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aInstituto Tecnológico de Tijuana, Av. Tecnológico S/N, Fracc. Tomás Aquino, Tijuana, B.C., México
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Abstract

The analysis of image regularity using Hölder exponents can be used to characterize

singular structures contained within an image, and provide a compact description of

local shape and appearance. However, estimating the Hölder exponent is not a trivial

task and current methods tend to be slow and complex. Therefore, the goal in this

work is to automatically synthesize image operators that can be used to estimate the

Hölder regularity of an image. We pose this task as an optimization problem and use

Genetic Programming (GP) to search for operators that can approximate a traditional

estimator, the oscillations method. In our experiments, GP was able to evolve estima-

tors that achieve a low error and a high correlation with the ground truth estimation.

Furthermore, most of the GP estimators are faster than the traditional approaches, in

some cases their runtime is orders of magnitude smaller. This result allowed us to im-

plement a real-time estimation of the Hölder exponent on a live video signal, the first

such implementation in current literature. Moreover, the evolved estimators are used to

generate local descriptors of salient image regions, a task for which we obtain a stable

and robust matching that is comparable with state-of-the-art methods. In conclusion,

the evolved estimators produced by GP could help expand the application domain of
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Hölderian regularity within the fields of image analysis and signal processing.

Keywords: Hölder regularity, Genetic programming, Local image description, Image

analysis

1. Introduction

Image analysis entails the detection and extraction of meaningful descriptive fea-

tures from digital images, to carry out higher level tasks such as object recognition,

image indexing, and vision-based tracking, to mention but a few common examples.

For most application domains, the most prominent and informative parts of an image

correspond with those regions that exhibit an irregular structure with a high amount

of local variation. Therefore, many works have addressed the problem of detecting

and describing these salient image regions [35, 55, 52, 53]. One approach towards

describing the local shape and appearance within an image is through the concept of

signal regularity, an approach that can be used to characterize the singularities con-

tained within non-differentiable signals [10, 32]. Therefore, regularity-based analysis

has been used to describe local image patches [27, 53] and to detect salient image

features [29].

In this paper, we focus on Hölder regularity, which can be used to quantify the

singularity, or amount of irregularity, that is present at any given point, using what is

known as the pointwise Hölder exponent [10, 32] (see Section 3.1 for a formal defi-

nition). While the Hölder exponent has shown to be a useful tool for image analysis

[27, 53, 29], the process of computing the exponent is not trivial. In fact, closed form

solutions only exist for a narrow class of functions, while for real-world signals the

exponent must be estimated. Therefore, several estimation methods have been pro-

posed, derived from a formal analysis of the Hölder exponent, using techniques from

fractal theory and signal processing [48, 15, 29, 2]. However, some of these esti-

mators are based on necessary assumptions regarding the underlying structure of the

signal. Moreover, to use and develop practical implementations of current methods

a system designer must make several parametric choices and ad-hoc decisions. Fur-

thermore, these estimators tend to be computationally complex and time consuming,
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which limits their use in domains that require real-time processing. Therefore, we pose

the following research question: Can the pointwise Hölder exponent be estimated us-
ing an image operator that achieves an accurate estimation using a simple and fast
algorithm? We believe that if such an operator exists, it might open new application

domains for regularity-based image analysis.

Therefore, the goal is to find operators that can provide a positive answer to the

above question, and to achieve this goal we pose a search/optimization problem and

solve it using genetic programming (GP). Over the past two decades, GP has proven to

be a powerful paradigm for the development of computer algorithms that can automat-

ically synthesize solutions for complex tasks. Moreover, unlike black-box methods GP

can produce solutions that are amenable to further analysis and understanding [52, 38],

though this might prove to be a difficult endeavor in some cases [17]. GP has also

proven to be quite flexible, with successful applications in various fields [20, 18], that

include image analysis [23, 13, 7, 37, 36, 41], and applied mathematics [5, 46]. Indeed,

the power and flexibility of GP comes from the fact that it solves two tasks simultane-

ously: searching for the desired functionality and also determining the structure of the

final solution [19, 24].

For these reasons, we use GP to search for specialized image operators that esti-

mate the pointwise Hölder exponent for digital images. The experimental results show

that GP is capable of evolving highly competitive estimators, that are able to approxi-

mate the estimation produced by a traditional approach, the oscillations method, with a

small amount of error and a high correlation. Moreover, the GP estimators are far more

efficient, in terms of computation time they achieve a 50% improvement with respect

to one method of estimation, and several orders of magnitude with respect to other

approaches from current literature. The quality of the evolved estimators is verified

using a common problem of modern computer vision, the description and matching of

local image features[35]. In this task, results show that the evolved estimators can be

used to construct meaningful and discriminative local descriptors; in fact, the estima-

tors compare favorably with the original Hölder-based descriptor proposed in [53, 50].

Finally, a noteworthy result is that GP found a novel computational operator that ex-

tracts a measure of image regularity using a compact and simple operation that can be
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implemented in real-time.

The remainder of this paper proceeds as follows. Section 2 contains a brief overview

of related works that have applied GP to image analysis and mathematics. Then, Sec-

tion 3 provides an introduction to Hölder regularity and brief introduction to genetic

programming. In Section 4, we pose the task of estimating the Hölder regularity of

an image as an optimization problem and present a GP approach to solve it. The ex-

perimental results are detailed in Section 5, and qualitative and quantitative compar-

isons are made between the evolved estimators and the oscillations method. Moreover,

in Section 6 the evolved estimators are used to build local image descriptors and are

compared with the canonical Hölder descriptor from [53]. Finally, a summary and

concluding remarks are given in Section 7.

2. Related work

The present work is related with two application domains of GP: image analysis

and applied mathematics.

Image analysis encompasses a large and diverse group of complex problems, where

the relationships between the input signal and desired output are poorly understood,

closed-form analytical solutions normally do not exist, and the structure of the desired

solution is difficult to define. Conversely, in many instances a large amount of exper-

imental data is widely available and easy to obtain. These characteristics make image

analysis problems appropriate candidates for machine learning and evolutionary ap-

proaches such as GP [23, 7]. For instance, GP has been used for image classification

[21, 47], object detection and recognition [14, 9, 13], feature synthesis [22, 41], image

segmentation [39, 45], and local image description [37, 38]. In particular, the proposal

made in this paper is related to other works that extract a descriptive value for each

image pixel. For example, the problem of interest point detection has been posed as

a single [51, 52] and a multi-objective optimization problem [54, 36] and solved with

GP. Another example can be found in [56], where GP was used to detect edge points, a

fundamental problem for many computer vision systems. In those works, the operators

produced by GP compute a measure of edgeness or saliency, which is a similar proposi-
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tion to the goal we pursue here. On the other hand, our proposal is based on the formal

mathematical concept of image regularity while the above cited works focus on am-

biguous semantic concepts that could be interpreted in a variety of ways. In a previous

paper [49], we focused on the same high-level goal of evolving estimators of Hölder

regularity. However, in [49] the ground truth for the learning process utilized images of

multifractional Brownian motion. Conversely, the work presented here uses images of

real-world scenes. This difference in the training set allowed us to produce operators

that achieve a better estimation on real images, comparable with other state-of-the-art

methods (more on this point in Section 4). Moreover, some of the evolved estimators

operate in real-time, and can be applied to the problem of local image description and

matching [53, 50].

Turning to mathematics, GP has mostly been used to automatically derive mod-

els, functions or operators that can characterize a set of sample data with a minimum

amount of error, a particular type of regression problem called symbolic regression
[19]. In classical regression an optimization algorithm must find the optimal values

for a set of coefficients in a function that was chosen by a human expert. On the

other hand, in symbolic regression the problem consists on finding the mathemati-

cal expression of the function that best fits the training data, a harder task for which

GP is particularly well-suited. Symbolic regression represents one of the earliest suc-

cessful applications of GP, and significant advances have continuously been developed

[19, 16, 11, 3]. Indeed, the success of GP in symbolic regression has prompted some

researchers to characterize a correctly framed GP search as a tool for automatic scien-

tific discovery [17]. Recently, other works have shown that GP can be used in other

domains of mathematics. For instance, [4] use GP to construct approximate solutions

for complex differential equations. In [46] GP is used to study special elements of fi-

nite algebras, and in [5] to design quantum circuits. In summary, this paper is another

concrete example of how GP can solve complex mathematical problems from applied

domains.
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3. Theoretical background

The aim of this section is to present a concise introduction to the concept of Hölder

regularity and the GP paradigm, the two topics that intersect in this paper. However,

some details are omitted for brevity, but the interested reader should refer to [48] and

[40] for specific details regarding Hölder regularity and GP respectively.

3.1. Hölder regularity
The concept of Hölder regularity allows us to characterize the singular structures

contained within a signal [28]. A quantitative understanding of the regularity of a

signal can be obtained from measuring Hölder exponents, either within a local region

or at each individual point. In this paper, we focus on signals in R
2 since the goal

is to develop regularity-based techniques for image analysis. However, the following

definition and discussion regarding Hölder exponents is applicable to the general case

of Rn signals.

Figure 1: Hölder envelope of a non-differentiable signal f at point x0. This representation is for a 1D signal

or a cross-section of a signal in 2D.

3.1.1. The pointwise Hölder exponent
Here, we are interested in measuring the pointwise Hölder exponent which is de-

fined as follows for a 2D signal.
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Definition 1:Let f : R2 → R, s ∈ R
+∗ \N and x0 ∈ R. f ∈ Cs(x0) if and only if

∃η ∈ R
+∗, and a polynomial Pn of degree n < s and a constant c such that

∀x ∈ B(x0, η), |f(x)− Pn(x− x0)| ≤ c|x− x0|s , (1)

where B(x0, η) is the ball around x0 with a radius η. The pointwise Hölder exponent

of f at x0 is αp(x0) = sups {f ∈ Cs(x0)}.

In the above definition, Pn represents the Taylor series expansion of function f .

Equation 1 describes a bound on the amount by which a signal varies, or oscillates,

around point x0 within an arbitrary local neighborhood B(x0, η). Hence, when the

singularity is large at x0, with a large variation of the signal, then αp → 0 as x→ x0.

Conversely, αp → 1 when the variation of the signal (f(x) − Pn(x − x0)) → 0

as x → x0, thus the signal is smoother, or more regular, at x0. Figure 1 shows the

envelope that bounds the oscillations of f expressed by the Hölder exponent αp at x0.

In summary, we can say that the Hölder exponents refines the concept of the Taylor

series approximation of a function, by also characterizing the non-differentiable points

[32].

3.1.2. Estimation of the pointwise Hölder exponent
As stated above, several estimators for the Hölder exponent have been developed.

Probably the better known estimators are wavelet-based methods, such as the wavelet

coefficients regression and the wavelet leaders regression. These estimators employ a

wavelet decomposition of the analyzed signal and produce a reliable estimation when

the wavelets satisfy some specified regularity properties [15].

Another approach is based on modeling an image using Choquet capacities [29].

A Choquet capacity can be understood as a measure which does not need to satisfy

the additivity requirement. In this method, the multifractal spectrum of a sequence of

Choquet capacities is used to estimate the pointwise regularity. This approach has been

successfully applied to edge detection [29].

Another example is [2], which presents estimators for the generalized multifrac-

tional Brownian motion, signals where the Hölder exponent can vary from point to
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(a) Original Image (b) Hölder Image

Figure 2: Hölder exponent estimation using oscillation method.

point in an erratic manner. These signals provide realistic models of real-world phe-

nomena. The method is based on generalized quadratic variations (GQV), an estimator

for which the Central Limit Theorem holds under certain conditions.

Finally, probably the most direct estimator is based on analyzing local signal os-

cillations, a simple and direct process. This estimator has achieved good result in

real-world applications [27, 26, 53] and has proven to be superior, in some tests, to the

wavelets-leaders method [25]. Therefore, we have chosen the oscillation method as the

baseline reference method, described in greater detail next.

3.1.3. Oscillation based method
The most direct estimator of the Hölder exponent consists on analyzing the oscilla-

tions of a signal around each point. This method is derived directly from Definition 1

as follows [48]. The Hölder exponent for a non-differentiable function f(t) at t is the

sup(αp) ∈ [0, 1], for which a constant c exists such that ∀ t′ in a neighborhood of t,

|f(t)− f(t′)| ≤ c|t− t′|αp . (2)

In terms of signal oscillations, a function f(t) is Hölderian with exponent αp ∈ [0, 1]

at t if ∃c ∀τ such that oscτ (t) ≤ cταp , with

oscτ (t) = sup
t′,t′′∈B(t,τ)

|f(t′)− f(t′′)| . (3)

Now, if t = x0 and t
′ = x0 + h in 2, we can also write that

αp(x0) = lim inf
h→0

log |f(x0 + h)− f(x0)|
log |h| . (4)
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Therefore, the problem is that of finding an αp that satisfies 2 and 3, and to simplify

this process we can set τ = βr. Then, we can write oscτ ≈ cταp = β(αpr+b), which

is equivalent to logβ(oscτ ) ≈ αpr + b.

Hence, an estimation of the regularity can be built at each point by computing the

slope of the regression between the logarithm of the oscillations oscτ and the logarithm

of the dimension of the neighborhood τ at which the oscillations are computed. Here,

we use least squares regression to compute the slope, with β = 2 and r = 1, 2, . . . , 7.

Also, it is preferable not to use all sizes of neighborhoods between two values τmin

and τmax. Hence, we calculate the oscillation at point x0 only on intervals of the form

B(x0, τ). For a 2D signal, x0 defines a point in 2D space and τr a radius around

x0, such that d(t
′, t) ≤ τr and d(t′′, t) ≤ τr, where d(a, b) is the Euclidean distance

between a and b. Figure 2 shows a visual example of the type of output this algorithm

produces, it presents a sample image and the corresponding Hölder exponent for each

pixel, the corresponding Hölder image.

The above estimation method depends on several parametric choices. In this paper,

we use the same values published in [49], since they were set with the expressed goal

of achieving the best performance on a set of synthetic images for which the underlying

regularity was known a priori.

3.1.4. Shortcomings and open questions
The brief introduction to regularity estimation given above reveals that the problem

can be posed and analyzed in different ways. Directly using the definition of the Hölder

exponent (oscillations), spatial-frequency decomposition (wavelet-based methods), us-

ing Choquet capacities, and modeling the signal as a type of Brownian motion (GQV).

In all cases, the proposed estimators are derived using formal and rigorous mathemat-

ical formulations. However, if we take a pragmatic perspective, we can see that im-

plementing practical algorithms based on these methods presents several noteworthy

challenges. Firstly, some of these methods are quite complex, both from a conceptual

point of view and from an algorithmic one. Therefore, some implementations of these

estimators tend to be relatively slow, which prohibits their use in domains that require

real-time processing. Secondly, all of the estimators reviewed in the preceding section
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Goal HI Synthetic Osc HGP-7 HGP-11

Figure 3: Performance of evolved estimators compared with the oscillations method on synthetic im-

ages of multifractional Brownian motions, from [49]. The first column shows two different prescribed

regularity functions HI , a polynomial given by HI(x, y) = 0.1 + 0.8xy and a sine HI(x, y) =

0.5+0.2(sin(2πx))(cos( 3
2
πy)). The second column are two synthetic images with the corresponding un-

derlying regularity. The third column shows the estimated regularity obtained with the oscillations method,

while the final two columns show the estimation produced by two evolved estimators (HGP-7 and HGP-11).

Notice how the evolved estimators approximate quite well the prescribed regularity of the synthetic images,

while the oscillations method performs rather poorly by comparison.

Image Oscillations HGP-7 HGP-11

Figure 4: Performance of evolved estimators compared with the oscillations method on a real image, from

[49]. Notice how the evolved estimators produce overly smooth estimations, they are overfitted to the type

of regularity used during training, see Figure 3.

depend upon several important parameters that need to be correctly chosen and tuned to

achieve a desired performance. However, for most users it will be difficult to establish

the best parameters without a significant trial-and-error process. Therefore, an esti-

mation method that limits these shortcomings, but that does not sacrifice performance,

would expand the application domains of regularity-based image analysis.
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3.2. Genetic Programming
Evolutionary computation encompasses a large group of search and optimization

algorithms that base their core functionality on the principles of Neo-Darwinian evo-

lution [8]. These techniques are population-based meta-heuristics, where candidate

solutions are stochastically selected and modified to produce new, and possibly better,

solutions for a particular problem. The selection process favors individuals that exhibit

the best performance and the process is carried out iteratively until a termination crite-

rion is reached. Of current algorithms, GP is one of the most advanced forms of evolu-

tionary search [19]. In canonical GP each solution is represented using a tree structure,

which can express a simple computer program, function, or operator. Individual trees

are constructed using elements from two finite sets of elements, internal nodes contain

simple functions from a Function set F , and leaves contain the input variables from the

Terminal set T . These sets define the search space for a GP algorithm, they provide the
expressive power that GP can evolve and search for. The search space contains all of

the different programs that can be constructed using the basic building blocks in T and

F , and when a depth or size limit is enforced on the trees, this space is normally very

large but finite. Therefore, when using a canonical GP, there are two main aspects that

must be defined: (1) the elements within F and T ; and (2) the evaluation function that

guides the evolutionary search by providing structure to the fitness landscape.

The evolutionary loop in GP is similar to that of the more widely known genetic

algorithm (GA), where the main difference lies with the manner in which individuals

are coded, see [8]. While a GA uses bit strings or parameter vectors with a constant and

uniform length, GP uses tree structures that can be of different sizes within the popu-

lation. As a result, another important difference is the manner in which new program

trees are constructed. Two main operations are normally used. First, crossover effec-

tively swaps two randomly selected subtrees between two individuals that were chosen

based on their fitness. Crossover works under the assumption that if two individual

trees have a high fitness value, then a combination of both might produce program

trees of even higher fitness. The second operator is mutation, where a randomly chosen

subtree is deleted and substituted by a new subtree that was also randomly generated.

The main roles of mutation are to introduce diversity into the population and possibly
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Figure 5: The GP algorithm used to evolve estimators for the pointwise Hölder exponent.

provide a slight improvement to program trees that already exhibit good performance.

4. Hölder exponent estimation as a GP optimization problem

In this work, the proposal is to evolve image operators that estimate the pointwise

Hölder exponent. In order to do so, we pose the following optimization problem.

4.1. Problem statement
Let I represent a digital 2D signal, or more specifically an image, and suppose that

HI is a matrix that contains the value of the pointwise Hölder exponent for every pixel

in I . Then, we can pose the problem of finding an optimal operatorKo as follows,

Ko = argmin
K

{Err[K(I), HI ]} , (5)

whereErr[, ] represents an error measure. In a previous work [49],HI was set using a

prescribed regularity function, and synthetic images of multifractional Brownian mo-

tions that share the same underlying regularity were then constructed using the methods

described in [1, 6]. Using the synthetic images for training, GP evolved several esti-

mators that outperform the baseline oscillations method by as much as one order of

magnitude, this is illustrated in Figure 3. However, the evolved estimators suffer from

two significant limitations that prohibit their use in real-world problems. First, even

though they achieve an accurate estimation on synthetic images, they perform rather

poorly when tested on real-world scenes. The problem is depicted in Figure 4, the es-

timation obtained by the evolved operators is smoother then in ought to be considering
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the many irregular regions that are contained within the test image. It appears that the

evolved estimators are overfitted to the smooth regularity functions used to build the

synthetic images in the training set. Second, in [49] the evolved estimators substan-

tially outperform the oscillations method based on run-time. However, they cannot be

used for real-time applications they require between one and twelve seconds to process

a 512× 512 image.

Therefore, in this work the ground truthHI is established by estimating the Hölder

exponent on a training set of real images using the oscillations method. Hence, the

optimization problem is that of approximating, with the minimum amount of error,

the estimation obtained by the oscillations method. The justification for this choice is

based on three main assumptions. First, since we already know that GP can produce

better estimators that the oscillations method [49] (for synthetic Brownian motion im-

ages), then we assume that GP will also be able to closely approximate the oscillations

method on a set of real images. Second, in [49] we also showed that the evolved esti-

mators are substantially faster than the oscillations method. Therefore, if the evolved

estimators that are, in some sense, better then the oscillations method are also compu-

tationally faster, then it is reasonable to assume that estimators that approximate the

oscillations method might be simpler and computationally faster. Third, since the os-

cillations method has achieved good results on several real-world tasks, such as local

image description [53, 50], then evolved estimators that approximate the oscillations

method should exhibit a similar performance on the same problem.

It is important to point out that all three of the above a priori assumptions are

experimentally tested and validated in the experimental work below, see Section 5.

Moreover, regarding the use of a finite set of training images, here we use what might

be considered as ”normal” images of real world scenes. While their choice might seem

ad-hoc, this will be a common objection for anymachine learning approach. Therefore,

to validate their usefulness, and show that the learning process was not overfitted to the

training examples, we perform a substantial amount of tests on unseen images. On the

other hand, we can expect that if the training set is modified then the GP search might

converge to different types of solutions, as was the case in [49]. However, the results

obtained suggest that indeed the evolved estimators generalize quite well.
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(a) New York

(NY)

(b) Van Gogh

(VG)

(c) Monet (d) Mosaic (e) House

(f) Door (g) Bip (h) Laptop (i) Tree (j) UBC

Figure 6: Some of the images used for training and testing.

4.2. Genetic programming approach
The optimization problem defined in Equation 5 can be solved using a GP search.

For this task, we have chosen to use a canonical tree-based GP with Koza style genetic

operators [19, 24] and a bloat control mechanism to limit the size and complexity of the

individual trees [44]. A general overview of the GP approach is illustrated in Figure 5,

where the basic evolutionary loop is depicted with its three main stages: fitness eval-

uation, fitness-based selection, and the production of new program trees by crossover

and mutation.

4.2.1. Fitness evaluation
The goal of the GP search is to find an operator that minimizes the error between the

regularity estimation it provides and a ground estimate established with the oscillations

method, see Figure 5. Here, the error measure from Equation 5 is defined as the root

mean square error (RMSE),

Err[K(I), HI ] =

√√√√ 1

N

N∑

i=1

(K(xi)−Hxi
)
2
, (6)

whereN is the number of pixels in an image I .
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Therefore, if we consider a total ofM training images, each with its corresponding

Hölder imageHI , Fitness for individual operatorsK is given by

f(K) =
1

1

M

M∑

j=1

Err[K̂(Ij), ĤIj ] + ǫ

, (7)

where Ij is the jth image in the training set ofM images, ǫ = 0.01 avoids divisions by

zero, and K̂(I) and ĤI are normalized versions of K(I) and HI using the L2-norm.

For example for the ith image pixel in image j, xi,j , the normalized value is given by

K̂(xi,j) = S · K(xi,j)√√√√
N∑

i=1

K(xi,j)
2
i

, (8)

with S = 103 used as a scale factor so that fitness is the same order as 1.

Then, we must define a set of M training images, and here we use a set with four

images of different scenes (M = 4). The name of the images used for training are

New York, Van Gogh, Monet and Mosaic. Figure 6 shows 10 images, the first four are

used for training while the others are part of the larger testing set that contains thirty

different images 1.

4.2.2. Search space
The search space for GP is established by the sets of Terminals and Functions,

given by

Fpoint =
{
+, |+ |,−, | − |, |Iout|, ∗,÷, I2out,

}
⋃{√

Iout, log2(Iout), k · Iout
}
,

Fneighborhood = {G1, G2} ,

F = Fpoint

⋃
Fneighborhood , T = {I} ,

(9)

where I is the input image; Iout is either the input image I or the output from any

function in F ; Gσ are Gaussian smoothing filters. Finally, the constant scale factor

k = 0.05 is included to allow the GP to combine a small fraction of some value, or

1Some of the images were obtained from the Lear team at INRIA Rhone-Alpes; see K. Mikolajczyk

home page: http://lear.inrialpes.fr/people/mikolajczyk/ .
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Table 1: GP parameters used in all runs of the algorithm.

Parameter Description

Population size 200 individuals

Generations 200 generations

Initialization Ramped Half-and-Half,
with 6 levels of maximum depth

Operator probabilities Crossover pc = 0.85,

Mutation pµ = 0.15

Bloat control Dynamic depth

Maximum dynamic depth 11 levels.

Hard maximum depth 16 levels.

Selection Stochastic universal sampling

Survival Elitism.

term, with another. For instance, in [12] two terms are combined to obtain a measure

of saliency for image pixels, and one of the terms is scaled by a similar factor. Also,

this function proved to be useful in the evolutionary search for interest point detectors

[51, 52, 54].

The Functions set F is conceptually divided into two subsets, one contains point

functions Fpoint and the other are functions that operate within a local neighborhood

of each pixel Fneighborhood. Function in Fpoint operate on a pixel to pixel basis inde-

pendently of neighboring pixels, these functions include all arithmetic operations, non-

linear functions and a scalar product. On the other hand, the functions in Fneighborhood

are filters that use a convolution mask and operates on a group of neighboring pixels.

These functions are simple Gaussian filters that allow the GP to incorporate informa-

tion of the local neighborhood around each point. Such operators are crucial because

Definition 1 explicitly considers signal variations within a local neighborhood. Finally,

to avoid undefined operations during evolution, it is assumed that I ∈ ℜ+ and protected

versions of the functions÷,√· and log are used, as suggested in [40].

5. Experimental results

This Section provides a detailed description of the GP system, the experimental

results, and comparisons with traditional estimators.
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Figure 7: Evolution statistics for the five best GP runs.

5.1. Implementation details
The GP system uses the parameters presented in Table 1, which were tuned empiri-

cally for best performance. The GP algorithm was programmed using the Matlab tool-

box GPLAB [43], and estimation of the Hölder exponent with the oscillations method

was done using the FracLab toolbox [30].

Given that each execution required several days of computation, and in some cases

an entire week, the algorithm was executed only twenty times with the best parametric

configuration. Nevertheless, since we are mainly interested in finding the best pos-

sible estimators we shall only focus on describing the best five runs of the GP. The

best estimator produced in each run will be named using the following convention:

HGP-< R >. Where, the acronym HGP stands for Hölder estimation with Genetic
Programming and < R > represents the run number.

5.2. Evolution of the GP search
The evolution of fitness from each run is presented in Figure 7. The figure shows

plots for the fitness of the best solution at each generation (a), and the average fitness

of the entire population (b). We can see that the best fitness was achieved by HGP-5,

HGP-3 and HGP-2, while HGP-4 has the lowest fitness. Table 2 presents the sym-

bolic expression for each of the best estimators evolved by the GP. These mathematical

expressions have been algebraically simplified for easier understanding.
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New York
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Door
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OSC HGP-2 HGP-5

UBC

OSC HGP-2 HGP-3

Figure 8: Qualitative comparisons between the evolved estimators and the oscillations method. First column

contains the Hölder image computed with the oscillations method, and each row corresponds to a different

test image.

5.3. Comparisons
In what follows, we present a comparison between the estimation of the Hölder

exponent produced by the evolved operators, and the estimation obtained with the os-
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Table 2: Symbolic expression for evolved estimators.

HGP-1:

∣

∣

∣
G1 ∗

[

|G2 ∗ log(I)| − k ·
(

|2I −G1 ∗G1 ∗ (G2 ∗ I + I)| ·G1 ∗
√

log (2I + 21)
)]
∣

∣

∣

HGP-2:

G1 ∗ |log |G1 ∗ (k · (I −G1 ∗ I))||

HGP-3:

G1 ∗ |G2 ∗ log (k ·G1 ∗ |I −G1 ∗G1 ∗ I |)|

HGP-4:

log

[

(G2 ∗ I − I) ·
∣

∣

∣

∣

∣

log

(

I

2

)

·
(

k ·
(

I + (log(2I))2
)

I −
√
I +G2 ∗ I

)∣

∣

∣

∣

∣

]

HGP-5:

log





√

√

√

√G2 ∗
(

I −
√

2I + I · (G1 ∗ (I +G2 ∗ 2I))
√

|k · (I + I2) · (G1 ∗ I −G1 ∗G1 ∗ I)|

)





cillations method. Moreover, we also present a run-time comparison with other state-

of-the-art approaches.

5.3.1. Quantitative comparisons
First, in Table 3 we present a quantitative comparison using the images in Figure 6.

Note that the first four images (NY,VG, Mosaic and Monet) are the ones used during

training, while the other six are from the testing set. The comparison is based on the

RMSE and 2D correlation coefficient, and the table also shows the size of each image

in pixels.

Then, in Table 4 we use an extended test set of 30 different images for a more
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Table 3: Quantitative comparison of the evolved estimators and the oscillations method. The table shows the

name and size of each test image, the RMSE and the 2D correlation value; bold indicates best.

Image Measures HGP-1 HGP-2 HGP-3 HGP-4 HGP-5

NY (512 × 512)

Error (10−3) 0.218 0.182 0.116 0.257 0.172

Correlation 0.746 0.871 0.917 0.648 0.875

VG (348 × 512)

Error 0.357 0.317 0.151 0.456 0.311

Correlation 0.860 0.890 0.948 0.658 0.895

Monet (842 × 842)

Error 0.265 0.201 0.249 0.105 0.102

Correlation 0.696 0.876 0.860 0.872 0.869

Mosaic (512 × 512)

Error 0.143 0.107 0.071 0.133 0.107

Correlation 0.746 0.826 0.896 0.625 0.842

House (484 × 768)

Error 0.677 0.484 0.924 0.368 0.712

Correlation 0.2610 0.845 0.776 0.639 0.744

Door (256 × 256)

Error 0.226 0.307 0.195 0.366 0.341

Correlation 0.864 0.8928 0.940 0.725 0.874

Bip (768 × 574)

Error 0.118 0.095 0.094 0.166 0.128

Correlation 0.771 0.805 0.794 0.651 0.691

Lap (768 × 574)

Error 0.171 0.090 0.120 0.118 0.134

Correlation 0.518 0.834 0.815 0.762 0.752

Tree (1000 × 700)

Error 0.177 0.099 0.390 0.183 0.210

Correlation 0.677 0.866 0.871 0.590 0.859

UBC (800 × 640)

Error 0.182 0.128 0.135 0.160 0.154

Correlation 0.697 0.916 0.942 0.607 0.904

reliable comparison. These images were selected to be as diverse as possible, with

scenes of people, buildings, outdoor areas, and computer generated graphics. Table 4

presents the average RMSE and the average squared 2D correlation coefficient between

the ground truth estimation of the oscillations method and the evolved estimators. The

comparative data presented in tables 3 and 4 shows that HGP-3 and HGP-2 consis-

tently achieve the best correlation and the lowest RMSE. Moreover, we can see that

the GP search did not produce solutions that are overfitted to the limited set of training

examples. While the training set only contains four images, which seems to be a small

amount, in fact each image provides a large variety of singular and irregular structures.

Thus, the GP is able to produce estimators that perform quite well on a variety of local
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Table 4: Quantitative comparison of the evolved estimators using the test set of 30 images; best results are

indicated with bold.

Estimator HGP-1 HGP-2 HGP-3 HGP-4 HGP-5

Error 10−3 0.2184 0.1479 0.1740 0.1660 0.1789

Square correlation 0.4423 0.6917 0.7503 0.4316 0.6515

Table 5: Runtime comparison between the evolved estimators and traditional approaches. The estimators

are tested on a 640 × 480 image, all results are shown in seconds and represent the average over thirty

executions; bold indicates best.

Evolved estimators HGP-1 HGP-2 HGP-3 HGP-4 HGP-A

Time 0.62 0.19 0.30 0.76 0.54

FracLab Osc. Wavelets Choquet GQV

Time 360 66.30 0.30 31.5

image patterns.

5.3.2. Qualitative comparisons
In Figures 8 we present a qualitative comparison between the oscillations method

and the HGP estimators. The first column contains the Hölder image computed with

the oscillations method, and the next two columns show the estimation computed with

an evolved estimator. In most cases, the similarity between the evolved estimators and

the oscillations methods is very high. Indeed, GP produces a very good approximation

of the ground truth Hölder exponent.

5.3.3. Runtime comparisons
Finally, we perform a comparisons of the runtime required to execute each of the

evolved estimators in seconds, the results are summarized in Table 5. For these tests

we use a PC Laptop with a 64 bit AMD processor and 1GB of system RAM, running

Ubuntu 9.04 and Matlab R2007a. Each estimation method was executed thirty times

on a test image of 640 × 480 pixels. It is important to note that in all cases we use

the complete program trees that were generated by the GP without removing introns or

simplifying the trees in any way. Additionally, the evolved estimators use non-optimal

code which is implemented entirely in Matlab. For comparison, we include the runtime

of four estimation methods included in the FracLab toolbox, the only freely available

21



software for regularity analysis [30]. The estimators from FracLab are the oscilla-

tions method described above, the wavelet leaders method [15], the estimator based

on Choquet capacities [29], and the GQV method [2]. All of the FracLab estimators

use optimized code and include fast C implementations of some crucial parts of the

algorithms, this gives them an advantage over the evolved HGP estimators.

The runtime comparisons suggest that the HGP estimators are in fact more efficient,

in particular HGP-2 gives the fastest estimation with HGP-3 not far behind. There does

not seem to be a practical trade-off between obtaining a good estimation and using a

fast algorithm, because HGP-2 and HGP-3 also achieve the best quantitative results. In

comparison with the traditional methods, the HGP estimators perform quite well. The

oscillations method, for instance, is nearly three orders of magnitude slower. Similarly,

wavelet leaders and GQV are slower by two orders of magnitude. The fastest algorithm

in FracLab is the Choquet estimator, which uses a highly optimized C implementation.

However, it still is 50% slower than HGP-2, a significant difference if we consider real-

time applications. We would also stress that HGP-2 achieves a faster runtime despite

using sub-optimalMatlab code and the complete GP trees, a noteworthy result. Indeed,

the fast estimation given by this operator allowed us to perform real-time estimation of

the Hölder exponent on a Unibrain Fire-i FireWire camera. We implemented operator

HGP-2 using the C++ vision library LibCVD2, which allowed us to obtain a frame-rate

of 30 fps3 with a video resolution of 640× 480; sample frames are shown in Figure 9.

In summary, this Section presents an extensive comparison between the evolved

estimators and more traditional methods. Indeed, we have shown that the GP approach

can produce very good estimators of Hölderian regularity which closely approximates

the estimation achieved by the oscillations method. Furthermore, the evolved HGP

estimators are significantly faster than traditional methods, between 50% faster and

up to several orders of magnitude faster. In particular, the best and fastest estimation

was achieved by the HGP-2 operator, which is based on the logarithm of a scaled

2http://www.edwardrosten.com/cvd/index.html
3This is the maximum frame rate of the Fire-i camera, but the estimator could process information faster

if required.
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Input Video

Hölder

Figure 9: Sample frames captured for a realtime estimation of the Hölder exponent using the evolved HGP-

2A estimator. The top row are the input video frames and the bottom row shows the estimated Hölder

regularity.

difference-of-Gaussians filter (see Table 2).

6. Application to local image description

Despite the encouraging results presented above, a question remains: can the HGP

estimators provide a useful estimation for higher level applications? Here, this question

is addressed by applying the evolved operators on a difficult computer vision problem,

local region description and matching.

Recently, many computer vision systems are based on the detection and description

of local and sparse image features. The approach was introduced in [42, 31] and con-

sists on the following basic steps. First, small image regions centered around salient

pixels, better known as interest points, are detected using specially designed image op-
erators [55]. Then, each of these regions is described using compact numerical vectors

that capture the main characteristics of local image shape and appearance, these vectors

are called local image descriptors [35]. The set of local regions and their corresponding
descriptors are then used to construct models of the objects, or scene, present within

the image. When a new image is analyzed this process is repeated and the extracted

features are comparedwith the stored models. Therefore, to perform a recognition task,

the vision system searches for local correspondences such as the one depicted in Figure

10. The main advantages of this approach are: (1) it does not require traditional image

23



segmentation, a difficult mid-level task; (2) the approach is robust to partial occlusions

and to several types of image transformations; and (3) the total amount of information

is sharply reduced because only a subset of image regions are analyzed and described

using compact descriptors.

Keeping to the problem of local description, many proposals have been made over

the last fifteen years. However, currently the Scale Invariant Feature Transform (SIFT)

[31] is still widely accepted as the standard method in current literature [35]. The

overall success of SIFT has led some researcher to develop improved versions of the

algorithm, one related example is the GP-optimized SIFT [38]. Another descriptor was

proposed in [53], based on sampling the pointwise Hölder exponent within a local re-

gion. The Hölder descriptor achieves comparable performance to SIFT on standard

tests, see [53]. Those results confirm the ability of the Hölder exponent to effectively

describe the local structure within a signal. One important limitation of SIFT, is its

computational complexity which makes it ill-suited for many real-time tasks 4. Sim-

ilarly, since the original Hölder descriptor relies on traditional estimation methods it

also comes with a high computational overhead. In previous work, this shortcoming

was addressed using dimensionality reduction with a genetic algorithm [50]. In this

work, however, we employ the evolved HGP estimators to construct the local Hölder

descriptor and compare the performance with the original descriptor that uses the os-

cillations method. Because we already know that HGP estimators are substantially

faster, if they achieve a similar performance on benchmark tests then we can have a

fast algorithm for local image description.

6.1. Hölder descriptor
The process used to build the local descriptor using Hölderian regularity proceeds

as follows. First, a set of interest regions are extracted from an image. Second, the

dominant gradient orientation within each region is computed, thus preserving rotation

invariance. Finally, the descriptor vector contains a sampling of the Hölder exponent

4Many works deal with this topic, and faster implementations have been proposed such as SURF and

GPU-SIFT
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Figure 10: The matching process using locally salient features. A local descriptor is computed for an interest

region detected on the left image. Then, a correspondence is sought between it and the local descriptors

extracted from the image on the right. The figure shows how a correct match between descriptive vectors

can assure a correct match between corresponding regions.

on 129 concentric points using a polar grid and ordering them based on the dominant

orientation within the region. A detailed description of each step is given next.

Region extraction. The first step requires stable detection of salient image regions.

The type of regions will depend on the requirement of the higher level application with

respect to invariance. For instance, an interest point detector is sufficient when the

scale of the image is not modified. Here, we use a detector optimized for geometric

stability and global point separability, the IPGP2 detector which is the determinant of

the Hessian matrix smoothed by a 2D Gaussian kernel [51, 52]. All regions extracted

with an interest point detector are assigned the same scale,wλ = 2.5 pixels. For images

where scale is a factor, we use the Hessian-Laplace detector of [34], which searches

for extrema in the scale space generated with a Gaussian kernel. After this step we are

left with a set Λ of circular regions, and the size of the image region used to compute

the local descriptor is set to sλ = 5 · wλ, where wλ is the scale of the region. Then,

all image regions are cropped and normalized to a size 61 × 61 pixels using bicubic

interpolation.

Dominant orientation. For rotation invariance, the dominant gradient orientation is

computed and used as a reference for the subsequent sampling process. A histogram

is constructed using gradient orientations within the interest region, similar to what is

done in [31]. The histogram peak is obtained ∀λ ∈ Λ and a corresponding dominant

orientation φλ is assigned. In this way, each region is described by a 4-tuple λ =
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(a) Interest point (b) Sample points

Figure 11: Sample points used to build the Hölder descriptor around a detected interest point.

(xλ, yλ, sλ, φλ), where each element respectively defines the region center, scale, and

dominant orientation.

Descriptor. After the salient image regions are detected and described with λ, it is

possible to construct a local descriptor δλ, ∀λ ∈ Λ. As stated before, the descriptor is a

uniform sampling of the pointwise Hölder exponent within each region using a circular

grid, depicted in Figure 11. The first element of δλ is the Hölder exponentαp computed

at the region center (xλ, yλ). Next, the Hölder exponent of points on the perimeter of

four concentric rings is sampled, with radii of 1
4 · sλ, 1

2 · sλ, 3
4 · sλ and sλ respectively.

A total of 32 points on each ring are sampled, starting from the position given by φλ,

all uniformly spaced and ordered counterclockwise. Therefore, the feature vector δλ

has 129 dimensions; for comparison, the SIFT descriptor has 128 dimensions.

6.2. Experimental tests
For evaluation, we use standard image sequences provided by the Visual Geom-

etry Group and the Lear team at INRIA. Detailed information regarding the image

sequences can be obtained from each groups website or in [35]. Table 6 gives further

details regarding the images used in the experimental tests. There is a total of eight

different sequences, including four with rotation transformations (NY, BG, Mars, and

Monet), two with illumination change (Graph and Mosaic), one with JPEG compres-

sion (UBC) and another one with scale changes (Laptop). From each sequence there is

one reference image and several test images, each progressively transformed. To test
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Table 6: Test pairs used to evaluate the performance of the evolved estimators on the task of region matching.

Sequence Transformation # of test image

New York Rotation 11

Van Gogh Rotation 7

Mars Rotation 10

Monet Rotation 6

Graph Illumination change 6

Mosaic Illumination change 12

UBC JPEG compression 2

Laptop Scale change 7

the descriptor, the strategy is to use the reference image and one transformed image,

then the detected regions between both images are matched using the descriptor vec-

tors, see Figure 10. Because we possess prior knowledge regarding the transformation

between the reference and the transformed image, we can effectively determine if the

matches produced by the local descriptors are correct [35].

In this work, two image regions λ1 and λ2 are matched if d(δλ1
, δλ2

) < tδ and if

δλ2
fulfills the nearest-neighbor criterion for δλ1

, where d(, ) is the euclidean distance.

The performance of a descriptor with regards to local matching can then be assessed

by varying tδ to obtain Recall versus 1-Precision curves, which help characterize the
matching process between two images [35].

Recall/1-Precision provides information regarding the number of correct and false
matches between two images. Recall is the number of correctly matched regions with
respect to the number of corresponding regions between two images of the same scene.

The number of false matches relative to the total number of matches is represented by

1-Precision. A perfect descriptor would give a Recall equal to 1 for any 1-Precision.
Recall and 1-Precision are defined as

Recall =
#correct matches

#correspondences
,

1− Precision =
#false matches

#correct matches+#false matches
.
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(a) Base image (b) Transformed image
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Figure 12: Recall/1-Precision curves for the New York image pair. The transformation between (a) and (b)

is a rotation.

6.3. Results
We organize the test results according to the type of transformation that each se-

quence presents: rotation, illumination change, JPEG compression, and scale change.

For each sequence we show the base image and one test image, as well as the corre-

sponding Recall/1-Precision curve for each of the evolved estimators along with the

performance of the original Hölder descriptor.

6.3.1. Rotation
As noted above, there are four test cases for rotation transformations, Figure 12 for

the NY pair of images, Figure 13 for the VG pair, Figure 14 for the Mars pair, and

Figure 15 for the Monet pair. In these tests HGP-2 and HGP-3 consistently achieve a

high performance, practically the same as the original Hölder descriptor. These trends

are consistent with the results shown in Table 3, where these estimators obtained the

lowest error and highest correlation values.

6.3.2. Illumination change
There are two test cases for transformationswith illumination change, Figure 16 for

the Graph images and Figure 17 for the Mosaic pair. For these tests almost all of the

estimators produce a comparable performance to that of the original Hölder descriptor,

with the following notable observations. First, only HGP-1 andHGP-4 produce notably

inferior matching scores. Second, HGP-2 actually outperforms the original descriptor

in the Graph test.
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(a) Base image (b) Transformed image
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Figure 13: Recall/1-Precision curves for the Van Gogh image pair. The transformation between (a) and (b)

is a rotation.
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Figure 14: Recall/1-Precision curves for the Mars image pair. The transformation between (a) and (b) is a

rotation.

6.3.3. JPEG compression
To test the performance of the matching process with respect to distortions intro-

duced by JPEG compression we employ the images shown in Figure 18. Some of the

evolved estimators perform quite well on this test, including HGP-1, HGP-2, and HGP-

3; in all cases performance is above that achieved by the oscillations method. Indeed

this was not expected for two reasons. First, it is normally assumed that image regu-

larity will be changed drastically when JPEG compression is applied, however some

of the evolved estimators can cope with this quite well. Second, the performance of

most image descriptors is normally degraded by JPEG compression, even for the SIFT

method [35]. However, using the HGP estimator the Hölder descriptor can achieve re-

markably good results. Therefore, the evolved estimators are able to produce an image

descriptor that is invariant to JPEG compression.
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Figure 15: Recall/1-Precision curves for the Monet image pair. The transformation between (a) and (b) is a

rotation.
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Figure 16: Recall/1-Precision curves for the Graph image pair. The transformation between (a) and (b) is

illumination change.

6.3.4. Scale change
The performance of the matching process with respect to scale changes was evalu-

ated using the images shown in Figure 19. In this test, only HGP-1, HGP-3 and HGP-2

obtain similar performance to that achieved by the oscillations method.

In general, these tests show that some of the evolved estimators can be used to

effectively describe local shape and appearance, and achieve a similar performance

to the oscillations method [53]. In particular, estimators HGP-2 and HGP-3 obtain a

high performance across all tests, and in some instances are better than the the original

descriptor. The performance of these operators was indeed expected, given their low

RMSE and high correlation with the oscillations method. In fact, using HGP-2 we can

build a very simple, efficient and robust image descriptor that can be computed in a
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Figure 17: Recall/1-Precision curves for the Mosaic image pair. The transformation between (a) and (b) is

illumination change.
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Figure 18: Recall/1-Precision curves for the UBC image pair. The transformation between (a) and (b) is

JPEG compression.

small fraction of the time that more traditional methods require, such as SIFT. This

could allow us to develop faster algorithms for real-time computer vision systems.

7. Summary and concluding remarks

In this paper, the task of developing a new estimator of image regularity is posed

as an optimization problem and solved using Genetic Programming. The goal is to

synthesize image operators that can approximate the oscillations method for Hölder

exponent estimation. Additionally, the evolved estimators should also be simpler, eas-

ier to implement, and exhibit a lower runtime. Indeed, a standard implementation of

GP was able to solve this problem and satisfy the desired criteria. This allowed us to

develop a real-time estimator of Hölder regularity for a live video signal, the first such

algorithm in current literature.
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Figure 19: Recall/1-Precision curves for the Laptop image pair. The transformation between (a) and (b) is a
scale change or zoom.

To test the estimators in a real-world task, we applied them to one of the most im-

portant problems in modern computer vision, describing locally salient image features.

Standard experimental tests and performance criteria showed that the evolved HGP

estimators are indeed capable of extracting a meaningful descriptive characterization

of local shape and appearance using faster and simpler estimation methods. Such re-

sults can surely help expand the applicability of regularity-based techniques to other

problems in image processing and computer vision.

From among the evolved estimators, one in particular called HGP-2 achieved the

best results, based on estimation error, correlation, runtime, and image description.

It is interesting to note the simple logic behind this estimator, it basically relies on

computing the logarithm of the absolute value of a difference-of-Gaussian filter. This

suggests that the Hölder exponent at each point can be effectively approximated by

one of the most basic feature detection methods used in computer vision, proposed

by David Marr in he’s seminal works [33]. The result is both surprising and logical,

because the basic concept of irregular or singular structures is obviously related to the

type of saliency that Marr so effectively modeled. However, given the complexity of

some of the traditional estimators we did not expect that such a simple operator could

replicate, and in some sense improve upon, their performance.

On the other hand, the use of the HGP-2 estimator for local image description re-

veals that this task can be solved using much simpler and direct algorithms than those

currently employed. Even a cursory review on this topic reveals that state-of-the-art

methods employ complex models and algorithms when building discriminant feature
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descriptors [35]. One exception is the Hölder descriptor by [53], which is based on

a simple sampling algorithm. However, the original version of the Hölder descrip-

tor also relies on a computationally slow estimation process, which severely limits its

usefulness. However, the HGP estimators allow us to enhance the Hölder descriptor by

reducing the runtime of the estimation process. Hence, all that is required is to estimate

the Hölder exponent using the HGP-2 operator and then sample the exponent on a fixed

polar grid. This simple approach allows us to generate a robust and invariant descriptor

that achieves state-of-the-art performance, and can be implemented in real-time.
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[1] Ayache, A., Lévy-Véhel, J., 2000. The generalized multifractional brownian mo-

tion. Statistical Inference for Stochastic Processes 3, 7–8.
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