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Abstract. In this paper, a novel algorithm for single class based on genetic pro-
gramming (GP) is introduced. Single class problem is converted into symbolic 
regression, and then genetic programming is used to search a polynomial func-
tion which approximates symbolic regression problem. Four real databases (one 
transcriptomics, one proteomics, and two breast cancers) were used to test the 
algorithm and a comparison with six well-known algorithms was done. The re-
sults prove that the algorithm is a rather good one. 

1   Introduction 

In supervised pattern classification, there are three kinds of problems: single class, 
multi-class classification, and binary classification. Single class [1] is novelty detec-
tion. Multi-class classification [2-8] is usually converted into multiple binary classifi-
cations. Maybe, binary classification is the most popular form of supervised pattern 
classification. In binary classification [9-14], the training set consists of two sub sets 
called positive set and negative set. The positive set contains patterns which are la-
beled in the same class. The negative set includes the patterns which are not included 
in the positive set. 

Although patterns of the negative set help the classifier recognizes patterns which 
are different from the positive set. But there exist some problems of the negative set 
that can affect searching result as: 

+ Number of patterns in the negative set: If the number of patterns in the negative 
set is high, resulting in a low number of misclassified patterns, the number of true 
patterns will be low. On the contrary, if the number of patterns in the negative set is 
low, resulting in a high number of misclassified patterns, the number of true patterns 
will be high. There is no general rule to determine the best number of patterns in the 
negative set for every database. It is still a trial and error task. 

+ Patterns of the negative set: two negative sets having the same number of but dif-
ferent patterns may give very different results (one result is ideal, the other is not). 
Therefore, pattern selection for the negative set is critical and is largely a function of 
trial and error. 



Supervised pattern classification methods which do not contain the negative set in 
the training set remove the disadvantages of the negative set. These methods are called 
single class classification. 

In this paper, we propose an algorithm for single class based on genetic program-
ming [15]. Firstly, single class problem is represented as the symbolic regression. 
Then genetic programming searches a polynomial function describing the symbolic 
regression problem. 

2 Method 

Let the training set be a set of patterns, TS = {xi ∈ Rn, i = 1..m}, with m as the number 
of patterns in the training set. 

The main idea of the algorithm is to find a function which represents the mean 
similarity between one pattern and other patterns of the training set. In other words, 
we have a problem of symbolic regression. In the symbolic regression, we need a set 
of pairs (xi, yi). The values, xi, are known in the training set while the values, yi, need 
to be determined. In the algorithm, we use Euclidean distance to describe yi. The fol-
lowing describes yi: 

Average Euclidean distance between two patterns ( )T21  ..., , , rnrrr xxx=x  and 
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Because xri and xsi ∈ [0, 1] so Dis(xr, xs) ∈ [0, 1]. Dis(xr, xs) = 0 means xr ≡ xs. We 
change 0 to 1 as: 

Sim(xr, xs) = 1 -  Dis(xr, xs) (2) 

Equation (2) is used to measure similarity of two patterns. The difference between 
two patterns is calculated: 

Dif(xr, xs) = 1 – Sim(xr, xs) = Dis(xr, xs) (3) 

The mean of similarity between pattern xr and other patterns in the training set, TS, 
is computed as: 
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M(xr) is used to describe yr in symbolic regression problem. In other words, we use 
genetic programming to search function f(x) that satisfies the following criterion 



f(xi) ≈ M(xi), ∀i = 1..m (5) 

2.1 The Fitness Function 

In reality, we do not know function type of the training set. Furthermore, it is possible 
for different training sets to have different functions. So we use polynomial function 
because polynomial function can approximate any function in principle. The fitness of 
a tree in population is computed as: 
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where: 
• kf : polynomial function of k-th tree in population. 
• M(xi): mean of similarity between pattern xi and other patterns in training set 

computed by Eq. (4). 
• Dif(xi, xj): difference between two patterns xi and xj computed by Eq. (3). 

2.2 Prediction 

Let f(x) be the best polynomial function that GP creates. Min_TS = min {f(xi), ∀xi ∈ 
training set}. Max_TS = max {f(xi), ∀xi ∈ training set}. If a tested pattern, a, has f(a) 
∈ [Min_TS, Max_TS], then tested pattern, a, belongs to the training set. 

2.3 Pattern Splitting 

There are some reasons why a pattern is split. First, the higher dimension pattern is the 
lower probability of obtaining good results. Second, pattern splitting can decrease the 
number of misclassified patterns. Third, each sub pattern can be assigned to one com-
puter and runs independently to allow for parallel computing. 

An original pattern is split into q non-overlapping sub patterns such that the sum of 
dimension of all sub-patterns is equal to the number of dimensions of the original 
pattern. Therefore, the original pattern search problem becomes q sub pattern search 
problems. Applying fitness function, Eq. (6), to each sub pattern, we obtain separate 
result of each sub-pattern. Results of all sub patterns are then combined according to 
Eq. (7) to breed result of the original pattern. 
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with 
• rsi : result set of i-th sub pattern. 



• rs : result set of original pattern. 

2.4 Control Parameters of GP 

Artificial data were used to determine the value of parameters of genetic programming 
and created by the following scheme: 

Step 1: Create a random set of 2000 21-dimensional patterns called set R. 
Step 2: Create a random template A. 
Step 3: Create a random set of 100 patterns by adding 30% Gaussian noise to pat-

tern template A, having set C. 
Step 4: Mix set C with set R, having set B (2100 patterns). 
Step 5: Apply algorithm to search C in B. 

The performance of the algorithm is measured using two indicators [5], namely 
sensitivity (Se) and specificity (Sp): 

C
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With 
• TP (true positive): the classifier predicts that the pattern is in the training set 

and the pattern is in the training set. 
• FP (false positive): the classifier predicts that the pattern is in the training set 

but the pattern is not in the training set. 
• |C| is number of similar patterns. 
• |R| is number of other patterns in database. 

Population size 
The following results were tested with a probability of crossover of 0.9 and a number 
of 500 generations. Results are summarized in Table 1. Based on the results of Table 
1, we selected 1000 trees for a population. 

Table 1. Se and Sp of different population sizes 

Population size Se Sp 
40 0.975 0.8135 
100 0.9875 0.87 
300 1.0 0.8675 
500 1.0 0.8715 
1000 1.0 0.8915 
1500 1.0 0.8755 



2000 1.0 0.847 
2500 1.0 0.8375 
3000 0.9875 0.928 

Number of generations 
The following results were tested with a probability of crossover of 0.9 and a popula-
tion size of 1000. Results are summarized in Table 2. We chose 500 for the number of 
generations. 

Table 2. Se and Sp of different number of generations 

Number of generation  Se Sp 
10 1.0 0.736 
20 1.0 0.805 
100 1.0 0.813 
200 1.0 0.84 
300 1.0 0.863 
400 1.0 0.8665 
500 1.0 0.8915 
700 0.9875 0.9025 
1000 0.9875 0.914 
2000 0.95 0.93 

Probability of crossover 
The following results were tested with a population size of 1000 and maximum num-
ber of generations of 500. Results are summarized in Table 3. We chose 0.9 for the 
probability of crossover. 

Table 3. Se and Sp of different probability of crossovers 

Probability of crossover Se Sp 
0.5 0.9875 0.85 
0.6 0.9875 0.9 
0.7 0.9875 0.9185 
0.8 1.0 0.8665 
0.9 1.0 0.8915 

Control parameters of GP 
Table 4 lists all control parameters which are used in the algorithm. 

Table 4. Control parameters of genetic programming 

Population size: 1000 
Maximum generation: 500 
Probability of crossover: 0.90 



Probability of reproduction: 0.10 
Maximum depth for tree created during run: 10 
Maximum depth for initial random tree: 7 
Terminal set: x = (x1, x2, …, xn)T 

Function set: +, -, ×, pow2, pow3, …, pow10 
with powX is power of X 

How many sub patterns 
Pattern splitting method (section 2.3) was tested and the results are summarized in 
Table 5. The results show that the number of sub patterns from 3 to 6 is optimal de-
pending on the power of computing and which Sp we would like to obtain. 

Table 5. Se and Sp of different number of sub patterns 

Number of sub patterns Se Sp 
1 1.0 0.717 
2 1.0 0.747 
3 1.0 0.8915 
4 1.0 0.9475 
5 1.0 0.9805 
6 1.0 0.9915 
7 0.9875 0.998 
10 0.975 1.0 

2.5 A Combination of Cluster Analysis and GP 

In order to improve the performance of the algorithm, we used cluster analysis. The 
idea of this technique is that the more complex the training set the higher the number 
of rules necessary to cover it [16]. Therefore, K-means cluster method [17] is used to 
partition the training set into multiple sub training sets. Each sub training set is then 
independently computed by genetic programming. The scheme of this combination is 
in Figure 1. 

The result of training set is calculated as: 
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with 
• rs_grpi : the result set of i-th group. 
• rs_ts : the result set of training set. 

 
 
 
 
 



 
Fig. 1. A combination of cluster analysis and genetic programming 

3 Experiments 

Four real databases (one transcriptomics, one proteomics, and two breast cancers) 
were used to test the algorithm and compare with six other algorithms. 

3.1 Transcriptomics Database of Response of Fibroblasts to Serum 

This database [18] has 517 genes monitored in 19 different time points using DNA 
chips to represent the response of fibroblasts to serum. Therefore, the database has 
517 patterns whose dimension is 19. The database was firstly analyzed using cluster-
ing methods. We selected the initial training set for the algorithm by random selection 
from the clusters identified by the previous cluster analysis. For each selected cluster 
an initial training set containing a set of patterns randomly selected from each cluster, 
was created. Then, the algorithm was applied for identification with other members of 
the selected cluster. The results are listed in Table 6. 

Training set 

Cluster 

Cluster 1 

Pattern splitting 

Sub-pattern 1 Sub-pattern q

GP searches 

rs_sub1 rs_subq 

Eq. (7) 

rs_grp1 

Eq. (10)

Result of training set 

GP searches

Cluster k 

Pattern splitting

Sub-pattern 1 Sub-pattern q 

GP searches

rs_sub1 rs_subq 

Eq. (7)

rs_grpk 

GP searches 



Table 6. Sp and Se for transcriptomics database of 7 algorithms (null value means algorithm 
does not work). Binary SVM [1] is support vector machine for binary classification. Single 
SVM [1] is support vector machine for single class. LogitBoost [19, 20]. LR is logistic 
regression [20]. LDA is linear discriminant analysis [20]. LS is linear regression and least 
square [20] 

Cluster + 
GP Binary SVM Single SVM LogitBoost LR LDA LS Clus-

ter Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 
1 1 0.9399 0.9 0.8302 1 0.8406 0.6 0.6708 0.5 0.7288 0.65 0.7495 0.65 0.7495
2 1 0.9515 0.9545 0.8861 1 0.8502 1 0.7194 1 0.7511 1 0.7405 1 0.7405
3 1 0.986 1 0.7594 0.8571 0.9583 - - 0.7143 0.5249 1 0.6978 0.1429 0.5249
4 1 0.9919 1 0.7825 1 0.878 1 0.439 0.8 0.376 1 0.4106 1 0.4106

3.2 Caulobacter Proteomics Database 

The database [21, 22] contains 145 patterns whose dimension size is 5. The database 
was firstly analyzed using clustering method. The average pattern of each cluster was 
then calculated. These average patterns were used in the initial training set for the 
algorithm to find other patterns of clusters. The results are summarized in Table 7. 

Table 7. Sp and Se for proteomics database of 7 algorithms 

Cluster + GP Binary SVM Single SVM LogitBoost LR LDA LS Clus-
ter Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 
1 1 0.9669 1 0.719 0.5417 0.9587 1 0.7438 1 0.7025 1 0.6529 1 0.6364
2 1 0.9826 1 0.8609 0.8 0.8087 1 0.9304 1 0.887 1 0.8783 1 0.8435
3 1 0.9722 0.973 0.9167 0.9459 0.8704 1 0.7407 1 0.75 1 0.713 1 0.713 
4 1 0.9926 1 0.637 0.8 0.8889 1 0.7481 1 0.7481 0.9 0.7407 0.7 0.7556
5 1 1 1 0.9478 0.7667 0.8435 1 0.6348 1 0.6348 1 0.6261 1 0.6261
6 1 1 0.963 1 0.8889 0.989 1 1 1 1 1 0.967 1 0.967 
7 1 0.9714 0.975 0.9238 0.8 0.8571 0.975 0.8476 0.975 0.8381 1 0.9238 1 0.9238

3.3 Two Breast Cancer Databases 

The Wisconsin Breast Cancer Database [23] has 699 patterns with nine dimension of 
each pattern. There are two classes in this database, namely benign and malignant. 
The number of patterns in benign class and malignant class are 458 and 241, respec-
tively. 

The second database called Wisconsin Diagnostic Breast Cancer [24] contains 569 
instances each of which belongs to benign class or malignant class (357 benign, 212 
malignant). Each instance is described by 30 real-valued attributes. Attributes are 
computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. 
They describe characteristics of the cell nuclei present in the image. 

For both of these breast cancer databases, the rate of the training set and test set is 
50%-50%. Also patterns in the training set and test set were randomly selected. The 
results are shown in Table 8 and 9. 



Table 8. Sp and Se  Wisconsin breast cancer database 

Cluster + GP Binary SVM Single SVM LogitBoost LR LDA LS 
Class Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 

Benign 0.9955 0.7908 0.9595 0.7531 1 0.3473 1 0.3808 0.991 0.3891 0.973 0.795 1 0.3598
Malignant 1 0.9189 0.9832 0.9392 0.9832 0.9077 1 0.8581 1 0.8581 0.9748 0.8694 0.9916 0.8018

Table 9. Sp and Se  Wisconsin diagnostic breast cancer database 

Cluster + GP Binary SVM Single SVM LogitBoost LR LDA LS 
Class Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 

Benign 0.9607 0.816 0.9831 0.717 0.5112 0.0142 1 0.5943 1 0.5189 1 0.5613 1 0.4387
Malignant 0.9057 0.7647 0.8774 0.9664 0.9528 0.7115 0.9434 0.6751 0.9434 0.7031 0.9811 0.5574 1 0.0896

4 Discussions 

Based on the results of the transcriptomics database (Table 6), we see that the Algo-
rithm finds all similar patterns in the four clusters (Se = 1) with very high Sp. The six 
other algorithms only find all of the similar patterns in some clusters. The lowest Sp of 
the Algorithm falls into cluster 1, this case has the lowest value of mean of correlation 
(0.63 ≈ 50% noise level). 

Using the Algorithm, the 7 clusters of the proteomic database were compared with 
the results of pattern extraction. The clusters were chosen to cover different sizes of 
the target group and different within group correlation ranging from 0.63 (≈ 50% 
noise level) to 0.88 (≈ 30% noise level). Results are summarized in Table 7 and show 
that the desired selectivity was always satisfied, and all profiles in the cluster were 
correctly classified. In comparisons with the six popular pattern classification meth-
ods, the Algorithm is the best one. 

In our observations, if two training sets have the same noise level but different di-
mension (cluster 7 of Table 7 and cluster 1 of Table 6; cluster 1 of Table 7 and cluster 
4 of Table 6) then traditional methods (e.g LogitBoost, LR, LDA, and LS) will give 
better result in lower dimension cases. Therefore, traditional methods are suitable for 
low dimensions. This is the reason why feature selection methods are used to reduce 
dimensions when these methods are applied to high dimensional patterns. 

In the Wisconsin Breast Cancer Database, one of the classes has a mean of correla-
tion of about 0.30 (>> 50% noise level) and the minimum of correlation of two pat-
terns of about -0.80. That means two different patterns (measured by simple correla-
tion) are in the same class. 

On the contrary, in the Wisconsin Diagnostic Breast Cancer, the minimum value of 
correlation between two patterns in the database is 0.91 (about 10% noise level). In 
other words, two similar patterns (measured by simple correlation) belong to different 
classes. 

The results (Table 8 & 9) show that the Algorithm can identify almost all patterns 
in the same class with rather high precision and is always better than the six other 
algorithms. The Algorithm is really outstanding in such difficult databases. 



5 Conclusions 

Single class is a new trend in supervised pattern classification. It overcomes the disad-
vantages of the negative set in binary classification. In this work, we present an algo-
rithm solving single class by using genetic programming. Based on the results of the 
four databases compared against six well-known algorithms, we see that the Algorithm 
can find most similar patterns with rather high precision. This study not only proves 
the Algorithm is better than the six other algorithms but also proves that genetic pro-
gramming is a very powerful method for the symbolic regression problems. 

We used three techniques to improve the performance of the Algorithm. The first 
one uses kernel principal component analysis to project patterns onto feature space. 
This simplifies the problem (data not shown). The second technique uses cluster 
method to partition the training set into groups. Each group will have a private classi-
fier. The last technique uses parallel evolutionary computation (data not shown). 
Among these three techniques, the second technique provides the best result but at the 
expense of greater computation time. 
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