skip to main content
survey
Open Access

Evolutionary Machine Learning: A Survey

Published:04 October 2021Publication History
Skip Abstract Section

Abstract

Evolutionary Computation (EC) approaches are inspired by nature and solve optimization problems in a stochastic manner. They can offer a reliable and effective approach to address complex problems in real-world applications. EC algorithms have recently been used to improve the performance of Machine Learning (ML) models and the quality of their results. Evolutionary approaches can be used in all three parts of ML: preprocessing (e.g., feature selection and resampling), learning (e.g., parameter setting, membership functions, and neural network topology), and postprocessing (e.g., rule optimization, decision tree/support vectors pruning, and ensemble learning). This article investigates the role of EC algorithms in solving different ML challenges. We do not provide a comprehensive review of evolutionary ML approaches here; instead, we discuss how EC algorithms can contribute to ML by addressing conventional challenges of the artificial intelligence and ML communities. We look at the contributions of EC to ML in nine sub-fields: feature selection, resampling, classifiers, neural networks, reinforcement learning, clustering, association rule mining, and ensemble methods. For each category, we discuss evolutionary machine learning in terms of three aspects: problem formulation, search mechanisms, and fitness value computation. We also consider open issues and challenges that should be addressed in future work.

References

  1. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases. In ACM SIGMOD Record, Vol. 22. ACM, 207–216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, Vol. 1215. 487–499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Harith Al-Sahaf, Ying Bi, Qi Chen, Andrew Lensen, Yi Mei, Yanan Sun, Binh Tran, Bing Xue, and Mengjie Zhang. 2019. A survey on evolutionary machine learning. J. Roy. Soc. New Zeal. 49, 2 (2019), 205–228.Google ScholarGoogle ScholarCross RefCross Ref
  4. Shafiq Alam, Gillian Dobbie, Yun Sing Koh, Patricia Riddle, and Saeed Ur Rehman. 2014. Research on particle swarm optimization based clustering: A systematic review of literature and techniques. Swarm Evolut. Comput. 17 (2014), 1–13.Google ScholarGoogle ScholarCross RefCross Ref
  5. Wissam A. Albukhanajer, Yaochu Jin, and Johann A. Briffa. 2017. Classifier ensembles for image identification using multi-objective Pareto features. Neurocomputing 238 (2017), 316–327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hamid Ali, Waseem Shahzad, and Farrukh Aslam Khan. 2012. Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization. Appl. Soft Comput. 12, 7 (2012), 1913–1928. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ibrahim Aljarah, Majdi Mafarja, Ali Asghar Heidari, Hossam Faris, and Seyedali Mirjalili. 2019. Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach. Knowl. Inf. Syst. 62, 2 (2019), 1–33.Google ScholarGoogle Scholar
  8. Abdulaziz Almalaq and Jun Jason Zhang. 2018. Evolutionary deep learning-based energy consumption prediction for buildings. IEEE Access 7 (2018), 1520–1531.Google ScholarGoogle ScholarCross RefCross Ref
  9. Mehrdad Almasi and Mohammad Saniee Abadeh. 2015. Rare-PEARs: A new multi objective evolutionary algorithm to mine rare and non-redundant quantitative association rules. Knowl.-based Syst. 89 (2015), 366–384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Akram AlSukker, Rami Khushaba, and Ahmed Al-Ani. 2010. Optimizing the k-nn metric weights using differential evolution. In Proceedings of the International Conference on Multimedia Computing and Information Technology (MCIT). IEEE, 89–92.Google ScholarGoogle ScholarCross RefCross Ref
  11. Amazon. 2017. Amazon EC2 P3 Instances. Retrieved from https://aws.amazon.com/es/ec2/instance-types/p3.Google ScholarGoogle Scholar
  12. Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866 (2017).Google ScholarGoogle Scholar
  13. Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Sig. Process. Mag. 34, 6 (2017), 26–38.Google ScholarGoogle ScholarCross RefCross Ref
  14. Ilhan Aydin, Mehmet Karakose, and Erhan Akin. 2011. A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl. Soft Comput. 11, 1 (2011), 120–129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Bodrunnessa Badhon, Mir Md Jahangir Kabir, Shuxiang Xu, and Monika Kabir. 2019. A survey on association rule mining based on evolutionary algorithms. Int. J. Comput. Applic. 41, 1 (2019), 1–11.Google ScholarGoogle Scholar
  16. Alejandro Baldominos, Yago Saez, and Pedro Isasi. 2020. On the automated, evolutionary design of neural networks: past, present, and future. Neural Comput. Applic. 32, 2 (2020), 1–27.Google ScholarGoogle ScholarCross RefCross Ref
  17. Rodrigo Coelho Barros, Márcio Porto Basgalupp, Andre C. P. L. F. De Carvalho, and Alex A. Freitas. 2011. A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst., Man, Cyber., Part C (Applic. Rev.) 42, 3 (2011), 291–312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. James C. Bezdek, Srinivas Boggavarapu, Lawrence O. Hall, and Amine Bensaid. 1994. Genetic algorithm guided clustering. In Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. IEEE, 34–39.Google ScholarGoogle ScholarCross RefCross Ref
  19. Urvesh Bhowan, Mark Johnston, and Mengjie Zhang. 2011. Developing new fitness functions in genetic programming for classification with unbalanced data. IEEE Trans. Syst., Man, Cyber., Part B (Cyber.) 42, 2 (2011), 406–421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Cosimo Birtolo, Diego De Chiara, Simona Losito, Pierluigi Ritrovato, and Mario Veniero. 2013. Searching optimal product bundles by means of GA-based Engine and Market Basket Analysis. In Proceedings of the Joint IFSA World Congress and NAFIPS Meeting (IFSA/NAFIPS). IEEE, 448–453.Google ScholarGoogle ScholarCross RefCross Ref
  21. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nimagna Biswas, Saurajit Chakraborty, Sankha Subhra Mullick, and Swagatam Das. 2018. A parameter independent fuzzy weighted k-nearest neighbor classifier. Pattern Recog. Lett. 101 (2018), 80–87.Google ScholarGoogle ScholarCross RefCross Ref
  23. Veronica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso-Betanzos. 2011. Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset. Exp. Syst. Applic. 38, 5 (2011), 5947–5957. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2 (1996), 123–140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lam Thu Bui, Thi Thu Huong Dinh, et al. 2018. A novel evolutionary multi-objective ensemble learning approach for forecasting currency exchange rates. Data Knowl. Eng. 114 (2018), 40–66.Google ScholarGoogle ScholarCross RefCross Ref
  26. Andrés Camero, Jamal Toutouh, Daniel H. Stolfi, and Enrique Alba. 2018. Evolutionary deep learning for car park occupancy prediction in smart cities. In Proceedings of the International Conference on Learning and Intelligent Optimization. Springer, 386–401.Google ScholarGoogle Scholar
  27. José Ramón Cano, Francisco Herrera, and Manuel Lozano. 2005. Stratification for scaling up evolutionary prototype selection. Pattern Recog. Lett. 26, 7 (2005), 953–963. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Erick Cantú-Paz and Chandrika Kamath. 2000. Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies. In Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation III, Vol. 4120. International Society for Optics and Photonics, 63–71.Google ScholarGoogle ScholarCross RefCross Ref
  29. P. A. Castillo, Maribel García Arenas, Juan J. Merelo, V. M. Rivas, and Gustavo Romero. 2006. Multiobjective optimization of ensembles of multilayer perceptrons for pattern classification. In Parallel Problem Solving from Nature-PPSN IX. Springer, 453–462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kingshuk Chakravarty, Diptesh Das, Aniruddha Sinha, and Amit Konar. 2013. Feature selection by differential evolution algorithm-a case study in personnel identification. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE, 892–899.Google ScholarGoogle ScholarCross RefCross Ref
  31. Yusi Cheng, Qiming Li, et al. 2015. GA-based multi-level association rule mining approach for defect analysis in the construction industry. Autom. Construct. 51 (2015), 78–91.Google ScholarGoogle ScholarCross RefCross Ref
  32. Brian Cheung and Carl Sable. 2011. Hybrid evolution of convolutional networks. In Proceedings of the 10th International Conference on Machine Learning and Applications and Workshops, Vol. 1. IEEE, 293–297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13, 1 (1967), 21–27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Giuseppe Cuccu, Matthew Luciw, Jürgen Schmidhuber, and Faustino Gomez. 2011. Intrinsically motivated neuroevolution for vision-based reinforcement learning. In Proceedings of the IEEE International Conference on Development and Learning (ICDL), Vol. 2. IEEE, 1–7.Google ScholarGoogle ScholarCross RefCross Ref
  35. Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015. Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.Google ScholarGoogle Scholar
  36. David M. Curry and Cihan H. Dagli. 2014. Computational complexity measures for many-objective optimization problems. Procedia Comput. Sci. 36 (2014), 185–191.Google ScholarGoogle ScholarCross RefCross Ref
  37. Sérgio Francisco Da Silva, Marcela Xavier Ribeiro, João do E. S. Batista Neto, Caetano Traina-Jr, and Agma J. M. Traina. 2011. Improving the ranking quality of medical image retrieval using a genetic feature selection method. Decis. Supp. Syst. 51, 4 (2011), 810–820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. 2020. A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev. 53, 3 (2020), 1767–1812.Google ScholarGoogle ScholarCross RefCross Ref
  39. Swagatam Das and Amit Konar. 2009. Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9, 1 (2009), 226–236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Emiro De la Hoz, Eduardo De La Hoz, Andrés Ortiz, Julio Ortega, and Antonio Martínez-Álvarez. 2014. Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps. Knowl.-based Syst. 71 (2014), 322–338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jeff Dean and U. Hölzle. 2017. Build and train machine learning models on our new Google Cloud TPUs. Retrieved from https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning.Google ScholarGoogle Scholar
  42. Hongbin Dong, Yuxin Dong, Cheng Zhou, Guisheng Yin, and Wei Hou. 2009. A fuzzy clustering algorithm based on evolutionary programming. Exp. Syst. Applic. 36, 9 (2009), 11792–11800. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. J. Mach. Learn. Res. 20, 55 (2019), 1–21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhiwei Fu, Bruce L. Golden, Shreevardhan Lele, S. Raghavan, and Edward A. Wasil. 2003. A genetic algorithm-based approach for building accurate decision trees. INFORMS J. Comput. 15, 1 (2003), 3–22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. K. Y. Fung, C. K. Kwong, Kin Wai Michael Siu, and K. M. Yu. 2012. A multi-objective genetic algorithm approach to rule mining for affective product design. Exp. Syst. Applic. 39, 8 (2012), 7411–7419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Mikel Galar, Alberto Fernández, Edurne Barrenechea, and Francisco Herrera. 2013. EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recog. 46, 12 (2013), 3460–3471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Salvador Garcı, Isaac Triguero, Cristobal J. Carmona, Francisco Herrera, et al. 2012. Evolutionary-based selection of generalized instances for imbalanced classification. Knowl.-based Syst. 25, 1 (2012), 3–12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 16, 1 (2015), 1437–1480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Salvador García, Alberto Fernández, and Francisco Herrera. 2009. Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl. Soft Comput. 9, 4 (2009), 1304–1314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Salvador García and Francisco Herrera. 2009. Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evolut. Comput. 17, 3 (2009), 275–306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Fred Glover. 1986. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 5 (1986), 533–549. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Taciana A. F. Gomes, Ricardo B. C. Prudêncio, Carlos Soares, André L. D. Rossi, and André Carvalho. 2012. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75, 1 (2012), 3–13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Frédéric Gruau. 1994. Automatic definition of modular neural networks. Adapt. Behav. 3, 2 (1994), 151–183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Shenkai Gu and Yaochu Jin. 2014. Generating diverse and accurate classifier ensembles using multi-objective optimization. In Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE, 9–15.Google ScholarGoogle ScholarCross RefCross Ref
  56. X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang, and Y. C. Liang. 2008. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71, 16–18 (2008), 3211–3215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. In ACM Sigmod Record, Vol. 29. ACM, 1–12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Emrah Hancer, Bing Xue, Dervis Karaboga, and Mengjie Zhang. 2015. A binary ABC algorithm based on advanced similarity scheme for feature selection. Appl. Soft Comput. 36 (2015), 334–348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Julia Handl and Bernd Meyer. 2002. Improved ant-based clustering and sorting in a document retrieval interface. In Proceedings of the International Conference on Parallel Problem Solving from Nature. Springer, 913–923. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Shigeru Haruyama and Qiangfu Zhao. 2002. Designing smaller decision trees using multiple objective optimization based GPS. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol. 6. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  61. Mohamed Jafar Abul Hasan and Sivakumar Ramakrishnan. 2011. A survey: Hybrid evolutionary algorithms for cluster analysis. Artif. Intell. Rev. 36, 3 (2011), 179–204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Majeed Heydari and Amir Yousefli. 2017. A new optimization model for market basket analysis with allocation considerations: A genetic algorithm solution approach. Manag. Market. Chall. Knowl. Soc. 12, 1 (2017), 1–11.Google ScholarGoogle Scholar
  63. John H. Holland. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Eduardo Raul Hruschka, Ricardo J. G. B. Campello, Alex A. Freitas, et al. 2009. A survey of evolutionary algorithms for clustering. IEEE Trans. Syst., Man, Cyber., Part C (Applic. Rev.) 39, 2 (2009), 133–155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Jian Huang, Xiaoguang Hu, and Fan Yang. 2011. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker. Measurement 44, 6 (2011), 1018–1027.Google ScholarGoogle ScholarCross RefCross Ref
  66. Huimin Jiang, C. K. Kwong, W. Y. Park, and K. M. Yu. 2018. A multi-objective PSO approach of mining association rules for affective design based on online customer reviews. J. Eng. Des. 29, 7 (2018), 381–403.Google ScholarGoogle ScholarCross RefCross Ref
  67. Hua Jiang, Shenghe Yi, Jing Li, Fengqin Yang, and Xin Hu. 2010. Ant clustering algorithm with K-harmonic means clustering. Exp. Syst. Applic. 37, 12 (2010), 8679–8684. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Raja Jothi, Elena Zotenko, Asba Tasneem, and Teresa M. Przytycka. 2006. COCO-CL: Hierarchical clustering of homology relations based on evolutionary correlations. Bioinformatics 22, 7 (2006), 779–788. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski. 2017. Evolutionary induction of a decision tree for large-scale data: A GPU-based approach. Soft Comput. 21, 24 (2017), 7363–7379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Dervis Karaboga, Bahriye Akay, and Celal Ozturk. 2007. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence. Springer, 318–329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Stephen Kelly, Wolfgang Banzhaf, and Cedric Gondro. 2021. Evolving hierarchical memory-prediction machines in multi-task reinforcement learning. arXiv preprint arXiv:2106.12659 (2021).Google ScholarGoogle Scholar
  72. Stephen Kelly and Malcolm I. Heywood. 2017. Emergent tangled graph representations for Atari game playing agents. In Proceedings of the European Conference on Genetic Programming. Springer, 64–79.Google ScholarGoogle Scholar
  73. Stephen Kelly and Malcolm I. Heywood. 2018. Emergent solutions to high-dimensional multitask reinforcement learning. Evolut. Comput. 26, 3 (2018), 347–380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, Vol. 4. IEEE, 1942–1948.Google ScholarGoogle ScholarCross RefCross Ref
  75. Shauharda Khadka and Kagan Tumer. 2018. Evolution-guided policy gradient in reinforcement learning. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1188–1200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Mujahid H. Khalifa, Marwa Ammar, Wael Ouarda, and Adel M. Alimi. 2017. Particle swarm optimization for deep learning of convolution neural network. In Proceedings of the Sudan Conference on Computer Science and Information Technology (SCCSIT). IEEE, 1–5.Google ScholarGoogle Scholar
  77. Salman H. Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A. Sohel, and Roberto Togneri. 2017. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29, 8 (2017), 3573–3587.Google ScholarGoogle Scholar
  78. Taghi M. Khoshgoftaar and Yi Liu. 2007. A multi-objective software quality classification model using genetic programming. IEEE Trans. Reliab. 56, 2 (2007), 237–245.Google ScholarGoogle ScholarCross RefCross Ref
  79. Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983), 671–680.Google ScholarGoogle Scholar
  80. Hiroaki Kitano. 1990. Empirical studies on the speed of convergence of neural network training using genetic algorithms. In Proceedings of the AAAI Conference on Artificial Intelligence. 789–795. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Jens Kober, J. Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 32, 11 (2013), 1238–1274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Jan Koutník, Jürgen Schmidhuber, and Faustino Gomez. 2014. Evolving deep unsupervised convolutional networks for vision-based reinforcement learning. In Proceedings of the Conference on Genetic and Evolutionary Computation. 541–548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Bartosz Krawczyk, Michał Woźniak, and Gerald Schaefer. 2014. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 14 (2014), 554–562. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. D. Praveen Kumar, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. 2019. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fus. 49 (2019), 1–25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Pardeep Kumar and Amit Kumar Singh. 2019. Efficient generation of association rules from numeric data using genetic algorithm for smart cities. In Security in Smart Cities: Models, Applications, and Challenges. Springer, 323–343.Google ScholarGoogle Scholar
  86. Chan-Sheng Kuo, Tzung-Pei Hong, and Chuen-Lung Chen. 2007. Applying genetic programming technique in classification trees. Soft Comput. 11, 12 (2007), 1165–1172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. R. J. Kuo and L. M. Lin. 2010. Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. Decis. Supp. Syst. 49, 4 (2010), 451–462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. R. J. Kuo, S. Y. Lin, and C. W. Shih. 2007. Mining association rules through integration of clustering analysis and ant colony system for health insurance database in Taiwan. Exp. Syst. Applic. 33, 3 (2007), 794–808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. R. J. Kuo, Y. J. Syu, Zhen-Yao Chen, and Fang-Chih Tien. 2012. Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Inf. Sci. 195 (2012), 124–140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Halina Kwaśnicka and Kajetan Świtalski. 2006. Discovery of association rules from medical data-classical and evolutionary approaches. Annales Universitatis Mariae Curie-Sklodowska, Sectio AI–Informatica 4, 1 (2006), 204–217.Google ScholarGoogle Scholar
  91. Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. 2012. Efficient backprop. In Neural Networks: Tricks of the Trade. Springer, 9–48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. C. K. H. Lee, King Lun Choy, George T. S. Ho, and Cathy H. Y. Lam. 2016. A slippery genetic algorithm-based process mining system for achieving better quality assurance in the garment industry. Exp. Syst. Applic. 46 (2016), 236–248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. 2015. Many-objective evolutionary algorithms: A survey. ACM Comput. Surv. 48, 1 (2015), 1–35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Juan Li, Yuan-xiang Li, Sha-sha Tian, and Jie-lin Xia. 2019. An improved cuckoo search algorithm with self-adaptive knowledge learning. Neural Comput. Applic. 32, 16 (2019), 1–31.Google ScholarGoogle ScholarCross RefCross Ref
  95. Juan Li, Yuan-xiang Li, Sha-sha Tian, and Jie Zou. 2019. Dynamic cuckoo search algorithm based on Taguchi opposition-based search. Int. J. Bio-insp. Comput. 13, 1 (2019), 59–69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Juan Li, Dan-dan Xiao, Hong Lei, Ting Zhang, and Tian Tian. 2020. Using cuckoo search algorithm with q-learning and genetic operation to solve the problem of logistics distribution center location. Mathematics 8, 2 (2020), 149.Google ScholarGoogle ScholarCross RefCross Ref
  97. Juan Li, Dan-dan Xiao, Ting Zhang, Chun Liu, Yuan-xiang Li, and Gai-ge Wang. 2021. Multi-swarm cuckoo search algorithm with q-learning model. Comput. J. 64, 1 (2021), 108–131.Google ScholarGoogle ScholarCross RefCross Ref
  98. Juan Li, Yuan-Hua Yang, Hong Lei, and Gai-Ge Wang. 2020. Solving logistics distribution center location with improved cuckoo search algorithm. Int. J. Comput. Intell. Syst. 14, 1 (2020), 676–692.Google ScholarGoogle ScholarCross RefCross Ref
  99. Wei Li and Gai-Ge Wang. 2021. Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning for numerical optimization. Eng. Comput. (2021), 1–29.Google ScholarGoogle Scholar
  100. Wei Li, Gai-Ge Wang, and Amir H. Alavi. 2020. Learning-based elephant herding optimization algorithm for solving numerical optimization problems. Knowl.-based Syst. 195 (2020), 105675.Google ScholarGoogle Scholar
  101. Xianneng Li, Shingo Mabu, Huiyu Zhou, Kaoru Shimada, and Kotaro Hirasawa. 2010. Genetic network programming with estimation of distribution algorithms for class association rule mining in traffic prediction. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  102. Xiangju Li, Hong Zhao, and William Zhu. 2015. A cost sensitive decision tree algorithm with two adaptive mechanisms. Knowl.-based Syst. 88 (2015), 24–33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto Miikkulainen. 2019. Evolutionary neural automl for deep learning. In Proceedings of the Genetic and Evolutionary Computation Conference. 401–409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Amy H. L. Lim, Chien-Sing Lee, and Murali Raman. 2012. Hybrid genetic algorithm and association rules for mining workflow best practices. Exp. Syst. Applic. 39, 12 (2012), 10544–10551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Pin Lim, Chi Keong Goh, and Kay Chen Tan. 2016. Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning. IEEE Trans. Cyber. 47, 9 (2016), 2850–2861.Google ScholarGoogle ScholarCross RefCross Ref
  106. Yongguo Liu, Kefei Chen, Xiaofeng Liao, and Wei Zhang. 2004. A genetic clustering method for intrusion detection. Pattern Recog. 37, 5 (2004), 927–942.Google ScholarGoogle ScholarCross RefCross Ref
  107. Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28, 2 (1982), 129–137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Ana Carolina Lorena and Andre C. P. L. F. De Carvalho. 2008. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 71, 16–18 (2008), 3326–3334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. José Antonio Lozano and Pedro Larranaga. 1999. Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recog. Lett. 20, 9 (1999), 911–918. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Nannan Lu, Shingo Mabu, Tuo Wang, and Kotaro Hirasawa. 2013. An efficient class association rule-pruning method for unified intrusion detection system using genetic algorithm. IEEJ Trans. Electric. Electron. Eng. 8, 2 (2013), 164–172.Google ScholarGoogle ScholarCross RefCross Ref
  111. Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. 2020. Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In Proceedings of the European Conference on Computer Vision. Springer, 35–51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf. 2019. NSGA-Net: Neural architecture search using multi-objective genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference. 419–427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. José María Luna, Cristóbal Romero, José Raúl Romero, and Sebastián Ventura. 2015. An evolutionary algorithm for the discovery of rare class association rules in learning management systems. Appl. Intell. 42, 3 (2015), 501–513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Patrick C. H. Ma, Keith C. C. Chan, Xin Yao, and David K. Y. Chiu. 2006. An evolutionary clustering algorithm for gene expression microarray data analysis. IEEE Trans. Evolut. Comput. 10, 3 (2006), 296–314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Sai Ma and Fulei Chu. 2019. Ensemble deep learning-based fault diagnosis of rotor bearing systems. Comput. Industr. 105 (2019), 143–152.Google ScholarGoogle ScholarCross RefCross Ref
  116. Shingo Mabu, Ci Chen, Nannan Lu, Kaoru Shimada, and Kotaro Hirasawa. 2010. An intrusion-detection model based on fuzzy class-association-rule mining using genetic network programming. IEEE Trans. Syst., Man, Cyber., Part C (Applic. Rev.) 41, 1 (2010), 130–139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Arif Jamal Malik and Farrukh Aslam Khan. 2018. A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection. Cluster Comput. 21, 1 (2018), 667–680.Google ScholarGoogle ScholarCross RefCross Ref
  118. Veenu Mangat and Renu Vig. 2014. Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery. Exp. Syst. Applic. 41, 18 (2014), 8234–8244.Google ScholarGoogle ScholarCross RefCross Ref
  119. Vittorio Maniezzo, Luca Maria Gambardella, and Fabio De Luigi. 2004. Ant colony optimization. In New Optimization Techniques in Engineering. Springer, 101–121.Google ScholarGoogle Scholar
  120. María Martínez-Ballesteros, Francisco Martínez-Álvarez, A. Troncoso, and José C. Riquelme. 2009. Quantitative association rules applied to climatological time series forecasting. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning. Springer, 284–291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso, and José C Riquelme. 2011. An evolutionary algorithm to discover quantitative association rules in multidimensional time series. Soft Comput. 15, 10 (2011), 2065. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. María Martínez-Ballesteros, A. Troncoso, Francisco Martínez-Álvarez, and José C. Riquelme. 2010. Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution. Integr. Comput.-aided Eng. 17, 3 (2010), 227–242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Jacinto Mata, José-Luis Alvarez, and José-Cristobal Riquelme. 2002. Discovering numeric association rules via evolutionary algorithm. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 40–51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Daniel Mateos-García, Jorge García-Gutiérrez, and José C. Riquelme-Santos. 2016. An evolutionary voting for k-nearest neighbours. Exp. Syst. Applic. 43 (2016), 9–14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Ron Meir and Gunnar Rätsch. 2003. An introduction to boosting and leveraging. In Advanced Lectures on Machine Learning. Springer, 118–183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Jan Hendrik Metzen, Mark Edgington, Yohannes Kassahun, and Frank Kirchner. 2008. Analysis of an evolutionary reinforcement learning method in a multiagent domain. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 1. Citeseer, 291–298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier, 293–312.Google ScholarGoogle Scholar
  128. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015), 529.Google ScholarGoogle Scholar
  129. Anirban Mukhopadhyay, Ujjwal Maulik, and Sanghamitra Bandyopadhyay. 2015. A survey of multiobjective evolutionary clustering. ACM Comput. Surv. 47, 4 (2015), 1–46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Carlos Artemio Coello Coello. 2013. A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evolut. Comput. 18, 1 (2013), 4–19.Google ScholarGoogle ScholarCross RefCross Ref
  131. Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Carlos A. Coello Coello. 2013. Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans. Evolut. Comput. 18, 1 (2013), 20–35.Google ScholarGoogle ScholarCross RefCross Ref
  132. S. R. Nanda, Biswajit Mahanty, and M. K. Tiwari. 2010. Clustering Indian stock market data for portfolio management. Exp. Syst. Applic. 37, 12 (2010), 8793–8798. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Satyasai Jagannath Nanda and Ganapati Panda. 2014. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evolut. Comput. 16 (2014), 1–18.Google ScholarGoogle ScholarCross RefCross Ref
  134. NVIDIA. 2017. The world's most efficient supercomputer for AI and deep learning. Retrieved from http://images.nvidia.com/content/pdf/infographic/dgx-saturnv-infographic.pdf.Google ScholarGoogle Scholar
  135. Luiz S. Oliveira, Robert Sabourin, Flávio Bortolozzi, and Ching Y. Suen. 2002. Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In Object Recognition Supported by User Interaction for Service Robots, Vol. 1. IEEE, 568–571. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut. 2017. A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification. Inf. Process. Manag. 53, 4 (2017), 814–833. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. Fernando E. B. Otero, Alex A. Freitas, and Colin G. Johnson. 2012. Inducing decision trees with an ant colony optimization algorithm. Appl. Soft Comput. 12, 11 (2012), 3615–3626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Rafael S. Parpinelli and Heitor S. Lopes. 2011. New inspirations in swarm intelligence: A survey. Int. J. Bio-insp. Comput. 3, 1 (2011), 1–16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Russel Pears and Yun Sing Koh. 2011. Weighted association rule mining using particle swarm optimization. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 327–338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Abdolrahman Peimankar, Stephen John Weddell, Thahirah Jalal, and Andrew Craig Lapthorn. 2018. Multi-objective ensemble forecasting with an application to power transformers. Appl. Soft Comput. 68 (2018), 233–248.Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Lu Peng, Shan Liu, Rui Liu, and Lin Wang. 2018. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 162 (2018), 1301–1314.Google ScholarGoogle ScholarCross RefCross Ref
  142. Pyari Mohan Pradhan and Ganapati Panda. 2012. Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Netw. 10, 6 (2012), 1134–1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Esmat Rashedi, Elaheh Rashedi, and Hossein Nezamabadi-pour. 2018. A comprehensive survey on gravitational search algorithm. Swarm Evolut. Comput. 41 (2018), 141–158.Google ScholarGoogle ScholarCross RefCross Ref
  144. Esteban Real, Chen Liang, David So, and Quoc Le. 2020. AutoML-zero: Evolving machine learning algorithms from scratch. In Proceedings of the International Conference on Machine Learning. PMLR, 8007–8019.Google ScholarGoogle Scholar
  145. Victor Henrique Alves Ribeiro and Gilberto Reynoso-Meza. 2019. A holistic multi-objective optimization design procedure for ensemble member generation and selection. Appl. Soft Comput. 83 (2019), 105664.Google ScholarGoogle ScholarCross RefCross Ref
  146. Victor Henrique Alves Ribeiro and Gilberto Reynoso-Meza. 2020. Ensemble learning by means of a multi-objective optimization design approach for dealing with imbalanced data sets. Exp. Syst. Applic. 147 (2020), 113232.Google ScholarGoogle ScholarCross RefCross Ref
  147. Cristóbal Romero, Amelia Zafra, Jose María Luna, and Sebastián Ventura. 2013. Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data. Exp. Syst. 30, 2 (2013), 162–172.Google ScholarGoogle ScholarCross RefCross Ref
  148. Hussein Samma, Chee Peng Lim, and Junita Mohamad Saleh. 2016. A new reinforcement learning-based memetic particle swarm optimizer. Appl. Soft Comput. 43 (2016), 276–297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Manish Sarkar, B. Yegnanarayana, and Deepak Khemani. 1997. A clustering algorithm using an evolutionary programming-based approach. Pattern Recog. Lett. 18, 10 (1997), 975–986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Mansour Sheikhan and Maryam Sharifi Rad. 2013. Using particle swarm optimization in fuzzy association rules-based feature selection and fuzzy ARTMAP-based attack recognition. Secur. Commun. Netw. 6, 7 (2013), 797–811.Google ScholarGoogle ScholarCross RefCross Ref
  151. Christopher Smith and Yaochu Jin. 2014. Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction. Neurocomputing 143 (2014), 302–311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. Qin Song, Yu-Jun Zheng, Yu Xue, Wei-Guo Sheng, and Mei-Rong Zhao. 2017. An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination. Neurocomputing 226 (2017), 16–22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Pedro Sousa, Paulo Cortez, Rui Vaz, Miguel Rocha, and Miguel Rio. 2013. Email spam detection: A symbiotic feature selection approach fostered by evolutionary computation. Int. J. Inf. Technol. Decis. Mak. 12, 04 (2013), 863–884.Google ScholarGoogle ScholarCross RefCross Ref
  154. Andreas Stafylopatis and Konstantinos Blekas. 1998. Autonomous vehicle navigation using evolutionary reinforcement learning. Eur. J. Oper. Res. 108, 2 (1998), 306–318.Google ScholarGoogle ScholarCross RefCross Ref
  155. Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. Designing neural networks through neuroevolution. Nat. Mach. Intell. 1, 1 (2019), 24–35.Google ScholarGoogle ScholarCross RefCross Ref
  156. Kenneth O. Stanley, David B. D'Ambrosio, and Jason Gauci. 2009. A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15, 2 (2009), 185–212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving neural networks through augmenting topologies. Evolut. Comput. 10, 2 (2002), 99–127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017).Google ScholarGoogle Scholar
  159. Thorsten Suttorp and Christian Igel. 2006. Multi-objective optimization of support vector machines. In Multi-objective Machine Learning. Springer, 199–220.Google ScholarGoogle Scholar
  160. Amirhessam Tahmassebi and Amir H. Gandomi. 2018. Building energy consumption forecast using multi-objective genetic programming. Measurement 118 (2018), 164–171.Google ScholarGoogle ScholarCross RefCross Ref
  161. Amirhessam Tahmassebi and Amir H. Gandomi. 2018. Genetic programming based on error decomposition: A big data approach. In Genetic Programming Theory and Practice XV. Springer, 135–147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Amirhessam Tahmassebi, Amir H. Gandomi, and Anke Meyer-Baese. 2018. An evolutionary online framework for MOOC performance using EEG data. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  163. Amirhessam Tahmassebi, Amir H. Gandomi, and Anke Meyer-Baese. 2018. A Pareto front based evolutionary model for airfoil self-noise prediction. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  164. Amirhessam Tahmassebi, Behshad Mohebali, Anke Meyer-Baese, and Amir H. Gandomi. 2020. Multiobjective genetic programming for reinforced concrete beam modeling. Appl. AI Lett. 1, 1 (2020), e9.Google ScholarGoogle ScholarCross RefCross Ref
  165. Amirhessam Tahmassebi and Trace Smith. 2021. SlickML: Slick Machine Learning in Python. Retrieved from https://github.com/slickml/slick-ml.Google ScholarGoogle Scholar
  166. Pınar Tapkan, Lale Özbakır, Sinem Kulluk, and Adil Baykasoğlu. 2016. A cost-sensitive classification algorithm: BEE-Miner. Knowl.-based Syst. 95 (2016), 99–113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Kshitij Tayal and Vadlamani Ravi. 2016. Particle swarm optimization trained class association rule mining: Application to phishing detection. In Proceedings of the International Conference on Informatics and Analytics. 1–8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Akbar Telikani and Amir H. Gandomi. 2019. Cost-sensitive stacked auto-encoders for intrusion detection in the Internet of Things. Internet of Things 14 (2019), 100122.Google ScholarGoogle ScholarCross RefCross Ref
  169. Akbar Telikani, Amir H. Gandomi, and Asadollah Shahbahrami. 2020. A survey of evolutionary computation for association rule mining. Inf. Sci. 524 (2020).Google ScholarGoogle Scholar
  170. Akbar Telikani and Asadollah Shahbahrami. 2018. Data sanitization in association rule mining: An analytical review. Exp. Syst. Applic. 96 (2018), 406–426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. Cuong To and Tuan D. Pham. 2009. Analysis of cardiac imaging data using decision tree based parallel genetic programming. In Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis. IEEE, 317–320.Google ScholarGoogle Scholar
  172. Binh Tran, Bing Xue, and Mengjie Zhang. 2016. Genetic programming for feature construction and selection in classification on high-dimensional data. Mem. Comput. 8, 1 (2016), 3–15.Google ScholarGoogle ScholarCross RefCross Ref
  173. Isaac Triguero, Mikel Galar, Humberto Bustince, and Francisco Herrera. 2017. A first attempt on global evolutionary undersampling for imbalanced big data. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE, 2054–2061.Google ScholarGoogle ScholarCross RefCross Ref
  174. Isaac Triguero, Salvador García, and Francisco Herrera. 2011. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recog. 44, 4 (2011), 901–916. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Alan M. Turing. 1950. Computing machinery and intelligence. Mind 59, 236 (1950), 433–460.Google ScholarGoogle ScholarCross RefCross Ref
  176. Shweta Tyagi and Kamal K. Bharadwaj. 2013. Enhancing collaborative filtering recommendations by utilizing multi-objective particle swarm optimization embedded association rule mining. Swarm Evolut. Comput. 13 (2013), 1–12.Google ScholarGoogle ScholarCross RefCross Ref
  177. Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S. Rellermeyer. 2020. A survey on distributed machine learning. ACM Comput. Surv. 53, 2 (2020), 1–33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Leandro D. Vignolo, Diego H. Milone, and Jacob Scharcanski. 2013. Feature selection for face recognition based on multi-objective evolutionary wrappers. Exp. Syst. Applic. 40, 13 (2013), 5077–5084.Google ScholarGoogle ScholarCross RefCross Ref
  179. Wengdong Wang and Susan M. Bridges. 2000. Genetic algorithm optimization of membership functions for mining fuzzy association rules. Depart. Comput. Sci. Mississ. State Univ. 2 (2000).Google ScholarGoogle Scholar
  180. Feng Wen, Guo Zhang, Lingfeng Sun, Xingqiao Wang, and Xiaowei Xu. 2019. A hybrid temporal association rules mining method for traffic congestion prediction. Comput. Industr. Eng. 130 (2019), 779–787.Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. Chun-Hui Wu, Ta-Cheng Chen, Yi-Chih Hsieh, and Huei-Ling Tsao. 2019. A hybrid rule mining approach for cardiovascular disease detection in traditional Chinese medicine. J. Intell. Fuzz. Syst. 36, 2 (2019), 861–870.Google ScholarGoogle ScholarCross RefCross Ref
  182. Bing Xue, Mengjie Zhang, and Will N. Browne. 2014. Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Appl. Soft Comput. 18 (2014), 261–276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Bing Xue, Mengjie Zhang, Will N. Browne, and Xin Yao. 2015. A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evolut. Comput. 20, 4 (2015), 606–626.Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Dongdong Yang, Licheng Jiao, Maoguo Gong, and Fang Liu. 2011. Artificial immune multi-objective SAR image segmentation with fused complementary features. Inf. Sci. 181, 13 (2011), 2797–2812. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Xin Yao. 1993. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8, 4 (1993), 539–567.Google ScholarGoogle ScholarCross RefCross Ref
  186. Jianbo Yu, Lifeng Xi, and Shijin Wang. 2007. An improved particle swarm optimization for evolving feedforward artificial neural networks. Neural Process. Lett. 26, 3 (2007), 217–231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. Mohammed Javeed Zaki. 2000. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12, 3 (2000), 372–390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. Maider Zamalloa, Germán Bordel, Luis Javier Rodríguez, and Mikel Peñagarikano. 2006. Feature selection based on genetic algorithms for speaker recognition. In Proceedings of the IEEE Odyssey-The Speaker and Language Recognition Workshop. IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  189. Chong Zhang, Kay Chen Tan, Haizhou Li, and Geok Soon Hong. 2018. A cost-sensitive deep belief network for imbalanced classification. IEEE Trans. Neural Netw. Learn. Syst. 30, 1 (2018), 109–122.Google ScholarGoogle ScholarCross RefCross Ref
  190. Lei Zhang, Guanglong Fu, Fan Cheng, Jianfeng Qiu, and Yansen Su. 2018. A multi-objective evolutionary approach for mining frequent and high utility itemsets. Appl. Soft Comput. 62 (2018), 974–986.Google ScholarGoogle ScholarCross RefCross Ref
  191. Zaifang Zhang, Nana Chai, Egon Ostrosi, and Yuliang Shang. 2019. Extraction of association rules in the schematic design of product service system based on Pareto-MODGDFA. Comput. Industr. Eng. 129 (2019), 392–403.Google ScholarGoogle ScholarCross RefCross Ref
  192. Changjiu Zhou. 2002. Robot learning with GA-based fuzzy reinforcement learning agents. Inf. Sci. 145, 1–2 (2002), 45–68.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Evolutionary Machine Learning: A Survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 54, Issue 8
          November 2022
          754 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3481697
          Issue’s Table of Contents

          Copyright © 2021 Copyright held by the owner/author(s).

          This work is licensed under a Creative Commons Attribution International 4.0 License.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 October 2021
          • Accepted: 1 May 2021
          • Revised: 1 April 2021
          • Received: 1 December 2020
          Published in csur Volume 54, Issue 8

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format