
CHAPTER 4

GENETIC PROGRAMMING APPROACH

4.1 Method of Analysis

The GP is a powerful algorithm among the family of evalutionary computational methods.

The GP is based on the biological evolution of the computer programs resulting in an optimum

mathematical model of the system.

“For the conventional genetic programming, the structuresundergoing adaptation is a popu-

lation of individual points from the search space, rather than a single point. Genetic methods

differ from most of the other search techniques in that they simultaneously involve a parallel

search involving hundreds or thousands of points in the search space.”[23]

As in the biological evolution, computer programs (individuals) whose result best fits the

observed values, the succesful ones, can survive as they are, whereas unsuccessful individuals

are crossed over or mutated. As can be understood from the statement above, the operations

taking place in the GP are reproduction of best fitting individuals, crossing over of individuals

with lower fitness and mutation of remaining unsuccessfull individuals.

Each function taking part in the Genetic Programming is named as an individual. The charac-

teristics of an individual is represented as a tree structure which is shown in Fig.4.1 as opposed

to the characteristics of human, DNA, which is also shown in Fig. 4.2.

A node of an individual is a joint in a tree structure. A terminal point is the node that the

mathematical operation are executed. For ease of use, an armis named as a tree structure

under a node.

For the creation of individuals and generations in the process, a certain set of function to be
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Figure 4.1: A sample tree structure of an individual

Figure 4.2: Deoxyribonucleic Acid (DNA)
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used at terminal points should be created. Depending on the problem of interest, the number

and type of the functions are determined.

4.1.1 Operators

In order to obtain of new generations, some operators shouldact on individuals. Analogu-

ous to biology, individuals will reproduce, crossover witheach other or can mutate. Certain

fractions of generation with high fitness with respect to other individuals are reproduced to

next generation to carry the fitness information to the next generation. Some fraction of the

generation with less fitness are crossed over to create more successful individuals fitting the

requirements. The remaining fraction of the generation, unsuccessful individuals that should

not survive anymore, are mutated. Although in biological situation, most of the time, muta-

tion does create individuals with defects; for GP case, it isassumed that there cannot be any

individual worse than the un-mutated individual. In addition, for some cases, mutation results

in a jump in the evolution of individual, increasing overallfitness of generation.

From a computer program perspective, the operators can be defined as follows:

• Reproduction

An individual with a high fitness is passed to next generationwithout any change.

• Crossover

Crossover is applied on an individual by simply switching one of its nodes with another

node from another individual in the population. (Fig.4.3, Fig.4.4)

• Mutation

Mutation does not involve any pairs, but it affects an individual in the population. It

can replace a whole node in the selected individual, or it canreplace just the node’s

information.
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Figure 4.3: The crossing-over process for human DNA

Figure 4.4: A sample crossing over operation
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4.1.2 Function Sets

As described above, the terminal points are the points wherethe mathematical functions are

executed. For every individual of the generation of interest, there should be some certain num-

ber of terminal points to exist. The choice of a function set for the GP is mostly dependent on

the structure of the problem to be solved. For example, if oneis given a simple dataset of a

polynomial, intuatively, the system can be solved by simplealgebraic functions, F={+, -, *, /}.

For more complex input/output relations, some other functions like trigonometric, power or

exponential functions should be employed. However, unlessa small tree of individual is as-

sumed, exponential functions and power functions are useless. Such functions causefloating

point over-flowerror, since the depth of tree gradually increases the numbers to evaluate.

In addition to the simple algebric and trigonometric functions, F={+, -, *, /, sin, cos}, some

specially introduced functions can be added to the functionset.

4.1.3 Creating Initial Generation

There are various techniques of creating an initial generation. These are “full”, “grow” and

“ramped-half-and-half” generation techniques. In full generation technique, all arms of the

trees of the individuals are extended to a certain depth specified by the user. For the grow

generation technique, all the arms of the trees of the individuals are not to be extended to

a certain specified depth specified by the user, but at least one arm of the tree is ought to

extend to the maximum depth. The ramped-half-and-half method is just a combination of the

previously described methods.[23]

4.1.4 Creating Initial Individuals

The initial individuals are constructed using a random number generator. Depending on the

inputs, maximum depth for new individuals, function set andgeneration technique, functions

were placed at the nodes of tree structure without exceedingthe specified maximum depth for

new individuals.

31



4.1.5 Generations and Error Analysis

At each generation the individuals were sorted in accordance with their fitness to observed

values. Fitness, for this work, was defined as the normalizedrelative error which is:

Norm. Err.=
1
N

N∑

1

‖Observed Value - Computed Value‖
Observed Value

(4.1)

where N was the number of data used in testing.

The best fitting individuals were reproduced, and less fitting ones are crossed-over. The re-

maining worst individuals were mutated. This procedure wasrepeated until the convergence

criterion, which corresponds to a normalized relative error of 2.5%, has been met or the max-

imum number of generation has been achieved.

4.1.6 Genetic Programming for f0F2 Values, GETY-IYON

Since response of the Ionospheric variability could not have been shown easily for the IMF

By events, a different method, Genetic Programming (GP) approach was employed. Shortly,

the GP was employed to model the probable effects of polarity reversals of IMF By and Bz

components on the f0F2 variability. Thus, event definitions have been modified such that only

polarity reversals of IMF Bz and IMF By were taken to be seperate and independent events.

Depending on these events, GP was used and four independent models were constructed. In

order to characterize the eventless periods, one more modelwas constructed.

In order to have maximum changeability while applying GP, a Genetic Programming code was

written in GNU OCTAVE, which is an open source project that can replace the MATLAB and

the name of the code was given Genetic Programming by Tolga Yapıcı, GETY.

4.1.6.1 Construction of Models

The input parameters of constructing models were the maximum number of population, size

of population, fractions of reproduction, crossover and mutation. Best values for these pa-
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rameters were obtained by trial-and-error method. The maximum number of population and

size of population were kept constant for the construction of all models and the values were:

• Maximum number of populations: 200

• Size of population: 200

• Fraction of Reproduction : 20%

• Fraction of Crossover: 70%

• Fraction of Mutation: 10%

However, since the generation of initial individuals relies on random number, the same results

cannot be obtained.

From the classical GP point of view, the mutation is applied to the individuals that have the

worst fitness values. However, in the code GETY, the mutationdefinition was changed. In

the mutation definition, the best fitting individuals were copied over the worst ones as well as

being reproduced and the copied individuals were mutated. By this way, the GETY code did

also worked as a simple optimization tool.

The input variables for constructing the models were the three consecutive values of IMF

By, IMF Bz and f0F2. In order to carry the polarity change information for thenext hours,

a special technique was applied. The code altered the IMF data in such a way that only the

magnitude and the polarity change of the IMF By and IMF Bz entered in the GETY code.

Except the times of polarity reversal change, the IMF data entering the system was given

as 0 (zero). For the times of polarity change, the magnitude of the polarity change were

given to the GETY as an input. Then, in order to carry the information of polarity change,

linearly decaying values of polarity change were given to GETY. By this way, the GETY could

apply the polarity change effect for the post-event times. For the values of f0F2, Arkhangelsk

Vertical Ionosonde data were considered. The data covers a period of years 1973 to 1993.

The dataset was seperated into two distinct sets. One of the dataset (1973-1980) was used in

order to construct the model, whereas the second dataset (1980-1993) was used in order to

test the model. The first data group was also seperated in 5 different groups, which were the

inputs of each model and polarity reversals of IMF By and Bz.
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For the critical value of polarity change, relying on the statistical results obtained in previous

part, a polarity change greater than 6 nT/h was selected. Thus, for each polarity reversal case,

distinct models were constructed. In total, five models werecontructed which are:

• Model 1: Model with all inherent event definitions

• Model 2: Model for S.ward IMF Bz polarity reversals greater than 6 nT/h

• Model 3: Model for N.ward IMF Bz polarity reversals greater than 6 nT/h

• Model 4: Model for E.ward IMF By polarity reversals greater than 6 nT/h

• Model 5: Model for W.ward IMF By polarity reversals greater than 6 nT/h

Also the structure of the model was represented in Fig.4.5

Figure 4.5: Structure of the GETY-IYON

4.2 Results

In Table 4.1, the normalized errors of the seperate models were shown. The high values

of error for the Model 1 and Model 2 were the results of the dominance of other events in

the interval of interest. However, when one merges 5 models into a single model, then the

relative error reduces to 7.3%. This combined model was named as GETY-IYON and the
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Fig.4.5 illustrates the working principle of the combined model. In Figure 4.6, observed and

computed values of f0F2 using GETY-IYON and Sunspot Numbers was shown. As can be

seen from the figure, the variation of the values of f0F2 exhibit the dependence on Solar Cycle,

which was interpreted from the Sunspot Numbers. As previously described, the data covers

two solar cycles which were 1973-1983 solar cycle (used for contructing the models) and

1983-1993 solar cycle(used to test the performance of hte model GETY-IYON). In order to

justify the results, results of two selected years which correspond to solar maximum and solar

minimum were also ploted.

Table 4.1: Relative Errors of 5 seperate GETY models

Model 1 Model 2 Model 3 Model 4 Model 5
Normalized Error (%) 17.3 17 9.3 11.2 10.7
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Figure 4.6: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values and the variation of Sun Spot Number

As can be seen from the figures below, the model values well correlated with the observed

values at the significance level of 90%. For interpreting theresults, next, an extended analysis

has been conducted by considering seasonal and monthly dataduring 1982 and 1987.
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Figure 4.7: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1982
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Figure 4.8: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1987
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Figure 4.9: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1982 around Spring (Vernal) Equinox
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Figure 4.10: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for March 1982 (around Spring Equinox)
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Figure 4.11: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1987 around Spring (Vernal) Equinox
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Figure 4.12: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for March 1987 (around Spring Equinox)
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The success of the combined model can be seen easily in Figures 4.13, 4.14, 4.15, 4.16 which

were plots showing the computed and observed values of f0F2 during Summer Solstice. The

success of the model was high during summer, since the continuous data of f0F2 during sum-

mer and lack of data of f0F2 during winter impose to GP to create models having behaviours

of summer. However, if more data was supplied to the model, then it would have been more

successful for the whole year. The performance of the model,GETY-IYON, during Fall and

Winter was also as high as performance during summer, but nothigher than the performance

of summer. The results of fall and winter were shown in Figures 4.17, 4.18, 4.19, 4.20, 4.21,

4.22.

The results plotted monthly showed that the model, GETY-IYON could also be used filling

the data gaps.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 6  7  8

f 0
F

2 
(M

H
z)

Months (1982)

GETY Results

Arkhangelsk (59 N; 129 E)

Observed Values
Computed Values

Figure 4.13: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1982 around Summer Solstice
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Figure 4.14: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for June 1982 (around Summer Solstice)
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Figure 4.15: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1987 around Summer Solstice
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Figure 4.16: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for June 1987 (around Summer Solstice)
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Figure 4.17: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1982 around Fall (Autumnal) Equinox
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Figure 4.18: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for September 1982 (around Fall (Autumnal) Equinox)
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Figure 4.19: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for the year 1987 around Fall (Autumnal) Equinox
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Figure 4.20: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for September 1987 (around Fall (Autumnal) Equinox)
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Figure 4.21: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for December 1982 (around Winter Solstice)

43



 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

f 0
F

2 
(M

H
z)

Days (December 1987)

GETY Results

Arkhangelsk (59 N; 129 E)

Observed Values
Computed Values

Figure 4.22: Observed Values (in red) and Genetic Programming Results (in blue) of f0F2
values for December 1987 (around Winter Solstice)
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