a domain expert.
Table 7.1 shows some samples. It can be seen that the mere presence of words in the dictionaries Dgenes
and Dinteractors does not suffice to qualify a sentence as containing a genic-protein interaction.

In order to assess our results, we implemented several alternative classification techniques: a state-of-
the-art evolutionary approach for inferring patterns from examples, two approaches that embed a large
amount of problem-specific knowledge and two established methods for text classification.

DFA-based pattern evolutionary inference

We implemented a classifier based on the Smart State Labelling Evolutionary Algorithm (SSLEA) proposed
in [140]. The cited work is a state-of-the-art algorithm for learning deterministic finite automata (DFA)
from examples of the desired classification behavior. SSLEA was developed a few years after a competition
that was highly influential in the grammar learning community and outperformed (optimized versions of)
the winners of the competition, on the same class of problems [60, 126] and even in the presence of noisy
data.

SSLEA represents a candidate solution (i.e., a DFA) by a pair composed of an output vector of size
n and a transition matrix of size n ˆ |α|, where n is the number of states in the target DFA and |α| is
the number of symbols in the input alphabet: the former has one element for each DFA state and each
element contains the label (accept or reject) for the corresponding state; the latter contains, for each state
and transition, the corresponding destination state index. SSLEA implements a form of hill-climbing in
which the fitness of a solution is the rate of examples classified correctly. The search terminates when
either a DFA with perfect fitness is found or a predefined number nit of iterations have been executed. We
refer the reader to the cited work for full details.

We implemented SSLEA and applied it to φ-strings. After some exploratory experimentation, we
found that it delivers best results with α “ rangepφq, n “ 7 and nit “ 5000 and we used these values
in our assessment. In particular, we verified experimentally that increasing the number nit of available
iterations, even by a large amount, did not lead to better accuracy on the testing data.

Problem-specific baselines

We implemented two classifiers that embed a substantial amount of problem-specific knowledge.

3http://genome.jouy.inra.fr/texte/LLLchallenge/#task1 and https://www2.informatik.hu-berlin.de/„hakenber/corpora/
#bc

http://genome.jouy.inra.fr/texte/LLLchallenge/##task1
https://www2.informatik.hu-berlin.de/~hakenber/corpora/##bc
https://www2.informatik.hu-berlin.de/~hakenber/corpora/##bc
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The classifier that we call Annotations-Co-occurrence classifies a sentence s positively if and only if s
contains at least two genes/proteins and at least one interactor—i.e., it is tightly tailored to this specific
problem.

The classifier that we call Annotations-LLL05-patterns is built on results from [102], which proposes
a method for identifying syntax alignment-patterns that describe interactions between genes and proteins
in scientific text. An alignment-pattern is described in terms of sequences of salient POS annotations
which must occur in a sentence, but that does not specify any constraint on type and quantity of further
annotations that might occur between those salient annotations. The method exploits a fair amount of
domain-specific knowledge for tuning tens of coefficients used for weighting alignment-pattern errors
related with specific POS annotations, as well as with genes and interactors. The cited work provides a
list of the 10 most frequent alignment-patterns learned from the whole corpus used in that paper, which is
much larger than ours (« 1000 sentences). We built a classifier which classifies a sentence s positively if
and only if s matches at least one of the 10 alignment-patterns in the aforementioned list. Our corpus is
composed, for « 90% of the sentences, of a strict subset of that corpus.

Established methods for text classification

Finally, we implemented two well-established schemes for text classification [184], one based on Naive
Bayes and the other based on Support Vector Machines (SVM).

We pre-process each sentence s as follows: (i) we replace each occurrence of a string contained
in Dinteractors with interactor; (ii) we replace each occurrence of a string contained in Dgenes with
geneptn; (iii) we convert s to lowercase; (iv) we replace each non alphabetic (i.e., [ˆa-zA-Z ])

character with a space; (v) we perform stemming to each word (except of geneptn and interactor).
We execute steps i and ii in order to exploit the knowledge embedded in the dictionaries, which would
otherwise not available to the classifier.

In order to build the classifier:

1. We build a sorted set W of words composed of all words occurring at least once in the learning sets
S`L , S

´
L .

2. We transform each sentence s into a vector f 1 in which the ith element corresponds to the number
of occurrences in s of the word wi PW .

3. We execute a feature selection procedure (which is detailed below) for identifying the k elements of
f 1 which best discriminate between sentences in S`L or S´L . Let f be the vector obtained by keeping
only those k elements from f 1—i.e., f contains only the occurrence counts of the words selected in
the feature selection procedure.

4. Finally, we train a binary classifier using the vectors f corresponding to the sentences in the learning
sets S`L , S

´
L .

Having built the classifier, to classify a previously unseen sentence s we: (i) pre-process s as described
above; (ii) obtain the corresponding feature vector f ; and, finally, (iii) input f to the trained classifier.

The feature selection procedure is based on the vectors f 1. This procedure takes two numerical
parameters k, k1, with k1 " k, and works in two steps, as follows. In the first step we compute, for each
ith feature the relative difference δi between its mean value across sentences of the two sets:

δi “

ˇ

ˇ

ˇ

1
|S`L |

ř

S`L
f 1i ´

1
|S´L |

ř

S´L
f 1i

ˇ

ˇ

ˇ

maxS`LYS
´
L
f 1i

We then select the k1 features with the largest δi—among those for which maxS`LYS
´
L
f 1i ą 0. In the

second step we compute, for each ith feature among the k1 selected at the previous step, the mutual
information Ii with the label—the label being a binary value which is positive for elements in S`L and
negative for elements in S´L . We then select the k features with the greatest Ii.
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Accuracy FPR FNR
Classifier avg sd avg avg
Ann.-Co-occurrence 77.8 40.0 4.5
Ann.-LLL05-patterns 82.3 25.0 10.5

Words-NaiveBayes 51.3 25.0 95.0
Words-SVM 73.8 29.0 23.5

φ-SSLEA 59.8 3.8 44.0 33.5
Our method 73.7 1.7 23.5 22.5

Table 7.4: Results of our method and the 5 baselines.

We built two binary classifiers with this scheme, which we call Words-NaiveBayes and Words-SVM,
respectively. Concerning the feature selection parameters k1 and k, we set k1 “ 1000 for both the
classifiers and we chose the value of k for which each classifier obtained the best accuracy on the learning
sets, i.e., k “ 25 for Words-NaiveBayes and k “ 50 for Words-SVM. Concerning SVM parameters, we
used a Gaussian radial kernel with the cost parameter set to 1.

7.4.2 Results

We executed a 5-fold cross-validation, i.e., we generated 5 different problem instances from the corpus at
random. For each instance we used « 80% of the data for learning and « 20% for testing, i.e., we built
the learning sets S`L , S´L (with |S`L | “ |S

´
L | “ 188) and left two testing sets S`T , S´T aside for assessing

the accuracy of the generated classifiers (with |S`T | “ |S
´
T | “ 40). We used the very same learning sets

and testing sets for all the considered methods—our method and the baseline methods described in the
previous section. For φ-SSLEA and our method, which are stochastic, we repeated the execution 10 times
for each fold.

Table 7.4 shows the results obtained by the 6 methods. The results are expressed in accuracy, FPR and
FNR, averaged across the 5 folds: for the two stochastic methods, we also report the accuracy standard
deviation of the 10 executions averaged across the 5 folds.

It can be seen that our method and Words-SVM obtain the highest accuracies (« 74%) among those 4
methods which learn a classifier only from examples and dictionaries—i.e., without any problem-specific
knowledge. GP is indeed able to learn syntax patterns from examples effectively, even in NLP scenarios
of practical interest. We believe this result is particularly relevant.

The accuracy of the two problem-specific classifiers is 82.3% and 77.8% for Annotations-LLL05-
patterns and Annotations-Co-occurrence, respectively. We believe that the better accuracy exhibited by
these methods is not surprising having considered that these methods build on a substantial amount of
problem-specific knowledge, as clarified above. Indeed, the accuracy of Annotations-Co-occurrence is
only slightly better than our method.

It is interesting to note that the accuracy obtained by φ-SSLEA is much worse than ours although
the two approaches are based, broadly speaking, on similar tools—evolutionary learning of a DFA vs.
evolutionary learning of sets of regular expressions. While this result might appear somewhat surprising—
as pointed out above, φ-SSLEA exhibits state-of-the-art performance in DFA learning—we believe the
reason is because benchmark problems in DFA learning consider short sequences of binary symbols, with
training data drawn uniformly from the input space. Settings of this sort do not fit the needs of practical
NLP applications, which have to cope with much longer sequences of symbols, from a much larger
alphabet, not drawn uniformly from the space of all possible sequences. Our interpretation is corroborated
by earlier claims from different authors: benchmark problems for DFA learning from examples are not
inspired by any real world application [60] and the applicability of the corresponding learning algorithms
to other application domains is still largely unexplored [40].

Figure 7.2 shows one of the classifiers obtained during our experimentation, composed of two regular
expressions. For the sake of comprehension, expressions are shown using annotations (A1) instead of
symbols of U . It can be seen that the generated expressions include salient annotations (GENEPTN
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r1 “ GENEPTN [ ˆ RB ] [ ˆ NNS VBN GENEPTN ] ++

GENEPTN [ ˆ LRB DT NNS RRB ] [ ˆ LRB NNS ]

r2 “ . INOUN IN GENEPTN . [ ˆ DT NN ]

Figure 7.2: An example of a generated classifier composed of two regular expressions, shown using annotations,
instead of symbols of U , for readability.

and INOUN) although those annotations were not given any special status. The two patterns are not
easily readable, which is not surprising since we did not include any mechanism for favoring readable
expressions. Indeed, readability could be a valuable objective to be pursued and we plan to investigate
this respect in future work.

7.5 Remarks

In this chapter we presented an evolutionary method for learning syntax patterns in natural text from
examples. We applied this method to a sentence classification problem from the biomedical domain that
is practically relevant and very challenging.

Our method is based on GP and builds on recent results for the automatic generation of regular
expressions from examples of the desired behavior. We propose a technique for representing sentences
as strings of symbols which can be manipulated by common regular expressions. Symbols correspond
to POS annotations augmented with problem-specific dictionaries. Working at the abstraction level of
POS annotations has many practical advantages, including modularity and the possibility of leveraging
the steadily improving state-of-the-art in this area. The number of patterns to be learned from a set
of example sentences is not known in advance, but is instead automatically determined by means of a
separate-and-conquer procedure.

We assessed experimentally our method on a challenging corpus of 456 hand-labeled sentences and
compared it against 5 significant baseline methods. We obtained good results which indicate that GP may
indeed learn syntax patterns from examples effectively, even in NLP scenarios of practical interest.





Chapter 8
Syntactical Similarity Learning
by means of Grammatical Evolution

8.1 Overview

Many solutions to practically relevant applications are based on techniques that rely on a form of
similarity between data items, i.e., on a quantification of the difference between any pair of data items
in a given feature space. Although such a similarity may be quantified by many different generic
functions, i.e., distances or pseudo-distances, a wealth of research efforts have advocated the usage of
similarity functions that are learned from collections of data pairs labelled as being either “similar” or
“dissimilar” [36,123,215]. Indeed, similarity functions constructed by a similarity learning algorithm have
proven very powerful in many different application domains, as such functions may capture the application-
specific similarity criterion described by the available examples in a way that fits the application needs
more effectively than a generic distance definition.

In this chapter, we focus on the problem of learning a similarity function suitable for syntax-based
entity extraction from unstructured text streams. The identification of strings which adhere to a certain
syntactic pattern is an essential component of many workflows leveraging digital data and such a task
occurs routinely in virtually every sector of business, government, science, technology. Devising a
similarity function capable of capturing syntactic patterns is an important problem as it may enable
significant improvements in methods for constructing syntax-based entity extractors from examples
automatically [15, 17, 21, 22, 23, 44, 55, 60, 84, 133, 152]. We are not aware of any similarity definition
capable of (approximately) separating strings which adhere to a common syntactic pattern (e.g., telephone
numbers, or email addresses) from strings which do not.

We propose an approach based on GE, in which we explore systematically a similarity definition
space including all functions that may be expressed with a specialized, simple language that we have
defined for this purpose. The language includes the basic flow control, arithmetic and relation operators.
It is expressive enough to describe important, existing similarity definitions, that we use as baseline in our
experimental evaluation. A candidate solution, i.e., an individual, represents a program in the language
which takes a pair of strings as input and outputs a number quantifying their similarity. Programs are
executed with a virtual machine that we designed and implemented. The virtual machine is necessary
only for assessing the quality of candidate solutions during the evolutionary search: the final solution can
obviously be implemented in a more compact and more efficient way based on the specific technology in
which the learned similarity function will be inserted.

We assessed our proposal on several tasks representative of practical applications, each task being a
large text stream annotated with the strings following a task-specific pattern. We emphasize that we did
not learn one similarity definition for each task: instead, we learned a single similarity function from all
tasks except for one and then evaluated the behavior of the learned similarity function on the remaining
task—i.e., on a syntactic pattern that was not available while learning. The results, averaged across all
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the tasks, demonstrate that the proposed approach is indeed feasible, i.e., it is able to learn a similarity
function capable of (approximately) separating strings based on their adherence to a given syntactical
pattern. Most importantly, the learned function is more effective than the Levenshtein distance and the
Jaccard similarity index.

An evolutionary approach to metric learning can be found in [146]. The cited work proposes a general
approach for multi-label clustering problems in a given feature space. We focus instead on a different and
more specific problem: syntax-based entity extraction from unstructured text streams. Furthermore, we
aim at learning a similarity function and do not insist in requiring that the learned function be a distance.
Several proposals have advocated genetic approaches to similarity learning in the context of case-based
reasoning [195, 211, 212]. In those cases, though, the problem was learning a meaningful similarity
criterion between problem definitions, to enable effective comparison of a new problem to a library of
known, already solved problems. We consider instead similarity between pairs of strings that are a small
part of a problem instance. Our problem statement follows a common approach in similarity learning:
input data consist of pairs of data points, where each pair is known to belong to either the same class (i.e.,
the same pattern) or to different classes [215]. An alternative framework is based on input data which
consist of triplets of data points pa, b, cq labelled with the information regarding whether a is more similar
to b or to c [103, 183, 213]. Such a relative comparisons framework has proven to be quite powerful, in
particular, for clustering applications. A relative comparison approach could be applied also to our entity
extraction problem and indeed deserves further investigation.

8.1.1 Problem statement

The problem input consists of a set of tasks tT1, . . . , Tnu where each task describes a syntactic pattern by
means of examples. Task Ti consists of a pair of sets of strings pPi, Niq: Pi contains strings which adhere
to the ith pattern while Ni contains strings which do not adhere to that pattern. The problem consists in
learning a similarity function m̂ps, s1q which, given two strings s, s1, returns a similarity index capable of
capturing to which degree s and s1 adhere to the same (unknown) syntactic pattern. That is, intuitively,
pairs of strings in Pi should be associated with a “large” similarity index, while pairs consisting of a
string in Pi and a string in Ni should be associated with a “small” similarity index. Furthermore, this
requirement should be satisfied for all tasks by the same function m̂.

In details, the ideal learned function should satisfy the following requirement:

@i P t1, . . . , nu,@x PMpPi, Niq,@y PMpPi, Piq, x ă y (8.1)

where MpS, S1q “ tmps, s1q : s P S, s P S1u. For a given problem input, a function satisfying
Equation 8.1 may or may not exist; and, even if it exists, a learning algorithm may or may not be capable
of learning that function.

8.2 Our approach

8.2.1 Search space and solution quality

We consider a search space composed of functions that may be expressed with the language L described
in Figure 8.1 in the Backus-Naur Form (BNF). The available mathematical operators are defined in the
rule concerning the xValueReturningFunctiony non-terminal while relation operators are defined in rule
concerning the xConditiony non-terminal. The language includes basic flow control operators and allows
defining numeric variables and arrays dynamically. Access to variables and array elements occur by index.

The language is expressive enough to describe commonly used similarity indexes: in particular, we
described the Levenshtein distance and the Jaccard similarity index—which we used in our experimental
evaluation as baselines—using this language.

We propose an evolutionary approach based on Grammatical Evolution (GE) [161, 179]. GE is an
evolutionary framework where candidate solutions (individuals) are represented as fixed-length numeric
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Rules

1. xBlockCodey ::= xRowOfBlockCodey
2. xStatementy ::= xAssigny | xCreateArrayy | xCreateVariabley | xFory | xIfy |

xReturny | xSetArrayItemy
3. xValueReturningFunctiony ::=xConstanty | xGetVariableValuey | xAddy | xDecrementy |

xMaximumy | xMinimumy | xGetArrayItemy | xGetArrayLengthy | xDivisiony |
xMultiplicationy

4 xAssigny ::= var[xValueReturningFunctiony] = xValueReturningFunctiony
5. xCreateArrayy ::= newArray[xValueReturningFunctiony]
6. xCreateVariabley ::= createVariable()
7. xDivisiony ::= (xValueReturningFunctiony / xValueReturningFunctiony)
8. xFory ::= for(index0 = 0; index0 < xValueReturningFunctiony; index0++) xBlockCodey
9. xIfy ::= if(xConditiony) xBlockCodey else xBlockCodey

10. xReturny ::= return xValueReturningFunctiony
11. xSetArrayItemy ::= array[xValueReturningFunctiony][xValueReturningFunctiony] =

xValueReturningFunctiony
12. xAddy ::= xValueReturningFunctiony + xValueReturningFunctiony
13. xSubtracty ::= xValueReturningFunctiony - xValueReturningFunctiony
14. xMaximumy ::= maximum(xValueReturningFunctiony,xValueReturningFunctiony)
15. xMinimumy ::= minimum(xValueReturningFunctiony,xValueReturningFunctiony)
16. xMultiplicationy ::= xValueReturningFunctiony * xValueReturningFunctiony
17. xGetArrayItemy ::= array[xValueReturningFunctiony][xValueReturningFunctiony]
18. xGetArrayLengthy ::= array[xValueReturningFunctiony].length
19. xConstanty ::= 0 | 1 | ... | 255
20. xGetVariableValuey ::= var[xValueReturningFunctiony]
21. xRowOfBlockCodey ::= xStatementy | xStatementy \n xRowOfBlockCodey
22. xConditiony ::= xEqualConditiony | xNotEqualConditiony |

xGreaterConditiony | xGreaterOrEqualConditiony
23. xEqualConditiony ::= xValueReturningFunctiony == xValueReturningFunctiony
24. xNotEqualConditiony ::= xValueReturningFunctiony != xValueReturningFunctiony
25. xGreaterConditiony ::= xValueReturningFunctiony > xValueReturningFunctiony
26. xGreaterOrEqualConditiony ::= xValueReturningFunctiony >= xValueReturningFunctiony

Alternative rules

2. xStatementy ::= xCreateVariabley
3. xValueReturningFunctiony ::= xConstanty
21. xRowOfBlockCodey ::= xStatementy

Figure 8.1: BNF grammar for the language L: below the set of alternative rules (see text).
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sequences. Such sequences (genotype) are translated into similarity functions (phenotype) by means of a
mapping procedure which uses the production rules in a grammar definition. After early experimentation,
we chose to tailor several aspects of the general GE framework to our specific problem.

In our case, we represent an individual with a genotype consisting of a tuple g P r0, 255sngen , where
each gi element is a positive 8-bit integer. We chose ngen “ 350 because with such value we were able to
obtain, from two suitable genotypes, the phenotypes corresponding to the Levenshtein distance and the
Jaccard similarity, according to the mapping procedure described below. Given a genotype, we obtain the
corresponding phenotype, i.e., a similarity function expressed as a program l in the language L, according
to an iterative mapping procedure which works as follows, starting with l “ xBlockCodey and i “ 0:
(i) we consider the first occurrence of a non-terminal in l and the corresponding rule in the BNF grammar
for L; (ii) among the nrule ě 1 alternatives (i.e., possible replacements separated by | in the rule), we
choose the pj ` 1qth one, with j equals to the remainder between gi and nrule; (iii) we increment i by
one: if i exceeds ngen, we set to 1. The procedure is iterated until no more non-terminals exist in l: since
it is not guaranteed that this condition is satisfied in a finite number of iterations, we implemented a
mechanism to overcome this limitation. We associate a number c with each non-terminal x in l: the
value of c is set to 0 for the starting non-terminal xBlockCodey, or to c1 ` 1 otherwise, where c1 is the
number associated with the non-terminal whose replacement lead to the insertion of x in l. Whenever a
non-terminal among xStatementy, xValueReturningFunctiony, and xRowOfBlockCodey has to be replaced,
if its c exceeds a parameter cmax “ 40, we use the alternative rules shown at the bottom of Figure 8.1
instead of the original ones for those non-terminals—in other words, with this mechanism we pose a depth
limit on the derivation trees.

We quantify the quality of an individual encoding a similarity function m by its fitness fpmq, that we
define as follows. Given a numeric multiset I , let Ip% indicate the smallest element i P I greater or equal
to the p percentile of elements in I . Given a pair of numeric multisets pX,Y q, we define the overlapness
function opX,Y ; pq P r0, 1s as follows:

opX,Y ; pq “
|tx P X : x ě Yp%u| ` |ty P Y : y ď Xp100´pq%u|

|X| ` |Y |
(8.2)

Intuitively, opX,Y ; pq measures the degree of overlapping between elements of X and Y , assuming
that elements in X are in general smaller than elements of Y : when X and Y are perfectly separated,
opX,Y ; pq “ 0,@p. The value of p is used to discard extreme (greatest forX and smallest for Y ) elements
in the multisets. The fitness fpmq P r0, 1s of m is given by:

fpmq “
1

2n

n
ÿ

i“1

o
`

MpPi, Niq,MpPi, Piq; 10
˘

` o
`

MpPi, Niq,MpPi, Piq; 0
˘

(8.3)

where MpS, S1q is defined as for Equation 8.1. In other words, the fitness of m is the average overlapness
over the tasks in tT1, . . . , Tnu: for each task, fpmq takes into account the average between the overlapness
of the two multisets MpPi, Niq and MpPi, Piq computed on the whole multisets and after discarding
10% extreme values. The rationale for the latter design choice is to avoid giving too much importance to
possible outliers in the data. Note that a similarity function satisfying Equation 8.1 has zero fitness—i.e.,
fitness should be minimized.

During the evolutionary search, we evolve a fixed-size population of npop individuals for niter “ 200
generations by means of the mutation and two-point crossover genetic operators, which are applied to
individuals selected by means of a tournament of size 3.

8.2.2 Virtual Machine

We designed and implemented a virtual machine (VM) capable of executing programs in language L. A
VM program execution takes a pair of strings ps, s1q as input and returns the value mps, s1q, m being the
similarity function represented by the program.
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As described in Section 8.2.1, the language allows defining numeric variables and arrays dynamically
with access occurring by index. VM provides a running program with a list of numeric variables and a list
of numeric arrays. Indexes start from 0 and when a new variable is created the next free index is used: the
actual variable/array being accessed is determined by the reminder of i

nv
. When execution starts, VM

creates two arrays into the arrays list, one for s and the other for s1: the ith element of each array contains
the UTF-8 representation of the ith character in the corresponding string. The execution stops when a
return statement is reached or when the last instruction has been executed: in the latter case, the returned
value is mps, s1q “ 0.

A VM program execution may fail, in which case execution terminates and the returned value is
mps, s1q “ 0. Failure occurs when one of the following conditions is met: division by zero; maximum
number nmax of executed instructions exceeded; maximum array size narray exceeded—we set nmax “

40 000 and nmax “ 10 lengthpsq lengthps1q.

8.3 Experimental evaluation

As described previously, a task describes a syntactic pattern by means of examples, i.e., each task consists
of a pair of sets of strings pPi, Niq: Pi contains strings which adhere to the pattern while Ni contains
strings which do not adhere to the pattern. We assess our proposal on several datasets representative of
possible applications of our similarity learning method (the name of each dataset describes the nature of
the data and the type of the entities to be extracted): HTML-href [17, 22, 23], Log-MAC+IP [17, 22, 23],
Email-Phone [17,22,23,44,133], Bills-Date [21,23], Web-URL [17,22,23,133], Twitter-URL [17,22,23].
Each dataset consists of a text annotated with all and only the snippets that should be extracted.

We constructed a task pP,Nq for each such dataset, as follows. Let d denote the annotated text in the
dataset. Set P contains all and only the strings that should be extracted from d. Set N contains strings
obtained by splitting the remaining part of d. It follows that no pair of elements in P YN overlap. The
splitting procedure is based on a tokenization heuristics that (approximately) identifies the tokens that
delimit P strings in d; those tokens are then used for splitting N strings in d as well. For example, if
strings in P are delimited by a space, then we split the remaining part of d by spaces and insert all the
resulting strings in N . The details of the heuristic are complex because different P strings could be
delimited by different characters—we omit the details for ease of presentation.

We performed a cross-fold assessment of our proposed method, i.e., we executed one experiment
for each of the 6 tasks resulting from the available datasets. In each ith experiment we executed our
method on a learning set consisting of all but the ith task. We obtained the actual jth pair pP 1j , N

1
jq of the

learning set by sampling 2nex items of the corresponding pPj , Njq, i.e., |P 1j | “ |N
1
j | “ nex, with P 1j Ď Pj ,

N 1j Ď Nj , where nex is a parameter of the experiment which affects the amount of data available for
learning.

We used the remaining task pPi, N 1iq (i.e., all of the examples in Pi and a number |N 1i | “ |Pi| of
examples sampled randomly from Ni) for quantifying the quality of the learned similarity function
m‹—m‹ being the individual with the best fitness after the last generation. Note that we assessed m‹ on
a task different from the tasks that we used for learning it.

For each task, we repeated the experiment for 5 times, each time using a different random seed. We
considered the following indexes for each experiment, which we averaged across the 5 repetitions: the
learning fitness LF, i.e., the fitness of m‹ on the learning set; the testing fitness TF, i.e., the fitness of m‹

on pPi, N 1iq; the number #I of instructions in m‹; the average number #S of executed instructions while
processing pairs in pPi, N 1iq with m‹.

We explored two different values for the population size npop, 50 and 100 individuals, and three
different values for the cardinality of sets of examples nex: 10, 25 and 50.

Table 8.1 provides the key results (with nex “ 50 and npop “ 50), separately for each dataset and
averaged across all datasets. To place results in perspective, we provide all indexes (except for LF) also
for two baseline definitions: the Levenshtein distance, which counts the minimum number of character
insertions, replacements or deletions required to change one string into the other, and the Jaccard similarity
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Table 8.1: Results of our method, with nex “ 50 and npop “ 50, and the baselines. Best TF figure highlighted.

Task LF TF #I #S [ˆ106]
GE GE Jac. Lev. GE Jac. Lev. GE Jac. Lev.

HTML-href 0.45 0.42 0.64 0.91 1877 174 103 0.22 3.49 2.25
Log-MAC+IP 0.44 0.08 0.82 0.91 179 174 103 0.06 0.42 0.75
Email-Phone 0.43 0.64 0.56 0.90 352 174 103 0.41 4.62 3.64
Bills-Date 0.49 0.85 0.59 0.90 1116 174 103 1.56 2.71 5.19
Web-URL 0.40 0.30 0.43 0.92 151 174 103 0.72 23.8 10.00
Twitter-URL 0.48 0.30 0.29 0.90 147 174 103 0.84 6.28 8.10

Average 0.45 0.43 0.55 0.90 637 174 103 0.64 6.90 4.99

Table 8.2: Results (including learning time tl) for different values of npop and nex.

npop nex LF TF #I #S [ˆ106] tl [s]

50
10 0.37 0.45 552 0.59 52
25 0.43 0.44 3076 0.56 245
50 0.45 0.43 637 0.64 715

100
10 0.34 0.50 1138 2.76 110
25 0.40 0.48 1224 0.94 326
50 0.38 0.49 443 0.44 1056

index, which considers each string as a set of bigrams and is the ratio between the intersection and the
union of the two sets. The key result is that, on average, the definitions synthesized by our method exhibit
the best results. By looking at individual tasks, our synthesized definitions outperform Jaccard in three
tasks, are nearly equivalent in one task and are worse or slightly worse in the two remaining tasks. Thus,
the similarity functions synthesized by our method are more effective at separating strings based on their
adherence at a certain syntactic pattern with respect to the traditional Levenshtein and Jaccard metrics.

Table 8.2 provides further insights into our method by providing results averaged across all tasks
for various combinations of available examples nex and population size npop. It can be seen that, with a
larger population (npop “ 100), the amount of learning examples does not impact TF significantly, but
more examples lead to more compact and more efficient solutions (smaller #I and #S, respectively). On
the other hand, the configuration with smaller population (npop “ 50) exhibits a slight but consistent
improvement in TF when the amount of examples grows. It can also be observed that more examples
lead to solutions with varying length but that tend to be more efficient (no clear trend in #I and decreasing
#S, respectively). This observation suggests that our method might perhaps be improved further by a
multiobjective optimization search strategy, where the fitness of an individual would take into account not
only its ability of capturing similarity as specified in the learning examples (to be maximized) but also the
length of the individual (to be minimized).

Table 8.2 also shows the learning time tl, averaged across repetition: we performed the experiments
on a platform equipped with an Intel Core i7-4720HQ (2.60 GHz) CPU and 16 GB of RAM.

8.4 Remarks

We have investigated the feasibility of learning a similarity function capable of (approximately) separating
strings which adhere to a common syntactic pattern (e.g., telephone numbers, or email addresses) from
strings which do not. We are not aware of any similarity function with this property, which could enable
significant improvements in methods for constructing syntax-based entity extractors from examples
automatically—in many application domains, similarity functions learned over labelled sets of data points
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have often proven more effective than generic distance definitions.
We have proposed a method based on Grammatical Evolution which takes pairs of strings as input,

along with an indication of whether they follow a similar syntactic pattern. The method synthesizes a
similarity function expressed in a specialized, simple language that we have defined for this purpose.

We assessed our proposal on several tasks representative of practical applications, with an experimental
protocol in which we learned a similarity function on a given set of tasks (i.e., patterns) and we assessed
the learned function on a previously unseen task. The results demonstrate that the proposed approach
is indeed feasible and that the learned similarity function is much more effective than the Levenshtein
distance and the Jaccard similarity index.

We plan to extend our investigation in two ways: first, synthesize a more powerful similarity function,
by using a broader set of patterns and a larger amount of labelled data points; in this phase there may
certainly be room for further improvements to our Grammatical Evolution method; next, take advantage
of the learned similarity function in order to improve methods for syntax-based entity extraction.





Chapter 9
Continuous and Non-Intrusive
Reauthentication of Web Sessions
based on Mouse Dynamics

9.1 Overview

Stealing of authentication credentials has become a first class security problem which cannot be considered
an exceptional event.Mechanisms capable of complementing the traditional authentication procedures,
which are based on knowledge of a certain password or possession of a certain cryptographic key,
would be highly desirable. Approaches which have been proposed in this respect include usage of
the stream of events generated at the human-machine boundary as a “behavioral biometric” property
which can be univocally associated with each user—keystrokes [100, 201], mouse trajectories and
clicks [5, 114, 151, 153, 188, 189, 201], touch-screen interactions [73]. By comparing the stream of events
in a certain session to a previously collected ground truth, one may perform additional authentication
checks with high accuracy. Approaches of this kind usually assume that the client machine is instrumented
with software capable of collecting all the user-generated events of interest, either at login time or
continuously in the background. We believe that this requirement may be too difficult to satisfy in practice,
especially for large organizations, and in this work we investigate the feasibility of an alternative approach
which is much simpler to implement and deploy.

In this chapter we consider the problem of using mouse dynamics for continuous reauthentication in a
setting where no specific software may be installed on client machines and mouse-generated events are
available only for web traffic. The model resulting from these assumptions allows integrating continuous
reauthentication capabilities into the existing infrastructure of large organizations easily. In particular,
our model fits several key scenarios: web applications hosted in the cloud, where users authenticate
with standard mechanisms; organizations which allow locally authenticated users to access external web
applications, and enterprise applications hosted in local servers or private cloud facilities.

The problem of identifying users by means of biometric data comes in two flavors [158]: verification,
in which the system is required to check whether the current user is really the user he/she claims to be; and
identification, in which the system is required to identify which is the current user amongst a population
of known users. In principle, mouse dynamics might be used for both verification and identification.
In this work, we consider a form of verification, because we assume that the connected user claims a
certain identity by successfully executing some authentication procedure (the specifics of this procedure
are irrelevant). The task of the system consists in continuously checking the actual mouse dynamics
and generating an alert in case the observed data do not fit the mouse dynamics of the claimed user. In
other words, we do not advocate usage of mouse dynamics as the only tool for authenticating users and
suggest instead its use as a layer for a defense-in-depth strategy, i.e., as a complement to other forms of

99
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authentication, intrusion detection, and so on. In this respect, mouse dynamics fit neatly into an emerging
framework where authentication credentials are considered just one of the multiple signals to be used for
authenticating humans [41]. The threat model assumes an attacker who impersonates a legitimate user in
web browsing sessions which last for several minutes on a mouse-equipped platform. This model fits, in
particular, credential stealing scenarios where an attacker occasionally or routinely accesses an account
fraudulently. The model does not address attackers who perform a session lasting just a few seconds
(more details in Section 9.3.3).

Our contribution is the following: (a) we describe a system for capturing GUI-related events for
web traffic which does not require any specific software to be installed on client machines and is
fully transparent to both users and web sites; (b) we describe a procedure for performing continuous
reauthentication (i.e., frequent verification of the claimed user identity) based on the observed mouse-
generated events; and, (c) we show, based on real data collected in two distinct working environments,
that despite the intrinsic limitations of the collection procedure, with respect to the commonly adopted
approach of instrumenting client machines for collecting all user activities, the system exhibits accuracy
aligned with the state-of-the-art.

Our system consists of an HTTP proxy which may be deployed either close to servers or close to
clients, and of a specialized Collector application. The proxy is configured for injecting JavaScript
code which captures mouse-generated events into all web documents fetched through the proxy. The
JavaScript code then sends the collected events in batches to the Collector, which performs continuous
reauthentication in the background by comparing the observed mouse dynamics to the mouse dynamics of
the claimed user. The proxy also rewrites the fetched web documents in order to circumvent the Same
Origin Policy enforced by browsers [1], which would prevent the transmission of data to Collector while
interacting with pages fetched from a different web site.

We construct mouse dynamics in a feature space similar to several earlier proposals (e.g., [5, 188])
and composed of 39 features related to position, speed, acceleration, and so on. In order to minimize the
amount of events to be collected and sent to the Collector, we chose to: (a) construct a new feature vector
only when there is a pause of at least 500 ms in mouse usage; and (b) use in each feature vector only a small
amount of the events immediately preceding each pause. As it turns out from our experimental evaluation,
this design choice does not harm detection accuracy. We execute continuous reauthentication whenever
there is a new feature vector available, by applying a Support Vector Machine calibrated specifically for
the user who claims to be connected. We generate an alert whenever the number of recent feature vectors
which do not fit the expected profile exceeds a certain user-dependent threshold. This simple filtering
boosts the accuracy which one would obtain by considering only the last feature vector generated, while at
the same time keeping the time required for generating the first alert in the order of the tens of minutes—a
reaction time which, in our opinion, is both reasonable and realistic for a reauthentication mechanism
of this kind applied to the considered threat model. We remark that the choice of the threshold is based
on training data only and is an integral part of our calibration methodology, that is, we do not focus our
analysis on the threshold values which happen to provide the best performance on testing data.

We assess our proposal with real data from 24 users, collected during normal working activity for
several working days. We obtain accuracy in the order of 97%, which is aligned with earlier proposals
requiring instrumentation of client workstations for intercepting all mouse activity.

9.2 Data capture system

Our data capture system is fully transparent to both the user and the target web sites. That is, the user
navigates with a normal browser and the target web sites do not need to be modified in any way. The
system consists of: (a) a web application which we developed and that we call Collector; and (b) a
proxy which must be placed in between the browser and the target web sites. The system captures all
mouse-related events generated by web traffic which travels through the proxy. Each user may thus use
his/her preferred browser. The two components need not be physically separated, that is, an organization
might choose to integrate Collector in the proxy.
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The Collector is composed of a server side code (Collector-S) and a client-side code executed by the
browser (Collector-C). Collector-C records all the mouse-related DOM events generated by the user and
periodically sends a description of these events to Collector-S, which performs continuous reauthentication
in the background by comparing the observed mouse dynamics to the mouse dynamics of the claimed
user and alerts administrators in case of a mismatch. Collector-C is able to record also keyboard-related
events, which may potentially improve the quality of continuous reauthentication even further, but we
have not exploited this possibility in this work. We developed Collector with the Google Web Toolkit
(GWT). GWT is a Java framework which allows writing AJAX web applications entirely in Java and is
able to transcompile Java code directly in JavaScript code ready to be executed by any web browser.

The proxy: (i) injects the Collector-C code into all the pages sent to the browser, to make it possible
recording user’s actions transparently to the target site; and (ii) redirects part of the web traffic so as to
enable communication between Collector-C and Collector-S without violating the same origin policy
(SOP) [1] implemented by modern browsers (see below). The code injected by the proxy takes this form:
<script type="text/javascript" src="/GWT-Observer/observer.js"></script>
Upon parsing the received page, the browser will fetch the JavaScript code—i.e., the Collector-C code—
from the specified src location and execute that code locally. The results produced by Collector-C are
sent to /GWT-Observer. Since both the src location and the /GWT-Observer are specified by
means of a relative URL, the browser treats our code as if it was part of the monitored web application. In
other words, the browser is tricked into believing that Collector-C is fetched from the target web site and
communicates with that site. The proxy is configured so as to reroute any traffic to /GWT-Observer
toward the server in our control which actually executes the Collector-S code.

For example, suppose the browser fetches the New York Times home page (http://www.nytimes.com).
When the browser renders the received HTML page, it generates a request for fetching the JavaScript
code from http://www.nytimes.com/GWT-Observer/observer.js. This request will not
be served by the web server at http://www.nytimes.com; instead, it will be rerouted by the proxy
to a server in our control. The same rerouting will be applied to all HTTP traffic generated by execution
of the Collector-C code, which is directed toward http://www.nytimes.com/GWT-Observer.

The Collector-C code is obfuscated and its size is approximately 70 kB, which drops to approximately
22 kB if the browser accepts compressed content. Upload bandwidth usage is in the order of 2.5 kB/s.
Although we have not performed a systematic performance analysis, we have not experienced any
observable performance penalty during continued usage of the system for our normal working activity.
This is not surprising having considered that navigation in modern web sites involves loading many
thousands of JavaScript functions whose aggregate size is in the order of the MegaBytes [2]. Indeed,
an indirect proof that our approach does not hurt performance is that several large providers are already
recording mouse-generated events of their users [4].

The system is highly flexible and may be deployed in a variety of ways. It could be deployed at the
organization hosting the web application or at the boundary of an organization for monitoring all outbound
web traffic. In the former case the system would monitor a web application, while in the latter it would
monitor client workstations. The system could also be placed within an organization and configured to
monitor only accesses to certain web applications, which could be either local in the organization or
hosted elsewhere.

The system is able to handle also encrypted HTTPS traffic. In case the target web application is not in
the same administrative domain of our system, monitoring of HTTPS traffic requires the user to accept
a self-signed certificate sent by the proxy in place of the certificate sent by the target application. For
example, within our University, HTTPS connections to the exam registration system—an attractive target
for credential stealing [3, 105]—would not require any specific actions from the user, while connections
to GMail or Facebook, as example, would involve accepting a self-signed certificate generated by the
proxy—which, of course, needs to be part of the trusted computing base.
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9.3 Mouse Dynamics

Each mouse-related DOM event e captured by Collector-C is composed of the following information:
(i) timestamp, denoted tpeq; (ii) cartesian coordinates of the mouse position with respect to the browser
viewport, denoted xpeq and ypeq; (iii) event type speq, which can be one among click, double-click and
movement. Collector-C captures events with a time resolution which depends on several factors, including
the browser, the client processing power, and so on: we found in our experimentation that the mean time
resolution was 25 ms and the median time resolution was 8 ms. Collector-C sends the collected events to
Collector-S in batches, every few seconds. Collector-S extracts certain features from the collected events
(Section 9.3.1) and compares the observed mouse dynamics to the mouse dynamics of the claimed user
(Section 9.3.2).

9.3.1 Features extraction

Given the stream of events pe1, e2, . . . q generated by each user, we construct a sequence T of trajectories.
Each trajectory T represents how the user moved the mouse in a time span delimited by pauses and is built
from the stream of events as follows: (i) we identify all the events ek such that tpek`1q ´ tpekq ą 500 ms;
(ii) we split the stream in one or more non-overlapping subsequences, each terminated by one of such
events; (iii) we discard all subsequences composed of less than NT “ 10 events; (iv) in each remaining
subsequence, we put all the NT events immediately preceding the last event (included) in T and discard
the other events; (v) we add T to T and sort T by the timestamp of the first event in each trajectory.
In other words, all trajectories are composed of NT events and we generate a new trajectory whenever
there is a pause in the stream of mouse-generated events lasting at least 500 ms. We chose to split the
mouse-generated stream of events based on pauses and to focus on the final part of each trajectory, based
on the assumption that this segmentation allows keeping communication needs to a minimum while
at the same time capturing the specific mouse-related tasks to be accomplished (i.e., menu selection,
point-and-click, and so on).

We associate a feature vector fpT q P R39 with each trajectory T “ pe1, . . . , eNT
q, as follows. For

each sample ek in T , we compute:

• direction dk P t0, 45, 90, 135, . . . , 360u, computed as the direction of the vector pxpekq´xpek´1q, ypekq´
ypek´1qq, rounded to multiples of 45 degrees; we set dk “ 0 if and only if the vector has exactly
zero magnitude (i.e., the mouse did not move between ek´1 and ek);

• speed vk “
?
pxpekq´xpek´1qq

2`pypekq´ypek´1qq
2

tpekq´tpek´1q
;

• acceleration ak “
vk´vk´1

tpekq´tpek´1q
.

We compute direction and speed excluding k “ 1 and acceleration excluding k “ 1 and k “ 2.
The feature vector fpT q consists of the following features:

• duration of the trajectory, i.e., tpeNT
q ´ tpe1q;

• x-extent, i.e., maxNT
k“1 xpekq ´minNT

k“1 xpekq;

• y-extent, i.e., maxNT
k“1 ypekq ´minNT

k“1 ypekq;

• number of direction changes, i.e., the number of events ek for which dk ‰ dk´1;

• total covered distance, i.e.,
řNT
k“2

a

pxpekq ´ xpek´1qq2 ` pypekq ´ ypek´1qq2;

• average speed, i.e., 1
NT

řNT
k“2 vk

• prevalent direction, i.e., the direction occurring most often;
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• prevalent direction, without considering zero values;

• maximum distance between the event position (i.e., xpekq, ypekq) and the straight line connecting
pxpe1q, ype1qq to pxpeNT

q, ypeNT
qq;

• global direction, i.e., the direction of the vector pxpe1q ´ xpeNT
q, ype1q ´ ypeNT

qq, rounded to
multiples of 45 degrees as we did for dk;

• distance between the first and the last position, i.e.,
a

pxpe1q ´ xpeNT
qq2 ` pype1q ´ ypeNT

qq2;

• average speed of the last five events, i.e., 1
5

řNT
k“NT´4

vk;

• average speed of the first five events, i.e., 1
5

ř5
k“1 vk;

• counts of the 9 possible directions, i.e., for each n-th direction sector, with n “ 1, . . . , 9 being the
index for the set t0, 45, 90, 135, . . . , 360u, the n-th feature counts the number of events in T for
which dk “ n;

• NT ´ 2 features corresponding to the acceleration values a3, . . . , aNT
;

• NT ´ 1 features corresponding to the speed values v2, . . . , vNT
.

We hence obtain a sequence F of feature vectors from T , which is itself obtained from the stream of
events.

9.3.2 Detection methodology

We construct, in an initial off-line training phase, off-line a classifier for each authorized user to be used
in the actual on-line continuous reauthentication phase.

In the training phase, we proceed as follows. Let U´ be the authorized user and U`1 , U
`
2 , . . . a set of

other users. We collect a stream of events for each user and build the corresponding sequences of feature
vectors F´train and F`1,train, F

`
2,train, . . . , as explained in Section 9.3.1. Next, we train a Support Vector

Machine (SVM) binary classifier for the authorized user, the training data being composed of F´train, which
contains training negative instances, and F`train “ F`1,train Y F

`
2,train Y . . . , which contains training positive

instances. We truncate each F`i,train so as to obtain a balanced training data, i.e., such that |F`train| “ |F
´
train|

and |F`i,train| “ |F
`
i,train|,@i, j. We denote the size of the training data by ntrain “ |F

´
train| ` |F

`
train|.

We then compute a predefined threshold ŵ based on the training data, as follows:

ŵ “
1

2
w

˜

ˇ

ˇ

 

f P F´train : SVMpfq “ positive
(ˇ

ˇ

|F´|
`

ˇ

ˇ

 

f P F`train : SVMpfq “ positive
(ˇ

ˇ

|F`|

¸ (9.1)

where w is a system parameter described below. In other words, ŵ is set to the mid-point between the
False Rejection Rate (FRR) and the True Rejection Rate (TRR) on the training data, rescaled from r0, 1s
to r0, ws.

In the reauthentication phase, we proceed as follows. Let U´ be the claimed user (i.e., the one
who successfully performed an initial authentication) and U the actual connected user who should be
reauthenticated: the system collects the stream of events generated by U and constructs the corresponding
sequence of feature vectors F . Whenever the system generates a new feature vector f , i.e., whenever
there is a pause larger than 500 ms in the mouse-generated stream of events, the system: (i) classifies f
with the classifier trained for the claimed user U´—we say that the classification outcome SVMpfq is a
positive if f does not fit the mouse dynamics profile for U´; (ii) counts the number of positives generated
in the last w classifications; and (iii) in case the number of positives exceeds the predefined threshold ŵ
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(with 0 ď ŵ ď w), generates an alert. Our filtering strategy has some similarity with the “trust” value
associated with each individual classification in [151]. The cited work, though, provides an experimental
assessment where a threshold value is chosen based on all the available data—including testing data—and
does not detail the procedure which should be applied in practice, when operating solely on training data.

The technical details for informing Collector-S of which is the claimed user U´, as well as those for
selecting the corresponding classifier, are irrelevant to this discussion.

9.3.3 Discussion

Usage of mouse dynamics for continuous reauthentication involves solving a key design question. Let
MpU´q denote the mouse dynamics profile for a certain user U´. Shall the construction of MpU´q be
based solely on data generated by U´? In this respect, two approaches have been proposed: 1. labelled
data of mouse dynamics generated by U´ and by all the other users U`1 , U

`
2 , . . . known to the system are

used [5, 153]; or, 2. only data generated by U´ may be used [188, 189]. The rationale of approach 2 is
that, in a system involving a large and dynamic set of users, assuming that the profile of each user requires
data from every other user is not realistic. In this work, we followed approach 1, but we believe that the
features available to our system would make approach 2 feasible as well.

In this respect, we note that, actually, a third option exists which deserves to be investigated, namely
constructing MpU´q based on labelled data from U´ and from some users different from U´, as opposed
to all other users. We believe this option is worth exploring because, in our opinion, neither approach 1
nor approach 2 is intrinsically superior to the other. The essential issue is the separability of the features
generated by U´ from those generated by impostors. In this respect, since an accurate representation of
the mouse dynamics of impostors is not available, we believe it is not possible to tell a priori which of the
two approaches results in better separability. In this work, we chose not to follow this third option because
the available number of users is too small to perform a meaningful analysis—train the classifier for U´

with the users most similar to U´, or those who are most different from U´, or a randomly selected set.
As pointed out in the introduction, the threat model assumes an attacker who impersonates a legitimate

user on a mouse-equipped platform in web browsing sessions which last for several minutes. In principle
the model could address attackers who perform a short web session lasting just a few seconds, but we
believe that in these cases the number of events available to the detection machinery would be too small
to generate meaningful alerts, i.e., alerts associated with a reasonable level of accuracy. The threat model
could be extended to partly address injection of fraudulent requests in web sessions generated by the
legitimate user, for example through malware executing in the browser or in the client machine, or through
hijacking of HTTP sessions from a different node. To this end, the system should learn the set of HTTP
requests generated during mouse trajectories or shortly after them, and then it should generate an alert
when those requests occur at time instants which are too far away from the time intervals of the observed
mouse trajectories. Indeed, the ability to discriminate bot-generated traffic from human-generated traffic
based solely on webpage-embedded loggers of keyboard and mouse events with excellent accuracy and
negligible overhead, has been proven [59]. We have not addressed this extension in this work, though. Of
course, an attacker capable of accurately mimicking the traffic generated by Collector-C in a web session
originated by the victim user would be able to circumvent the system.

9.4 Experimental evaluation

9.4.1 Dataset

We collected two datasets in different environments and operating conditions, one consisting of a stream
of events generated by 6 users and the other by 18 users. In both cases data were collected during normal
working activity for several working days. Users of Dataset 1 were monitored for 4 weeks on the average
and operated on different hardware equipment, in terms of screen size, screen resolution, actual mouse
device—the data for each user being collected entirely on the same hardware. The average number of
trajectories per user in Dataset 1 is |T | “ 2927. Users of Dataset 2 were monitored for 2 weeks and
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Figure 9.1: Histogram of time intervals between consecutive trajectories (i.e., difference between the timestamp of
the corresponding first events) considering both the datasets.
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operated on homogeneous hardware equipment. The average number of trajectories per user in Dataset 2
is |T | “ 3229.

Concerning the way in which we collected the datasets, Dataset 1 reflects the scenario in which
the system is deployed by a web application provider: in this scenario, legitimate users access the
application mainly from their platform, whereas impostors will likely access from different platforms.
Dataset 2 reflects the scenario in which the system is deployed within an organization where platforms are
homogeneous.

Figure 9.1 shows an histogram of the time intervals between consecutive trajectories, i.e., difference
between the timestamp of the corresponding first events. It is important to remark that this distribution
has a long tail (note the log scale on the x axis): the reason is because the user interacts with the browser
and with other applications from which our machinery cannot collect mouse events. The considered
scenario is thus more challenging than one in which all mouse events can be captured: this affects the
trade-off between the classification accuracy which can be achieved and the observation time needed to
achieve it. In our dataset, if we consider a session of interaction with the browser a time span without any
pause longer than 10 min, then the average interval between consecutive trajectories within a session is
t̄ “ 16.2 s.

9.4.2 Procedure and results

For each user Ui in a dataset, (i) we built the sequence of events F´i and the set of sequences of events
F`j , i ‰ j, from the other users Uj in the dataset; (ii) we built the training data F´train, F

`
train as described in

Section 9.3.2, trained the SVM classifier and computed ŵ; (iii) we applied the classifier to the sequence of
feature vectors F´test “ F´zF´train and measured the False Rejection Rate (FRR); and (iv) finally, for each
j ‰ i, we applied the classifier to the sequence of feature vectors F`j,test “ F´j zF

´
jtrain and measured the

False Acceptance Rate (FAR)—we thus simulated that Uj is an impostor. We repeated the above procedure
2 times for each user Ui by changing the training set composition, in order to average disadvantageous or
advantageous random choices. We experimented on Dataset 1 only, Dataset 2 only, and union of Dataset 1
and Dataset 2—the latter only for one combination of w, ntrain. That is, we tested the profile of each user
against data of other 5, 17 and 23 users, respectively. We measured the performance in terms of FRR, FAR
(averaged across the simulated impostors Uj for the sake of brevity) and accuracy (i.e., 1´ FRR`FAR

2 ).
We experimented with ntrain P t1000, 1500, 2000u and with w “ t50, 100, 200, 350, 500u. The

number of users was not uniform across all the experiments because, in some configurations, the amount
of data available for some users was smaller than the amount of training data required by that configuration.

Table 9.1 shows the results for varying size of the training dataset ntrain, with w “ 500. As one would
expect, increasing ntrain indeed delivers better results. In a realistic scenario the user could be asked to
train the system for a longer time to improve performances. The second column of Table 9.1 shows the
Time to Train (TtT), which is the estimated time needed to collect the training data: TtT is computed
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Table 9.1: Results with different values of ntrain and w “ 500 for the two datasets. TtT is the Time to Train (see
text).

TtT Dataset 1 Dataset 2
ntrain (h) Acc. FAR FRR Acc. FAR FRR
1000 4.5 91.4 8.9 8.2 88.2 9.7 14.0
1500 6.8 95.0 6.9 3.1 89.6 8.1 12.7
2000 9.0 96.5 6.1 0.8 92.2 9.5 6.1

Table 9.2: Results with different values of w and ntrain “ 2000 for the two datasets. TtD is the Time to Detection
(see text).

TtD Dataset 1 Dataset 2
w (min) Acc. FAR FRR Acc. FAR FRR
50 13.5 83.3 16.6 16.7 76.4 21.8 25.4

100 27.1 88.5 12.8 10.2 81.4 17.5 19.6
200 54.1 93.5 9.2 3.8 86.6 13.5 13.3
350 94.7 95.6 7.9 1.0 90.6 10.8 8.0
500 135.3 96.5 6.1 0.8 92.2 9.5 6.1

as ntraint̄ and represents the total duration of the sessions needed to collect ntrain trajectories, one being
generated each t̄ s. The values (up to 9 h) for this figure appear to fit the considered application scenario.

Table 9.2 shows the results for varying size of the filtering window w, with ntrain “ 2000. It can
be seen that increasing w improves accuracy significantly: in other words, the larger w, the smaller
the variance of the system output. Of course, increasing w results in a longer time to detection (TdT,
see second column in Table 9.2, computed as wt̄), because more trajectories (and hence more mouse-
generated events) have to be observed by the system in order to output the first classification outcome on
the connected user. For example, for w “ 350 the accuracy is larger than 90% for both datasets and the
time to detection is in the order of 1.5 h: this figure appears to be practical with respect to the considered
threat model. It should be noted, however, that whenever at least w trajectories have been observed, a
classification outcome is output soon after each trajectory.

Table 9.3 sums up the results in the configuration which delivers the best average performance
(w “ 500 and ntrain “ 2000) and includes the results for the union of the two datasets. It can be seen
that the performance are better for Dataset 1. We think that this is due to the fact that users of Dataset
1 operated on different hardware platforms (see Section 9.4.1) resulting in observed trajectories (and
corresponding feature vectors) which are intrinsically more separable. This finding fits the original aim of
our proposal, since (i) Dataset 1 corresponds to the scenario of the system deployed by the web application
provider and (ii) the architecture of our system is designed to accommodate this scenario, posing no
requirements on the clients.

In order to place these results in perspective, Table 9.3 (right side) shows the corresponding results
computed according to the methodology usually adopted in the literature (e.g., [5]), which consists in

Table 9.3: Results with different values of w “ 500 and ntrain “ 2000 (dataset 1 above, dataset 2 below).

With ŵ set as in Eq. 9.1 In EER point
User Acc. FAR FRR Acc. FAR FRR

Dataset 1 96.5 6.1 0.8 98.1 2.1 1.7
Dataset 2 92.2 9.5 6.1 95.9 4.1 4.1

Dataset 1Y Dataset 2 93.5 6.8 6.2 96.0 4.1 4.0
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applying the method, for each user, with varying values of the threshold ŵ and by selecting the threshold
value associated with the Equal Error Rate (EER) point—that is, the ŵ values for which FRR “ FAR.
It can be seen that, according to this evaluation methodology, the numerical values for accuracy are
significantly better. Since the EER point cannot be computed with training data only, though, we believe
the left side of the table considers a more realistic scenario.

9.5 Remarks

Usage of mouse dynamics as an authentication signal for complementing traditional authentication
procedures and for constructing a further layer for a defense-in-depth strategy has been proposed several
times in the past. We believe there are at least two major obstacles for a wide adoption of such approaches
in practice. First, all published experimental evaluations considered a user base composed of only a few
tens of users, hence the effectiveness of the approach over thousands or millions of users is still to be
demonstrated. Second, earlier proposals assumed that client machines are instrumented for collecting all
user-generated events of interest, which in many cases, including continuous reauthentication of accesses
to web applications hosted in the cloud, is unfeasible.

Our work indicates that the latter issue may actually be overcome, thereby greatly improving the
potential scope of mouse dynamics as a continuous reauthentication tool. In this chapter, we have shown
a system for capturing GUI-related events for web traffic which does not require any specific software to
be installed on client machines and is fully transparent to both users and web sites. We have also shown
that, despite the intrinsic limitations of the collection procedure, the system exhibits accuracy in terms
of FAR and FRR which is aligned with the state-of-the-art. The event capture machinery is sufficiently
lightweight to not harm the actual user experience and may be deployed in a variety of scenarios, either
close to the client or close to the server, and, perhaps most importantly, also in scenarios where clients
and servers belong to distinct administrative domains. The details of the events actually captured could
be easily modified to include, e.g., keystroke dynamics, and the detection procedure could be modified
in order to take advantage of such additional information [100, 201]. We hope that the architectural
advantages illustrated by our work may help in promoting further research aimed at understanding what
can be realistically achieved on a very large user population.





Chapter 10
An Author Verification Approach
Based on Differential Features

10.1 Overview

In this chapter we describe the approach that we submitted to the 2015 PAN competition [196] for the
author identification task1. The task consists in determining if an unknown document was authored by the
same author of a set of documents with the same author.

We propose a machine learning approach based on a number of different features that characterize
documents from widely different points of view. We construct non-overlapping groups of homogeneous
features, use a random forest regressor for each features group, and combine the output of all regressors
by their arithmetic mean. We train a different regressor for each language.

Our approach achieved the first position in the final rank for the Spanish language.

10.2 Problem statement

A problem instance is a tuple xK,u, Ly where K is a set of documents tk1, . . . , knu authored by the same
author (called known documents), u is a document whose authorship must be ascertained (called unknown
document), L is an enumerated value specifying the language of the documents: English, Dutch, Greek or
Spanish. All documents in a problem instance are in the same language.

The author verification procedure consists in generating an answer in the form of a real number in
r0, 1s which quantifies the degree of confidence of being u authored by the same author of the documents
in K: 0 indicates absolute certainty that u was not authored by the same author of documents in K, while
1 indicates absolute certainty that all documents were authored by the same author.

A set of solved problem instances (the training set) is available in which, for each problem instance
xK,u, Ly, the solution consisting in one between 0 and 1 is provided.

The effectiveness of a method for author identification is assessed using a testing set of solved problem
instances, as follows. The answers generated by the method for the problem instances in the testing set are
compared against the actual values and the comparison outcome is expressed in terms of two indexes: area
under the ROC curve (AUC) and c@1. AUC is computed basing on the ROC curve plotted by comparing
the generated answers against a threshold moving between 0 and 1, hence obtaining a binary classification
task. The latter index is computed as c@1 “ nc

n `
nunc
n2 , where n is the size of the testing set, nu is the

number of unanswered problem instances (i.e., those for which the generated answer was exactly 0.5), nc
1During the competition we discovered several opportunities for fraudulently boosting the accuracy of our method during the

evaluation phase. We described these opportunities in a report. We notified the organizers which promptly acknowledged the
high relevance of our concerns and took measures to mitigate the corresponding vulnerabilities. The organizers acknowledged
our contribution publicly. We submitted for evaluation an honestly developed method—the one described in this document—that
did not exploit such unethical procedures in any way.
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is the number of correct answers (i.e., those for which the generated answer ą 0.5 and the actual answer
is 1 and those for which the generated answer ă 0.5 and the actual answer is 0).

10.3 Our approach

We propose a machine learning approach based on a number of different features that characterize
documents from widely different points of view: character, word, part-of-speech, sentence length,
punctuation. We construct non-overlapping groups of homogeneous features and use a random forest
regressor for each features group. The output of the resulting ensemble of regressors is the arithmetic
mean of the output generated by each random forest.

We train a different regressor for each language. Based on extensive experimention on the training set,
we decided to use the same features for problem instances in Dutch, Greek, Spanish but a different set of
features for problem instances in English.

10.3.1 Features

We extract a number of different features from each document. For ease of presentation, we group
homogeneous features together, as described below.

Word ngrams (WG) We convert all characters to lowercase and then we transform the document to a
sequence of words. We consider white spaces, punctuation characters and digits as word separators.
We count all word ngrams, with n ď 3, and we obtain a feature for each different word ngram
which occurs in the training set documents of a given language.

Character ngrams (CG) We replace punctuation characters and digits with blank spaces and then
sequences of blank spaces with a single blank space. We count all character ngrams, with n ď 3,
and we obtain a feature for each different character ngram which occurs in the training set documents
of a given language.

POS (part-of-speech) tag ngrams (PG) We apply a part of speech (POS) tagger on each document,
which assigns words with similar syntactic properties to the same POS tag. For English and Dutch
we use the Apache OpenNLP Tools2, for Greek we use the tagger developed by the Department of
Informatics at Athens University of Economics and Business3 while for Spanish we use TreeTag-
ger4 [182]. We count all POS ngrams, with n ď 3, and we obtain a feature for each different POS
ngram which occurs in the training set documents of a given language.

Word lengths (WL) We convert all characters to lowercase and then we transform the document to a
sequence of words. We consider white spaces, punctuation characters and digits as word separators.
We count the number of words whose length in characters is n, with n P t1, . . . , 16u: we obtain a
feature for each value of n.

Sentence lengths (SL) We transform the document to a sequence of tokens, a token being a sequence of
characters separated by one or more blank spaces. Next, we transform the sequence of tokens to a
sequence of sentences, a sentence being a sequence of tokens separated by any of the following
characters: .,;,:,!,?. We count the number of sentences whose length in tokens is n, with
n P t1, . . . , 40u: we obtain a feature for each value of n.

Sentence length ngrams (SG) We transform each document to a sequence of labels, where each label
represents a full sentence and is chosen based on the sentence length (as described in the following).
Next, we compute the ngrams of the resulting labels, with n ď 2. In detail, we execute a preliminary

2http://opennlp.apache.org
3http://nlp.cs.aueb.gr/software.html
4http://www.cis.uni-muenchen.de/„schmid/tools/TreeTagger

http://opennlp.apache.org
http://nlp.cs.aueb.gr/software.html
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
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analysis of all documents of a given language in the training set, as follows. For each document, we
transform the document to a sequence of sentences as illustrated for the SL features group. Next,
we compute the distribution of sentence length across all sentences in the training set and determine
the length values associated with the following percentile values: 10%, 25%, 75%, and 90%. In
other words, we divide the range of sentence lengths observed in the training set in 5 intervals,
with boundaries between intervals determined by the specified percentiles. The label we assign to
each sentence corresponds to one of the 5 lenght intervals, i.e., s0%, 10%s, s10%, 25%s, and so on:
we obtain a feature for each label ngrams which occurs in the training set documents of a given
language.

Word richness (WR) We transform the document to a sequence of words as for the WG features group.
Then we compute the ratio between the number of distinct words and the number of total words in
the document—this features group contains only one feature.

Punctuation ngrams (MG) We transform the document by removing all characters not included in the
following set: t,,.,;,:,!,?,"u—the resulting document thus consists of a (possibly empty)
sequence of characters in that set. We then count all character ngrams of the resulting document,
with n ď 3, and we obtain a feature for each different punctuation ngram which occurs in the
training set documents of a given language.

Text shape ngrams (TG) We transform the document as follows: sequences of digits are replaced by
the single character n; sequences of alphabetic characters are replaced by a single character: l if all
the characters in the sequence are lowercase, u if only the first character is uppercase, w if at least
two characters are uppercase; sequences of blank spaces are replaced by a single blank space; other
characters are left unchanged. We then count all character ngrams of the resulting document, with
n ď 3, and we obtain a feature for each different character ngram which occurs in the training set
documents of a given language.

10.3.2 Feature selection, normalization, and aggregation

We perform a simple feature selection for features in groups WG, CG, PG, and TG. To this end, we
apply the following procedure to each of the 4 partitions of the training set for which the language of the
documents was the same—in other words, we select different features for each language. We compute
the feature values for all the documents in the training set partition. Next, among each group, we sort
the features according to their average values on the documents of the partition—greater values coming
first. Finally, for each group, we keep the nsel top features. We set nsel “ 500 for WG, CG and PG and
nsel “ 100 for TG.

After the feature selection, we perform a normalization of the features values, as follows. Let fipdq
be the value of the ith feature for the document d and let G be the group of features (as defined in
Section 10.3.1) which includes the feature fi, we set fipdq :“ fipdq

ř

fjPG
fjpdq

. We execute this procedure for

all the groups of features, except for WR, which consists of a single feature.
Finally, for the purpose of obtaining a single feature vector for each problem instance, rather than one

feature vector for each document, we build a new feature f 1i whose value is obtained from the values of
the corresponding fi for the documents in K and the document u, as follows:

f 1ipxK,u, Lyq “ abs
ˆ

fipuq ´

ř

kPK fipkq

|K|

˙

(10.1)

In other words, we consider the absolute difference between the feature value for the unknown document
u and the average of the feature values for the known documents in K. We also consider a variant of our
approach in which the difference is divided by the feature value for u:

f2i pxK,u, Lyq “
f 1ipxK,u, Lyq

fipuq
(10.2)
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c@1 AUC
Method EN DU GR SP EN DU GR SP
RF-abs 0.67 0.74 0.77 0.94 0.718 0.707 0.808 0.992
RF-rel 0.58 0.66 0.77 0.95 0.584 0.776 0.796 0.989
SVM-abs 0.48 0.67 0.69 0.92 0.513 0.707 0.754 0.978
SVM-rel 0.45 0.62 0.66 0.86 0.584 0.645 0.732 0.936
Tree-abs 0.69 0.70 0.53 0.94 0.725 0.708 0.557 0.951
Tree-rel 0.56 0.62 0.69 0.97 0.526 0.595 0.699 0.992

Table 10.1: c@1 and AUC for 6 methods.

10.3.3 Regressor

We explored three different regressor algorithms: trees (Tree), random forests (RF), and support vector
machines (SVM). In particular, we use the algorithm proposed in [138] for Tree, we use the gaussian
kernel and C “ 1 for SVM [56], and we use the algorithm for regression proposed in [47] with ntree “ 500
for RF.

We apply each regressor, both in training and actual regression phase, only to the feature values of the
same group. For obtaining an answer in r0, 1s for a problem instance, we average the predictions obtained
by the trained regressors on the features groups. In other words, we built an ensemble of group regressors.

10.4 Analysis

As described in the previous section, we considered two set of features (f 1 and f2) and 3 regressors. We
systematically assessed the effectiveness of all the 6 resulting combinations by means of a leave-one-out
procedure applied on the training set, separately for each language. That is, for each language, type of
feature, and regressor, (i) we built the subset T of the problem instances of the training with that language,
(ii) we removed one element t0 from T , (iii) we computed the feature values for the problem instances in
T and trained the regressor, (iv) we applied the trained regressor to the problem instance t0 and compared
the generated answer against the known one. We repeated all but first steps |T | “ 100 times, i.e., by
removing each time a different element, and computed the performance of the method in terms of the
indexes defined in Section 10.2: c@1 and AUC.

The results are in Table 10.1: the table shows c@1 and AUC values for each method, the method
name being composed by the regressor acronym and one among abs or rel indicating the use of f 1 or f2

features, respectively. It can be seen that RF provides in general better results than the other regressors;
moreover, RF-abs appears to be the best performing method. In order to further validate the latter
finding, we performed a Wilcoxon signed-rank test [34] with a significance level of 5% and Bonferroni
correction [38]: the outcome is that RF-abs is significantly better than all the other methods, except
Tree-rel, for a little gap, and RF-rel; RF-rel is not better than the other methods except SVM-rel; Tree-rel
is not better than all the other methods.

In order to gain insights about which features group appeared to be more suitable for accomplishing
the considered task, we applied the RF-abs method (with the leave-one-out procedure described above)
9 times, each time removing one of the 9 features groups—i.e., we performed a features group ablation
analysis. The results (in terms of c@1) are reported in Table 10.2. It can be seen, by comparing results of
method RF-abs with those of Table 10.1, that the largest decrease of c@1 occurs by removing features
group MG, while the smallest one occurs by removing features group WR—on the average around 3% and
1%, respectively. It can also be observed that feature ablation may actually lead to some improvements:
for English, we obtain 0.69, rather than 0.67, by removing WG; for Spanish, we obtain 0.96, rather than
0.94, by removing either WG or WR.

Then, we analyzed the performance of RF-abs in terms of feature addition. We considered RF-abs
using only features group MG (which showed to be the most relevant, according to the ablation analysis)
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Features groups EN DU GR SP
All-WG 0.69 0.68 0.75 0.96
All-CG 0.66 0.71 0.75 0.95
All-PG 0.68 0.70 0.75 0.94
All-WL 0.67 0.71 0.75 0.95
All-SL 0.65 0.70 0.73 0.95
All-SG 0.66 0.69 0.75 0.95
All-WR 0.67 0.71 0.75 0.96
All-MG 0.62 0.71 0.74 0.94
All-TG 0.63 0.72 0.75 0.93

Table 10.2: c@1 with RF-abs by removing one features group at once.

Features groups EN DU GR SP
MG 0.71 0.63 0.66 0.89
MG+WG 0.67 0.71 0.75 0.94
MG+CG 0.73 0.63 0.68 0.93
MG+PG 0.71 0.67 0.68 0.94
MG+WL 0.72 0.65 0.66 0.91
MG+SL 0.73 0.65 0.72 0.90
MG+SG 0.73 0.58 0.71 0.87
MG+WR 0.59 0.56 0.60 0.74
MG+TG 0.72 0.64 0.68 0.91

Table 10.3: c@1 with RF-abs by using MG features and zero or one other features group.

and then using only MG and each of the 8 other features groups in isolation. The results are reported in
Table 10.3. It can be seen that, for English, there are combinations that improve c@1 with respect to the
baseline value 0.67: MG+CG, MG+SL, and MG+SG reach 0.73. Since such improvement is not negligible,
we inspected the mutual effect of these features groups more closely by analyzing the c@1 values resulting
from all their combinations. The results are: 0.78 with MG+CG+SL, 0.65 with CG+SG+SL, 0.71 with
MG+SL+SG, and 0.73 with MG+CG+SL+SG. Based on these results, which improved the 0.67 baseline
(all feature groups), we chose to use RF-abs with only 3 features groups (MG+CG+SL), only for the
English language. On the other hand, we did not notice significant improvements for specific sets of
features groups for the other languages: hence, for Dutch, Greek, and Spanish, we chose to use RF-abs
with all the features groups.

We observed that the results for the Spanish language tend to be much better than for the other
languages. We believe that such good results depend more on the peculiarity of this dataset rather than to
the quality of our method: indeed the training set for Spanish contained 100 problem instances with 5
documents each, but the number of distinct documents, though, was only 42.

Method Language c@1 AUC Score Ranking
RF-abs on MG+CG+SL EN 0.56 0.578 0.323 10/18
RF-abs on all DU 0.69 0.751 0.518 4/17
RF-abs on all GR 0.66 0.698 0.459 7/14
RF-abs on all SP 0.83 0.932 0.773 1/17

Table 10.4: Final results.
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10.4.1 Final results

Table 10.4 reports the final results obtained in the competition, as released by the organizers5. The table
shows the performance indexes computed on a separated testing set which was not available during the
method design phase. Besides c@1 and AUC, the table also reports a score, according to which a ranking
for each language has been compiled: the score is the product of c@1 and AUC.

10.4.2 Remarks

In this chapter we have described the approach for the author identification that we submitted to the 2015
PAN competition [196]. Our machine learning performed very well in the PAN competition, obtaining the
first position in the final rank for the Spanish language.

5http://www.tira.io/task/authorship-verification/

http://www.tira.io/task/authorship-verification/


Chapter 11
An Author Profiling Approach Based
on Language-dependent Content and
Stylometric Features

11.1 Overview

In this chapter we describe the approach that we submitted to the 2015 PAN competition [171] for the
author profiling task1. The task consists in predicting some attributes of an author analyzing a set of
his/her Twitter tweets.

We consider several sets of stylometric and content features, and different decision algorithms: we use
a different combination of features and decision algorithm for each language-attribute pair, hence treating
it as an individual problem.

11.2 Problem statement

A problem instance consists of a tuple xD,Ly, where D is a set of tweets written by the same author and
L is a value of enumerated type that describes the language of the tweets—English, Spanish, Italian, or
Dutch.

The author profiling consists in generating, given a problem instance, the value for several attributes
with respect to the author of the tweets: gender, age group (only for English and Spanish), and 5 personality
traits. Age group is an enumerated value among the following: 18–24, 25–34, 35–49 or ě 50. The 5
personality traits are widely accepted characteristics used to describe human personality (also known as
Big Five [193]): extroversion, neuroticism, agreeableness, conscientiousness, and openness to experience.
For each trait, the attribute value consists of a score in r´0.5,`0.5s.

A set of solved problem instances (the training set) is available in which, for each problem instance
xD,Ly, the tuple of the attributes values is provided.

The effectiveness of a method for author profiling is assessed using a testing set of solved problem
instances. In particular, the effectiveness is assessed separately for each attribute as follows: the attribute
values generated by the method for the problem instances in the testing set are compared against the actual
values and the comparison outcome is expressed in terms of accuracy for gender and age, and in terms of
Root-mean-square error (RMSE) for the personality traits.

1During the competition we discovered several opportunities for fraudulently boosting the accuracy of our method during the
evaluation phase. We described these opportunities in a report. We notified the organizers which promptly acknowledged the
high relevance of our concerns and took measures to mitigate the corresponding vulnerabilities. The organizers acknowledged
our contribution publicly. We submitted for evaluation an honestly developed method—the one described in this document—that
did not exploit such unethical procedures in any way.
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Language Original Merged
English 152 83
Spanish 100 50
Italian 38 19
Dutch 34 18

Table 11.1: Number of problem instances in the original training set and in the new training built by merging
repetitions.

11.3 Our approach

We chose to handle the prediction of each attribute for each language as an individual problem: in
particular, we consider gender and age group prediction as 2 classification tasks and personal traits
prediction as 5 regression tasks. Since we had tweets written in four languages and we had to predict age
groups for those written in English and Spanish only, we hence considered 26 different problems.

We propose a machine learning approach based on a number of different stylometric and content
features which are processed by one among three different decision algorithms—we used SVM and random
forests as classifiers and regressors. We carried out an extensive experimental campaign for systematically
assessing a large number of the possible combinations, through leave-one-out cross validation on the
available training data.

11.3.1 Training set analysis and repetitions

During preliminary analysis, we noticed that the training set included some subsets of problem instances
for which L and the solution were the same, i.e., the attributes values for all the problem instances in
a subset were the very same, despite being D different. We call repetitions those problem instances.
We argued that the tweets of the problem instances in each of those subsets were authored by the same
person. For this reason, we decided to build a new training set by replacing each of those subsets with
a single problem instance in which D is the union of all the tweet sets of the subset—i.e., we merged
the repetitions. Table 11.1 shows the sizes of the training set portions corresponding to each language
before and after merging repetitions. We later experimentally verified that this transformation did affect
the learned classifiers and regressors.

11.3.2 Features

The feature extraction procedure requires a language-dependent dictionary in which words are grouped
according to their prevalent topic (e.g., “money”, “sports”, or “religion”) or their function (e.g., “prepo-
sitions”, “articles”, or “negations”). To this end, we used an English dictionary similar to the one used
by LIWC [164]. For the other 3 languages, we proceeded as follows. For Spanish and Dutch, we built
the dictionary by automatically translating the English dictionary with Google Translate. For Italian, we
manually built the dictionary, by using the English one as guideline. Moreover, for each language, we
augmented the dictionary with a new category of words (“chat acronyms”) containing the top fifty most
popular chat acronyms exposed on NetLingo2.

The feature extraction procedure is also based on the notion of automatic tweet, that we define as
follows. We determined a set of ordered sequences of n “ 1, . . . , 4 words, that we call templates, based
on an analysis of the full training set:

1. we automatically extracted from the full training set all tweets starting with the same ordered
sequence of n words;

2. we automatically constructed a set including all word sequences that were the starting sequence of
at least 3 different tweets;

2http://www.netlingo.com/top50/popular-text-terms.php
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Template EN ES IT NL
# Move más reciente X
Photo: X X X
I’m at X X X
I liked a X X
I favorited a X X X
Ik vind een X X
#in X X
Total number of templates 29 8 12 1

Table 11.2: Some examples of templates and the languages for which at least one automatic tweet with that template
were found. The first row corresponds to a template found only in Spanish problem instances, while the other rows
are templates found in problem instances of multiple languages. The last row contains, for each language, the count
of templates for which at least one automatic tweet with that template was found.

3. we manually analyzed each sequence and retained only those which appeared to be the beginning
of an automatically-generated tweet.

We say that a tweet is an automatic tweet if its first words correspond to a template. Table 11.2 provides
some examples of templates, along with the presence or absence of corresponding automatic tweets of
different languages in the training sets.

The feature extraction procedure is as follows. Given a problem instance xD,Ly, we denote by DM

the set of tweets obtained by D by removing all the automatic tweets. We extract several numerical
features from each problem instance: the value of all (except of 3) features is obtained by averaging the
corresponding computation outcomes on the tweets in D or DM—the remaining three feature values are
computed on the whole D and/or DM . For ease of presentation, we group conceptually similar features
together; the full list is given in Table 11.3.

Stylometric These features tend to capture the structural properties of a tweet in a way largely indepen-
dent of both the language and the specific semantic content; therefore, they are not based on the
dictionaries. Stylometric features are computed on tweets in DM : the reason is because we assume
that automatic tweets are not really representative of the tweet writing style of the author.

Content These features are based on the dictionaries categories related to word topic and are computed
on tweets in D: the reason is because we assume that the content of automatic tweets is indeed
informative of the author profile.

Hybrid These features are based on the dictionaries categories related to word function and are computed
on tweets in DM .

11.3.3 Feature selection

Past studies on author profiling report several correlations between gender, age, personality traits and
writing style. In particular, [181] showed that stylometric features are more predicitve than content features
for determining the gender, and viceversa for the age group, but the combination of both stylometric and
content features can offer better results. In [95], the authors provided a list of correlations between some
LIWC and non-LIWC features and the five personality traits. We constructed 40 different feature groups
based on this knowledge and we assessed each of the resulting feature groups as described in the next
section.

11.3.4 Classifier and regressor

We decided to build a different model for each language-problem pair, for a total of 26, as described in
Section 11.2. We explored the usage of SVM [56] and Random Forest [47] with different configurations,
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Feature name Description
st

yl
om

et
ri

c
allpunc Number of .,:;
commas Number of ,
exclmar Number of !
questma Number of ?
parenth Number of parenthesis
numbers Number of numbers
wocount Number of words
longwor Number of words longer than 6 letters
upcawor Number of uppercase words
carrret Number of carriage returns (\n, \r, \r\n)
atmenti Number of @ mentions
extlink Number of links
hashtag Number of #
posemot Number of positive emoticons
negemot Number of negative emoticons
emotico Number of emoticons
emotiyn Presence of emoticons in D (binary feature)

co
nt

en
t

moneywo Number of words in the “money” category
jobword Number of words in the “job or work” category
sportwo Number of words in the “sports” category
televwo Number of words in the “tv or movie” category
sleepwo Number of words in the “sleeping” category
eatinwo Number of words in the “eating” category
sexuawo Number of words in the “sexuality” category
familwo Number of words in the “family” category
frienwo Number of words in the “friends” category
posemwo Number of words in the “positive emotion” category
negemwo Number of words in the “negative emotion” category
emotiwo Number of words in the “positive emotion” or “negative emotion” category
swearwo Number of words in the “swear words” category
affecwo Number of words in the “affective process” category
feeliwo Number of words in the “feeling” category
religwo Number of words in the “religion” category
schoowo Number of words in the “school” category
occupwo Number of words in the “occupation” category
autotwe Automatic tweets ratio, i.e., |DzDM |

|D|

autweyn Presence of automatic tweets in D (binary feature)

hy
br

id

fsipron Number of words in the “I” category
fplpron Number of words in the “we” category
ssipron Number of words in the “you” category
selfref Number of words in the “self” category
negpart Number of words in the “negations” category
asspart Number of words in the “assents” category
article Number of words in the “articles” category
preposi Number of words in the “prepositions” category
pronoun Number of words in the “pronoun” category
slangwo Number of words in the “chat acronyms” category

Table 11.3: Features list.
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as these methods can be used both as classifiers and as regressors. In particular, we considered:

• svm: SVM with default gaussian kernel and C “ 1;

• rf500: Random Forest with 500 trees;

• rf2000: Random Forest with 2000 trees.

11.4 Analysis

As described in the previous sections, we considered 40 sets of features and 3 classifiers/regressors. We
systematically assessed the effectiveness of all the 120 resulting combinations by means of a leave-one-
out procedure applied on the training set, separately for each language-attribute pair. That is, for each
language-attribute pair, set of features, and classifier/regressor, (i) we built the subset T of the problem
instances of the training set with that language, (ii) we removed one element t0 from T , (iii) we computed
the values for the features set on the problem instances in T and trained the classifier/regressor, (iv) we
applied the trained classifier/regressor to the problem instance t0 and compared the generated answer
against the known one. We repeated all but first steps |T | times, i.e., by removing each time a different
element, and computed the performance of the method in terms of the indexes defined in Section 11.2.
Finally, we chose, for each language-attribute pair, the best performing combination, in terms of accuracy
or RMSE, as appropriate for that attribute. The resulting configurations are summarized in Table 11.4.

In order to provide a synthetic baseline, we built 3 baseline methods using each of the 3 classifiers/re-
gressors with all the features. The results, obtained by means of the same leave-one-out procedure, are
shown in Table 11.5.

It can be seen from Table 11.4 that our procedure lead us to chose a different configuration of
classifier/regressor and features set for each language-attribute pair. There could be several reason to
explain that. First, every language has its own writing rules and culture, so it is possible that a middle
aged English man could not have the same interests and the same writing style of a middle aged Italian
man. Second, the Spanish, Dutch, and Italian dictionaries we used were not as good as the LIWC English
one. Finally, the number of problem instances in the training set was not the same for every language, and
so was the number of tweets in the instances within each language subset.

11.5 Remarks

In this chapter we have described our machine learning method for author identification that is based
on SVM and random forest as classifiers and regressors. We submitted this method to the 2015 PAN
competition for the author profiling task.
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L Attribute Class./Regr. Chosen features set

EN

Gen rf2000 commas negemot exclmar
Age rf2000 allpunc commas exclmar questma parenth numbers wocount longwor

upcawor carrret atmenti extlink hashtag posemot negemot emotico
autotwe

Ext svm wocount questma parenth familwo
Neu svm selfref fsipron chatacr affecwo emotiwo hashtag posemot pronoun

wocount
Con rf500 extlink longwor numbers hashtag fsipron selfref
Agr svm questma atmenti allpunc ssipron article longwor jobword chatacr
Ope rf2000 commas extlink hashtag exclmar questmar parenth wocount ssipron

negpart article feeliwo moneywo jobword eatinwo familwo negemwo
religwo

ES

Gen svm allpunc commas exclmar questma parenth numbers wocount long-
wor upcawor carrret atmenti extlink hashtag posemot negemot
fsipron fplpron ssipron selfref negpart asspart article preposi pro-
noun slangwo moneywo jobword sportwo televwo sleepwo eatinwo
sexuawo familwo frienwo posemwo negemwo affecwo feeliwo

Age svm extlink hashtag numbers sleepwo sexuawo
Ext rf2000 longwor carrret questma preposi autweyn emotico
Neu rf2000 posemot ssipron exclmar selfref extlink
Con rf500 extlink longwor numbers hashtag fsipron selfref affecwo emotiwo
Agr svm allpunc commas exclmar questma parenth numbers wocount long-

wor upcawor carrret atmenti extlink hashtag posemot negemot +
fsipron fplpron ssipron selfref negpart asspart article preposi pro-
noun slangwo moneywo jobword sportwo televwo sleepwo eatinwo
sexuawo familwo frienwo posemwo negemwo swearwo religwo

Ope rf2000 autotwe hashtag preposi wocount religwo

IT

Gen rf500 asspart fsipron selfref exclmar extlink hashtag emotiyn
Ext svm allpunc wocount hashtag questma
Neu rf2000 commas longwor fplpron chatacr autweyn
Con svm commas extlink hashtag exclmar questmar parenth wocount ssipron

negpart article feeliwo moneywo jobword eatinwo familwo negemwo
religwo

Agr svm posemot exclmar moneywo hashtag pronoun autweyn
Ope svm negpart hashtag atmenti exclmar longwor

NL

Gen rf2000 negemot upcawor preposi
Ext svm questma atmenti allpunc ssipron article longwor jobword chatacr

extlink autweyn
Neu rf2000 atmenti preposi longwor emotiyn
Con svm hashtag questma exclmar atmenti posemot wocount extlink longwor
Agr svm atmenti commas exclmar hashtag autweyn emotiyn
Ope svm negpart hashtag atmenti exclmar longwor

Table 11.4: Chosen classifier/regressor and features set for each language-attribute pair.
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Baselines
L Attribute svm rf500 rf2000 Our conf.

EN

Gen 0.566 0.619 0.619 0.735
Age 0.614 0.617 0.605 0.692
Ext 0.185 0.182 0.181 0.165
Neu 0.243 0.226 0.226 0.208
Con 0.167 0.158 0.158 0.146
Agr 0.173 0.183 0.183 0.162
Ope 0.157 0.149 0.149 0.143

ES

Gen 0.760 0.760 0.760 0.820
Age 0.400 0.404 0.416 0.580
Ext 0.185 0.177 0.176 0.156
Neu 0.243 0.220 0.220 0.202
Con 0.161 0.163 0.162 0.154
Agr 0.162 0.169 0.169 0.157
Ope 0.183 0.183 0.183 0.168

IT

Gen 0.632 0.705 0.737 0.853
Ext 0.159 0.162 0.162 0.121
Neu 0.202 0.215 0.215 0.170
Con 0.126 0.135 0.136 0.113
Agr 0.159 0.165 0.165 0.150
Ope 0.186 0.178 0.177 0.102

NL

Gen 0.611 0.344 0.333 0.633
Ext 0.131 0.140 0.139 0.105
Neu 0.206 0.205 0.204 0.156
Con 0.122 0.125 0.125 0.101
Agr 0.163 0.161 0.162 0.130
Ope 0.121 0.122 0.122 0.104

Table 11.5: Results of our configuration and the synthetic baselines. Accuracy is reported for Gen and Age, RMSE
is reported for Ext, Neu, Con, Agr, and Ope.





Chapter 12
Automatic Generation of Scientific
Paper Reviews

12.1 Overview

Peer review, i.e., the process of subjecting a work to the scrutiny of experts in order to determine whether
the work deserves publication, is a keystone in scholarly publishing. The review process should ensure
that a published paper is of high scientific quality, which in its turn preserves the reputation of the
corresponding publishing venue and improves the prestige of its author. On the other hand, peer review
is just a piece of broader process involving several entities whose incentives may or may not actually
drive the overall process toward those ideal goals. Authors are increasingly subject to strong pressures in
the form of research evaluation procedures in which the indicators that play a key role are often mostly
numerical [32]. Reviewers tend to be overworked and often receive little credit for their hard work [67],
while at the same time being interested in increasing some counter of program committees or editorial
boards in which they are involved. Commercial publishers may find in scholarly publishing excellent
opportunities for profit [107], even in the form of journals with little or no scrutiny: a periodically updated
list of predatory publishers has grown by 50 times in the last 5 years, including 923 publishers in its latest
release [35].

While there is no doubt that most published research follows a rigorous and honest path, it is evident
that actors involved in research may now find ways to maximize their personal benefits disregarding the
ideal objective of the scientific environment as a whole, by following practices that are questionable or
simply fraudulent [43,68]. Unfortunately, this claim is not a mere theoretical possibility. Questionable
operators have emerged that run bogus journals and conferences which have no other purpose than
generating profit while uttering worthless scientific literature [51]. Supposedly peer-reviewed journals
accept for publication papers that have been randomly generated [80] or publish papers which clearly
have not been proof-read by anyone [162]. Misbehaving researchers attempt to inflate their records by
ghostwriting papers on nonexistent research [170]. Not surprisingly, the critical reviewing step has been
exploited as well. Computer intrusions on the editorial system of a major commercial publisher have
forced the publisher to retract several published papers [173]. In the last few years, hundreds of published
papers have been retracted by several commercial publishers in many independent events [53, 83, 88], due
to the discovery of reviews fabricated by the authors themselves which provided journals with suggested
reviewers along with fake contact information which actually routed communication to the authors or
their colleagues.

In this chapter, we investigate the feasibility of more fraud opportunities in the form of a procedure
for automatic generation of fake reviews. We propose a method for generating automatically text which
(a) looks like the typical scientific paper review, (b) is tailored to the specific paper being reviewed,
and (c) conveys a recommendation specified as input. A tool that is capable of generating fake reviews
systematically and at no cost may be misused in several ways. Busy people which want to be involved in
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as many reviewing committees as possible might choose a recommendation and then generate reviews very
quickly, perhaps without even reading the paper or after just a superficial look. Predatory publishers might
attempt to improve their credibility by sending many reviews to authors. Of course, reviews generated by
our tool will certainly be detected as being fake by any decent editorial process. On the other hand, as
pointed out above, perverse incentives and unethical conducts might find a role for a tool of this kind,
which may potentially magnify the scale of frauds in the reviewing process in several ways. In this respect,
it is important to keep in mind that a few years ago Springer and IEEE retracted more than 120 published
papers which were computer-generated nonsense [156]. Our proposed tool could find more constructive
applications, though. For example, the steering committee of a conference could inject fake reviews in the
discussion phase without informing the program committee and then observe the outcome.

Our proposed method constructs a review tailored to a specific paper, with a specified recommendation,
based solely on the paper text and a corpus of reviews written by humans for other papers. A key aspect
of our proposal is that it builds upon a relatively small knowledge base (some tens of reviews) while
commonly used methods for text generation, such as Artificial Neural Networks (ANN), typically require
a very large amount of data in order to build an effective generative model. Applying those methods in the
context of scientific review generation is difficult because of the difficulty in finding a large amount of
samples of scientific reviews, in particular, of negative reviews.

An important contribution of our work is the experimental campaign performed involving human
subjects. We performed an intrinsic evaluation aimed at assessing the ability of our method to generate
reviews which look like as being written by a real human reviewer. Moreover, we performed an extrinsic
evaluation aimed at assessing the impact on the decision about accepting or rejecting a paper under review.
Although our experimental campaign is not a replica of a real editorial process and thus may provide only
a preliminary assessment, our results do provide interesting insights.

We like to emphasize that the scientific article [28] that describes this work has also attracted much
interest on magazines1.

12.2 Related work

To the best of our knowledge, no method for the automatic generation of reviews of scientific papers
has been proposed before. From a broader point of view, our proposal is a form of Natural Language
Generation (NLG), which is widely used in many different fields such as spoken dialogue systems [206],
machine translation [198], and as a mean for creating editorial content by turning structured data into
prose [208].

A notable use of NLG for scientific purpose, which is particularly relevant to our work, is the software
SCIgen2. This tool generates pdf files consisting of syntactically correct random text which is formatted
like a scientific publication, including randomly generated figures, plots, and code fragments. Later
and independently from its creators, SCIgen has been used in order to test the submissions standard of
conferences and to prove that nonsense papers may actually be published, even by respected publish-
ers [156]. This phenomenon has been investigated also in [124], which studies the spread of fakes and
duplicates through notable publishers. The fact that a tool which was born as a “toy” for Computer
Science researchers led to actual malicious behaviors suggests that other types of cheating may arise,
including the creation of false reviews: this consideration is indeed the main motivation of our work.

In the work described in this chapter, we propose a corpus-based NLG method. Corpus-based methods
aim at training text generation rules automatically from text examples of the desired text generator output.
An example of corpus-based method applied to text generation in dialogue is the work in [159]. The cited
work proposes a class-based n-gram language model (LM) that improves over template-based and rule-

1https://www.timeshighereducation.com/news/robot-written-reviews-fool-academics, http://retractionwatch.com/
2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-
peer-reviews/,http://www.powerlineblog.com/archives/2016/09/academic-absurdity-of-the-week-fake-peer-reviews.
php?,https://www.insidehighered.com/news/2016/09/22/many-academics-are-fooled-robot-written-peer-reviews

2http://pdos.csail.mit.edu/scigen/

https://www.timeshighereducation.com/news/robot-written-reviews-fool-academics
http://retractionwatch.com/2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-peer-reviews/
http://retractionwatch.com/2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-peer-reviews/
http://retractionwatch.com/2016/09/02/weve-seen-computer-generated-fake-papers-get-published-now-we-have-computer-generated-fake-peer-reviews/
http://www.powerlineblog.com/archives/2016/09/academic-absurdity-of-the-week-fake-peer-reviews.php?
http://www.powerlineblog.com/archives/2016/09/academic-absurdity-of-the-week-fake-peer-reviews.php?
https://www.insidehighered.com/news/2016/09/22/many-academics-are-fooled-robot-written-peer-reviews
http://pdos.csail.mit.edu/scigen/
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based text generation systems. Belz [37] proposes a corpus-based probabilistic generation methodology
and apply it to the automatic generation of weather forecast texts. The work in [174] assesses a new model
for NLG in dialogue systems by maximizing the expected reward using reinforcement learning.

A different approach to NLG is based on Artificial Neural Networks (ANN). Kukich [121] imple-
mented a stock reporter system where text generation is done at phrase level using an ANN-based approach.
A recent work demonstrated the effectiveness of Recurrent Neural Networks (RNN) for natural language
generation at character level [149]. A variant of RNN, Long Short-Term Memory (LSTM) [111], proved
its ability to generate characters sequences with long-range structure [97]. The authors of [167] showed
the ability of a LSTM framework to automatically generate rap lyrics tailored to the style of a given rapper.
Zhang and Lapta [219] proposed an RNN-based work for generating Chinese poetry. Beyond unbounded
text generation, LSTM for NLG has also been used in the generation of image descriptions [115,143,203]
and in the generation of descriptive captions for video sequences [202].

All the generative methods based on neural networks require a huge amount of learning data, usually
orders of magnitude more than the amount of data that we could find in our scenario (i.e., scientific
reviews). Methods for data augmentation capable of decreasing the amount of learning data required for
training a neural network effectively certainly deserve investigation in our context [57].

12.3 Our approach

The problem consists in generating, given a paper a and an overall recommendation o P taccept, neutral, rejectu,
a review r which (i) appears as generated by a human (ii) for the paper a and (iii) which expresses a
recommendation o for a. In our work, we assume that the paper a is a plain text which consists of the
concatenation of the paper title, abstract and main content.

Our method requires a set R of real paper reviews, i.e., each review r P R has been written by humans.
We pre-process each review inR as follows: (i) we split the document in a sequence tt1, t2, . . . u of tokens
according to the Penn-Treebank procedure; (ii) we execute a Named-entity Recognition (NER)3 [87] on
the token sequence; and (iii) we execute a Part-of-Speech (POS) annotation4 [200] on the token sequence;
finally (iv) we classify each token in tt1, t2, . . . u as being or not being a specific term, according to an
heuristic procedure (see below).

When generating a review for a paper a with a specified recommendation o, our method performs 3
steps, described below in full detail: (i) it builds a set S of sentences from reviews in R and replaces
each specific term in each sentence with a specific term of a; (ii) it removes from S the sentences which
express a sentiment which is not consistent with o; (iii) it reorders and concatenates the sentences in S
obtaining a review for a.

Specific terms identification. With this procedure, we aim at identify the specific terms of a
document d—i.e., those terms which are relevant to d. To this end, we defined a simple heuristic. Let
tt1, t2, . . . u the sequence of tokens for d, where each token has been annotated with NER and POS taggers.
A token t P tt1, t2, . . . u is a specific term if it meets all the following criteria: (i) t has been annotated as
a noun (NN) or as an adjective (JJ); (ii) the length in characters of t is at least 2; (iii) t contains at least
one letter.

Specific terms replacement. In this step, we aim at constructing a set S of review sentences tailored
to a. To this end, we proceed as follows, starting with S “ H. For each review r P R, we split the review
in a set Sr of sentences. We obtain (according to the procedure described above) the set W 1

a of specific
terms of a, retrieve the set W 1

r of specific terms of r, and set Wa “ W 1
azW

1
r and Wr “ W 1

rzW
1
a. Then,

for each sentence sr P Sr, we generate a random mapping from items in the set W s
r of specific terms of

Wr which occur in sr to items in Wa such that: (a) each item in W s
r is mapped to exactly one item in

3http://nlp.stanford.edu/software/CRF-NER.shtml
4http://nlp.stanford.edu/software/tagger.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
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Wa, (b) no items in W s
r exist such that they are mapped to the same item in Wa, and (c) for each item wsr

mapped to an item wa, the POS and NER annotations of wsr are the same of respective annotations of wa.
If such mapping is possible, we replace each occurrence of a term of W s

r in sr with the mapped term in
Wa and add the modified sentence to S; otherwise, we proceed to the next sentence.

In other words, after this procedure, S contains all the suitable sentences generated by iterating the
term replacement procedure for all the reviews in R.

Sentiment analysis. In this step, we aim at selecting the sentences of S which express a sentiment
consistent with the specified overall recommendation o. To this end, we apply a pre-trained Naive Bayes
sentiment classifier5 [154] to each sentence s P S, basing on the assumption that a positive sentiment can
be associated with an accept recommendation, a negative sentiment with a reject recommendation, and a
neutral sentiment with a neutral recommendation.

After the application of the sentiment classifier, we retain in S only the sentences for which the
outcome is consistent with o.

Sentences reordering. In this step, we aim at generating the final output of our method (the au-
tomatically generated review) by selecting, reordering, and concatenating a subset of sentences of S.
The rationale for the selection and reordering is to obtain a review (a) whose length is realistic, w.r.t. a
typical review, and (b) which has an overall structure which resembles a typical review—e.g., an opening
sentence, some considerations, a conclusive remark.

Concerning the reordering, we based on the assumption that sentences may be classified as suitable
for opening part, central content, and closing part. Accordingly, we built a classifier which takes as input
a single sentence and outputs a label in topening, central, closingu. We took the general purpose text
classifier based on maximum entropy6 described in [142] and trained it using all the sentences of the
reviews in R, which we automatically labeled as follows: if the sentence was the first sentence in its
review, we associated it with the label opening; otherwise, if it was the last sentence, we associated it with
closing; otherwise, we associated it with central.

When generating a review, we apply the classifier to each sentence in S and then randomly select 1
opening sentence, 3 central sentences, and 1 closing sentence. Finally, we concatenate those 5 sentences
and obtain the review for a.

12.4 Experimental evaluation

We performed two experimental evaluations involving human subjects for assessing our proposed method
ability to generate reviews which (a) look like as they have been written by real human reviewers for the
specified paper, and (b) can affect the decision about accepting or rejecting the specified paper. That is,
we performed an intrinsic evaluation and an extrinsic evaluation, respectively.

We built a dataset composed of 48 papers and 168 reviews, which we obtained from the F1000Research,
Elifescience, Openreview and PeerJ web sites—which publish reviews of accepted papers along with
corresponding full texts—and from our lab publication records; we used the reviews of the dataset as
the set R while running our method. Moreover, for the purpose of performing our evaluations, we
associated an overall recommendation (i.e., a label in taccept, neutral, rejectu with each review in the
dataset. Since the sources we considered vary in the way, if any, they classify reviews according to
overall recommendation, we proceeded as follows. If a review was explicitly associated with an overall
recommendation by its author, we associated it with the suitable label—e.g., positive recommendations to
accept, negative recommendations to reject, and all the other recommendations to neutral. Otherwise, if a
review was not explicitly associated with an overall recommendation, we considered the outcome of the
publishing process which, for published papers, was always acceptance.

5http://sentiment.vivekn.com
6http://nlp.stanford.edu/software/classifier.shtml

http://sentiment.vivekn.com
http://nlp.stanford.edu/software/classifier.shtml
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Figure 12.1: Percentage of reviews considered as written by a human for the specified paper.

In order to provide a comparison baseline for our review generation method, we designed and built
a simple baseline generation method based on Markov chains. To this end, we trained a second order
Markov chain, operating on tokens, on all the reviews in the dataset: before the training, we added a special
token tend at the end of each review. When generating a review with the baseline method, the specified
paper a and the overall recommendation o are not considered and the following steps are performed. First,
a review in the dataset is randomly chosen and its first two tokens are fed into the Markov chain generative
model. Then, the generative model is run until the token tend is obtained. Finally, the output is obtained
by concatenating all the generated tokens.

In our experimentation, we involved a number of human subjects, who were asked to examine the
generated reviews and then to answer some questions. In order to gain more insights about our method
effectiveness, we grouped the subjects according to their presumed familiarity with scholarly publishing,
resulting in 3 classes. The experienced class is composed of professors, PhD student, and postdocs;
the intermediate class is composed of undergraduate students; the novice class is composed of all the
remaining subjects (who were anyway sufficiently proficient with English).

12.4.1 Intrinsic evaluation

In the intrinsic evaluation, we built a number of forms, each showing the title of a paper a randomly
chosen from our dataset and a set of 10 reviews randomly sampled for the following sets: (a) the real
reviews in the dataset actually related to a, (b) the real reviews in the dataset not related to a, (c) a set
of reviews generated using the baseline method, and (d) a set of reviews generated using our method
with a and a random overall recommendation o as input. Since the size in characters of the real reviews
can widely vary, we limited the number of sentences presented to the subject to 5, as for our generated
reviews, randomly sampled from the corresponding reviews while maintaining the original ordering. We
asked the subject to say, for each review in the form, if “it appeared as a genuine review written by a
human reviewer for the paper with the shown title”. We gathered results from 16 subjects—5 novice, 3
intermediate, and 8 experienced.

Figure 12.1 shows the key findings of the intrinsic evaluation: the figure plots the percentage of
positive answers (on the y axis) to the form questions for each kind of review (bar group) and for each
class of subjects (bar fill pattern). It can be seen that our method generates reviews that are considered as
written by a human in almost one case on three—the figure being greater for novice subjects an smaller
for experienced subjects. Moreover, the deceiving ability is larger than the baseline: approximately 30%
vs. 10%. Concerning the real reviews, Figure 12.1 shows that, as expected, they are properly recognized
« 85% of the times: this finding suggests that the truncation of real reviews does not severely affect their
appearance.

12.4.2 Extrinsic evaluation

In the extrinsic evaluation, we built a number of forms, each showing the title of a paper a randomly
chosen from our dataset and a set of 3 reviews randomly sampled for the sets described at points a, b,
and d in the previous section. Real reviews were possibly limited in length as in the intrinsic evaluation.
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The form also showed, next to each review, the corresponding overall recommendation. We asked the
subject to answer the following two questions: 1. “basing on these 3 reviews, would you recommend to
accept or reject the paper?”; 2. “while taking your decision, in which order the 3 reviews influenced you?”
We gathered results from 13 subjects—3 novice, 3 intermediate, and 7 experienced.

Table 13.4 summarizes the key findings of the extrinsic evaluation. In the left portion the table shows,
for each subject class and for all the subjects, the number of forms in which at least a real and a generated
reviews were discordant w.r.t. the recommendation (Discordant column), the number of discordant forms
for which the subject took a decision in line with the generated reviews (and hence against the real reviews,
Subverted column), and the ratio among Subverted and Discordant. In the right portion it shows the
number of forms, for each kind of reviews, in which a review of the corresponding type were stated to be
the most influencing by the subject; moreover it shows the percentage of forms in which the generated
reviews were stated to be the most influencing.

Subject class Subverted Discordant % Our method Original Others %

Experienced 4 16 25.0 10 21 4 28.6
Intermediate 4 15 26.7 11 18 14 25.6
Novice 5 21 23.8 11 25 9 24.4

Overall 13 52 25.0 32 64 27 26.0

Table 12.1: Results of the extrinsic evaluation (see text).

The most interesting, and somewhat surprising, finding is that in the 25% of cases the decision of an
experienced subject agreed with the generated reviews and disagreed with the real reviews: from another
point of view, through a generated review we were able to manipulate the outcome of the (simulated) peer
review process. Table 13.4 also shows that, in 26% of cases, a generated review was stated to be the most
influencing by the subjects.

12.5 Remarks

In this chapter we proposed a method for the automatic generation of scientific reviews. The method is
able to generate a review of a given research paper with a specified overall recommendation. To this end,
it performs multiple steps aimed at generating reviews which resemble human written reviews and hence
might potentially induce the reader to accept or reject the reviewed paper.

A key contribution of our work is the experimental evaluation, which involved 16 human subjects.
The results show that in « 30% of cases a generated review is considered genuine by the human subjects;
moreover, in about 1 among 4 cases, we were able to manipulate the outcome of a (simulated) peer review
process through generated reviews which we mixed with genuine reviews.

Beyond these promising results, our proposal needs further investigation and, in this respect, we plan
to compare it with other NLG methods, such as ANN, for which, however, a much larger amount of data
need to be collected. Finally, it could be interesting to investigate if and how an ontology can improve the
review generation process.



Chapter 13
Automatic Generation of Restaurant
Reviews with LSTM-RNN

13.1 Overview

Online product reviews play a crucial role in both the electronic and conventional commerce [125]. Many
websites and user forums allow online communities to share their experience about products, touristic
destinations, cultural offerings, and so on. Such information may be very useful to both users interested in
a certain item and sellers interested in increasing their revenue. Since users tend to trust the opinion of
other users, online reviews strongly influence decisions.

In this scenario, the opinion of a user can be biased by malicious sellers who try to gain unfair
competitive advantages for their products, by disseminating either fake positive reviews for their products,
or fake negative reviews for the products of their competitors. This phenomenon, called opinion spamming,
is well known by web-oriented business companies which forbid or strongly discourage such practice.
Despite being forbidden, the economic returns potentially involved in committing review fraud can be
so high to motivate users in devoting time and resources for praising or discrediting a specific target. It
is clear that a tool capable of automatically generating a large number of false and diverse reviews with
the desired bias may be potentially disruptive, as it might allow manipulating the opinions of consumers
on a large scale. Although the services hosting product reviews do apply filters and procedures aimed at
limiting the proliferation of false reviews, an attacker able to generate thousands of fake reviews quickly
and cheaply could be able to generate a sufficient amount of reviews which slip through the sanity checks.
Such reviews could suffice to manipulate the opinion of at least a fraction of the interested users and, more
broadly, could undermine the confidence in the overall ecosystem of online product reviews. In this work,
we aim at investigating the feasibility of a tool of this sort. We focus only on the actual content of a review.
Systems which attempt to identify non genuine reviews usually consider also ancillary information such
as, e.g., number and temporal distribution of reviews submitted from the same user or IP address. These
features are beyond the scope of this work.

The contribution of our work, that is illustrated in this chapter, is two-fold: (i) we propose a method
for generating a review, given a restaurant category and a rating; (ii) we perform an experimental campaign
involving human users in which we evaluate the impact of our automatically generated deceptive reviews
when mixed with genuine reviews.

Our method is based on a Long Short-Term Memory based Recurrent Neural Network (LSTM-RNN).
We train the network with a set of genuine reviews in order to obtain a tool capable of generating text
which looks like a restaurant review. Then, in order to tailor the review to the desired rating and category,
we use a set of classifiers (also previously trained with genuine reviews) in order to pick from the text
generated by the network only the portions which matches the desired rating and category.

The experimental campaign is performed on a cohort of 39 users, who were not aware of the fact that
they were dealing with automatically-generated reviews. We performed an extrinsic evaluation aimed
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at assessing the impact on the decision about whether to go to a specific restaurant, and an intrinsic
evaluation aimed at assessing the ability of generating a review which looks like as a review generated by
an human author.

13.2 Related work

Methods for Natural Language Generation (NLG) are widely used in spoken dialogue systems [206],
machine translation [198], and image caption generation [115]. We are not aware of any proposal for
automatic generation of product reviews.

Artificial Neural Networks (ANN) are largely used in the field of NLG. The first ANN-based approach
to NLG is the system presented in [121], which implements a stock reporter system where text generation
is done at phrase level. A recent work [149] has shown the effectiveness of Recurrent Neural Networks
(RNN) for NLG at character level. A key aspect of character-level generation with RNN is the ability
of these models to autonomously learn grammatical and punctuation rules—e.g., opening and closing
parentheses. Furthermore, character-level RNN tend to be more efficient than word-level RNN in terms of
computational cost, which grows with the size of the input and output dictionaries. The works [150, 197]
show that character-level RNN provide slightly worse performance than the equivalent word-based model,
but the character-level approach allows to prediction and generation of new words and strings.

Long Short-term Memory (LSTM) networks [93, 111] are a form of RNN which has proven able
to effectively generate characters sequences with long-range structures [97]. The work [198] bases on
character-level LSTM RRN for machine translation tasks and proves their superiority over other statistical
approaches.

An interesting NLG application of RNN is abstractive summarization [178], where the system produces
a condensed representation of an input text that maintains its original meaning. The work in [218] employs
RNN for question answering, with the NLG system producing correct answers to questions expressed
in natural language. The work [216] provides a conversation system—a generator—for more fluent
responses as part of a conversation.

A remarkable use of LSTM for NLG has been done in the generation of image descriptions [115,
143, 203] and in the generation of descriptive captions for video sequences [202]. Concerning the text
generation for artistic purpose, Zhang and Lapta [219] proposed an RNN-based work for generating
Chinese poetry. In [167], the authors show the ability of a LSTM framework to automatically generate rap
lyrics tailored to the style of a given rapper.

13.3 Our approach

A restaurant is associated with a possibly empty setC Ă C of categories, with C “ titalian, pub, spanish, . . . u
(Table 13.2 shows the list of all categories in C). A review for a restaurant is associated with a rating
s P t1, 2, 3, 4, 5u. We address the problem of automatically generating a review with a specified rating
s for a restaurant with a specified set C of categories. The generated review should look like a review
written by a human author and should be tailored to the rating and categories specified as input.

Our method is based on 3 steps: (i) a generative phase based on a LSTM character-level recurrent
neural network, (ii) a category classification phase and (iii) a rating classification phase.

In the step i), we use LSTM RNN for generating text as follows. We first train the network (see next
section) to predict the probability of the next token for a fixed-length sequence of tokens given as input—a
token being a single character. Then, we generate text with the trained network by starting, as input, with
an input sentence selected from a dataset of genuine reviews at random. We stochastically sample a token
from the output of the network and append to the starting sequence. We then set the next input sequence
for the network by shifting the starting sequence of one token, that is, we exclude the first token and we
include the newly generated. We repeat this iterative procedure until a predefined number of reviews has
been generated. We detect this condition by counting the number of occurrence of a special token tend,
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Rating # of reviews

1 111 218
2 111 833
3 245 896
4 671 610
5 1 028 707

Table 13.1: Number of reviews grouped by rating.

Category # reviews

french 346 175
spanish 334 429
italian 310 816
american 306 499
pizza 239 311
mediterranean 238 141
british 224 719
asian 178 640
pub 169 564
european 169 362

Table 13.2: Number of reviews grouped by the 10 most frequent categories.

which we included at the end of each genuine review in the training text. We remove the first review from
each set of generated reviews in order to neutralize any strong dependence from the starting sentence.

Concerning step ii, given the set of R reviews generated by the network, we use a set of binary
classifiers to remove from R those reviews that are not coherent with the categories C specified as input.
To this end, we input all reviews in R to a set of a 10 binary Naive Bayes classifiers, one for each
category (we chose to consider only the 10 most frequent categories in our dataset). These classifiers were
previously trained with genuine reviews (see next section) and use frequencies of 1-grams, 2-grams and
3-grams as features. We discard from R those reviews deemed to belong to less than half of the categories
in C.

Finally, concerning step iii, we assign to each review in R a rating s1 between 1 and 5 using a
previously trained multi-class classifier. This classifier is Naive Bayes and uses the same features as those
in the previous step. We remove from R all the reviews for which |s´ s1| ą 1 and pick one element from
R at random as output of the procedure. If, at any point, R “ H then the overall procedure is aborted and
restarted.

13.4 Experimental evaluation

We collected a dataset composed of 2 169 264 reviews distributed over 66 700 restaurants. Table 13.1
shows the number of reviews for each rating while Table 13.2 reports the number of reviews for the 10
most frequent categories.

We used a LSTM-RNN implementation based on the char-rnn library1, configured with 3 layers
composed of 700 neurons each—as suggested by the library authors. We trained the LSTM-RNN with a
randomly chosen subset of the full dataset, composed of 500 000 reviews with 100 000 reviews for each
rating. The training phase lasted about 1 month on a Intel Xeon E5-2440 (2.40 GHz) CPU equipped with
32 GB of RAM. Once trained, the time spent by the neural network to generate a review is in the order of

1https://github.com/karpathy/char-rnn
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Useful Not useful
# % # %

Genuine 138 80 35 20
Artificial 51 29 127 71

Table 13.3: Number and percentage of reviews considered as useful or not useful by human users (question a of
extrinsic evaluation).

seconds.
The category and rating classifiers are based on the Naive Base implementation of the Stanford

Classifier2. We trained each category classifier with 100 000 reviews and the rating classifier with 500 000
elements, all randomly selected from the dataset. Training time of classifiers was negligible with respect
to the training time of LSTM-RNN.

In order to assess the effectiveness of our proposal we performed two different evaluations with
human users, an extrinsic evaluation and an intrinsic evaluation, illustrated below. The evaluations were
executed by presenting to each user a suite of forms, each including a set of reviews and few questions to
be answered. This activity was carried out in our laboratory: it is important to remark that users were not
aware that some revisions were artificially generated.

13.4.1 Extrinsic evaluation

In the extrinsic evaluation we assessed the ability of a review generated with our method to influence the
decision of a user about whether to go or not to go to the reviewed restaurant. To this end, we constructed
a set of forms, each composed of the name of a restaurant, its categories and 3 reviews. Reviews were
randomly picked from a set Rg containing genuine reviews written by humans for that restaurant and from
a set Ra of artificial reviews, using our method with inputs given by the categories of the restaurant and a
random rating. We make sure that each form included at least one genuine review and one artificial review.
In each form, we asked the user (a) for each review, if it was useful for his decision, and (b) if, basing on
the 3 reviews, he would have decided to go to that restaurant. We proposed 3 forms to each user and we
collected the evaluations of 39 different users.

The results of the extrinsic evaluation concerning question a are shown in Table 13.3 which reports the
number of reviews marked by users as useful, separately for genuine and artificial. The key, and somewhat
surprising, result shown in Table 13.3 is that around 30% of the artificial reviews (generated using our
method) are indeed considered by a human users as useful for their decision.

Concerning question b, we categorized the forms submitted to users as follows. For each form, we
computed the mean genuine rating sg and the mean artificial rating sa of the ratings associated with the
genuine and artificial review, respectively. Next, we partitioned the 117 collected forms in 4 partitions,
according to whether each of the two mean ratings was (denoted by P) or was not (denoted by N ) ě 3:
two partitions include forms for which genuine and artificial reviews agree (denoted as PP and NN ),
two include forms for which genuine and artificial reviews disagree (denoted as PN and NP)—the two
symbols concern sg and sa, respectively. We were particularly interested in users answer to question b
in the cases in which sg and sa disagree, i.e., in partitions PN and NP . Table 13.4 shows the results
concerning question b for those two partitions. It can be seen that the answer of the user conflicts with the
polarity of genuine reviews in 29% of the cases for PN (genuine reviews are positive) and in 24% of the
cases for NP (artificial reviews are negative).

A different point of view about this finding is given by Figure 13.1, which has one point for each
form. The x and y coordinates of each point are the sums stot

g and stot
a of the ratings for the genuine and

artificial reviews in the form, respectively. A circle represents a negative answer (not going) while a cross
represents a positive answer (going). In a scenario in which the user decision conflicts with genuine

2http://nlp.stanford.edu/software/classifier.shtml
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Going Not going
Genuine Artificial # % # %

P P 21 47 23 53
P N 10 71 4 29
N P 9 24 28 76
N N 5 23 17 77

Table 13.4: Number and percentage of forms resulting in decision to go or not to go to a restaurant (question b of
extrinsic evaluation).
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Figure 13.1: Answers to question b of extrinsic evaluation, one mark for each form.

reviews, there would be a concentration of circles (not going) answers in the bottom-right corner of the
scatter plot and a concentration of crosses (going) in the left part of the image. In our case, Figure 13.1
highlights a concentration of crosses (going) answers in the top-left portion, i.e., positive answers in a
region with high ratings of false reviews and low ratings of true reviews.

13.4.2 Intrinsic evaluation

With the intrinsic evaluation we aimed at evaluating if a human user is able to discriminate between
genuine and generated reviews. In other words, we wanted to evaluate the effectiveness of our method in
generating human-like reviews.

To this end, we constructed a set of forms, each composed of the name of a restaurant and 5 reviews.
In each form, reviews could be partitioned in 4 classes according to the way we chose them (at least one
review in each class): Rgs refers to reviews written by a human for the restaurant in the form; Rgd refers
to reviews written by a human for a different restaurant; Ras refers to reviews generated with our method
with the categories of the restaurant and a random rating as inputs; and Rad of reviews generated using
only the first step of our method. We asked the user, for each review, if the review was written by a human
for the restaurant in the form. Since the nature of the question could suggest that some reviews were
not written by humans, the forms of intrinsic evaluation were presented to each user after the forms for
extrinsic evaluation. We proposed 4 forms to each user and we collected the evaluations of 39 different
users.

The main results of the intrinsic evaluation are reported in Table 13.5. Each row corresponds to
one of the classes described above and shows the distribution of number and percentage of answers,
i.e., either genuine or artificial. The main finding of this evaluation is that a review generated with our



13. Automatic Generation of Restaurant Reviews 134

Looks genuine Looks artificial
# % # %

Rgs 158 81 37 19
Rgd 102 52 93 48
Ras 47 24 148 76
Rad 46 24 149 76

Table 13.5: Number and percentage of answers for the intrinsic evaluation, grouped by class of reviews.

method is considered genuine more frequently than a genuine review is considered artificial (24% for
Ras vs. 19% for Rgs). On the other hand, the percentage of answers for Ras and Rad are essentially
identical, suggesting that, for this kind of evaluation, the contribution of steps ii and iii of our method is
not significant.

13.5 Remarks

In this chapter we have proposed a method for the automatic generation of restaurant reviews based on
LSTM-RNN. The method is able to generate reviews tailored to a rating and a set of categories specified
as input.

A key contribution of our work is the experimental evaluation involving 39 human users. The results
are promising (or should we say worrisome?): about 30% of reviews generated by our method are
considered useful by human users; the opinion of a user on a restaurant, when presented with a mix of
genuine and automatically-generated reviews, conflicts with the polarity of genuine reviews in « 25% of
the times; automatically-generated reviews are considered truthful more frequently than genuine reviews
are considered artificial.

Although our approach is certainly to be investigated further, and although we focus only on the
textual content of reviews while systems for detection of non-genuine reviews consider also other features
describing users activities, we believe that our work provides strong indications that machine-generated
reviews may soon become a real threat for the integrity of review-based systems.
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[204] M. Volk, B. Ripplinger, Š. Vintar, P. Buitelaar, D. Raileanu, and B. Sacaleanu. Semantic annotation
for concept-based cross-language medical information retrieval. International Journal of Medical
Informatics, 67(1):97–112, 2002.

[205] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance measures for time series data. Data Mining
and Knowledge Discovery, 26(2):275–309, 2013.
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