Evolutionary Computation and Games

Julian Togelius, Sebastian Risi, Georgios N. Yannakakis

Who we?

Evolutionary computation can be used to...

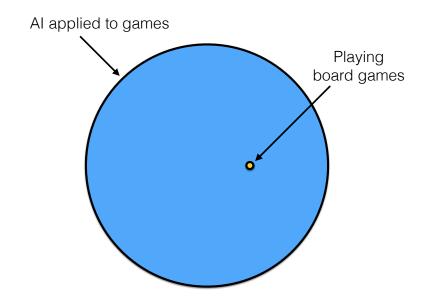
- Play games
- Generate game content (levels etc)
- Generate games
- Model players
- Assist designers
- <your idea here>

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO '20 Companion, July 8–12, 2020, Cancún, Mexico © 2020 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-7127-8/20/07. https://doi.org/10.1145/3377929.3389854 Playing board games

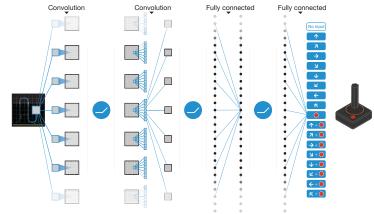
Playing board games

Playing board games



How can evolution be used to play a game?

Common technique: Q-learning with deep nets



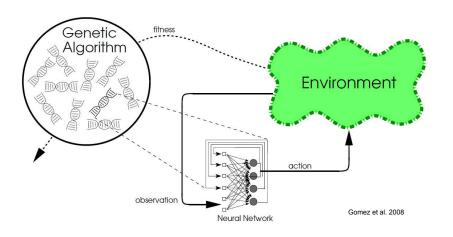
Surely, deep Q-learning is the best algorithm for game-playing!

- Planning (requires forward model)
 - Uninformed search (e.g. minimax, breadth-first)
 - Informed search (e.g. A*)
 - Evolutionary algorithms
- Reinforcement learning (requires training time)
 - TD-learning / approximate dynamic programming
 - Evolutionary algorithms
- Supervised learning (requires play traces to learn from)
 - Neural nets, k-nearest neighbors etc
- Random (requires nothing)

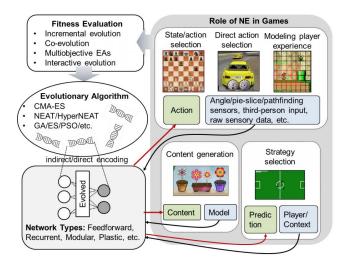
How can evolution be used to play a game?

- Evolve an agent that plays the game
 - e.g. through neuroevolution or genetic programming
- Use evolution to play the game (as an action selector)

Neuroevolution



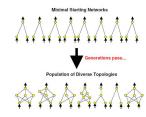
NE Role in Games



Neuroevolution in Games. Risi and Togelius, TCIAIG, 2015.

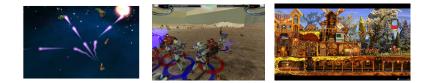
Evolving Neural Networks

- Direct encodings
 - Evolution strategies / Genetic algorithms
 - NEAT (can evolve arbitrary topologies)
 - Many more ...
- Indirect encodings
 - HyperNEAT
 - Compressed weight space
 - Many more ...

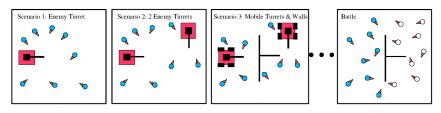


Why Neuroevolution

- Broad applicability
- Can be used for both supervised and RL problems
- Diversity
- · Open-ended learning
- Enables new types of games



NERO: NeuroEvolving Robotic Operatives (Stanley et al. 2005)



- NPCs improve in real time as game is played
- Player can train AI for goal and style of play
- Each AI Unit Has Unique NN
- Supports incremental evolution

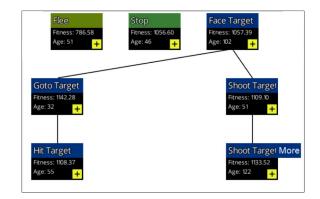
EvoCommander New game mechanics based on brain switching (Jallov et al. 2015)

https://www.youtube.com/watch?v=xFwjbCe5Zo8#t=22

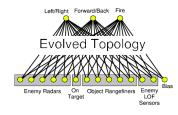
•	Fast hitter			Delete brain	Jack	
Missions 1: Movement 2: Close combat 3: Ranged attacks	Focus areas Movement Punish Move around Reach distance Keep distance - Distance Face target	Reset 0 Reward 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Brain statistics Generation: Fitness: Total time:	112 1092.27 5:47	Health: Max speed:	100 5
4: Mortar attacks 5: Final test 5: Final test Boss battle! By using your combined combat skills you must defeat the opponent	Melee Attacks Hits Precision Ranged Attacks Hits Precision	0.0 100.0 100.0 -50.0 0.0 0.0	Simple	Advanced	6 1.40 seco	nage - 10 attacks per ond 6 slowdown
before he defeats you.	Mortar Aim turret Attacks Htts Precision Damage per attack	0.0		tationary 📚 Small Big	Mortar were Destroyer	attacks per ond slowdown apon nage - 60 attacks per

Fitness Evaluations in Games

- Co-evolution
- Multiobjective Evolution
- Incremental Evolution



NE Role: Direct action selection

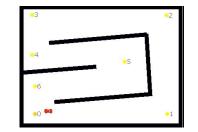


Car racing

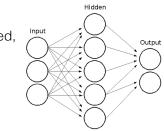
- Driving a car fast requires fine motor control (in both senses)
- Optimizing lap times requires planning
- Overtaking requires adversarial planning

A simple car game

- · Walls are solid
- Waypoints must be passed in order
- Fitness: continuous approximation of waypoints passed in 700 time steps



- Inputs
 - Six range-finder sensors (evolvable pos.)
 - Waypoint sensor, Speed, Bias
- Networks
 - Standard multi-layer perceptron, 9:6:2
 - Outputs interpreted as thrust/steering



1 •6

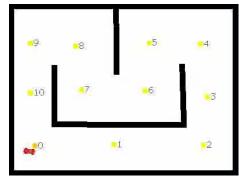
_	Algorithm	2 :	Evolution	$Strategy(\mu, \lambda, n)$	
	-	1.00			_

- 1 INITIALIZE (Population, $\mu + \lambda$ individuals)
- 2 for i=1 to n do
- for j=1 to $(\mu + \lambda)$ do 3
- EVALUATE (Population[j]) 4
- \mathbf{end} $\mathbf{5}$
- PERMUTE (Population) 6 SORTONFITNESS (Population) 7
- for $j=\mu$ to $(\mu + \lambda)$ do 8
- 9
 - Population[j] \leftarrow COPY (Population[j- λ]) WEIGHTMUTATE (Population[j])
- 1011 end
- 12 end

Mutation: add Gaussian noise with sd 1 to each connection

Fitness: progress around the track

Example video



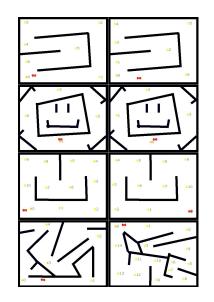
Evolved with 50+50 ES, 100 Generations

Generalization and specialization

- A controller evolved for one track does not necessarily perform well on other tracks
- How do we achieve more general gameplaying skills?
 - Is there a tradeoff between generality and performance?

Choose your inputs (+their representation)

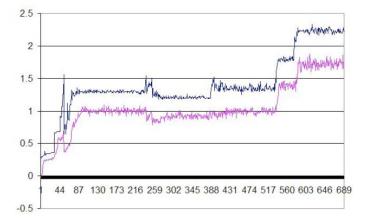
- Using third-person inputs (cartesian inputs) seems not to work
- Either range-finders or waypoint sensor can be taken away, but some fitness lost
- A little bit of noise is not a problem, actually it's desirable
- Adding extra inputs (while keeping core inputs) can reduce evolvability drastically!



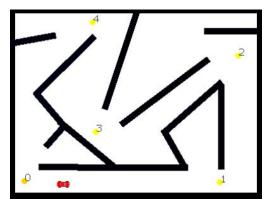
Incremental evolution

- Introduced by Gomez & Mikkulainen (1997)
- Change the fitness function *f* (to make it more demanding) as soon as a certain fitness is achieved
- In this case, add new tracks to *f* as soon as the controller can drive 1.5 rounds on all tracks currently in *f*

Incremental evolution



Video: navigating a complex track



Observations

- Controllers evolved for specific tracks perform poorly
 on other tracks
- General controllers, that can drive almost any track, can be incrementally evolved
- Starting from a general controller, a controller can be further evolved for *specialization* on a particular track
 - drive faster than the general controller
 - works even when evolution from scratch did not work!

Two cars on a track

- Two car with solo-evolved controllers on one track: disaster
 - they don't even see each other!
- How do we train controllers that take other drivers into account? (avoiding collisions or using them to their advantage)
- Solution: car sensors (rangefinders, like the wall sensors) and *competitive coevolution*

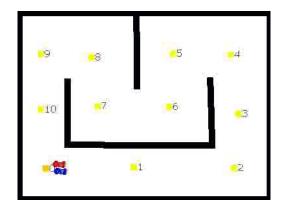
Competitive coevolution

- The fitness function evaluates at least two individuals
- One individual's success is *adversely* affected by the other's (directly or indirectly)
- Very potent, but seldom straightforward; e.g. Hillis (1991), Rosin and Belew (1996)

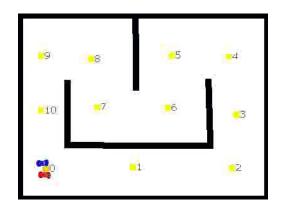
Competitive coevolution

- Standard 15+15 ES; each individual is evaluated through testing against the current best individual in the population
- Fitness function a mix of...
 - Absolute fitness: progress in *n* time steps
 - Relative fitness: distance ahead of or behind the other car after *n* time steps

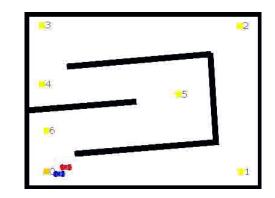
Video: absolute fitness



Video: 50/50 fitness



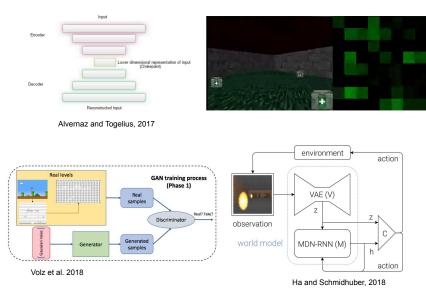
Video: relative fitness



Open Challenges: NE in Games

- Reaching Record-beating Performance
- Combining evolution with other learning methods
- Learning from high-dimensional/raw data
- General video game playing
- Combining NE with life-long learning
- Competitive and cooperative coevolution
- Fast and reliable methods for commercial games

Emerging Trends – Hybrid Methods



Using evolution to plan?

- · Some games have extremely high branching factor
 - Chess: 35
 - Go: 350
 - Civilization/StarCraft: say you have ten units, which can each take one of ten actions...
- Tree search cannot even get past the first ply
- One solution: treat the whole plan as a sequence of actions, the value of the final state as fitness...

Hero Academy

Enormous branching factor beats MCTS

	Random	Greedy Action	Greedy Turn	MCTS
Greedy Action	100%	_		f1.5%
Greedy Turn	100%	64.0%		
MCTS	100%	48.5%	22.0%	

Online Evolutionary Planning

- Evolve the set of actions to take each turn
 - Chromosome is a sequence of five actions
- Simple evolutionary algorithm:
 - Population size of 100, 50% elitism, random selection of parents, uniform crossover, 10% mutation rate

Results: wow

	Random	Greedy Action	Greedy Turn	MCTS	
Online Evolution	100%	90.0%	80.5%	98%	

- ~10,000 unique outcomes evaluated each turn (6 seconds)
- ~3,500 generations each turn on average

Niels Justesen, Tobias Mahlmann, Sebastian Risi and Julian Togelius (2017): Playing Multi-Action Adversarial Games: Online Evolutionary Planning versus Tree Search. IEEE TCIAIG.

Procedural content generation in games

Why generate game content?

- To replace the human? (Saving time and money...)
- To assist the human designer?
- To make new types of games possible?
- To go beyond human creativity
- To really understand design

Search-based PCG

- Use evolutionary computation to search the design space for good artifacts (e.g. levels)
 - Technically, we could use other stochastic search / optimization algorithms
- Major issues:
 - Representing the content
 - · Devising a good evaluation / fitness function

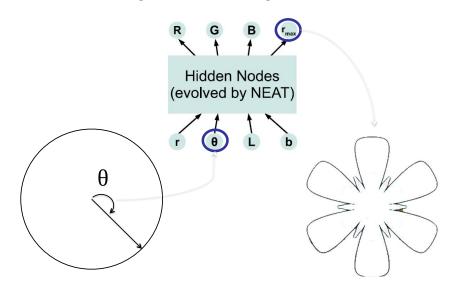
Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley and Cameron Browne (2011): Search-based Procedural Content Generation: A Taxonomy and Survey. IEEE TCIAIG.

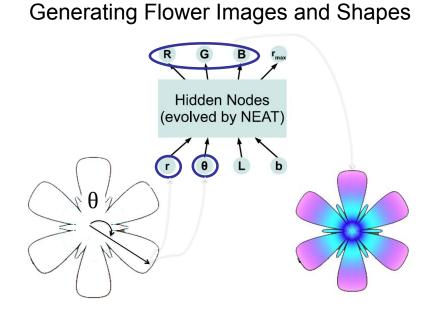
Search-based Procedural Content Generation

Petalz Social Facebook Game based on PCG through NE

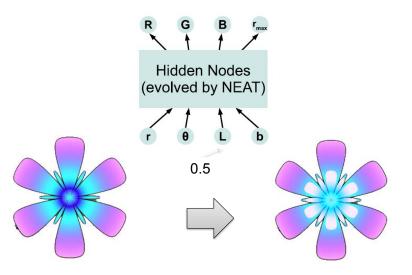
Sebastian Risi, Joel Lehman, David D'Ambrosio, Ryan Hall, Kenneth Stanley, AIIDE 2012, TCIAIG 2015

Generating Flower Images and Shapes





Generating Flower Images and Shapes

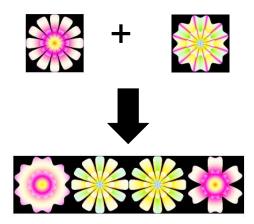


Flower Evolution: Pollinating a Flower

Planting the Offspring

Crosspollination Also Possible

Crosspollination



Hybrid Methods - Latent Variable Evolution (LVE)

- A learned compact genotypeto-phenotype mapping →

 robust mutations
- Applicable to variety of other

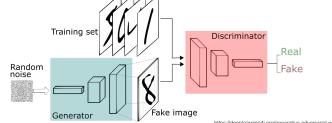
Bontrager, Togelius, Memon 2017

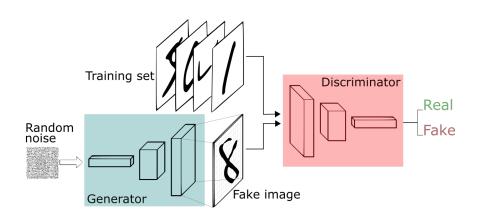
Bontrager, Lin, Togelius, Risi, 2018

Generative and Adversarial Networks (GANs) Goodfellow 2014

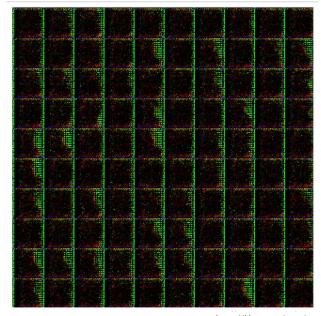
NVIDIA 2017

Radford et al. 2015

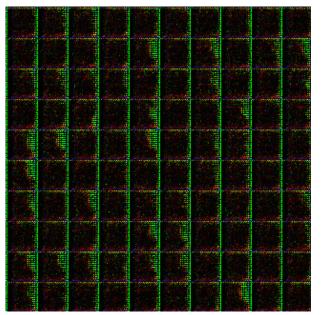




https://deeplearning4j.org/generative-adversarial-network



https://blog.openai.com/generative-models/

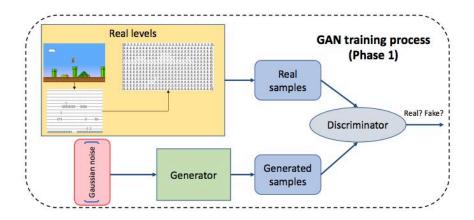


https://blog.openai.com/generative-models/

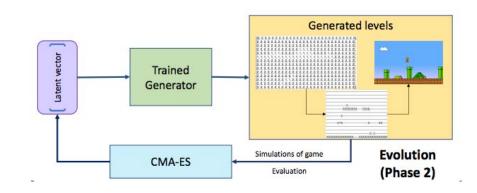
Generated images

https://blog.openai.com/generative-models/

Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network Volz, Schrum, Liu, Lucas, Smith, Risi, GECCO 2018



Approach – Phase II

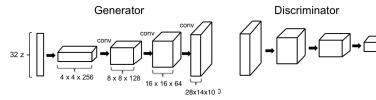


GAN Training

173 training images of size 28x14

Level Representation

Tile type	Symbol	Identity	Visualization	
71	,		Visualization	
Solid/Ground	Х	0		
Breakable	S	1		
Empty (passable)	-	2		GAN changes:
Full question block	?	3	2	One-hot encoding
Empty question block	Q	4	<u>_</u>	ReLU activation function for
Enemy	E	5		output layer
Top-left pipe	<	6		Argmax to determine tile
Top-right pipe	>	7		type
Left pipe	[8		
Right pipe]	9		

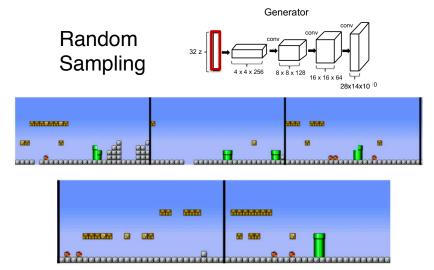


CMA-ES Experiments

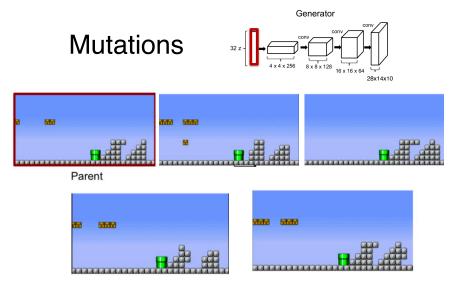
- Representation-based testing:
 - Optimize for certain number of ground titles

$$F_{ground} = \sqrt{(g-t)^2}$$

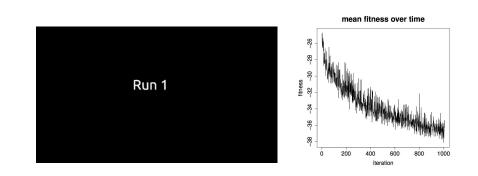
- Increasing difficulty (less ground, more enemies)
- Agent-based testing: A* Mario agent by Baumgarten Fitness = %playable + #jumps



- Trained GAN can express different level variations (can be different to levels used for training)
- Captures domain regularities

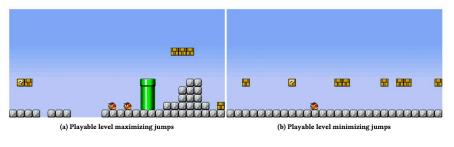


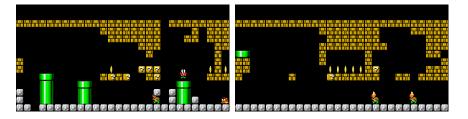
→ Trained GAN representation displays locality

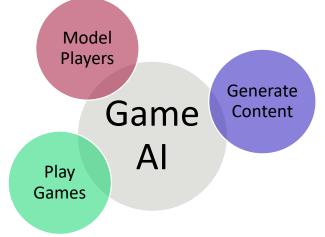


Training

Results





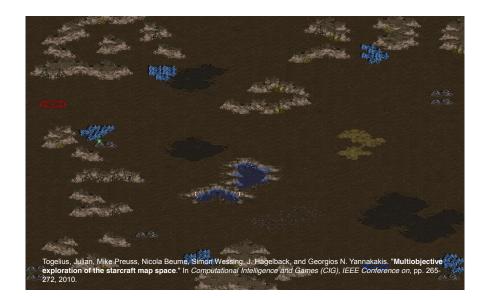


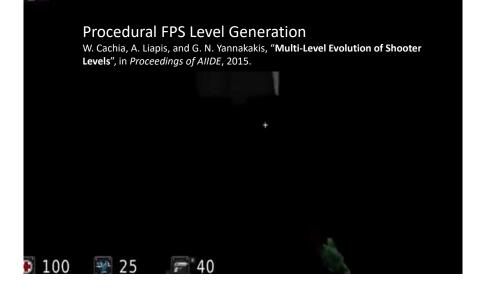
G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer, 2018.

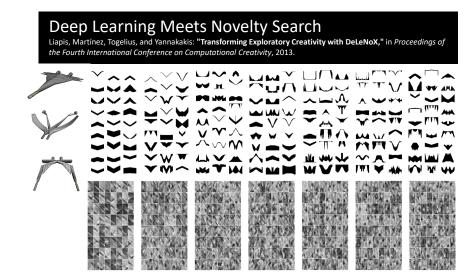
Model Players Game Al Generate Content

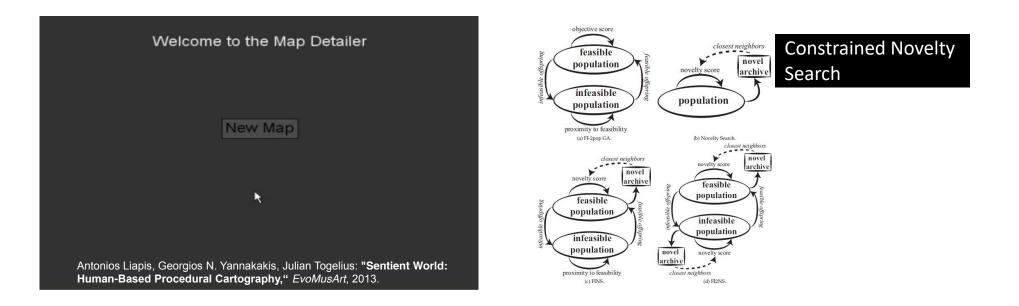
G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer, 2018.

Part II

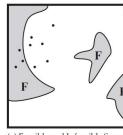


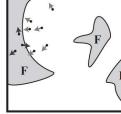


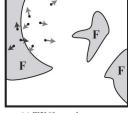




Constrained Novelty Search





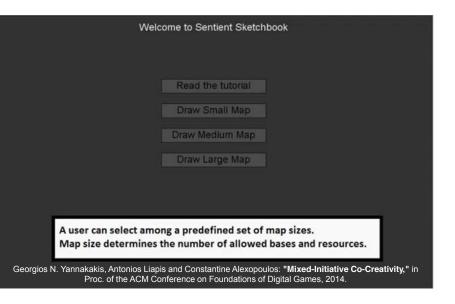


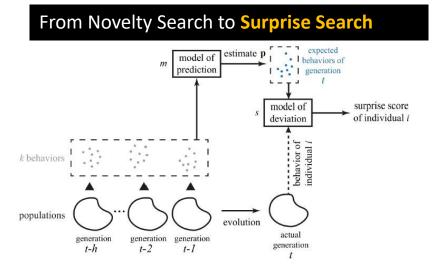
(a) Feasible and Infeasible Spaces.

(b) FINS search process.

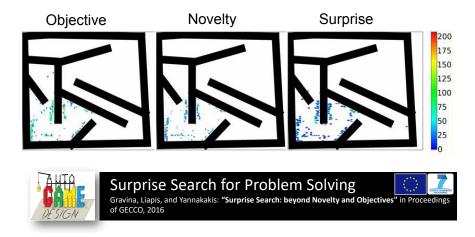
(c) FI2NS search process.

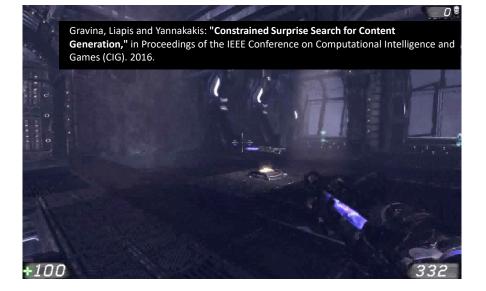
Liapis, Yannakakis and Togelius, **Constrained Novelty Search: A Study on Game Content Generation**, Evolutionary Computation, 21(1), 2015, pp. 101-129





Code (C++): http://www.autogamedesign.eu/software



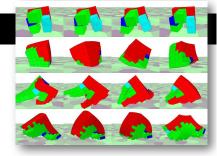


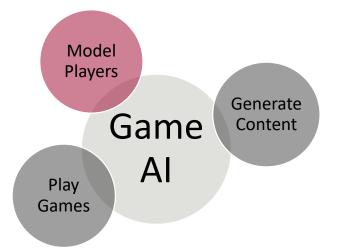
Surprise for QD

- Novelty-Surprise Search: a robust and efficient divergent search algorithm
 - Maze navigation
 - Robot morphology evolution
- Surprise for quality diversity
 - Combined with local competition is highly advantageous

Gravina, Daniele, Antonios Liapis, and Georgios N. Yannakakis. "Fusing Novelty and Surprise for Evolving Robot Morphologies" *GECCO* (2018).

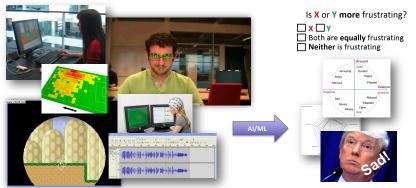
Gravina, Daniele, Antonios Liapis, and Georgios N. Yannakakis. "Quality Diversity Through Surprise" arXiv preprint arXiv:1807.02397 (2018).



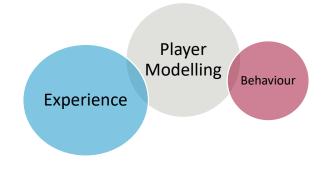


G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer, 2018.

How – In a Nutshell



G. N. Yannakakis, P. Spronck, D. Loiacono and E. Andre, "**Player Modeling**," in Togelius et al., (Eds.) *Dagstuhl Seminar on Artificial and Computational Intelligence in Games*, 2013.

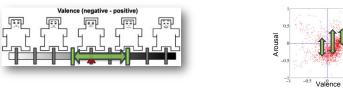


G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer, 2018.

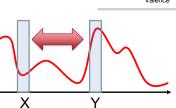
Experience: Labels are Key!

The ordinal (relative) approach

Yannakakis, Cowie, Busso, The Ordinal Nature of Emotions, ACII, 2017 [Best Paper Award]



rousal



To sum it up: **Don't** do this!

- Wasteful Info due to
 - Scale-bias
 - Personal-bias
 - Labels are **NOT** numbers
 - High inconsistency (randomness)

• ...

	What is your overall satisfaction with our product?								
	Not at all satisfied	0	0	0	0	0	Extre satis		
	What is yo	ur overa	all sa	atisfa	ctior	n with	n our prod	luct?	
	Not at all satisfied	-	_	3 〇			Extre satisf		
y	What is your overall satisfaction with our product? \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5								
	What is yo	ur overa	ull sa	atisfa	ctior	n with	n our prod	uct?	
	Not at all satisfied							Extremely satisfied	

Do this instead

I like them both equally

🔲 l like neither

- You gain on
 - Reliability
 - Validity
 - Generality

Modeling **Player Experience**

Supervised learning for modelling experience

- Nominal values
 - Julian is frustrated
- Numerical values
 - Julian is 0.86 frustrated
- Ordinal values
 - Georgios is more frustrated than Julian

Which Training Method?

Preference Classification Regression learning

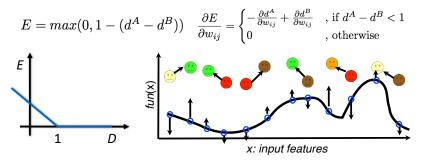
Preference Learning

- **Preference learning** is inspired by and built upon humans' limited ability to express their preferences *directly* in terms of a specific (subjective) value function
- Our inability is mainly due to the
 - subjective nature of a preference
 - **cognitive load** for assigning specific values to each one of the options
- It is more natural to express preferences about a number of options; and this is what we end up doing normally.

S. Kaci, Working with preferences: Less is more. Springer Science & Business Media, 2011.

(Deep) Preference Learning with BP

• Error function maximizes the distance between the output for the preferred sample (*d*^A) and the output for the non preferred sample (*d*^B)

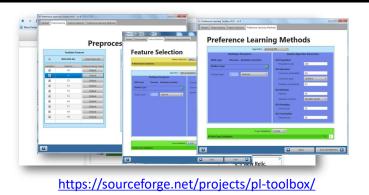


H. P. Martinez, Y. Bengio and G. N. Yannakakis, "Learning Deep Physiological Models of Affect," *IEEE Computational Intelligence Magazine*, Special Issue on Computational Intelligence and Affective Computing, pp. 20-33, May, 2013.

(Deep) Preference Learning beyond BP

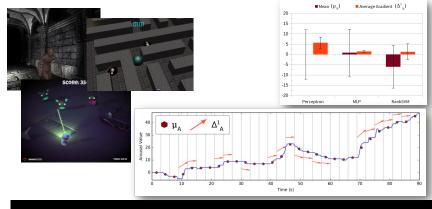
- Learning from pairs of preferences can be implemented in most supervised learning methods by adapting the error/fitness function
- Neuroevolution
 - Fitness that rewards match of pairs
- Rank-based ANN (RankNet)
- SVMs (RankSVM)
- Decision Trees
- ► ...

An Open-Source Preference Learning Toolbox Farrugia, Martinez and Yannakakis, The Preference Learning Toolbox, arXiv preprint, 2015

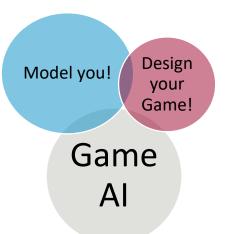


Some Preference Learning Examples

Emotionally Adaptive Cameras Yannakakis, Martinez, Jhala, Towards Affective Camera Control in Games, UMUAI, 2010



General Models of Affect Camilleri, Yannakakis and Liapis, **Towards General Models of Player Affect**, *ACII*, 2017



You have a Player Model... so what ? Experience-driven PCG

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. *IEEE Transactions on Affective Computing*, 2(3), 147-161.

EDPCG: What is it?

"A framework for personalised generation of content in human computer interaction (in particular in games). It views (game) content as the building block of user (player) experience"

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. *IEEE Transactions on* Affective Computing, 2(3), 147-161.

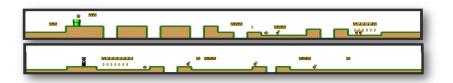
Experience-Driven Level Generation in Super Mario Bros

Shaker, Asteriadis, Yannakakis and Karpouzis, **Fusing Visual and Behavioral Cues for Modelling User Experience in Games**, *IEEE Trans. on Systems, Man and Cybernetics* (B), 2013

Platformer Experience Dataset

K. Karpouzis, G. Yannakakis, N Shaker, S. Asteriadis. **The Platformer Experience Dataset**, Sixth Affective Computing and Intelligent Interaction (ACII) Conference, 2015.

http://ped.institutedigitalgames.com/



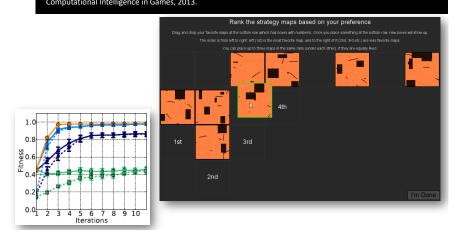
Reframing Mario

Game Design for Agent Believability Camilleri, Yannakakis and Dingli, Platformer Level Design for Player Believability, IEEE CIG, 2016

Game Design for Agent Believability Camilleri, Yannakakis and Dingli, Platformer Level Design for Player Believability, *IEEE CIG*, 2016

Player Modeling Beyond Supervised Learning

Designer Modeling: Procedural Strategy Map Design Liapis et al. Adaptive game level creation through rank-based interactive evolution. IEEE Conference on Computational Intelligence in Games, 2013.



Procedural Personas Given utilities (rewards) show me believable gameplay Useful for human-standard game testing RL MCTS Neuroevolution ... Inverse RL

Liapis, Antonios, Christoffer Holmgård, Georgios N. Yannakakis, and Julian Togelius. "Procedural personas as critics for dungeon generation." In European Conference on the Applications of Evolutionary Computation, pp. 331-343. Springer, Cham, 2015.

Orchestration



"Games: the final frontier for AI?"

"Al: the **next step** for Games!"

Julian Togelius, Georgios N. Yannakakis "General General Game AI" in Proceedings of IEEE CIG, 2016

Get Involved!

IEEE TRANSACTIONS ON

A PUBLICATION OF THE IEEE COMPUTATIONAL INTELLIGENCE SOCIETY, THE IEEE SENSORS COUNCIL, AND THE IEEE CONSUMER ELECTRONICS SOCIETY

http://cis.ieee.org/ieee-transactions-on-games.html

Conference on Computational Intelligence and Games Department of Data Science & Knowledge Engineering Maastricht, The Netherlands, August 14-17, 2018

Welcome to the Artificial Intelligence and Games book. This book aims to be the first comprehensive textbook on the application and use of artificial Intelligence (AI) in , and for, games. Our hope is that the book will be used by educators and students of graduate or advanced undergraduate courses on game AI as well as game AI practitioners at large. Deringer

Final Public Draft

The final draft of the book is available here!

Thank you! gameaibook.org