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ABSTRACT
This work presents an approach based on Genetic Program-
ming for the synthesis of continuous-time analog filters on
a field-programmable analog array. A multi-objective algo-
rithm is used to synthesize both the topology and param-
eter values of Gm-C filter structures to be instantiated on
the FPAA based on a given filter specification. The pre-
sented algorithm is highly adapted to the underlying hard-
ware platform, with the goal of making an efficient crossover
of high-quality building blocks possible without biasing cer-
tain types of schemata. By manipulating of the program
tree in the instantiation phase, it is assured that the result-
ing synthesized structure fits within the physical constraints
of the underlying hardware platform.

Categories and Subject Descriptors
J.2 [Computer Applications]: Electronics; I.2.8
[Artificial Intelligence]: Heuristic Methods

General Terms
Algorithms

1. INTRODUCTION
Since many years, the idea of reconfigurable analog hard-

ware platforms, analogous to FPGAs in the digital domain,
has been a topic of active research. The goal of these Field-
Programmable Analog Arrays (FPAAs) is to bring the flex-
ibility of their digital counterparts to the analog world, al-
lowing analog designers to use rapid prototyping techniques
to shorten the typically full-custom, expensive and time-
consuming analog design process. Evolutionary algorithms
offer a solution by which filters can be synthesized directly
from the specification, possibly directly onto the target hard-
ware, taking into account all available reconfigurable ele-
ments to build custom filter solutions.

2. FPAA ARCHITECTURE
The underlying hardware architecture is a field pro-

grammable analog array specifically designed for high-
frequency, continuous-time filter applications. On the high-
est level, the structure consist of hexagonal Configurable
Analog Blocks (CABs) laid out in a honeycomb grid.
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The CABs themselves contain 7 digitally programmable
transconductance amplifiers (Gm-cells), one in a self-
feedback configuration and the other 6 forming the connec-
tions to the neighboring CABs. The transconductors are
digitally configurable and, together with the parasitic ca-
pacitance at the center of each CAB, provide the necessary
elements for the instantiation of Gm-C type analog filters.
Previous work ([1]) has shown that an evolutionary approach
to filter synthesis on the presented architecture is feasible
and leads to good results.

A problem that arises from the hexagonal structure of the
array is that locality in the search space only corresponds
to locality in the problem space under very specific condi-
tions. There is no straight-forward way to map the position
of genes in the genome which correspond to Gm-cell settings
of the array in a way that neighboring genes correspond to
neighboring Gm-cells.

The reason is that the concept of what constitutes a
“neighboring”cell is different depending on the topology a fil-
ter, and cannot be fairly represented in a traditional genome
string or array without favouring some types of high-quality
building blocks in respect to others regarding the possibility
of a successful crossover. Since the series and parallel con-
nection of low-order functional “building blocks” is a funda-
mental technique of filter design, it is highly desirable to map
the swapping of these functional blocks between individuals
as good as possible to the crossover operator.

3. GP-BASED APPROACH
The genome of the filter is represented by a program tree

of functions that can be interpreted to build up a filter on
the FPAA. Tab. 1 summarizes the functions used and their
terminals. For instantiation of the corresponding individual,
the tree is traversed in depth-first order, applying the func-
tion at each node to enable selected connections between
CABs on the initially empty array.

The root node of any tree is always the “input” function,
which has the setting of the I/O cell (also a programmable
Gm-cell) as a terminal. It sets the CAB it connects to as
the “active” CAB. The “set” function sets the feedback cell
of the currently active CAB to the setting specified by its
terminal. Subsequent calls to this function overwrite the

Table 1: Functions

Name Symbol Terminals
Input i cell setting (±[1..6])
Set s cell setting (±[1..6])
Connect c direction [1..6], cell setting (±[1..6])
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Figure 1: Example tree and resulting structure

previous setting as long as the active CAB is not changed.
The “connect” function set the Gm-cell that branches off to
the neighbouring CAB in the direction specified by its first
terminal, to the setting specified by its second terminal.

Any node in the tree can have between zero and three
child nodes. For example, a linear tree of n “connect” func-
tions represents a structure of n CABs connected in series,
while any node with 2 or more children of type “connect”
represents a branch in the structure: Each child connects to
a different neighbouring CAB, causing the structures to be
built up by each subtree to diverge in different directions.
Fig. 1 shows an example of a program tree next to the re-
sulting structure on the hexagonal FPAA. Terminals repre-
senting directions in the tree are depicted by corresponding
arrows. The Gm-cell settings of the individual connections
in the FPAA structure have been omitted for clarity.

The advantage of this tree representation lies in the fair-
ness of tree-based crossover with regard to the different
building blocks. Compact, high-quality filter building blocks
can be represented as independent subtrees, and there is no
inherent bias in the genome representation for favouring one
over the others. For example, the subtree starting at node
2 represents a typical “gyrator” feedback structure (in the
lower left of the array), and can be swapped between two
trees in a single crossover operation. The same holds true for
subtrees representing linear structures of cascaded elements.

The fixed FPAA layout presents an additional constraint:
any individual must result in a filter structure that can be in-
stantiated on the array. The case of filter structures created
by different subtrees “colliding” on the array is handled by
removing the children of any subtree that connects to a CAB
of the array which has already been connected to. The same
is done with nodes trying to place connections that would
lie outside of the array borders. Regarding tree growth, this
trimming technique effectively presents an upper limit to the
tree size, without the need to introduce further constraints
or optimization objectives into the algorithm.

The algorithm includes a crossover operator that selects
a random node in each parent tree and swaps the subtrees
starting at those nodes. The tree mutation operator, if ap-
plied, selects one random node in the tree (including the
root node) and replaces it with a randomly generated sub-
tree. An additional mutation operator visits each node in
the tree and permutes the values of the integer-encoded ter-
minals specifying Gm-cell settings.

Filter structures are evaluated by instantiation on the

FPAA model and subsequent analysis of the resulting trans-
fer function characteristics. The two main criteria for the
fitness function are filter stability and matching of the de-
sired specification, which are the two independent objectives
of the algorithm. Fit to the specifications is measured by
sampling the filters transfer characteristic at a fixed number
of points, and calculating the mean squared error. For the
stability, the error is the number of unstable poles. The al-
gorithm uses non-dominated sorting and crowding distance
parameter, as proposed by Deb et al. in [2], to favour solu-
tions spread evenly over the non-dominated front instead of
clusters of very similar solutions.

Filter stability has been represented as an additional ob-
jective instead of a constraint. This allows filters with only a
small number of unstable poles to occur during the optimiza-
tion process. Those poles have a chance to be moved to the
stable region by parameter variation before the end of the
optimization process, where all individuals with remaining
unstable poles are discarded. Discarding those individuals
earlier would severely limit the ability of the algorithm to
explore new configurations. The resulting individuals of the
last generation are then compared according to their fit to
the specification.

4. RESULTS
When compared to the GA in [1], the presented GP algo-

rithm reaches a higher fitness in the same number of evalua-
tions. Trials were run with both algorithms for two selected
example filter specifications. Fig. 2 shows the comparison
of mean best fitness over 10 subsequent runs for both algo-
rithms applied to both of the test problems. The number
of evaluations was originally set to 1200, but could be re-
duced to 400 for the lowpass problem without a significant
reduction of the solution quality in case of the GP algorithm.
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Figure 2: Fitness for selected goal filters
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