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Dankwoord

Het is zover. Dit werk is het eindpunt van een lange tocht. Eén die niet gaat om het
afleggen van een bepaalde afstand of het behalen van een doel, maar wel om het ver-
kennen van onontgonnen gebied. Het doorploeteren van de jungle op plaatsen waar
nog niemand ooit voet zette. Je omarmt je onwetendheid, en waagt voorzichtige
stapjes in het onbekende op zoek naar het antwoord op je vragen, naar wetenschap.
Onderweg val je, vloek je, en keer je terug op je stappen, maar niet zonder een teken
achter te laten voor de volgende die zich aan deze jungle waagt. Vaak heb je het
bij het verkeerde eind, maar de euforie die je voelt wanneer onwetendheid plaats
maakt voor inzicht of kennis is onbeschrijfelijk. Ik ben trots dat ik bereikt heb wat ik
heb bereikt, en dat ik daaraan met dit boek ook fysiek gestalte kan geven.

Een doctoraat maak je zelf, stap voor stap, maar een doctoraat maak je –gelukkig–
niet alleen. Daarom zijn er een aantal mensen die ik wil bedanken voor wat ze voor
mij de voorbije jaren hebben betekend.

Op een tocht als deze is ervaring onontbeerlijk. Gelukkig had ik twee promotoren,
prof. Dr. Jan Broeckhove en Dr. Kurt Vanmechelen, als reisgidsen aan mijn zijde.
Jan, Kurt, bedankt voor de kans die ik kreeg om te doctoreren. Bedankt om de
richting aan te wijzen en de ervaring en kennis te delen. Om een duwtje in de rug te
geven als het wat moeizamer ging, en om steeds klaar te staan voor mijn vragen of
bekommernissen.

Onderweg zijn er soms twijfels, over de route, de snelheid, de middelen en de
methoden. Soms zijn er tegenslagen, die je moet verwerken. Moed die je moet
vinden om de draad weer op te pikken of een nieuwe weg in te slaan. Als dat het
geval was, staat je familie altijd klaar om je onvoorwaardelijk te steunen in wat je
doet. Sanne, moeke, papa, Jolijn, bedankt om in mij te geloven, om mij de kans te
geven te studeren, om bemoedigende woorden te spreken als het moeilijk ging en
om trots op mij te zijn als het goed ging.

Een tocht is leuker als je weet dat je er niet alleen voor staat, en als je weet dat ook
collega’s timmeren aan hun eigen weg. Sam, Sean, Silas, Przemek, Kurt, Delphine,
Peter, Wim, Steven, Jan en Frans; bedankt voor de samenwerking in de voorbije zes
jaar. Bedankt om mee te zoeken naar problemen, om als klankbord te fungeren, om
me met raad en daad bij te staan, maar ook om van den bureau, de gang, het werk
een aangename omgeving te maken. Bedankt ook om me de kunst van het lesgeven
bij te brengen, en om me bij mijn lesopdrachten als assistent te vertrouwen wanneer
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dat kon en bij te staan wanneer dat nodig was. Het begeleiden van studenten in hun
vorming als toekomstig informaticus was niet alleen vaak een welkome afwisseling,
maar ook een taak die ik met plezier deed en waaruit ik steeds veel voldoening
haalde.

De voorbije elf jaar aan de unief zijn geweldige jaren geweest. Daar een punt achter
zetten kan niet zonder nog één keer achterom te kijken. Aan al mijn studiegeno-
ten, kotgenoten, reisgenoten, praesidiumgenoten, appartementgenoot, vrienden,
vriendinnen en collega’s en met alle TD’s, etentjes, cantussen, fuiven, reizen, ver-
gaderingen, citytrips en cafébezoeken indachtig: het was een geweldige periode,
merci!

Er is nog veel onontgonnen terrein. Nog veel plaatsen waar niemand het bestaan
vanaf weet. Het is tijd voor een nieuwe reis. Ik hoop dat jullie me allemaal opnieuw
vergezellen.

Ruben
juni 2014
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CHAPTER 1
Introduction

1.1 A shift towards computing as a utility

To understand the current trends in the IT industry, we first have to take a trip back
in time. With the advent of the mainframe in the 60s and 70s, time-sharing became
the most prominent computing model, allowing multiple users to interact with a
single computer. IBM and other mainframe providers offered access to compute
power on a metered basis to banks and other large organizations. John McCarthy
was said to be the first person to publicly suggest in 1961 that so called time-sharing
of those mainframes could result in an environment in which computing power
could be sold through the utility business model. According to [1], a service is a
utility if users consider it a necessity; high reliability of the service is critical; ease of
use is a significant factor; the full utilization of capacity is limited and services are
scalable (leading to economies of scale). Could it be that people would once rely on
computing as they relied on utilities such as electricity and telephone?

The rise of the microprocessor and personal computer in the 80s made procure-
ment of compute infrastructure accessible for all organizations, thereby causing the
idea of computing as a utility to be put on hold. In the 80s and 90s, organizations
with a need for compute power had few options except to invest in the procurement
and maintenance of proprietary hardware. When a single PC was not sufficient to
fulfill the needs of a single user, multiple computers were connected to each other
through a local area network, thereby forming a compute cluster. Such a cluster
consists of a set of computers which are either loosely or tightly coupled, and on
which centralized management software is installed to orchestrate the deployment
of applications on one or multiple nodes at the same time. When such clustered
resources are shared by multiple users in an organization, organizations are forced
to put systems in place for capacity planning and access regulation in order to
cope with saturation. This is hard for an organization: ranking a team’s tasks can
be tedious and often depends on a lot of different factors and interests. Likewise,
capacity planning requires insight on –and often predictions of– future load. Even
with such systems in place, the mismatch between the immutability of cluster infra-
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14 CHAPTER 1. INTRODUCTION

structure and the dynamic nature of load will often cause under- or over-utilization
of resources and thus lost potential.

One way to mitigate these effects is an increase in scale. In the early 2000s, grid
computing promised access to a much larger network of resources by loosely cou-
pling multiple heterogeneous, geographically dispersed clusters owned by different
organizations. Organizations, especially academic institutions and research orga-
nizations, used each other’s compute infrastructure as an extension of their own.
This allows companies with distinct use patterns and surges at different moments
in time to level off excess load to other organizations. The word grid was used in
analogy with the electric power grid; the utility model was back in the picture. When
sharing resources between multiple administratively separated organizations, an
arrangement has to be made on the responsibility, liability and (cost) accountability.
Moreover, agreements have to be made on used middleware, security, license and
data management. The entry barriers for an organization in such a grid agreement
are substantial, and require a significant amount of time, effort and commitment of
the different parties involved. For utility computing to really succeed, these agree-
ments should transcend simple bilateral agreements and exceed the scale of a single
organization, and should allow for a separation of supply and demand. In addition, a
system that takes care of access and application control, capacity planning and load
surge management is crucial for the success of such a grid model. Due to the lack
of sharing agreements and high entrance barrier, and despite the large amount of
government funds invested in it, grid computing never really found its way outside
of its own community.

Utility computing finally found broad acceptance a few years later with the
advent of cloud computing, in which access to external computing power is made
available by large cloud providers on a metered basis, with no required upfront
commitment. This revolution was driven, among other things, by the fact that
the performance overhead of virtualization technology –which allows an operating
system to run isolated from and in parallel with other operating systems on a single
computer– had now diminished to a negligible level. Infrastructure-as-a-Service
(IaaS) providers, such as Amazon EC2, allow consumers to rent virtual machines
on a pay-as-you-go basis with a time granularity of a minute up to an hour. This
provided a solution to grid challenges such as cost accounting, resource isolation
and access management, obstacles that prevented grid computing to become a
success. The barrier to get started with cloud computing is minor compared to
grid computing: all a user needs to launch a virtual machine is a credit card and
internet access. Resources in cloud computing are typically available on demand,
quickly enough to absorb load spikes, which takes away the burden of long-term
provisioning. This elasticity of resources combined with a fixed price regardless
of the scale of deployment is unprecedented in the history of IT, and is currently
transforming a large part of the IT industry.

1.2 A shift in applications, too

In the past 15 years, organizations have increasingly faced problems –both in re-
search and business areas– that require a large amount of compute power. Fueled
by the ever-increasing amount of computing power, companies and organizations
have come to rely on computing for many of their business-critical tasks. Thereby,
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they face a rising complexity in the management, admission control and planning of
their shared computing resources and applications. This complexity increases when
users have different Quality-of-Service (QoS) constraints regarding the achieved level
of performance of their applications.

An organization’s application set is typically versatile, and different kinds of
applications require different approaches to scheduling and deployment. An impor-
tant characteristic in which applications differ is their “lifetime”. Some applications
consist of a limited amount of computation after which their job is done. Such
batch-type applications are set up to be run to completion with little or no manual
intervention. Examples of such batch jobs are parallel Monte Carlo runs for particle
physics research, in silico analysis of protein folding processes for drug design, solv-
ing optimization problems for financial or risk modeling, image and video rendering
or transcoding and log file processing. A typical QoS constraint for a batch appli-
cation is a deadline for the application to finish. Server-type applications on the
other hand typically run for a long time and respond to requests across a computer
network. Examples include web servers, database servers and storage servers. Such
server applications commonly have QoS constraints such as a maximum response
time or minimum uptime.

Managing applications deployed on an organization’s shared infrastructure while
taking into account its Quality-of-Service constraints is significantly different de-
pending on the application type. Therefore, it is necessary to further categorize
batch-type applications. A single execution of a batch application is often referred
to as a job or task. When one application comprises multiple batch jobs grouped
together, its type can be further categorized based on their interdependence. When
those jobs can be executed to completion in any order and independently of each
other, they are called a bag-of-tasks (BoT). A typical example of a BoT application
is a parameter sweep, which consists of a single job that is executed with different
parameters in a user-defined range. Other possible types of batch applications are
workflows, in which jobs have precedence constraints, or concurrent applications,
when all jobs have to run contemporaneous and –preferably– on a tightly coupled
system.

1.3 Value- and cost-based scheduling

There are no ready-made solutions to manage the shared use of the organization’s
computing infrastructure –whether they belong to a private cluster, grid or cloud
provider– in an optimal way. Traditionally, scheduling policies are used to tackle
such problems. These policies control whom, when and for how long users or ap-
plications are given access to compute resources. In the management of compute
infrastructure, a scheduling policy may take into account different –often conflicting–
interests. It may aim to optimize for goals such as fairness between its users, appli-
cation turnaround time, throughput, waiting time or deadlines met, or it may even
attempt to find a balance between two or more of those objectives.

One approach to solve these scheduling challenges in the context of an organiza-
tion’s compute cluster with limited resources is the incorporation of the value a user
attributes to its computation. In a value-based scheduling algorithm the user-value
is expressed by the user upon the request of an amount of compute power. To
encourage users to express a value truthfully, the use of a value-based scheduling
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algorithm often requires an accounting system that charges users according to the
expressed value and obtained service level.

With the emergence of IaaS cloud providers such as Amazon EC2 in 2006, the
flexibility for organizations increased drastically. Most cloud providers promise
unlimited scalability and immediate availability, a promise that has its limitations in
practice but nevertheless offers opportunities that were previously unthinkable.

This shifts the problem for an organization from a scheduling problem pur sang
towards a cost minimization problem. This problem is made even more complex
when taking into account the increasing amount of cloud providers, instance types
and pricing plans available. Amazon, for example, offers two additional pricing plans
next to the default pay-as-you-go plan: their spot market offers dynamically priced
instance hours based on supply and demand, and the procurement of reserved
instances allows consumers to run servers at a discounted rate in return for an
upfront payment.

Although job scheduling problems typically deal with fixed capacity infrastruc-
ture, this increase in flexibility does not make job scheduling obsolete. On the
contrary, the procurement of one or more reserved contracts inherently introduces a
fixed capacity infrastructure again, albeit with more flexibility in return for a higher
cost. Besides, public cloud providers are often adopted by organizations and compa-
nies to be used in combination with the organization’s existing private infrastructure.
The setup in which public cloud resources are used to supplement private clusters is
referred to as a hybrid cloud model. The use of hybrid clouds introduces the need for
a scheduling approach that combines cluster scheduling and the aforementioned
cost minimization problem to determine which workloads are to be outsourced,
and to what cloud provider.

1.4 Objective, Research Questions and Contributions

The objective of this thesis is to explore, develop and evaluate scheduling algorithms
that aim to maximize value or minimize cost for usage in clusters and clouds, in
the context of a multi-user organization. This thesis answers the following research
questions:

• To what extent does fine-grained value-based cluster scheduling outper-
form coarse-grained scheduling in terms of generated value for a bag-of-
tasks application with a deadline?
Our contribution compares the performance, in terms of generated user value,
of fine-grained value-based scheduling approaches with a coarse-grained
scheduler based on priority queues. We elaborate on the experimental pa-
rameters that lead to higher efficiency gains for fine-grained techniques and
pinpoint in which settings such techniques can bring significant efficiency
gains. Based on real-world workload traces, we evaluate to what extent these
settings are fulfilled in practice. Our findings are compared to those presented
in related contributions, and the dissimilarities are discussed.

• Is a linear programming approach suitable and computationally feasible
to solve the cost minimization problem of running a set of bag-of-tasks
within deadline in a hybrid cloud environment?
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Our contribution analyzes whether the concerned optimization problem can
be tackled in the context of resource provisioning for batch workloads. The
model considers preemptible but non-provider-migratable workloads with a
hard deadline that are characterized by memory, CPU and data transmission
requirements. A linear programming formulation of the optimization problem
is presented, after which we evaluate how the runtime of the program’s solver
scales with changes in the different properties of the problem.

• How can heuristics be used to schedule a set of BoT applications with a
deadline constraint and an associated data set on public and private cloud
resources in a cost minimizing and scalable way?
Our contributions focus on the optimization problem of allocating resources
from both a private cloud and multiple public cloud providers in a cost-
efficient manner, with support for data locality. The application model under
study consists of non-preemptible and non-migratable bag-of-task appli-
cations with a hard deadline. We analyze how this optimization problem
can be tackled in the context of resource provisioning for batch workloads
through the use of different scheduling algorithms, and investigate the impact
of workload model parameters as well as runtime estimation errors on the
cost reductions that can be achieved.

• How can a procurement algorithm obtain cost reductions by acquiring IaaS
reserved contracts in a fully automated manner using load predictions?
Our contributions introduce an algorithm for automated IaaS contract pro-
curement that takes into account an organization’s existing contract portfolio.
To guide contract acquisition through workload prediction, different time
series forecasting techniques (including genetic programming-based models
and both seasonal and non-seasonal models based on ARIMA and exponential
smoothing) are applied. An illustrative case study and an extensive empir-
ical evaluation of the proposed algorithm and forecasting techniques are
presented.

1.5 Structure

This thesis consists of three parts:

Part I: Value-based Scheduling in Batch Job Cluster Systems
A considerable amount of scientific contributions exist on the topic of
value-based scheduling in the context of clusters. In Chapter 2, the added
value of using such a value-based scheduling technique in comparison
with a coarse-grained technique in form of a queue-based scheduler is
evaluated. We examine the influence of fine-grained user-valuations
on the scheduler’s performance, and evaluate whether such scheduling
techniques outperform coarse-grained techniques in terms of realized
value.

Part II: Cost-Efficient Scheduling Jobs on Hybrid Clouds
When using a public cloud provider to supplement private infrastructure,
scheduling approaches similar to the ones used in clusters are no longer
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sufficient. The decision which workloads to outsource to what cloud
provider in a hybrid cloud setting is far from trivial. It should maximize
the utilization of internal infrastructure while minimizing the cost of the
cloud infrastructure. Part II explores this optimization problem with a
focus on batch-job applications with a hard deadline constraint.

In Chapter 3, this problem is tackled using a binary integer program,
and data transfer costs are taken into account. Chapter 4 and Chapter 5
present heuristics to cope with the aforementioned problem. Data trans-
fer times are taken into account, and online arrival of applications is
introduced.

Part III: Contract Portfolio Optimization using Load Prediction
The proliferation of pricing plans and resource properties at IaaS providers
turned the procurement and management of an organization’s cloud re-
sources into a complex and time-consuming task. Some cloud providers
offer “reserved contracts” in addition to a simple hourly server rate.
These reserved contracts allow for a cost reduction in the hourly cost
in return for an upfront payment. Part III of this thesis investigates
whether the automatic procurement of such reserved contracts based
on predictions of future load is feasible and beneficial in terms of cost.

Chapter 6 uses a Genetic Programming approach to forecast an orga-
nization’s future load and calculate an optimal contract portfolio. In
Chapter 7 and 8 the problem space is broadened to incorporate the
current set of contracts an organization possesses. An algorithm is pre-
sented, and multiple time series models are applied to generate load
predictions. Chapter 7 includes a case study of four real-world web ap-
plication traces, in Chapter 8 the evaluation is expanded to comprise a
statistical evaluation of the results for over fifty traces.
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CHAPTER 2
Benefits of fine-grained

value-based scheduling on
clusters

This chapter is published as “An evaluation of the benefits of fine-grained
value-based scheduling on general purpose clusters”, R. Van den Bossche,
K. Vanmechelen and J. Broeckhove in Future Generation Computer Sys-
tems 27 (2011) [2].

Abstract

General purpose compute clusters are used by a wide range of organizations
to deliver the necessary computational power for their processes. In order to
manage the shared use of such clusters, scheduling policies are installed to
determine if and when the jobs submitted to the cluster are executed. Value-
based scheduling policies differ from other policies in that they allow users to
communicate the value of their computation to the scheduling mechanism.
The design of market mechanisms whereby users are able to bid for resources
in a fine-grained manner has proven to be an attractive means to implement
such policies. In the clearing phase of the mechanism, supply and demand
for resources are matched in pursuit of a value-maximizing job schedule and
resource prices are dynamically adjusted to the level of excess demand in the
system. Despite their success in simulations and research literature, such fine-
grained value-based scheduling policies have been rarely used in practice as
they are often considered too fragile, too onerous for end-users to work with, and
difficult to implement. A coarse-grained form of value-based scheduling that
mitigates aforementioned disadvantages involves the installation of a priority
queuing system with fixed costs per queue. At present however, it is unclear
whether such a coarse-grained policy underperforms in value realization when
compared to fine-grained scheduling through auctions, and if so, to what extent.
Using workload traces of general purpose clusters we make the comparison
and investigate under which conditions efficiency can be gained with the fine-
grained policy.
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2.1 Introduction

In many organizations, clusters fulfill the ever increasing need for computational
power and data storage. Their scaling potential and performance have ensured
that clusters have remained an important part of an organization’s IT infrastructure,
despite the advances in the performance of personal computers. As a consequence
of their scale and cost, clusters are typically shared by a number of users whose
resource requirements vary over time. The possibilities for parallel execution on
these systems, combined with their ability to multiplex and enqueue user workloads,
allow them to deliver high performance under a high level of system utilization. The
key software component that determines the efficiency under which such clusters
operate is the job scheduling system. Efficiency can hereby be expressed as a func-
tion of a wide variety of metrics such as system utilization, job turnaround times or
job throughput.

In many clusters, job scheduling has long allowed for a prioritization of jobs
through the definition of a discrete number of job queues. A job that is submitted
to a high-priority queue can thereby gain precedence over jobs in lower-priority
queues. The right to submit a job to a particular queue can be constrained by for
example the user’s priority level or the (user-estimated) runtime of the job. In that
case, the highest priority queues are typically only available to jobs with relatively
short runtimes, in order to avoid small jobs to be delayed by a few very long-running
jobs.

In recent years, a renewed user-oriented view on efficiency has fueled the devel-
opment of job scheduling systems that attempt to directly take the value that a user
attributes to the completion of its computation into account [3, 4, 5, 6, 7, 8, 9, 10, 11].
Job scheduling systems that adhere to such a value-oriented efficiency goal are
termed utility-based or value-based scheduling systems. In value-based scheduling
approaches, one allows for the direct expression of user-value, irrespective of any
constraints on job runtimes or other job characteristics. In order to discourage
users to consistently express the highest possible value for their jobs, an accounting
system charges users according to the service level they have obtained.

We distinguish between two different ways for users to express their valuations.
In a coarse-grained value-based scheduling policy, users can signal one of a few dis-
crete, predefined values to the scheduling mechanism. An example implementation
of such a policy is a priority queue system in which a particular charging rate is asso-
ciated with each queue. On the other hand, a fine-grained value-based scheduling
policy allows users to express their valuation within a continuum. This allows the
scheduler to enforce a more precise prioritization on the executed jobs.

Many works have investigated economically-inspired approaches to job schedul-
ing in which market mechanisms are used that allow a user to express his valuation
in a fine-grained manner [12, 13, 14, 15, 16, 17]. An advantage of such an approach
is that the service cost can be set dynamically depending on the level of congestion
in the cluster and the value that other users attribute to their jobs. In this manner,
supply and demand for resources can be balanced, leading to optimal economic effi-
ciency. This level of efficiency can be attained without the need for an administrator
to manually intervene and, for example, configure the queue prices in a priority
queuing system.
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A disadvantage of fine-grained value-based schemes is that users are now asked
to formulate their valuation as a value in a continuum. These valuations are often
dependent on the expected completion times of the job. This is a non-trivial task
that can be considered time consuming, especially if there are possibilities for a user
to obtain a more attractive service level to cost ratio, by acting strategically. Although
the installment of (pseudo–)incentive compatible [18] market mechanisms can re-
move the options for such strategic behavior, value elicitation in a non-strategic
setting can remain a user burden.

Many studies have shown the efficiency gains, in terms of generated user value,
that value-centric scheduling approaches can bring compared to traditional system-
centric scheduling approaches such as First-Come-First-Serve (FCFS) or Round-
Robin (RR) scheduling [3, 9, 19, 20, 21, 22]. A round-robin scheduler assigns equal
time slices to each job in the system. However, only a limited number of studies
have compared the performance of a fine-grained value-based scheduling system
with a coarse-grained system that is based on priority queues. We have found
that when such comparisons are made, insufficient attention is often given to the
specificity of the experimental parameters that lead to high efficiency gains for the
fine grained approaches. The goal of this paper is to present such a comparison
and pinpoint in which settings fine-grained user valuations can bring significant
efficiency gains. Our additional aim is to evaluate to what extent such conditions for
increased efficiency are fulfilled in practice, based on real-world cluster workload
traces.

2.2 Related work

Chun et al. [5] compare a market-based algorithm called FirstPrice with a three-
queue priority system called PrioFIFO. They model synthetic workloads on a small
cluster consisting of 32 nodes, and combine time-varying bids with static bids. Their
study shows that for sequential jobs, coarse-grained static valuations are just as
effective as fine-grained, time-varying valuations. As parallelism in the workload
increases, so do the benefits of the fine-grained time-varying approach. Chun et al.
report increases in realized utility up to 250% for highly parallel workloads. We take
a closer look at these results in Section 2.6.

AuYoung et al. [6] compare a batch scheduler with four priority queues based on
the Maui-scheduling algorithm [23] and a conservative backfilling algorithm with
an implementation of a periodic combinatorial auction (CA) [24]. Maui is an open
source job scheduler for clusters. In a combinatorial auction, users submit bids
specifying resource combinations accompanied with an amount of money they are
willing to pay for that combination. Periodically, the auction clears and determines
a number of winning bids. The problem of clearing such a combinatorial auction in
a value-maximizing manner is known to be NP-complete [25]. AuYoung et al. use
a greedy approximation algorithm in order to clear the market in a timely fashion.
Their simulation was based on a one week workload trace of the SDSC Blue Horizon
cluster, a publicly available trace from the Parallel Workloads Archive [26]. They
obtained up to 400% improvement with the CA compared to the batch scheduler.
The differences between the batch scheduler and the combinatorial auction-based
approach are however big: while the combinatorial auction uses advance reserva-
tions in order to optimize the schedule, the batch scheduler schedules jobs in an
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online manner. It is therefore difficult to indicate what underlying cause elicits this
difference. Because the CA’s implementation details and algorithm, the clearing
period, the allocation window and the workload data are not specified in [6], we
were unable to reproduce their results.

In [4], Lee et al. generate complex piecewise-linear utility functions for jobs
in workload traces. They compare a heuristic based on a genetic algorithm (GA)
that maximizes the aggregate value generated in the system according to these
utility functions with the performance of the Priority-FIFO algorithm (similar to the
PrioFIFO algorithm in [5]), and an EASY and conservative backfilling algorithm. A
genetic algorithm is a search heuristic that emulates the natural evolution process,
and is used to generate solutions to search and optimization problems. Backfilling
allows short jobs to skip ahead in the queue provided they do not delay any other
job in the queue (conservative) or they do not delay the job at the head of the queue
(EASY). Using a workload containing 5000 jobs from the SDSC Blue Horizon cluster,
Lee et al. show that the GA heuristic outperforms FIFO with backfilling and Priority-
FIFO on aggregate utility by respectively 14% and 6%. Lee et al. focus on load and
decay type of the user’s utility function as the parameters that cause these differences
and point out that both Priority-FIFO and the GA heuristic perform well in high load
conditions. The higher the load, the greater the performance difference is between
value-based and traditional schedulers.

Libra is an economy-based job scheduling system for clusters, based on a pro-
portional share scheduling algorithm. In a proportional share algorithm every job
has a weight, and jobs receive a share of the available resources proportional to
the weight of each job. Sherwani et al. [27] present the details of this scheduler, as
well as a detailed performance analysis. They show that Libra’s proportional share
algorithm performs better than a FIFO scheduler. No comparison is however made
with a priority queue scheduling policy.

Many others [9, 19, 20, 21, 22] have compared fine-grained value-based and
traditional scheduling methods. In these studies little or no attention was paid to
the use of priority queues as an alternative for fine-grained value-based schedulers.

2.3 Value-based scheduling

We assume that all users have a certain understanding of the value they associate
with the jobs they want to run on a cluster. The expression of value is done through a
medium common to all users of the shared resource. A real or virtual currency is used
to fulfill this role. The communication of these user valuations to the scheduling
mechanism allows for the construction of an economically efficient schedule, in
the sense that scarce resources are allocated to users who value them the most. In
order to prevent users from consistently communicating the highest possible value
to the scheduler, users are endowed with limited budgets that they use to pay for
the execution of their jobs. Unless incentive compatible mechanisms are used, the
value the user communicates to the scheduler does not necessarily correspond to
the user’s private value for the job’s execution. In non-incentive compatible mech-
anisms, users have a potential gain by not revealing their private value truthfully.
Techniques such as second pricing [28] or k-pricing [29] can be used to achieve
incentive compatibility. In the context of this work however, we do not consider
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such strategic behavior and focus on the differences between a coarse-grained and
fine-grained expression of user valuations.

In a fine-grained value-based scheduling policy the expression of a user’s valu-
ation is typically done by means of a bid. A bid can be time-varying (as presented
in [5, 30, 4]) or static (as in [31, 10, 32, 33, 34]). With time-varying bids, the user
submits a bid as a monotonically decreasing function of the job’s completion time.
The scheduling policy can then take the evolution of the job’s value with respect to
the completion time into account to optimize the schedule. A static bid does not
include this information.

In a coarse-grained value-based scheduling policy a user picks one of the discrete
values defined by the policy to express his valuation. In the priority queue system
that we consider as a model for the coarse-grained approach in this paper, this
involves a choice for the job queue whose charging rate best fits the user’s private
valuation. Expressing a time-varying valuation in such a priority queuing system
would be burdensome, as it would require resource requests to hop from one queue
to another. Therefore, in order to obtain a fair comparison between both scheduling
approaches, we use a model in which a user expresses his valuation as a static value,
an amount of money he is willing to pay for a job he submits to the cluster.

The jobs submitted on a general purpose cluster are not always trivially parallel1

and may therefore require co-allocation, i.e. the simultaneous allocation of multiple
processors to one job. Adding co-allocation support in a scheduling algorithm gives
rise to significantly higher delays and lower utilization due to schedule fragmenta-
tion, because jobs have to wait for sufficient processors to become available before
being scheduled. We define the parallelization degree of a job to be the number of
processors that need to be allocated to the job. The higher the average parallelization
degree of a workload, the higher the chance utilization on a cluster will drop due to
fragmentation and higher delays.

In order to minimize fragmentation and maximize the utilization without violat-
ing the value-based decisions made by the scheduler, both algorithms presented
in this section implement EASY backfilling as described in [35]. EASY backfilling
allows short jobs to skip ahead in the queue provided they do not delay the job at the
head of the queue. If the first job in the queue cannot start, the backfilling algorithm
attempts to identify a job that can backfill. Such a job must require no more than the
currently available processors, and it must not delay the first job in the queue: either
it terminates before the time the first job is expected to begin, or it only uses nodes
that are left over after the first job has been allocated its processors. To implement
this feature, we have to assume the knowledge of the exact runtime of each job.
Determining estimates of task runtimes is a complex problem that has been exten-
sively researched [36, 37, 38, 39, 40]. For workloads that are executed repeatedly (e.g.
in-silico analysis of protein folding processes for a pharmaceutical company) and
for which there is a clear relationship between the application’s parameters and its
runtime (e.g. a parameter sweep application), these authors show that it should be
possible to build fairly accurate models. Depending on the type of the application,
we acknowledge that making exact predictions can be difficult and that the error on
the predicted runtimes can be significant. Examining the influence of errors in the

1Applications are called trivially parallel when the jobs that form the application are fully decoupled
and have no precedence constraints.
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runtime of jobs on a backfilling algorithm falls beyond the scope of this paper. The
resulting scheduling error made by the backfilling algorithm would however be the
same for both our fine-grained and coarse-grained algorithms. Therefore, this issue
has no influence on the results of the comparison made in this contribution.

Because only few cluster systems currently allow jobs to be interrupted by the
scheduler once they are started, our scheduling algorithms does not use preemption.
Once the execution of a job has started, it cannot be interrupted to give place to a
job with a higher value.

Priority Queues

We have chosen to adopt a priority queuing scheme as an implementation of a
coarse-grained value-based mechanism as it provides a good fit for this scheduling
model and it is used in practice. In this priority queue implementation, all jobs
from a higher priority queue are executed before jobs in lower priority queues, while
requests in each queue are handled in a FIFO-manner. Each queue has a predefined
and fixed charging rate associated with it, so that low valued jobs map in a low
priority queue and high valued jobs map into a high priority queue. This algorithm
is also used in [4] and [5].

When building such a queue-based system, two parameters are to be determined.
Both parameters have a significant impact on the total value generated by the
queues.

First, the number of queues n determines the granularity of our system. There
are extremes for this parameter where n = 1, an equivalent to a FIFO-queue where
no valuation information is used to schedule the jobs, and n = J with J the total
number of jobs, thus creating an equivalent for a fine-grained system in which each
separate valuation is taken into account.

The second parameter is the configuration of the queue’s charging rates. When
users associate a value v with the execution of a job, they submit their job to queue i
with the highest charging rate Pi lower than v . Given a scheduling mechanism with
n queues and lower bound a and upper bound b for the user valuation distribution,
we define Pi as given in equation 2.1.

∀i ∈ {0 . . .n −1} : Pi = a + i · b −a

n
(2.1)

Note that the above queue price setting mechanism is not necessarily optimal.
An optimal, value maximizing price setting mechanism is however highly dependent
on the distribution of the user valuations and it is therefore hard to find in the
general case.

Auction

As an implementation of a fine-grained value-based scheduling mechanism, we use
an approach based on a first-price auction. In such an auction, the user communi-
cates a bid to the auctioneer and pays for the execution of his job in accordance to
his bid. From a value-maximizing point of view, a schedule is optimal when a job
with value v can only be delayed by jobs with a value higher than v . Our fine-grained
scheduling policy is therefore implemented as an auction in which all bids are sorted
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in a list. The scheduler considers each bid separately and greedily schedules the bid
with the highest value, then the bid with the second highest value, and so on.

In this paper we want to compare the impact of the choice for a coarse- or
a fine-grained value-based scheduling policy. Therefore, we try to minimize the
differences between both approaches. We believe that this simple auction model
without preemption provides a good basis for comparison with the aforementioned
priority queue approach. Note that, due to the online and greedy nature of the
policy and the absence of preemption, optimal efficiency in terms of generated
user value is not guaranteed. Such a “spot market” model without preemption is
however common in literature [41, 31, 8, 19]. More complex models would include
preemption [42] or allow for advance reservations [14, 6].

2.4 Simulation

In this section we discuss the details of the simulated environment that we use to
compare both scheduling policies. The use of simulation enables us to efficiently
study the consequences of varying parameters on the performance of both algo-
rithms in a controlled manner.

Workload

We use real-world workload traces from the Parallel Workloads Archive [26] to model
the workload in our simulation. This archive contains raw log information regarding
the workloads on parallel machines. There are more than 20 traces available. In
order to obtain results that are independent of specific workload characteristics, we
have selected three traces with a significantly different workload. We discuss these
traces in detail in Section 2.5.

In addition to general simulation information such as number of processors,
number of users and total duration, we also extracted the User ID, the job’s submis-
sion time, the number of processors requested and allocated and the run time for
each job in the trace.

Valuation distribution

While traces are very useful to model realistic workloads, this is not the case for
modeling valuation distributions. The currently available workload traces include
little or no information on the users’ valuations for each job. The only information on
user valuations available in some of the workload traces is the ID of a priority queue
in the cluster’s scheduling system. While converting from a continuously distributed
valuation to a priority queue system is easy, the reverse operation is much more
complicated. Lee et al. [30, 4] attempt to use these user-assigned priority levels and
wait times to generate complex utility functions for each job in a workload trace. We
however believe that the choice for a certain priority level is user-specific, and it does
not necessarily give a precise picture of the user’s real valuation for that job. Different
users have different methods for mapping their tasks on a queue, and some users
probably don’t have any method at all. In our opinion, the user’s choice for a certain
priority level is in most cases not a purely value-based decision, but may instead
be influenced by for example the number of queues, the available charging rates,
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the load at the moment of job submission, the implemented currency system and
budget distribution or additional constraints such as a restriction on the maximum
runtime or maximum parallelization degree of a job.

Because of lack of robust real-world statistical data on this matter, we have
chosen to model our valuation distribution as a normal distribution with a mean µ

and a varying density σ.

Grid Economics Simulator

We have evaluated the proposed scheduling algorithms in a simulated market envi-
ronment delivered by the Grid Economics Simulator (GES) [43]. GES is a Java based
simulator that has been developed in order to support research into different market
organizations for economic cluster and grid resource management. The simulator
supports both non-economic and economic forms of resource management and
allows for efficient comparative analysis of different resource management systems.
In order to run experiments efficiently, the simulator provides a framework based on
Sun’s Jini [44] technology to distribute experiment workloads over clusters and desk-
top machines, which is used in this study. In each experiment we have conducted 5
iterations for every sample point of the independent variable to obtain statistically
significant results. Further on, we present and discuss average values for each of
these sample points. Because the relative standard deviations of all simulations were
very low, with an upper bound of 1.25%, they are not mentioned in the discussion of
the simulation results.

2.5 Evaluation

In this section we describe the metric we use to compare coarse- and fine-grained
scheduling systems presented before. We also discuss the factors which poten-
tially have an impact on the difference between both approaches, and describe our
experimental setting.

User delay tolerance metric

A common metric in the evaluation of value-based scheduling mechanisms is the
aggregate value that is generated by the execution of all the jobs in the schedule.
In our simulation, all jobs in the workload will be fully executed. If we derive the
aggregate value from the static values users communicate to the scheduling policy,
the total generated value will be the same with all scheduling policies; only the
sequence in which the jobs are processed will differ. We already discussed that a
value-based schedule is optimal when a job with value v can only be delayed by
jobs with a value higher than v . In order to evaluate scheduling policies in that
respect, we need a metric that gives more weight to a faster turnaround time of a job
by taking into account the delay a job suffers. Moreover, we want this delay to be
evaluated in relation to the value the user associates with the job.

In this contribution, we use a decreasing valuation function to measure the
delay in relation to the value the user associates with the job. The initial value is
thereby assumed to be equal to the public value the user communicates to the
cluster’s scheduler, and remains constant for the duration of the job. When a user’s
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submitted job is executed immediately, the generated value is equal to this public
value. If, however, the job’s execution cannot start immediately, the generated value
decreases. We model the slope of this decay as a decreasing function of the user’s
patience, measured as multiples of the job length.

Following [5, 45], we therefore introduce a linearly decreasing function modeling
the delay tolerance of the user. According to a survey in [30], users sometimes
have even more complex job valuation functions. Lee et al. observed that many of
the user-provided functions show a very steep drop in value in the moments after
job submission, with a leveling off later. To examine the influence of the shape of
the decreasing delay tolerance function on our comparison, we also introduce a
exponential decreasing function modeled after one of the proposed utility functions
in [30]. Both curves are illustrated in Figure 2.1.

Figure 2.1: Valuation function

In the linearly decreasing function, the delay tolerance equals the time until
the delivered private value is 0. The exponential function initially decreases faster
than the linear function, but never becomes zero. The Equations 2.2 and 2.3 show
respectively the piecewise linear function f and the piecewise exponential function
g , where v is the user’s public value for the job and δ is the user’s delay tolerance.

fδ(x) =


v : 0 ≤ x ≤ 1

− v
δ · (x −1)+ v : 1 ≤ x ≤ δ+1

0 : x ≥ δ

(2.2)

gδ(x) =
{

v : 0 ≤ x ≤ 1

v ·e
1−x
τ : x ≥ 1

(2.3)

In order to obtain the value of τ in function of the delay tolerance δ in Equation
2.3, we need to define the relationship between functions f and g . We state that the
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integral from 0 to infinity of f and g for the same delay tolerance δ should be equal,
as stated in Equation 2.4. Solving this equation as shown in Equation 2.5–2.8 results
in a value of τ= δ

2 .

∫ ∞

0
fδ(x)d x =

∫ ∞

0
gδ(x)d x (2.4)∫ δ+1

1
−v

δ
· (x −1)+ v d x =

∫ ∞

1
v ·e

1−x
τ d x (2.5)

v ·δ
2

= lim
x→∞−v ·τe

−x
τ (2.6)

v ·δ
2

= v ·τ (2.7)

δ

2
= τ (2.8)

In the remainder of this paper, we use the aggregate value generated by the sched-
ule as a metric to compare the performance of our scheduling policies. Following
[4, 5], this aggregate value is defined as given in Equation 2.9, where value j (del ay j )
denotes the value that the execution of job j with completion delay del ay j gener-
ates for the user.

Aggregate value = ∑
j∈ j obs

value j (delay j ) (2.9)

The higher the value for this metric in a certain scheduling policy is, the smaller
is the delay experienced by the higher valued jobs. It is important to understand
that these decreasing valuation functions are only a measure for the delay suffered
by a job in the scheduling algorithm. Therefore, these functions are private, they will
never be communicated to the cluster’s scheduling algorithm, and optimizations
to increase the total generated private user value can only be made by correctly
scheduling all jobs with a higher value before any job with a lower value.

Workload Traces

The traces from the Parallel Workloads Archive used in this contribution are listed
in Table 2.1. All traces are characterized by a long duration and relatively high load.
The long duration is beneficial to the robustness of our experiments, while the
relatively high load is necessary to bring out the qualitative differences in terms of
value realization between different scheduling policies.

Table 2.1: PWA Workload traces

Name Duration # Jobs # Users # CPU’s φ

SDSC Blue Horizon 32 months 243.314 468 1152 3.78%

SDSC SP2 24 months 59.725 437 128 10.75%

HPC2N 42 months 202.876 257 240 2.64%
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We pointed out earlier that the delay experienced by the jobs is an important
metric in our comparison and that the average parallelization degree of a workload
will probably be a determining factor in this regard. It is therefore important that
the parallelization degree of a job is evaluated in relation to the total number of
processors in the cluster. For a job that needs 100 processors for example, it is indeed
clear that scheduling the job on a cluster with 128 processors will induce a much
higher delay for all subsequent jobs than scheduling the same job on a cluster with
1152 processors. We therefore introduce the measureφ as the average parallelization
degree of the workload, expressed as a percentage of the size of the cluster. If we
take a closer look at the cluster traces available in the Parallel Workloads Archive, we
observe that for all cluster traces φ has a 95% confidence interval of [2.84%, 5.94%].

The SDSC Blue Horizon log has been previously used by many other scheduling
studies, including [6, 4, 46, 47]. Its value for φ lies in the confidence interval, which
makes it a suitable starting point for our comparison. We will also take a look at a
trace from the SDSC SP2 cluster, which is smaller than the Blue Horizon cluster. The
average parallelization degree for the SP2 trace is much higher (φ= 10.75%) than in
most other traces. Next to these traces from the San Diego Super Computer Center,
we also included a trace containing jobs from the High-Performance Computing
Center North (HPC2N) in Sweden. The HPC2N trace is more recent than the other
traces, and it has an average parallelization degree below the confidence interval
(φ= 2.64%). On this cluster, the average job size is thus relatively small.

Experiments

In experiment 1, we will evaluate the difference in aggregate value between our
auction-based scheduler and a priority based scheduler when considering a varying
number of queues ranging from 1 to 5. We also investigate the impact of an increas-
ing user delay tolerance. Prices for the queues are set as specified in Section 2.3 in
an interval between 100 and 10000. We assume the user’s delay tolerance function
to be linearly decreasing, and the user’s valuations to be normally distributed with
µ= 5000, σ= 2000 and a lower bound of 100.

One of the primary goals of this work is to pinpoint which experimental parame-
ters have a significant impact on the differences between coarse- and fine-grained
scheduling approaches. Therefore we will take a closer look at a few of these pa-
rameters we expect to affect the differences between them. Lee et al. [4] already
emphasized the influence of the load and the decay type of user’s valuation function.
We concentrate on:

• Parallelization degree - In experiment 2 we increase the parallelization degree
of our workload trace with a factor ρ, while keeping all other parameters the
same as in experiment 1.

• Load - We increase the load in experiment 3 by scaling the inter-arrival times
of the jobs with a factor θ.

• Type of user delay tolerance function - In experiment 4 we change the slope
of the user’s delay tolerance function from linear to exponential, as shown in
Figure 2.1.
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Table 2.2: Experiment Parameters

Ex. Val. func. µ σ ρ θ

1 linear 5000 2000 1 1

2 linear 5000 2000 [1,4] 1

3 linear 5000 2000 1 [0.7,1]

4 exponential 5000 2000 1 1

5 linear 5000 [1000,4000] 1 1

• Valuation distribution - In experiment 5, we vary the spread σ of the normal
valuation distribution.

The simulation details of the experiments are summarized in Table 2.2.

2.6 Results

Before taking a look at the influence of the specific parameters presented in Sec-
tion 2.5, we will discuss the results of the first experiment shown in Figure 2.2. The
figures show the aggregate user value generated by the schedule, as a percentage of
the value generated by the auction-based scheduling policy.

In Figure 2.2a we present the results of the SDSC Blue Horizon trace. We observe
that in case of a small delay tolerance, the value-based algorithms outperform the
FIFO scheduler with a 15% margin. The number of queues in a priority queue system
seems to have only a small impact on the generated value. When the number of
queues increases, and thus the granularity of the coarse-grained system decreases,
the generated user value grows. It thereby quickly approaches the value of the
fine-grained auction.

Furthermore, when the user delay tolerance increases, the difference between
the performance of the priority queue policy and the auction-based policy dimin-
ishes. The priority queue systems clearly perform better than the FIFO scheduler,
and even approximate the performance of the fine-grained auction. The advantage
of using a fine-grained scheduler in this case is thus limited, and a small number of
queues are sufficient to attain a satisfactory level of prioritization in the schedule.

We also show the results for both the SP2 and the HPC2N trace in Figure 2.2b and
Figure 2.2c. We recall that the SP2 cluster trace had a high average parallelization
degree φ, and the HPC2N trace had a lower value for φ. As expected from our
assumption that the average parallelization degree is a determining workload factor
for the performance of the scheduling systems, we observe that for SP2 the relative
aggregate value of both the FIFO and the queue schedulers are much lower than
with the SDSC Blue Horizon workload. The FIFO and 2Q algorithm perform badly,
but policies with a higher granularity accomplish to limit the loss in aggregate value
compared to the fine-grained policy to less than 15%. On the other hand, the HPC2N
results are the opposite. The FIFO algorithm’s aggregate user value is always within
12% of the fine-grained algorithm, and the queues achieve values less than 4% below
the auction’s result.
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Figure 2.2: Experiment 1
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It is important to note that the general trend in function of user delay tolerance in
all three workload traces is the same. In order to identify the workload characteristics
that influence these trends, we now isolate each of these characteristics by altering
the first SDSC Blue Horizon workload model in the next experiments.

Parallelization degree

In this section, we analyze the effect of an increased parallelization degree on the
realized user value. In order to perform this analysis based on the SDSC Blue Horizon
trace, we increase the parallelization degree of the workload by multiplying the
number of requested processors of each job with a factor ρ. We thereby make sure
the number of requested processors remains smaller or equal to the total number
of processors available in the cluster. In order to keep the total workload equal, we
proportionally decrease the job’s runtime with the same factor. The results of this
experiment are presented in Figure 2.3. The solid lines represent a delay tolerance
of 5, dashed lines are used for a delay tolerance of 20.

We clearly observe that the parallelization degree of a workload has a negative
influence on the performance for both the FIFO and 3Q algorithms compared to
the auction. In Figure 2.3, the value generated by the FIFO algorithm sinks away
to 18.7% of the value generated in the auction setting with ρ = 4. However, the 3Q
algorithm does relatively well with a value loss of only 20.1%. We observe similar but
more moderate behavior with a delay tolerance of 20.
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Figure 2.3: SDSC Blue Horizon - Experiment 2

The study by Chun et al. [5] confirms our findings that the workload’s paralleliza-
tion degree is an important factor when it comes to the difference between coarse-
and fine-grained systems. They show that, for parallel workloads, a fine-grained
system delivers up to 2.5 times higher performance than a priority queue scheduler,
which is much more than in our experiments. They however modeled the paralleliza-
tion degree as a uniform distribution over the total number of available processors.
For the cases in which the fine-grained value-based FirstPrice policy significantly
outperformed the coarse-grained PrioFIFO policy in their study, φ ranged from
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12.5% to 50%. In the Blue Horizon trace used in our experiment φ equals only 3.78%,
and we found earlier that for all PWA traces φ has a 95% confidence interval of
[2.84%, 5.94%]. The average parallelization degrees used in [5] are thus significantly
higher than those of the workload traces available in the PWA, which explains the
differences between their results and ours.

Load

It is important for a scheduler to perform well in heavy load conditions. The SDSC
Blue Horizon workload already has a fickle load pattern, sometimes reaching quite
heavy loads. We further increase the load in experiment 3, by manually scaling
the inter-arrival times of the jobs with a factor θ = {0.9,0.8,0.7}. That way, the
simulation’s duration is compressed to respectively 90%, 80% and 70% of the original
duration, while the job runtimes and number of jobs remain constant. Consequently,
the load is inversely proportional to the inter-arrival time compression factor θ, with
the highest load occuring when θ is small.

Results are shown in Figure 2.4. We again take a look at the situation in case
of a user’s delay tolerance of 5. The FIFO queue seems to be very sensitive to
an increasing load. We hereby can confirm the findings from Lee et al. [4] that
an auction-based or priority queue-based algorithm performs well in high load
conditions. The greater the load, the greater the difference between value-based
and traditional schedulers such as FIFO.

The advantages of a fine-grained approach over a coarse-grained priority queue
system are however much less significant. The 3Q algorithm does much better than
the FIFO-queue, with a decrease of 28.4% compared to the fine-grained scheduler.
Using 5 queues, the coarse-grained method is able to limit this loss to 11.8%.
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Figure 2.4: SDSC Blue Horizon - Experiment 3 - Delay tolerance 5

Type of user delay tolerance function

In Section 2.4 we presented two related delay tolerance functions: a piecewise linear
and a piecewise exponential function. The exponential function decreases faster
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in the beginning, denoting an impatient user, but never really becomes zero. No
matter how long the user has to wait, he still associates some small amount of
value with the execution of his job. When we compare the simulation results of the
exponential function with the linear function’s results, we observe the aggregate
value realized from experiment 4 to be a little bit lower than in experiment 1. The
average relative difference between both results is 0.36%, and has an upper bound
of 2.41%. It is worth mentioning that, when the load in the system increases as
simulated in experiment 3, the relative differences between both user delay tolerance
functions for coarse- and fine-grained approaches remain small. As a consequence
of these very small differences, the choice for a faster decreasing user delay tolerance
function seems to have only a limited influence on the difference between coarse-
and fine-grained scheduling mechanisms.

Note that the absolute differences between both delay tolerance functions are
more significant. For example, using an exponentially decreasing valuation function,
the fine-grained approach generates up to 4.61% less value than using a linearly
decreasing function. These absolute differences are however not extensively studied
in this work, as they have no impact on our comparative study between fine- and
coarse-grained value-based scheduling approaches.

Valuation distribution

A much cited advantage of value-based scheduling algorithms over traditional sched-
ulers is the ability to cope with a large spread of user valuations. The higher the
difference between a high value and a low value job is, the bigger become the con-
sequences of an inefficient schedule. We evaluate this claim in experiment 5, by
varying the spread σ of our normal valuation distribution while keeping all other ex-
perimental parameters equal. The results are presented in Figure 2.5. The solid lines
again represent a delay tolerance of 5, dashed lines are used for a delay tolerance of
20.
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As the figure shows, an increasing spread in the valuation distribution has a
significant impact on the generated value of the FIFO-scheduler. Our coarse-grained
priority queue system with 3 queues however, is able to cope with these larger
differences in user valuations. Its relative performance compared to the fine-grained
approach is almost constant.

2.7 Conclusion

Many authors have presented a comparison between a value-based scheduling
implementation and traditional schedulers, such as FCFS or SJF, thereby generally
showing large efficiency gains in favor of the value-based schedulers. However, only
a few studies have compared fine-grained value based scheduling to scheduling
with a coarse-grained value representation through priority queues.

A fine-grained approach allows users to express their valuation as a value in a
continuum, which allows the scheduler to maximize the overall generated value
by the system. In a coarse-grained approach, on the other hand, users attach a
priority to the execution of their job by picking one of a few discrete, predefined
values. The latter is much easier, more stable and less cumbersome, while the first
has the advantage of being self-sustaining in the sense that supply and demand can
be automatically balanced, without the need for a system administrator to configure
and maintain queue prices.

We modeled users to have a private valuation that is dependent on a level of delay
tolerance, and used aggregate utility as a metric to compare both scheduling ap-
proaches. Using real-world workload traces from the Parallel Workloads Archive, we
evaluated under which realistic conditions a fine-grained scheduler, implemented
as an online auction-based mechanism with static bids and without preemption,
can outperform a priority queue system. We thereby found that a priority queue
approach with a relatively low number of queues can closely approximate the per-
formance of the auction-based approach. The higher the number of queues and
thus less coarse-grained the system is, the smaller the difference between coarse-
and fine-grained scheduling becomes. We further found that, for our fine-grained
approach to become profitable, the parallelization degree and load of the cluster’s
workload must increase beyond levels that are currently found in publicly available
workload traces.

It is important to understand that our implementation of a fine-grained schedul-
ing system is a somewhat simplified approach, developed to pinpoint the differ-
ences between fine- and coarse-grained strategies. More complicated fine-grained
value-based schedulers will certainly be able to perform much better than our imple-
mentation, thereby significantly outperforming a priority queue system. According
to our results, these efficiency gains will not be the effect of the use of fine-grained
valuations, but they will rather be a consequence of the use of more complex imple-
mentation features such as advance reservations and clearing periods, time-varying
or combinatorial bids and preemption.
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Cost-Efficient Scheduling Jobs
on Hybrid Clouds

The IT outsourcing model in which access to scalable IT services hosted by external
providers can flexibly be acquired and released in a pay-as-you-go manner, has seen
an increasing adoption recently under the term cloud computing [48, 49]. A generally
adopted definition by the National Institute of Standards and Technology (NIST)
describes the cloud computing model as characterized by an on-demand self-service,
available through broad network access, in which providers use resource pooling
and provide rapidly scalable (elastic) resources, through a measured service [50].
Cloud services are further categorized as Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), or Software as a Service (SaaS), depending on their focus of
delivering respectively IT infrastructure, frameworks for software development and
deployment, or a finished software product.

Our work focuses on the IaaS service class in which a consumer can acquire
access to compute, storage, and networking capacity at the provider’s site. To acquire
compute resources, a consumer launches a server instance on the cloud provider’s
infrastructure, thereby specifying the instance’s characteristics such as the available
processing power, main memory and I/O capacity. Most commonly, the notion of
an instance materializes into a virtual machine that is launched on the provider’s
physical IT infrastructure. Virtualization technology enables the provider to increase
infrastructure utilization by multiplexing the execution of multiple instances on a
single physical server, and allows one to flexibly tune the individual characteristics
of an instance. Nevertheless, most providers predefine combinations of instance
characteristics in a fixed number of instance types.

In the last few years, the IaaS market has quickly matured, with providers rapidly
diversifying their product offerings in terms of pricing plans, instance types and
services. Amazon’s Elastic Compute Cloud (EC2) offering for example, has increased
the number of instance types from one to sixteen in less than six years, and moved
from a single on-demand pricing model to three different pricing models with the
addition of reserved instances and dynamically priced spot instances. Different types
of reserved instance contracts have been introduced depending on the expected uti-
lization of the instance, and an open market for selling such contracts was launched2.
Likewise, it has expanded the number of geographical regions in which instances
can be launched from one to eight. The choice of the instance’s region both influ-
ences the network characteristics in terms of available bandwidth and latency, as

2http://aws.amazon.com/ec2/purchasing-options/reserved-instances/
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well as the cost of running the instance. Finally, the number of IaaS providers has
increased significantly as well, with each provider differentiating itself in terms of
services offered, prices charged for different resources (ingress and egress network
bandwidth, memory, CPU capacity), and performance delivered.

Consequently, consumers face an increasing complexity in making cost-optimal
decisions when matching their infrastructure requirements to the IaaS services
currently available. Continuing standardization efforts in virtualization technology
and IaaS offerings, such as OGF’s Open Cloud Computing Interface3, are expected
to further increase the options available to a consumer when acquiring resources
“in the cloud”. This issue is exacerbated by the fact that consumers often also own
internal IT infrastructure. Through the creation of hybrid clouds [51, 52], one can
use this internal infrastructure in tandem with public cloud resources, thereby
capitalizing on investments made, and maintaining a high quality-of-service level
by employing the public cloud to deal with peak loads.

Although tools exist that allow a consumer to deal with some of the technical
issues that arise when allocating resources at multiple public cloud providers [53,
54, 55, 56], they do not tackle the optimization problem of allocating resources in
a cost-optimal manner and with support for application-level quality of service
constraints such as completion deadlines for the application’s execution. This lack
of tool support combined with the inherent complexity of cost-optimal resource
allocation within a hybrid cloud setting, renders this process error-prone and time-
consuming. Despite current research efforts [57, 58, 59, 60, 61, 62, 63, 64, 65], cost-
optimal resource scheduling and procurement of external resources while taking
into account the availability of a local IT infrastructure remains an open problem.
Moreover, a structured approach is required that can optimize resource allocations
in a multi-consumer context. Indeed, the addition of volume or reservation-based
price reductions in the pricing options of public cloud providers allows for the further
reduction of costs if an organization collectively engages in resource allocations for
its entire user base.

Within the HICCAM (Hybrid Cloud Construction and Management) project, we
are investigating the design of software components and algorithms for building
and deploying hybrid clouds efficiently, and for automated resource provisioning
and management at the level of an entire organization. Within the project’s software
architecture outlined in Figure 2.6, the organization’s Cloud Procurement Endpoint
(CPE) is responsible for managing the procurement of resources from public cloud
providers. Requests for executing applications are sent to the CPE by the different
decision support systems (DSS) that assist the users in making a trade-off between
quality of service levels and costs.

Problem Domain

Cloud Setting

In a hybrid cloud setting, the execution of applications occurs through the deploy-
ment of virtual machine instances on resources internal to the consumer organiza-
tion, as well as resources provided by public cloud providers. The characteristics of

3Available at http://www.occi-wg.org
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the virtual hardware on which these instances are executed are determined by the
–mostly provider-specific– definition of instance types. An instance type fixes the
number and speed of CPUs, the amount of memory, local storage and the architec-
ture of the virtual machine instance. Note that some providers (e.g. CloudSigma) do
not have fixed instance types, and allow users to customize and fine tune the cloud
servers to fulfill the exact hardware needs of their applications. Selecting the best
cloud server configuration for an application in a continuous spectrum of hardware
properties is a task that ultimately results in one or a few server configurations with
an associated cost suitable for the application. From the perspective of a scheduler,
these configurations are similar to provider-specific instance types. Although simple,
adding support for fine grained user-configured instance types would thus hardly
affect the results in this thesis. Therefore, we assume in this study that every public
cloud provider offers a number of fixed instance types and associates a price with the
execution of a virtual machine on each instance type. A cloud provider charges for
the time the instance has run, and commonly handles a discrete billing interval that
has to be fully paid for. The cloud providers modeled in this contribution –Amazon
EC2 and GoGrid– express and charge prices on a hourly basis. This implies that
running a cloud server for 61 minutes costs the same as running the cloud server for
two hours. A provider also charges for each gigabyte of network traffic used by the
consumer’s applications. In this regard, a distinction is made between the price for
inbound and outbound traffic. For now, we do not consider the costs for additional
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services such as persistent data storage, monitoring or automated workload balanc-
ing, as the cost for these services is minor compared to the computation and data
transfer costs. Incorporation of storage costs becomes significant when the data
set is hundreds of terabytes, or when an application needs the same data set over
different, recurring, runs. The long term planning problem to decide where to store
which parts of a data set is beyond this thesis’ scope.

For the purposes of these chapters, the consumer’s internal infrastructure is
assumed to support a resource allocation model similar to that of a public cloud
provider in that it also allows for the flexible deployment of virtual machines. Such a
system is commonly referred to as a private cloud [48, 51].

We assume that a public cloud provider is able to fulfill all instance requests
and thus, from a user’s perspective, has an infinite amount of IaaS resources avail-
able. The private infrastructure obviously does not have an “infinite” capacity. The
number of tasks running concurrently on our private cloud is therefore limited:
the sum of the number of CPUs of all running instances may not exceed the total
number of CPUs available. We do not explicitly take efficiency losses due to the
partitioning of physical servers into multiple instances into account, as these can be
dealt with by an appropriate choice of instance types and by adopting a suitable VM
migration strategy. Incorporating migration overhead, virtualization overhead and
virtual machine interference as well as performance differences between public and
private cloud providers into our cloud model is left for future work.

Before an application can run on a cloud provider, the application’s data set
should be available on the site of that provider. Some providers, such as Amazon,
define multiple regions in different continents to satisfy the demand for data locality.
Chapters 4 and 5 take this data locality into account. It is assumed that all data
sets reside on the organization’s private cloud, and that the transfer speed from the
organization to each of the available public cloud data centers is known a priori and
does not fluctuate. As the data sets reside on the organization’s private cloud, they
are instantly available.

Workload Model

Heterogeneous workload characteristics and divergent user requirements compli-
cate the problem of identifying the best cloud provider and instance type for a
specific application. In this part, we narrow our view to only some of the char-
acteristics and requirements, of which we believe they constitute a solid base to
demonstrate the operation and implementation of a hybrid cloud scheduler. Our
current application model focuses on batch type workloads. Examples of workloads
that fit this model are simulation experiments that consist of a bag of independent
instances of a simulation, image and video rendering codes and highly parallel data
analysis codes. Common types that are not covered by our model are coupled com-
putations that are distributed over multiple systems, workloads with a non-trivial
workflow structure such as precedence constraints, and online applications such as
web or database servers.

We assume that each application’s workload consists of a number of trivially
parallel tasks. The instance types on which tasks are executed are modeled as a set
of unrelated parallel machines [66]. This means that every task can run on each
instance type and that each instance type has a task-specific speed by which it
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executes a task. When a task can be interrupted and later resumed by the scheduler
without losing its state, that task is named preemptive. In Chapter 3, tasks are
considered to be preemptive but non-provider-migratable. Chapter 4 and 5 assumes
tasks have a non-preemptive nature.

In addition, an application is also associated with a data set. We assume that the
full dataset has to be transferred to the cloud providers on which the application is
running. Further on, we only focus on inbound traffic.We assume that a provider
is capable of running all tasks of an application in parallel, and that there are no
restrictions on the number of virtual machine instances that are simultaneously
available to the organization at a public cloud provider. In this paper, applications
are scheduled as a whole on only one cloud provider, as splitting applications over
multiple providers increases complexity and leads to additional data transfer costs.
The scheduling algorithms proposed can however be extended easily to support
such a split execution, without invalidating the results of this contribution. Fi-
nally, each application is associated with a hard completion deadline by which all
computational tasks in the application must have finished their execution.

Other aspects, such as security or legal constraints, lower the flexibility for mak-
ing scheduling decisions and correspond to a temporary decrease in available capac-
ity on the private cloud. As this setting is hard to configure and would not affect the
relative performance of the proposed schedulers, it was not included in the model.

Determining estimates of task runtimes [36, 37, 38, 39] and modeling speedup
of tasks on multiple processors [67, 68, 69, 70] are complex problems that have been
extensively researched and fall beyond the scope of this paper. For workloads that are
executed repeatedly because they form a structural part of an organization’s business
processes, we argue that it should be possible to build fairly accurate models. Such
a setting allows for application-level benchmarking in order to map out the effect
of using a particular instance type on application speedup. Depending on the type
of the application however, we acknowledge that making exact predictions can
be difficult and sometimes impossible. The extent to which a certain schedule is
optimal is therefore dependent on the accuracy of the provided runtime estimates.
Chapter 3 assumes that application runtimes are known a priori. Chapter 4 and 5
evaluate the sensitivity of the proposed heuristics on the accuracy of the provided
runtimes.

Overview

In Chapter 3, a linear programming-based approach is used to formulate the schedul-
ing problem faced in the CPE. Although the proposed program takes into account
data transfer costs, data transfer times are assumed to be negligible. Runtimes of the
applications are assumed to be known in advance. The proposed binary integer pro-
gram is evaluated with regard to its computational cost for scheduling applications
in both a public and a hybrid cloud setting.

Chapter 4 proposes a heuristic to tackle the hybrid optimization problem in a
tractable manner. We extend our cloud model with data transmission speeds in
order to take data locality into account during the scheduling process, and support
the online arrival of applications. The influence of the different cost factors and
workload characteristics on the heuristic’s cost savings is evaluated, and the results’
sensitivity to the accuracy of task runtime estimates is discussed.
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In Chapter 5, alternative heuristics are presented to deal with the high sensitivity
to runtime inaccuracies of the algorithms presented in Chapter 4.

Related work

Linear programming has been used numerous times for resource planning and
scheduling [71, 72, 73, 74, 29].

The term surge computing was first introduced by Armbrust et al. [75]. Open-
Nebula [51] and Eucalyptus [76] are open source frameworks that allow to build a
hybrid cloud. Buyya et al. [49] presented an early vision on the interconnection
between cloud providers, an idea which was later adopted and elaborated in other
contributions [48].

In Tordsson et al. [57], a binary integer program is used to tackle the problem
of selecting resources among different cloud providers in a federated environment.
They focus on a static approach in which online applications –non-finite applica-
tions without deadline constraints– are scheduled on cloud providers in such a way
that the total infrastructure capacity is maximized, given budget and load balancing
constraints.

Li et al. [58] investigate VM migration across multiple clouds while fulfilling
budget, placement or load balancing constraints. They solve a linear program to
calculate optimal schedules in case of changing cloud offerings or demands, taking
into account migration overhead. Only static scenarios and public cloud providers
are considered, and the computational complexity of solving the integer program is
not evaluated.

In Lucas-Simarro et al. [59], a broker architecture is presented to deploy services
across multiple cloud providers. The authors also use a binary integer program to
optimize the placement of a set of virtual machines over multiple cloud providers
based on cost or performance. They take into account dynamic pricing models such
as the Amazon spot market, but do not consider the addition of a hybrid scheduling
component.

Breitgand et al. [60] present a model for service placement in federated clouds,
in which one cloud can subcontract workloads to partnering clouds to meet peak
demands without costly over-provisioning. They use an Integer Program formu-
lation of the placement program, and also provide a 2-approximation algorithm.
Their workload model consists of VM requests with an associated availability QoS
constraint, which is different from our bag-of-tasks workload model with deadline-
based QoS constraints.

Strebel et al. [61] propose a decision model for selecting instance types and
workloads to outsource to an external data center. They also use an optimization
routine to create an optimal mix of internal and external resources for a given
planning period. They assume that the application set is known a priori, and adopt
a cost model without instance type differentiation and with a single CPU hour tariff,
which differs from our work.

In Andrzejak et al. [62], a decision model is presented to determine bid prices
on a resource market with varying prices, such as Amazon EC2’s Spot Instances.
The authors take into account the application’s SLA constraints, and minimize the
monetary cost for running the application.
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Kailasem et al. [63] propose a hybrid scheduling technique for a data-intensive
document processing workload. For such a real-time workload, the transfer time
to the external cloud is comparable to its computational time. They decide which
job to outsource to the public cloud provider based on bandwidth and transfer time
estimates, while fulfilling various queue-specific SLA constraints. They only consider
settings with a single cloud provider and a fixed number of running instances.

Lampe et al. [64] propose a cost-minimizing scheduling approach for software
services based on an integer program, and consider both intra-machine resources,
such as CPU or memory, as well as inter-machine resources such as network band-
width. A hybrid setting or data locality are not studied. The approach only proves
feasible for a small number of instance requests due to the high computational
requirements for solving the proposed integer program.

Javadi et al. [65] present a failure-aware resource provisioning algorithm in a
hybrid cloud setting, and schedule applications with deadlines in order to minimize
the number of QoS violations under failing resource conditions.

Scheduling data-intensive applications has been researched in other domains as
well, and related work on that topic can be found in [77, 78, 79]. Works of reference
in parallel job scheduling include [80, 81]. Job scheduling with inaccurate runtimes
has been previously studied in a non-cloud setting in [82, 83, 84, 85, 86, 87].





CHAPTER 3
Using Integer Programming for

Scheduling on Hybrid Clouds
This chapter is published as “Cost-Optimal Scheduling in Hybrid IaaS
Clouds for Deadline Constrained Workloads”, R. Van den Bossche, K. Van-
mechelen and J. Broeckhove in Proceedings of the 2010 IEEE 3rd Interna-
tional Conference on Cloud Computing (CLOUD 2010) [88].

Abstract

With the recent emergence of public cloud offerings, surge computing –
outsourcing tasks from an internal data center to a cloud provider in times of
heavy load– has become more accessible to a wide range of consumers. De-
ciding which workloads to outsource to what cloud provider in such a setting,
however, is far from trivial. The objective of this decision is to maximize the
utilization of the internal data center and to minimize the cost of running the
outsourced tasks in the cloud, while fulfilling the applications’ quality of service
constraints. We examine this optimization problem in a multi-provider hybrid
cloud setting with deadline-constrained and preemptible but non-provider-
migratable workloads that are characterized by memory, CPU and data trans-
mission requirements. Linear programming is a general technique to tackle
such an optimization problem. At present, it is however unclear whether this
technique is suitable for the problem at hand and what the performance implica-
tions of its use are. We therefore analyze and propose a binary integer program
formulation of the scheduling problem and evaluate the computational costs of
this technique with respect to the problem’s key parameters. We found out that
this approach results in a tractable solution for scheduling applications in the
public cloud, but that the same method becomes much less feasible in a hybrid
cloud setting due to very high solve time variances.

3.1 Integer program

We introduce a binary integer program (BIP) that is based on the problem domain
outlined in the previous section. The goal of our program is to deploy A applica-
tions a1, . . . , aA while minimizing the total cost of their execution on the consumer
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organization. Each application ak has an associated strict deadline dlk and consists
of Tk tasks tk1, . . . , tkTk

that are executed across the C cloud providers c1, . . . ,cC . We
introduce I instance types i t1, . . . , i tI . An instance type i ti has parameters cpui and
memi , denoting the number of CPUs and amount of memory available.

A cloud provider c j provides prices pi j and po j for each gigabyte of data traffic
in and out of its data center, as well as prices pi j per hour of resource consumption
for each of the instance types i ti it supports. In order to cater for the resource
constrained nature of private clouds, the total number of CPUs maxcpu j and amount
of memory maxmem j available at a provider can be constrained. Although the
private data center scheduling problem is limited to assigning resources from a
resource pool to virtual machine instances, thereby ignoring the specific size and
composition of individual machines in the data center, the feasibility of the proposed
schedule is not affected if these issues are taken into account when drawing up the
allowed instance types for the private cloud. Public cloud providers are considered
to deliver an “unlimited” amount of capacity.

A task tkl of application ak has a runtime rkl i associated with each of the instance
types i ti on which the task can run. This set of supported instance types is assumed
to be a given with respect to the linear program. We assume that a matchmaking
component will evaluate the hard constraints of an application (e.g. all tasks should
run on servers within the EU region in order to comply with regulatory issues), and
match these with instance type properties to create this set. A task tkl is associated
with inbound traffic volume (nikl ) and outbound traffic volume (nokl ).

Time is explicitly represented in our programming model through the introduc-
tion of time slots with a granularity of one hour. Let S be the number of time slots
in the schedule, with S = maxk∈{1,...,A}(dlk ). Let xkl i j s = 1 if task tkl of application
ak is running in time slot s on instance type i ti of cloud provider c j , and xkl i j s = 0
otherwise. Let ykl i j = 1 ⇔∃s ∈ {1, . . . ,S} : xkl i j s = 1.

Our proposed BIP is presented in Figure 3.1. We introduce our objective function
as given in Equation 3.1 and associated constraints given in Equations 3.2 to 3.5.

The first term in the objective function represents the data traffic costs, the
second one represents the computational cost over all time slots within the schedule.
Constraint 3.2 guarantees that each task is scheduled on only one instance type
and cloud provider, and thereby removes the possibility of a task to resuming on a
different instance type or cloud after preemption. Constraint 3.3 enforces that all the
individual tasks of an application finish before the application’s deadline. Constraint
3.4 and 3.5 only apply to private clouds and enforce a limit on the number of CPUs
and amount of memory used at the provider for each slot in the schedule.

Note that additional constraints, such as for example requiring the application to
run on a number of different providers in order to limit reliance on a single provider
or data locality restrictions will probably add an additional complexity to solving
the BIP, and are left for future work.

3.2 Experiments

In this section, we discuss a number of experimental settings that shed a light on the
performance of our optimization approach. We thereby aim to illustrate some of
the complex mappings made by the optimizer, while simultaneously providing an
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minimize

Cost =
A∑

k=1

Tk∑
l=1

I∑
i=1

C∑
j=1

ykl i j · (nikl ·pi j +nokl ·po j )

+
A∑

k=1

Tk∑
l=1

I∑
i=1

C∑
j=1

S∑
s=1

(pi j · xkl i j s ) (3.1)

subject to

∀k ∈ [1, A], l ∈ [1,Tk ] :
I∑

i=1

C∑
j=1

ykl i j = 1 (3.2)

∀k ∈ [1, A], l ∈ [1,Tk ], i ∈ [1, I ], j ∈ [1,C ] :
dlk∑
s=1

xkl i j s = ykl i j · rkl i (3.3)

∀ j ∈ [1,C ], s ∈ [1,S] :
A∑

k=1

Tk∑
l=1

I∑
i=1

cpui · xkl i j s ≤ maxcpu j (3.4)

∀ j ∈ [1,C ], s ∈ [1,S] :
A∑

k=1

Tk∑
l=1

I∑
i=1

memi · xkl i j s ≤ maxmem j (3.5)

Figure 3.1: Binary Integer Program for Hybrid cloud scheduling

insight in the scheduling performance, feasibility and scalability of the proposed
approach.

For the implementation and evaluation of the binary integer program, we used
the modeling language AMPL[89] and IBM’s linear programming solver CPLEX1,
and solved the problem with multiple data inputs. All outputs were determined by
averaging the result of 20 individual samples. The experiments have been performed
on six 64-bit AMD Opteron systems with eight 2Ghz cores, 512KB cache size, 32 GB
memory, and Ubuntu 9.04 as operating system. Solve times are expressed in the
number of seconds CPU Time used, as reported by the solver.

The scenarios used in the experiments below are assembled synthetically in
order to provide an insight in the correct functioning and performance of our ap-
proach. Information such as the public cloud provider’s prices and instance types
are however loosely based on present-day real-world cloud provider data.

1http://www.ilog.com/products/cplex/
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Table 3.1: Instance types

Name CPUs Memory

small 1 1.7 GB

large 4 7.5 GB

xlarge 8 15 GB

Table 3.2: Public Cloud - Prices

Prov. small large xlarge NW in NW out

A 0.085 0.34 0.68 0 0

B 0.07 0.30 N/A 0 0

C 0.10 0.40 0.70 0 0

Public cloud

In the first experiment, 50 applications, with each between 1 and 100 tasks and a
deadline between 1 hour and 1 week are scheduled on 3 public cloud providers A, B
and C using 3 instance types small, large and xlarge. The properties of these instance
types are summarized in Table 3.1. Note that our model allows for the creation of
disparate instance types for each cloud provider, thereby even taking into account
the performance differences between the providers. For clarity reasons however,
we assumed in these experiments that the instance types are homogeneous for all
providers.

Cloud providers associate a price with the instance types they support, as shown
in Table 3.2. In our setup, provider B is cheaper than his competitors, but only
offers small and large instance types. Provider A and C offer all instance types, with
C being more expensive across the board. For this experiment we focus on the
computational costs of running the instances on the cloud infrastructure, and thus
do not take any network costs into account.

An application’s tasks have a runtime for each instance type available. Runtimes
on the small instance are normally distributed with a mean µ of 24 hours and a
standard deviationσ of 12 hours. The speedup factor for large and xlarge instances is
1/ f , with f uniform between 0 and 1. The runtime for a task on a faster instance type
is always smaller than or equal to the runtime on a slower one, with a minimum of 1
hour. The application’s deadline is always feasible, which means that the runtime for
the fastest instance type is always smaller than or equal to the deadline. Incoming
and outgoing traffic for an application’s task is uniformly distributed between 0 and
500 megabytes. A summary of all application parameters and distributions is given
in Table 3.3.

Running this experiment shows that on average, 80.9% of the tasks are scheduled
on cloud provider B and 18.3% on provider A, with absolute standard deviation
less than 5.4%. The most expensive provider C gets no jobs. In order to minimize
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Table 3.3: Application Parameters

Parameter Value

Deadline Uniform (1 hour, 1 week)

# Tasks per app. Uniform (1,100)

Runtime (hours) Normal (µ= 24, σ= 12)

Runtime speedup factor Uniform (0,1)

Network traffic (in/out) (MB) Uniform (0,500)

costs, the solver clearly uses the cheapest provider as much as possible, and will only
schedule instances on the more expensive provider A if this is necessary to meet an
application’s deadline constraint.

This is further illustrated in Figure 3.2. Let θ be a metric for the strictness of a
deadline of a task t . θ is defined as the runtime of a task on instance type small
divided by the task’s deadline. Tasks with a tight deadline have a higher value for
θ, while tasks with an easy achievable deadline have a value for θ close to zero.
Partitioning the tasks based on their value for θ allows us to plot the average cost per
workload hour for different deadline constraints. We thereby observe a significant
increase in cost for applications with tight deadlines.
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Solving problems with an LP-solver obviously requires time. Solving one sample
of this experiment using CPLEX required 30 seconds CPU time on average. Scaling
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Table 3.4: Public Cloud with network costs - Prices

Prov. small large xlarge NW in NW out

A 0.085 0.34 0.68 0.10 0.10

B 0.07 0.30 N/A 0.20 0.20

C 0.10 0.40 0.70 0 0

this experiment by increasing the number of applications while keeping all other pa-
rameters unchanged showed an almost linear increase in solving time, as illustrated
in Figure 3.3.
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Public cloud with network costs

In this second experiment, we add “network costs” as an extra dimension to our
cloud provider model. The application parameters, cloud provider setup and com-
putational prices are maintained from the previous experiment. Prices for network
traffic are added as shown in Table 3.4. The cheapest –in terms of cost per runtime
hour– provider B is now the most expensive one for network traffic. Provider A’s
network prices are cheaper, and provider C doesn’t charge at all for a task’s data
traffic.
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Solving the network-cost-aware version of our model with 50 applications re-
sulted in an increase of the average solve time with less than 0.2% compared to the
previous variant, in which all network traffic was free.

In the previous experiment, provider C received no tasks as expected, because it
was the most expensive for all available instance types. Because of the low network
prices of provider C, we now expect that –for network-intensive applications– it will
sometimes be cheaper to run on this provider. On average 74.9% of the tasks are
scheduled on cloud provider B, 14.4% on provider A and 11.0% on provider C. If we
define the ratio for CPU vs. network intensiveness of a task t as the runtime of t
on instance type small divided by the total network traffic, we can categorize our
tasks as network intensive, neutral or CPU intensive. The proportional shares of the
providers in each task segment are shown in Figure 3.4. It thereby becomes even
more clear that it is only for network intensive tasks advantageous to be scheduled
on provider C.
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Hybrid cloud setting

The CPE not only supports scheduling on public clouds, but also enables us to model
a private cloud. This can be done by adding a provider with a limited number of
CPUs or amount of memory available. Because we want our solver to use the private
infrastructure as much as possible, and only outsource tasks to the cloud if it is
insurmountable for the deadline of the task to be attained, we associate no costs
with the execution of a task on the private cloud infrastructure.

In this third experiment, we assemble a hybrid setup in which one private cloud
with 512 CPUs and one public cloud provider is available. Instance types and appli-
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Table 3.5: Hybrid Cloud - Prices

Prov. small large xlarge NW in NW out

Public 0.085 0.34 0.68 0 0

Private 0 0 N/A 0 0

cation parameters are equal to the previous experiments, and are shown in Tables 3.1
and 3.3. The private cloud can only schedule small and large instances, the public
cloud provider is identical to provider A in the previous experiments. Network costs
are not considered. The prices are described in Table 3.5.

In Figure 3.5, we illustrate the cost-optimal schedule with a sample run that
contains 50 applications that are submitted at the start of a week to the CPE. We plot
the costs and utilization of the private cluster in a time span of a week. We observe
that the public cloud is only used in the beginning, in order to finish all tasks within
deadline.
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By creating cost-optimal schedules for a number of applications ranging from 10
to 50 with 20 samples each, we experienced solve times ranging from a few seconds
to multiple hours and even days. The runtimes of these samples are grouped and
shown in Figure 3.6. It shows that, for an increasing number of applications, the
number of samples with a high solve time increases significantly. We have also ob-
served a very large variation in the solver runtime for this experiment. The addition
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of infrastructure with a fixed capacity has major implications on the complexity of
the linear program. Indeed, the solver now needs to tackle an NP complete prob-
lem that involves scheduling a set of deadline constrained jobs with non-identical
runtimes on a fixed capacity infrastructure with parallel machines [66].
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The high variances on these solve times undermine the feasibility of using a
linear programming approach in our CPE model. We observed cases in which the
solve time exceeded 5 days, without obtaining an optimal solution. It is however
possible for a LP solver to report intermediate solutions, thereby creating opportu-
nities to weaken the high variances observed above. The solver can be configured
with an absolute or relative tolerance on the gap between the current best integer
objective and the objective of the best node remaining in the search space. When the
difference between these values drops below the value of this tolerance parameter,
the mixed integer optimization is stopped. For one sample with a solve time of more
than 27 hours, for example, the intermediate solution found after 30 minutes was
less than $0.5 more expensive than the optimal solution found 27 hours later. Next
to using the solver-specific facilities to cope with this problem, it should also be
possible to develop more feasible heuristics that approximate the optimal solution
found by the solver. The development of these heuristics will be the main focus in
the next chapters.

3.3 Conclusion

In the context of hybrid cloud scheduling, we have outlined a software architecture
model for the HICCAM project in order to highlight and emphasize the purpose of
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the Optimization Engine component. This component was then described in detail,
after which we presented an experimental evaluation of the proposed scheduling
solution through a discussion of three cases of increasing complexity. When schedul-
ing applications in the public cloud, our scheduling approach seems to perform
very well both in terms of cost minimization, feasibility and scalability. As such,
the use of cost-optimization techniques in the cloud scheduling decision process
through the proposed binary integer program can support users in their decision
making process and allow for (partial) automatization of this process. In addition,
the large-scale employment of the proposed technique could in the longer term be
an enabler for increasing price competition in the IaaS market.

The addition of network costs to our model barely influences the solver’s per-
formance but shows that, with the current relations between runtime and network
traffic costs, the determining cost factor in all but very network-intensive applica-
tions is clearly the runtime. In the hybrid setting, the solver’s performance decreases
drastically. These issues are tackled by developing custom heuristics in the subse-
quent chapters.



CHAPTER 4
Heuristic for Scheduling

Deadline Constrained
Workloads on Hybrid Clouds

This chapter is published as “Cost-Efficient Scheduling Heuristics for
Deadline Constrained Workloads on Hybrid Clouds”, R. Van den Bossche,
K. Vanmechelen and J. Broeckhove in Proceedings of the 3rd IEEE Inter-
national Conference on Cloud Computing Technology and Science [90].

Abstract

Cloud computing offerings are maturing steadily, and their use has found
acceptance in both industry and research. Cloud servers are used more and
more instead of, or in addition to, local compute and storage infrastructure.
Deciding which workloads to outsource to what cloud provider in such a setting,
however, is far from trivial. This decision should maximize the utilization of
the internal infrastructure and minimize the cost of running the outsourced
tasks in the cloud, while taking into account the applications’ quality of ser-
vice constraints. Such decisions are generally hard to take by hand, because
there are many cost factors, pricing models and cloud provider offerings to
consider. In this work, we tackle this problem by proposing a set of heuristics
to cost-efficiently schedule deadline-constrained computational applications
on both public cloud providers and private infrastructure. Our heuristics take
into account both computational and data transfer costs as well as estimated
data transfer times. We evaluate to which extent the different cost factors and
workload characteristics influence the cost savings realized by the heuristics and
analyze the sensitivity of our results to the accuracy of task runtime estimates.

4.1 Experimental setup

Due to the lack of sufficient real-world data, especially with regard to application
data set sizes and deadline constraints, we have to resort to a partially synthetic
model for generating application instances for the experiments in Section 4.2.
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Every scheduling experiment has a duration of one week, in which new appli-
cations arrive every second following a Poisson distribution with λ = 0.002. This
results in an average inter-arrival time of 2000 seconds, or about 1200 applications
in a week. With these parameters, we aim to generate enough load to tax the private
cloud beyond its saturation point so that it becomes advantageous to use a hybrid
cloud setup.

The number of tasks per application is uniformly distributed between 1 and 100.
Task runtimes within one application are typically not independent of each other.
Therefore, we assign an application a base runtime. Following [91], the application’s
base runtime is modeled as a Weibull distribution. The distribution’s parameters
are derived from the Parallel Workloads Archive’s SDSC IBM SP2 workload trace1.
The runtime of each individual task is then drawn from a normal distribution, with
the application’s base runtime as the mean µ and a relative task runtime standard
deviation σ. A task runtime standard deviation of 0% will lead to identical task
runtimes, equal to the application’s base runtime, while for example σ = 100%
results in high runtime variations. Unless mentioned otherwise, the relative task
runtime standard deviation was fixed at 50%.

Tasks can typically run on more than one instance type. Running a task on an
instance type with for example 1 CPU and 1.7 GB memory will probably –but not
always– be slower than running the same task on an instance type with 4 CPUs and
7.5 GB memory. Modeling speedup of parallel tasks on multiple processors without
thorough knowledge on the operation of the application is a delicate and complex
task. We model the speedup after Amdahl’s law, which is used to find the maximum
expected improvement of a system when only a part of it can be improved. We as-
sume that a task has a sequential fraction with length c1 and a parallelizable fraction
with length c2. The execution time of the task then equates to c1 +c2/n, where n is
the number of processors available on the instance type. We describe the size of the
parallel component as a percentage of the total runtime. We use a uniform distribu-
tion between 0% and 100%, covering both highly sequential and highly parallelizable
applications. Note that in this workload model, we do not factor in the speed of the
individual cores of the instance type to determine the runtime, and assume it to be
homogeneous across the different instance types2. Next to the number of CPU cores,
the amount of memory available on an instance type I Tmem can also influence
the runtime of a task. Applications get assigned a minimum memory requirement
AppMemReq . The runtime for tasks run on instance types that meet the application’s
memory requirement remains unaltered. If AppMemReq > I Tmem , a task suffers a
slowdown equal to I Tmem/AppMemReq . Although this linear slowdown is optimistic
and might be worse in practice, it satisfies our need to differentiate between instance
types. The minimum memory requirement is normally distributed with an average
of 1.5 GB and a standard deviation of 0.5 GB.

Taking into account the application’s base runtime, task runtime variance, par-
allel component size and memory requirement, the runtimes for each of the ap-
plication’s tasks on each of the available instance types can be determined by the
application’s owner before submission to the scheduler.

1http://www.cs.huji.ac.il/labs/parallel/workload/
2Generalizing the model to non-homogeneous CPU speeds however does not impact our scheduling

algorithms and could be achieved by adding an additional scaling factor for the task’s runtime on a given
instance type.
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In our workload model, applications have a deadline before which all tasks in
the application have to be completed. This deadline will determine to a large extent
on which instance type the tasks will run. Without deadlines, all tasks would be
executed on the slowest and cheapest instance type. We model the application
deadline as a factor of its runtime on the fastest instance type available. A small
deadline factor results in a tight deadline, a deadline factor < 1 will always result in
unfeasible deadlines. To cover both tight and loose deadlines in our workload, the
deadline factor is uniformly distributed between 3 and 20.

Finally, an application is also linked to a data set that is used by each of the
application’s tasks. The data set size of an application is normally distributed with
averages ranging from 0 GB for purely computational tasks to 2500 GB for data-
intensive applications with a very large data set. The relative standard deviation is
fixed to 50%.

A overview of the distributions used in this paper is given in Table 4.1.

Characteristic Distribution

App. arrival rate (seconds) Poisson(0.002)

Tasks per application Uniform(1,100)

Base runtime (hours) Weibull(λ= 1879, β= 0.426)

Task runtime standard deviation (%) 50%

App. parallel fraction (%) Uniform(0, 100)

App. memory requirement (GB) Normal(µ= 1.5, σ= 0.5)

App. deadline factor Uniform(3,20)

App. data set size (GB) Normal(varying µ, σ= 50%)

Table 4.1: Workload model distributions

4.2 Scheduling Components

We introduce a hybrid scheduling solution suitable for our problem domain. The
proposed solution consists of three loosely coupled components:

• The public cloud scheduler decides for an incoming application –with given
runtimes for each of the available instance types and with a given data set size–
on which of the public cloud providers to execute that application. It takes
into account the cost for execution and transferring data, as well as differences
in data transfer speeds between the cloud providers.

• The private cloud scheduler schedules an incoming application on a private
cloud infrastructure, taking into account the limited amount of resources
available.

• The hybrid cloud scheduler decides whether an incoming application can be
scheduled on the organization’s private infrastructure or has to be offloaded
–at a cost– to the public cloud. It may consider a variety of factors, ranging
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from private cloud utilization or queue wait time to the public cost of the
application or budget constraints.

Each of the following subsections explain how our scheduling components work,
which policies they use and demonstrate their operation using one or more scenarios.
All simulations were performed with a simple Java based discrete time simulator,
and executed on a system with two Intel Xeon E5620 processors with 16 GB memory.
The simulation of running one hybrid scenario in which 1267 applications arrive
over the course of one week took on average less than 12 minutes, with outliers for
bigger private cloud sizes to 35 minutes, which is still less than two seconds per
application scheduled.

Public Cloud Scheduling

The public cloud scheduling component schedules each incoming application on a
public cloud provider. We therefore introduce a cost function Cost (Equation 4.1)
for an application a, which will consist of the computational costs and the data costs
of running the application on a public cloud provider p. We define the set of tasks of
application a as Ta . A provider p supports the set of instance types I Tp . The cost
of running a task t on provider p with instance type i t is defined as Ct ask (t , p, i t),
and is elaborated in Equation 4.2. The time to deadline of application a is DLa . The

runtime of task t on instance type i t is given by RT i t ,p
t , which is rounded up to the

nearest discrete time unit (i.e. 1 hour) of provider p’s billing interval. The cost of
running an instance of type i t on provider p for one time unit is defined as C p

i t . The
scheduler calculates the cost for running the application on each available cloud
provider p, and schedules all tasks of an application on the cheapest cloud provider.

The first cost factor in Equation 4.1 is the computational cost Ccomp (Equation
4.3) to run each task of application a within deadline constraints on the cheapest
instance type.

Cost =Ccomp +Cd at a (4.1)

Ct ask (t , p, i t ) =


RT i t ,p

t ·C p
i t : RT i t ,p

t ≤ DLa

∞ : RT i t ,p
t > DLa

∞ : i t ∉ I Tp

(4.2)

Ccomp =
Ta∑
t

I Tp

min
i t

(
Ct ask (t , p, i t )

)
(4.3)

Next to the computational costs, the cost function in Equation 4.1 also takes
the data transfer costs Cd at a (cfr. Equation 4.4) for the application’s data set into
account. The data set size of application a is defined as Da (in GB), and the inbound
and outbound network traffic prices per GB of provider p are denoted by NW i n

p and

NW out
p respectively. Further on, we only focus on inbound traffic and assume that

Da has to be fully transferred to the cloud provider on which a is running.

Cd at a = Da ·NW i n
p (4.4)
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We introduce a public cloud landscape in which users run applications on
three providers, modeled exactly after the on-demand offerings of Amazon’s EC23,
Rackspace and GoGrid, with all their prices and instance type configurations d.d.
March 1, 2011. The application’s average data set size varies from 0 GB to 2.5 TB, with
a relative standard deviation of 50%. We compare the difference between our cost-
efficient scheduler with (CE-Data) and without (CE-NoData) taking into account the
data transfer cost. The results are shown relative to a Random policy, in which for
each arriving application a cloud provider is picked randomly. Figure 4.1 illustrates
the impact of taking data costs into account when scheduling applications on the
public cloud, and shows the influence of the data set size of an application on the
differences between both policies.
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Figure 4.1: Impact of data costs.

Next to the expected cost reduction of our cost-efficient scheduler compared
to a random policy, we also observe a significant cost reduction of the scheduling
policy that takes data costs into account compared to the same policy that only takes
note of the computational costs. The second term in cost equation 4.1 appears to be
at least as important as the first.

The application’s data set size does not only affect the data transfer costs to a
cloud provider, but may also influence the runtimes of individual tasks. Before a
task can run on a cloud provider, the application’s data set should be transferred
completely. If an application has a large data set, the additional time necessary to
transfer the data to the cloud provider may require tasks to be scheduled on a faster
instance type in order to meet the application’s deadline. It is therefore important
to also take the data transfer times from the consumer to the cloud provider into
consideration. Some cloud providers, such as Amazon, provide multiple regions in
different continents to satisfy the demand for data locality.

Differences in data transfer speed between the different regions can be sig-
nificant. As an example, we measured the average bandwidth available from the
University of Antwerp in Belgium to three of the Amazon EC2 regions using the

3For Amazon EC2, prices are taken from the US-east region, and their “cluster” and “micro”-instances
are disregarded.
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iperf4 bandwidth measurement tool. Every half hour over the course of one day, we
measured the available bandwidth to the us-east, us-west and eu-west regions.
The averages of these measurements are shown in Table 4.2. In our case, transfer-
ring data to eu-west is more than twice as fast as transferring data to the cheaper
us-east region.

Table 4.2: Available bandwidth from UA to EC2

Zone Avg (MB/s) Time/GB (s) Stdev

us-east 15.04 68 11.91%

us-west 10.8 95 8.03%

eu-west 39.15 26 15.85%

In order for the public cloud scheduler to take data locality into account when
scheduling an application, we update Ct ask in Equation 4.2 so that only these in-
stance types are available for which the sum of the data transfer time and the task
runtime is smaller than the time to deadline DLa . Figure 4.2 demonstrates this
feature. In this experiment, the Rackspace and GoGrid providers are omitted, and
all applications are scheduled on one of the previously benchmarked regions of
Amazon EC2. The application’s average data set size ranges from 0 GB to 2.5 TB, and
we use the CE-Data policy to calculate computational and data transfer costs. In
total, 1297 applications are scheduled. The figure shows the amount of applications
scheduled in each of the regions. We observe that applications without a data set are
all scheduled in the us-east region, as it provides the cheapest compute capacity.
The larger the data set, the more applications are executed in the nearby eu-west
region in order to succesfully meet the applications’ deadline constraints. The per-
centage of applications not meeting their deadline increases quickly as average
data set sizes exceed 400 GB. This can be explained by the fact that in our workload
model, the application’s deadline is determined as a factor of the fastest possible
task runtime, without considering data transfer times. Increasing the average data
set size in an experiment consequently results in tighter deadlines and can lead to
the sum of the data transfer time and the task runtime on the fastest instance type
to exceed the deadline.

Private Cloud Scheduling

Our private infrastructure is modeled as a simple queuing system in which incoming
requests for an application’s tasks are handled in a first-come first-served manner
without backfilling. The private infrastructure obviously does not have an “infinite”
capacity. The number of tasks running concurrently on our private cloud is thus
limited: the sum of the number of CPUs of all running instances may not exceed
the total number of CPUs available. Overhead for virtualization as well as unusable
leftovers due to the partitioning of physical servers into multiple instances are not
considered. The private cloud supports four instance types, with respectively 4, 8, 16

4http://iperf.sourceforge.net/
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Figure 4.2: Impact of data locality.

and 26 CPU’s and 4 GB, 8 GB, 16 GB and 26 GB memory. A task is scheduled on the
instance type on which it induces the smallest load, which is defined as the runtime
multiplied by the amount of CPUs of the instance type. The instance type for a task
is selected at the moment the task arrives at the private scheduling component, and
won’t change afterwards.

This scheduling strategy does not provide an optimal schedule with respect
to maximal adherence to application deadlines, cluster utilization or generated
user value [2]. It does however provide a simple scheduling heuristic that allows
for the exact calculation of the queue wait time of a task. This permits a hybrid
scheduler only to schedule applications on the private cloud infrastructure that with
certainty finish before deadline. This enables us to evaluate the consequences of the
hybrid cloud scheduling decisions and make abstraction of the private scheduler’s
performance. The approach of using other metrics such as the private cluster’s
utilization, the number of applications in the queue or using an integrated hybrid
advance reservation system are left for future work.

From the perspective of the hybrid scheduler, running an application on the
private cloud is free of cost, and the applications’ data sets are available free of
charge and without a transfer delay. This will cause a cost-efficient hybrid scheduler
to maximize the local infrastructure’s utilization, and offload applications only when
absolutely necessary. In an organization with an internal billing mechanism, it is
however possible that users will be charged for their use of the private compute
infrastructure. The development of a fair internal billing system for organizations
with a hybrid cloud setup that takes into account public and private operational and
capital expenses is beyond the scope of this contribution.

Hybrid Cloud Scheduling

In a hybrid setup, additional logic is required to decide which applications to run
on the organization’s own computing infrastructure and which ones to offload to a
public cloud provider. After making this decision, the hybrid scheduler hands over
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control to the public or private scheduling component. In all of the experiments in
this subsection, we use a public scheduling component with the CE-Data policy.

The hybrid scheduling component has to decide on the allocation of application
workloads to the public and private cloud components. It should provide an efficient
solution with respect to the total cost for running all applications, while minimizing
the number of applications missing their deadlines due to queue congestion or
high data transfer times. In the remainder of this section, we propose a hybrid
scheduling mechanism that takes into account the potential cost of an application
when scheduled on a public cloud provider. We compare this Cost Oriented approach
with a first-come first-served Private First scheduler.

Such a simple Private First scheduler adds all incoming applications to the queue
of the private cloud, unless the queue wait time for that application indicates that
meeting the application’s deadline is impossible by the sole use of the private cloud.
In that case, the application is scheduled on the cheapest public cloud provider.
Because the runtimes of all tasks in the queue are known, calculating the expected
wait time in the queue for a set of tasks is trivial.

This FCFS scheduling methodology can result in a cost-inefficient schedule
when, for example, application B with a cost of $100 on the public cloud arrives
shortly after application A with a potential cost of $50. It is then possible that
application B has to be executed externally to meet its deadline constraints, resulting
in an additional cost for the system of $50. Our Cost Oriented approach tries to avoid
these errors by calculating on arrival the cost of running the application on the
public cloud within deadline, and giving priority to the most expensive applications
on the private cloud. This potential cost can be calculated using the public cloud
scheduling algorithms described in Subsection 4.2. In this approach, applications
can’t be scheduled on arrival because that would again result in handling them in a
first-come first-serve manner. On the other hand, delaying the scheduling decision
on the hybrid scheduling level is delicate because it may result in a higher cost due
to the need for more expensive instance types to complete the application within
deadline. The technique of waiting until after the point where the application cost
increases (and there is need for a more expensive instance type) could theoretically
still result in cost reductions. In practice this turned out to happen only by exception
and never outweighed the additional costs brought about by badly made decisions.
The hybrid scheduler therefore uses the following strategy :

1. Determine maxcost : the time up to which the application’s cost of execution
remains constant and no instance type switch is required.

2. Determine maxDL : the time up to which adhering to the application’s dead-
line remains feasible.

3. Delay the scheduling decision up to mi n(maxcost ,maxDL).

Before scheduling, applications are sorted on their potential cost, normalized to
the application’s load5 on the private cloud. This way, the most expensive applica-
tions are treated first. The full scheduling logic for which the pseudocode is shown
in Algorithm 1, is executed every N seconds. A small value of N allows the scheduler

5The load of a is defined as the sum over all tasks of the runtime multiplied by the amount of CPUs
of the instance type.
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to fine-tune every scheduling decision with a high granularity, while an increased
value of N may involve a smaller computational overhead. We found a value for N
corresponding to 10 minutes to be suitable in our simulations.

Input: A = {Unscheduled applications}

SortMostExpensiveFirst(A)
foreach Application a ∈ A do

if EstimatedQueueWaitTime(a)
+ EstimatedPrivateRuntime(a) > DLa then

// Deadline cannot be met on private
ScheduleOnPublic(a);

else if EstimatedQueueWaitTime(a)
+ EstimatedPrivateRuntime(a) + N > DLa then

// Deadline will become unfeasible
ScheduleOnPrivate(a);

else if TimeToPriceIncrease(a) - N < 0 then
// Application will become more expensive
ScheduleOnPrivate(a);

else
// Let a wait until next round

end
end

Algorithm 1: Cost Oriented Scheduling Pseudocode

We demonstrate the operation of the hybrid scheduling components by adding
a private cloud to the experimental setting with the different Amazon EC2 regions
used in Section 4.2. Computational costs, data transfer costs as well as data transfer
times are taken into account. The average data set size in this experiment is 50 GB
with a relative standard deviation of 50%. We compare the Cost Oriented scheduling
policy to the Private First policy as well as a Public Only scheduler, which schedules
all applications on the public cloud, and a Private Only scheduler, which adds all
applications to the private queue. In Figure 4.3a, the average cost per application
executed within deadline is shown for the Cost Oriented and Private First policies,
relative to Public Only policy. It is to be expected that adding a “free” private cluster
results in significant cost reductions, but we also observe that our Cost Oriented logic
is up to 50% less expensive than the Private First policy. This cost reduction can be
achieved by sending significantly less data-intensive applications to the public cloud.
This is illustrated in Figure 4.3b, which displays the total amount of data transferred
to the public cloud, relative to the total amount of data of all applications.

In all algorithms used in this paper, we assume that the exact runtimes are
known and provided by the consumer a priori. Our Cost Oriented algorithm, and
to a lesser extent also the Private First algorithm, depend on the accuracy of the
provided runtimes as they both use the exact queue wait time, and the Cost Oriented
policy attempts to delay the scheduling decision as much as possible up until the
application’s deadline. Because user provided runtimes will never be exact, we
evaluate the degree of sensitivity of the algorithms to runtime estimation errors.
Therefore, scheduling algorithms now base all their decisions on estimated runtimes
instead of exact runtimes. The average error on these runtimes ranges from 0% to
50%. In this experiment, the three Amazon EC2 regions are used as public cloud
together with a private cluster of 512 CPUs. Applications have an average data set
size of 50 GB. The impact of these runtime estimation errors on the number of
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Figure 4.3: Impact of hybrid scheduling policies on Cost and Outgoing data.

applications meeting their deadlines and on the average cost per application is
illustrated in Figure 4.4a and Figure 4.5a respectively. We can observe a dramatic
decrease in the number of deadlines met for the Cost Oriented approach. This is
accompanied by an increase in cost per application, which is the result of the high
cost that has to be paid for partially executed applications with unexpected failed
deadlines.

These results constitute an impediment to the use of the proposed algorithms in
a setting wherein accurate runtime estimates are difficult to attain. A countermea-
sure to reduce the number of failed deadlines can be to increase the conservativeness
of the scheduler by deliberately overestimating the given runtimes with a certain
percentage. In the following three experiments, we add an Overestimation factor of
10%, 50% and 100% to the estimated runtime of every task. All other experiment
settings remain unchanged. The results with regard to the number of deadlines
met and the average cost are shown in Figures 4.4 and 4.5. Overestimating the user
provided runtimes also slightly influences the cost for scheduling an application
in a public cloud environment, as the public scheduling component may have to
pick a more expensive instance type. Compared to Figure 4.5a, the absolute cost for
Public Only in Figures 4.5b–4.5d increases less than 2% for an overestimation factor
of 10%, less than 9.1% for an overestimation factor of 50% and less than 12.2% for an
overestimation factor of 100%.

It is clear that the simple technique of overestimating the user-provided run-
times can reduce the sensitivity of our algorithms for runtime estimation errors
to an acceptable level, with only a limited increase in cost. The development of
appropriate algorithms to further address this issue will be the focus of Chapter 5.

4.3 Conclusion

We address the challenge of cost-efficiently scheduling deadline constrained batch
type applications on hybrid clouds. In Chapter 3, we presented a linear program-
ming formulation of the optimization problem for a static set of applications. In
this contribution, the problem is tackled by developing heuristics for cost-efficient
scheduling that are able to operate on larger-scale problems. The proposed public
and hybrid scheduling algorithms aim at providing an efficient solution with respect
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Figure 4.4: Impact of overestimation of runtime estimation errors on Application
deadlines met.

to the cost for running as much applications as possible within deadline constraints.
The public scheduling component thereby takes into account data transfer costs
and data transfer times. A hybrid scheduling mechanism is presented to take into
account the potential cost of an application when scheduled on a public cloud
provider. We demonstrate the results of all scheduling heuristics on workloads with
varying characteristics. Results show that a cost-oriented approach pays off with
regard to the number of deadlines met and that there is potential for a significant
cost reduction, but that the approach is sensitive to errors in the user provided
runtime estimates for tasks. We demonstrated the possibility to increase the con-
servativeness of the scheduler with respect to these estimates in order to deal with
this issue without undermining the foundations of our cost-efficient scheduling
algorithm. Future work in line with this chapter consists of partially redesigning the
different components of our proposed solution to be aware of and more resistant to
runtime estimation errors, which is discussed in Chapter 5, as well as incorporating
support for other public pricing models such as Amazon’s reserved instances and
spot markets.
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Figure 4.5: Impact of overestimation of runtime estimation errors on Average cost per
application.



CHAPTER 5
Queue-based Scheduling

Heuristics for Hybrid Clouds
This chapter is published as “Online Cost-Efficient Scheduling of Deadline-
Constrained Workloads on Hybrid Clouds”, R. Van den Bossche, K. Van-
mechelen and J. Broeckhove in Future Generation Computer Systems 29
(2013) [92].

Abstract

Cloud computing has found broad acceptance in both industry and re-
search, with public cloud offerings now often used in conjunction with privately
owned infrastructure. Technical aspects such as the impact of network latency,
bandwidth constraints, data confidentiality and security, as well as economic
aspects such as sunk costs and price uncertainty are key drivers towards the
adoption of such a hybrid cloud model. The use of hybrid clouds introduces the
need to determine which workloads are to be outsourced, and to what cloud
provider. These decisions should minimize the cost of running a partition of
the total workload on one or multiple public cloud providers while taking into
account application requirements such as deadline constraints and data require-
ments. The variety of cost factors, pricing models and cloud provider offerings to
consider, further calls for an automated scheduling approach in hybrid clouds.
In this chapter, we tackle this problem by proposing a set of algorithms to cost-
efficiently schedule deadline-constrained bag-of-tasks applications on both
public cloud providers and private infrastructure. Our algorithms take into ac-
count both computational and data transfer costs as well as network bandwidth
constraints. We evaluate their performance in a realistic setting with respect to
cost savings, deadlines met and computational efficiency, and investigate the
impact of errors in runtime estimates on these performance metrics.

5.1 Algorithm Design

In Chapter 4, initial steps were taken to tackle this issue by developing custom
algorithms for cost-efficient scheduling. Our results showed that a cost-oriented

71
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approach pays off with regard to the number of deadlines met and that there is po-
tential for significant cost reductions. There was however still room for improvement
in terms of the scheduling algorithm’s sensitivity to estimation errors in the user
provided runtimes and the efficiency of the private cloud scheduling component.
In order to deal with these issues, we introduce a new hybrid scheduling approach
for our problem domain. The proposed solution consists of two loosely coupled
components:

• The public cloud scheduler decides for an incoming application –with given
task runtimes for each of the available instance types and with a given data
set size– on which of the public cloud providers to execute that application. It
takes into account the cost for execution and transferring the data, as well as
differences in data transfer speeds between the cloud providers.

• The hybrid cloud scheduler decides whether an incoming application can be
scheduled on the organization’s private infrastructure or has to be offloaded
–at a cost– to the public cloud, depending on the application’s deadline and
potential cost.

Public Cloud Scheduling

We introduce the Cost function (Equation 5.1) for an application a, that consists of
the computational costs and the data-related costs of running a on a public cloud
provider p. We define the set of tasks of a as Ta . A provider p supports the set of
instance types I Tp . The cost of running a task t on provider p with instance type i t
is defined as Ct ask (t , p, i t ), and is elaborated in Equation 5.2. The time to deadline

of a is DLa . The runtime of a task t on instance type i t is given by RT i t ,p
t , which is

rounded up for cost calculations to the nearest discrete time unit (i.e. 1 hour) of p’s
billing interval. The cost of running an instance of type i t on p for one time unit is
defined as C p

i t . The scheduler calculates the cost for running the application on each
available cloud provider, and schedules all tasks of an application on the cheapest
provider.

The first cost factor in Equation 5.1 is the computational cost Ccomp (Equation
5.3) to run each task of a within deadline constraints on the cheapest instance type.

Cost =Ccomp +Cd at a (5.1)

Ct ask (t , p, i t ) =


RT i t ,p

t ·C p
i t : RT i t ,p

t ≤ DLa

∞ : RT i t ,p
t > DLa

∞ : i t ∉ I Tp

(5.2)

Ccomp =
Ta∑
t

I Tp

min
i t

(
Ct ask (t , p, i t )

)
(5.3)

The data transfer costs in Equation 5.1 are represented by Cd at a (cfr. Equation
5.4). The data set size of application a is defined as Da (in GB), and the inbound
and outbound network traffic prices per GB of provider p are denoted by NW i n

p and

NW out
p respectively.



5.1. ALGORITHM DESIGN 73

Cd at a = Da ·NW i n
p (5.4)

Note that the application’s data set size does not only affect the data transfer
costs to a cloud provider, but may also influence the runtimes of individual tasks.
For applications with a large data set, the additional time required to transfer the
data to the provider may demand tasks to be scheduled on a faster instance type to
meet the application’s deadline.

In order for the public cloud scheduler to take data locality into account, we
update Ct ask in Equation 5.2 so that only instance types are considered for which
the sum of the application’s data transfer time and the task runtime is smaller than
the time to deadline DLa . We define the transfer speed from the organization to a
cloud provider p as T Sp . This results in Equation 5.5.

Ct ask (t , p, i t ) =


RT i t ,p

t ·C p
i t : RT i t ,p

t + Da

T Sp
≤ DLa

∞ : RT i t ,p
t + Da

T Sp
> DLa

∞ : i t ∉ I Tp

(5.5)

Finding the cheapest cloud provider for an application a involves the calculation
of the Cost function from Equation 5.1 for each of the public cloud providers. For
the sake of completeness, the algorithm is shown in Algorithm 2.

Input: Application a
Result: Cheapest cloud provider P

P ←;;
foreach Provider p do

if Cost(p) < Cost(P) then
P ← p;

end
end

Algorithm 2: Public Scheduling Pseudocode

Hybrid Cloud Scheduling

In a hybrid setup, additional logic is required to decide whether to execute an
application on the organization’s own computing infrastructure or to offload it to a
public cloud provider. This decision is made by the hybrid scheduling component
that allocates applications to the public and private cloud scheduler components. It
should thereby optimize the total cost for running all applications, while minimizing
the number of applications missing their deadlines due to queue congestion or high
data transfer times. In Chapter 4, a hybrid scheduling algorithm was presented
that calculates the potential cost of executing an application in the public cloud
within deadline, and gives priority to executing the most expensive applications on
the private cloud. This scheduling decision was taken independently of the private
scheduling logic, after which the hybrid scheduler handed over control to the public
or private scheduling component. As optimization of the private infrastructure
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was not the goal of the contribution, the private scheduling logic consisted of a
straightforward queuing system in which incoming requests were handled in a
first-come first-served manner.

Although the results in Chapter 4 show that a cost-oriented approach pays off
with regard to the number of deadlines met and that there is potential for significant
cost reductions, the approach was found to be sensitive to errors in the user-provided
runtime estimates for tasks. These induce a negative impact on the performance of
the private scheduler with respect to the utilization or the number of deadlines met
in case of respectively over- or underestimation. A simple approach of deliberately
overestimating runtimes was shown to succesfully reduce this impact, but also led
to increased costs.

The hybrid scheduling approach presented in this contribution deals with the
aforementioned issues by merging the private and hybrid component described in
Chapter 4 and by constantly re-evaluating the schedule in order to neutralize the
consequences of wrong estimates. It relies on a single queue, in which applications
wait to be executed on the private cloud. The private cloud scheduler prioritizes
applications according to a queue sort policy, while a queue scanning algorithm
detects unfeasible applications, after which one or more applications are sent to the
public cloud. An outline of the integrated scheduling policy is shown in Figure 5.1,
and the operation is further explained in the remainder of this section.

Schedule first app on private cloud

Scan queue for apps unfeasible

on private cloud

Send app to public 

cloud if necessary

Insert new app in queue

according to queue sort policy

Figure 5.1: Hybrid Scheduler - Schematic View

The private cloud scheduler adopts the strategy of scheduling a task on the
instance type on which it induces the smallest load. Let C PUi t be the number of
CPUs of the instance type, the loadt ask of a task t on an instance type i t of the
private cloud provider p is defined in Equation 5.6.

loadt ask (t , i t , p) = RT i t ,p
t ·C PUi t (5.6)
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From the perspective of the hybrid scheduler, running an application on the
private cloud is considered to be free of cost, and the applications’ data sets are
available free of charge and without delay. The scheduler therefore attempts to
maximize the local infrastructure’s utilization, and offloads applications only when
absolutely necessary. Cost-efficiency results for the hybrid scheduling algorithms
as presented in Section 5.3 therefore indicate an upper bound on actually realized
cost reductions, as fixed and variable costs for the acquisition, operation and main-
tenance of the private infrastructure are not accounted for. An internal costing
model can be developed to distribute these costs over the user population, while
also incorporating the opportunity cost of executing an individual application on
the private cloud. The development of a fair internal billing system based on such a
cost model is an important and still underdeveloped field, but lies beyond the scope
of this thesis.

When a new application is submitted for execution, it is inserted in the queue
at the right position according to a queue sort policy. In this contribution, both
First-Come First-Served (FCFS) and Earliest Deadline First (EDF) policies are con-
sidered. With FCFS, new applications are added at the end of the queue and are
handled by the scheduler in order of arrival. EDF sorts applications on their dead-
line, prioritizing applications that are closer to their deadline. EDF is known to be
optimal in terms of the number of deadlines met when dealing with preemptive
and independent jobs on uniprocessors [66]. Although we are dealing with non-
preemptive “bag-of-tasks”-type applications in a heterogeneous multi-processor
environment with additional data requirements, we expect the EDF policy to have
a positive impact on the cost and number of deadlines met. An application that
is further away from its deadline will likely be cheaper to run on the public cloud
as cheaper instance types are available for the application to complete before its
deadline.

The application at the front of the queue is to be executed on the private cloud
as soon as sufficient resources become available. An often used optimization tech-
nique to increase utilization is backfilling [85]. Backfilling allows short jobs to skip
ahead in the queue provided they do not delay any other job in the queue or –less
conservatively– the job at the head of the queue. Backfilling can be done on the
job- or CPU level. Job-level backfilling can be implemented to increase utilization
in a system with multi-node parallel jobs. This is typically found in MPI-like ap-
plications, and is not applicable to our bag-of-tasks workload model. Because the
private infrastructure is considered as a uniform set of CPUs and the actual selec-
tion of a physical server is not considered, the impact of CPU-level backfilling for
individual tasks would be minimal, and is therefore not implemented. Moreover,
backfilling typically relies on user-provided runtime estimates [84] –just like the al-
gorithms in this contribution– and errors in these estimates would obscure whether
observed scheduling behavior is caused by their impact on backfilling or on our own
algorithms.

An application should be removed from the queue and sent to the public cloud
when –given the current state of the private infrastructure and the other applications
in the queue– the application won’t be able to finish before its deadline. Such an
application is termed unfeasible. The queue scanning algorithm shown in Algorithm
3, detects unfeasible applications by constructing a tentative schedule for the private
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cloud. This schedule is based on the progress of the different applications in the
queue and their estimated runtimes.

The algorithm is executed periodically every N seconds. A small value of N allows
the scheduler to quickly react to changes in the expected runtime of applications,
while an increased value of N leads to a smaller computational overhead.

Input: Q ←− Application Queue, sorted on queue sort policy
Input: Pol i c y ←− function ∈ { UnfeasibleToPublic, CheapestToPublic }

Schedul e ←− {Running tasks};
foreach Application a ∈ Q do

foreach Task t ∈ a do
t i me ← GetStartTime(schedul e, t );
// get instance type with least total workload within deadline
i t ← GetInstanceType(t , t i me);
if i t exists then

// Deadline can be met on private
Schedul e ←− t ;

else
// Application a is unfeasible
Policy(Q, a);
break; // and restart queue scan with removed app(s)

end
end

end

Algorithm 3: Queue scanning Pseudo-code

The queue scanning algorithm is linked to a policy that determines the action
to take when an unfeasible application is detected. In this work, we consider two
possible actions:

• Unfeasible-to-public: The application that proved unfeasible is removed from
the queue and sent to the public cloud for execution. Data has to be trans-
ferred to the public cloud provider, and all tasks can run in parallel on different
instances in order to try and meet its deadline. The pseudocode can be found
in Algorithm 4.

Input: Q ←− Application Queue, sorted on queue sort policy
Input: app ←− Unfeasible application
Q ←Q \ {app}
∀t ∈ app : pt , i tt ← findCheapestPublicCloudProvider(t , app)
if ∀t : pt exists then

∀t ∈ app : schedule t on pt , i tt
else

// Deadline cannot be met
app.st atus ←− un f easi bl e;
break;

end

Algorithm 4: UnfeasibleToPublic Pseudo-code

• Cheapest-to-public: The scheduler calculates the cost that each application
which preceeds the unfeasible application would induce, when it is run in
the public cloud. It thereby ignores applications that are already running
on the private cloud as well as applications with a smaller workload than
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the unfeasible application, and selects the application with the lowest cost
(normalized to the workload of the application) for execution in the public
cloud. The pseudocode for this policy can be found in Algorithm 5.

Input: Q ←− Application Queue, sorted on queue sort policy
Input: P ←− Private cloud provider
Input: app ←− Unfeasible application
cheapestApp ←−;
foreach Application a ∈Q do

∀t ∈ a : pt , i tt ← findCheapestPublicCloudProvider(t , a)

∀t ∈ a : pr i vate_i tt ← min
I TP
i t

(
loadt ask (t , i t ,P )

)
if a > app // according to sort policy
then

continue;
else if

∑
t∈a loadt ask (t , pr i vate_i tt ,P ) <∑

t∈app loadt ask (t , pr i vate_i tt ,P ) then
continue;

else if Cost(a) ≥ Cost(cheapestApp) then
continue;

else
cheapestApp ←− a;

end
end
if cheapestApp exists then

Schedule cheapest App on public cloud;
Q ←Q \ {cheapest App};

else
// Deadline cannot be met
app.st atus ←− un f easi bl e;
break;

end

Algorithm 5: CheapestToPublic Pseudo-code

5.2 Experimental Setup

We evaluate the proposed scheduling algorithms using a Java-based discrete time
simulator1. Simulations are executed on an AMD Opteron 6274-based system with
64 CPU cores and 196 GB of memory.

Simulation runtimes depend on the scheduling techniques and the private cloud
size used in the simulation setup, as well as the queue scanning interval N . In
Section 5.3, we evaluate the influence of N on the simulation runtime.

Standard deviation on the outputs of the simulations were low overall, and are
therefore not mentioned in the discussion of the simulation results.

Cloud setting

We introduce a public cloud landscape in which users run applications on two
providers, modeled after the on-demand offerings of Amazon’s EC2 and GoGrid,
with all their prices and instance type configurations. For Amazon EC2, prices
are taken from the US-east, US-west and EU-west regions, and their “cluster” and
“micro”-instances are disregarded. For reference, a listing of these instance types
and prices can be found in Tables 5.1, 5.2 and 5.3.
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Price/hour

Name CPUs Memory us-east us-west eu-west

m1.small 1 1.7 GB $0.085 $0.095 $0.095

m1.large 4 7.5 GB $0.34 $0.38 $0.38

m1.xlarge 8 15 GB $0.68 $0.76 $0.76

c1.medium 5 1.7 GB $0.17 $0.19 $0.19

c1.xlarge 20 7 GB $0.68 $0.76 $0.76

m2.xlarge 6.5 7 GB $0.50 $0.57 $0.57

m2.2xlarge 13 34.2 GB $1.00 $1.14 $1.14

m2.4xlarge 26 68.4 GB $2.00 $2.28 $2.28

Table 5.1: Amazon EC2 Instance types and prices (d.d. June 1, 2011)

Price/hour

Name CPUs Memory EU West

X-Small 0.5 0.5 GB $0.095

Small 1 1 GB $0.19

Medium 2 2 GB $0.38

Large 4 4 GB $0.76

X-Large 8 8 GB $1.52

XX-Large 16 16 GB $3.04

Table 5.2: GoGrid Instance types and prices (d.d. June 1, 2011)

Price/GB

Cloud provider Data in Data out

EC2 (all regions) $0.10 $0.15

GoGrid $0.00 $0.29

Table 5.3: Amazon EC2 and GoGrid network prices (d.d. June 1, 2011)

As stated in this Part’s problem domain, we assume that the transfer speed from
the organization to each of the available public data centers is known a priori and
does not fluctuate. To obtain realistic data, we measured the average bandwidth
available from the University of Antwerp in Belgium to the cloud providers used
in this contribution. In line with other contributions [93, 94, 95, 96], we used the
iperf2 bandwidth measurement tool. Every hour over the course of one day, we mea-
sured the available bandwidth to Amazon’s us-east-1, us-west-1 and eu-west-1
regions, as well as the GoGrid EU West datacenter. The averages of these measure-
ments are shown in Table 5.4. In our case, transferring data to eu-west-1 is more
than 15 times faster than transferring data to the cheaper us-east-1 region, and
more than four times faster than transferring the same data set to the European
GoGrid datacenter.

1Code and experimental data are available upon request with the corresponding author.
2http://iperf.sourceforge.net/
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Cloud provider Avg (MB/s) Time/GB (s) Stdev

EC2 us-east-1 1.54 665 40.87%

EC2 us-west-1 1.19 864 42.43%

EC2 eu-west-1 24.16 42 23.58%

GoGrid EU West 5.91 173 32.06%

Table 5.4: Available bandwidth from UA to Cloud Providers

The private cloud is assumed to reside on-premise in the users’ organization, and
supports the three instance types described in Table 5.5. Data sets are immediately
available for applications running on the private infrastructure.

Name CPUs Memory

small 4 4 GB

large 8 8 GB

xlarge 16 16 GB

Table 5.5: Private Instance types

Application Workload

Due to the lack of sufficient real-world data, especially with regard to application
data set sizes and deadline constraints, we need to resort to a partially synthetic
model for generating application instances for the experiments in Section 5.3.

Every scheduling experiment has a duration of one week, in which new appli-
cations arrive every second following a Poisson distribution with λ = 0.002. This
results in an average inter-arrival time of 2000 seconds, or about 1200 applications
in a week. With these parameters, we aim to generate enough load to tax the private
cloud beyond its saturation point so that it becomes advantageous to use a hybrid
cloud setup.

The number of tasks per application is uniformly distributed between 1 and
100. Task runtimes within one application are typically not independent of each
other. Therefore, we assign each application a base runtime. Following [91], the
application’s base runtime is modeled as a Weibull distribution. The distribution’s
parameters are derived from the Parallel Workloads Archive’s SDSC IBM SP2 work-
load trace3. The runtime of each individual task is then drawn from a normal
distribution, with the application’s base runtime as the mean µ and a relative task
runtime standard deviation σ. With σ= 0% task runtimes equal the application’s
base runtime, while for example σ= 100% results in high runtime variations. Unless
mentioned otherwise, this deviation was fixed at 50%.

Tasks can typically run on more than one instance type. Running a task on an
instance type with for example 1 CPU and 1.7 GB memory will probably –but not
always– be slower than running the same task on an instance type with 4 CPUs

3http://www.cs.huji.ac.il/labs/parallel/workload/
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and 7.5 GB memory. Modeling speedup of parallel tasks on multiple processors
without thorough knowledge on the operation of the application is a delicate and
complex task. We model the speedup after Amdahl’s law and assume that a task
has a sequential fraction with length c1 and a parallelizable fraction with length c2.
The execution time of the task then equates to c1 +c2/n, where n is the number of
processors available on the instance type. We describe the size of the parallel com-
ponent as a percentage of the total runtime and use a uniform distribution between
0% and 100%. Note that in this workload model, we do not factor in the speed of the
individual cores of the instance type to determine the runtime, and assume it to be
homogeneous across the different instance types4. Next to the number of CPU cores,
the amount of memory available on an instance type I Tmem can also influence
the runtime of a task. Applications get assigned a minimum memory requirement
AppMemReq . The runtime for tasks executed on instance types that meet the ap-
plication’s memory requirement remains unaltered. If AppMemReq > I Tmem , a task
suffers a slowdown equal to I Tmem/AppMemReq . Although this linear slowdown
is optimistic and might be worse in practice, it satisfies our need to differentiate
between instance types. The minimum memory requirement for a task is normally
distributed with an average of 1.5 GB and a standard deviation of 0.5 GB.

Taking into account the application’s base runtime, task runtime variance, par-
allel component size and memory requirement, the runtimes for each of the ap-
plication’s tasks on each of the available instance types can be determined before
submission to the scheduler.

Each application is associated with a deadline that determines to a large extent
the instance type used for executing the tasks. Without deadlines, all tasks would
be executed on the cheapest –and often slowest– instance type. At application
arrival, we determine its time-to-deadline as a factor of the application’s runtime
on the fastest instance type available. To cover both tight and loose deadlines in our
workload, this application deadline factor is uniformly distributed between 3 and
20.

Finally, an application is linked to a data set that is used by each of the appli-
cation’s tasks. Its size is normally distributed with averages ranging from 0 GB for
purely computational tasks to 2500 GB for data-intensive applications, with a relative
standard deviation of 50%.

We model the inaccuracies in estimating the runtime of tasks by assigning each
application a Runtime Accuracy factor acc ∈ [0,1].The estimate distribution is then
modeled as a Gaussian distribution withµ the exact task runtime andσ=µ·(1−acc).
For the experiments in which runtime estimation errors are not considered, acc is
set to 1.

An overview of the workload model parameters used in this paper is given in
Table 5.6.

5.3 Results

In this Section, the scheduling algorithms proposed in Section 5.1 are evaluated
using experiments according to the workload model and cloud setting described in

4Generalizing the model to non-homogeneous CPU speeds however does not impact our scheduling
algorithms and could be achieved by adding an additional scaling factor for the task’s runtime on a given
instance type.
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Parameter Value

App. arrival rate (seconds) Poisson(0.002)

Tasks per application Uniform(1,100)

Base runtime (hours) Weibull(λ= 1879, β= 0.426)

Task runtime standard dev. (%) 50%

App. parallel fraction (%) Uniform(0, 100)

App. memory requirement (GB) Normal(µ= 1.5, σ= 0.5)

App. deadline factor Uniform(3,20)

App. data set size (GB) Normal(varying µ, σ= 50%)

Runtime accuracy 1 or Uniform(0,1)

Table 5.6: Workload model parameters

Section 5.2.

Public Cloud Scheduling

We first illustrate the impact of data transfer costs in our experimental setup by
comparing the difference between our cost-efficient scheduler with (CE-Data) and
without incorporating these costs in the provider selection decision (CE-NoData).
Data transfer speeds are not yet considered. Figure 5.2 illustrates this impact when
scheduling applications on the public cloud, and shows the influence of the data
set size of an application on the differences between both policies. The results are
shown relative to a Random policy, in which for each arriving application a cloud
provider is picked randomly. The application’s average data set size µ varies from
0 GB to 2.5 TB with a relative standard deviation σ of 50%.
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Figure 5.2: Impact of data costs.

Without data costs, the cost-efficient scheduler obtains a cost reduction of 30%
compared to the random policy. We also observe a significant cost reduction of the
scheduling policy that takes data costs into account compared to the same policy
that only reckons with computational costs. This experiment also gives an indication
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of the share that compute and transfer costs have in the total cost: with an average
data set size of 50 GB, the computational costs for CE-Data cover 85% of the total
costs, while the share in CE-NoData decreases to 65%. For µ =500 GB this share
shrinks to 81% and 16%, respectively.

Next to the computational cost and the data transfer cost, a third important
factor to consider in a public cloud setting is data locality. The experimental setting
is the same as the previous experiment, but data transfer speeds are now considered
and assumed to be equal to the measured averages of the bandwidth benchmarks in
Section 5.2. We use the CE-Data policy to calculate computational and data transfer
costs. In total, 1198 applications are scheduled. Figure 5.3 shows the amount of
applications scheduled in each of the regions.
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Figure 5.3: Impact of data locality.

We observe that applications without a data set are all scheduled in theus-east-1
region, as it provides the cheapest compute capacity. Applications with a large data
set are scheduled in the EC2 eu-west-1 region in case of an application with a
tight deadline, because the data set can be transferred to this datacenter more
quickly. Applications with large data sets and loose deadlines are scheduled in the
GoGrid datacenter, because of the zero cost for inbound traffic. The percentage of
applications not meeting their deadline increases quickly as average data set sizes
exceed 400 GB. This can be explained by the fact that in our workload model, the
application’s deadline is determined as a factor of the fastest possible task runtime,
without considering data transfer times. Increasing the average data set size in an
experiment consequently results in tighter deadlines and can lead to the sum of the
data transfer time and the task runtime on the fastest instance type to exceed the
deadline.

Hybrid Cloud Scheduling

The hybrid scheduling components proposed in this contribution appear in four
guises, composed by the combination of the action when an unfeasible application
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is found (Unfeasible-to-public or Cheapest-to-public) and the queue sort policy (EDF
or FCFS). These are compared to the Cost Oriented scheduling policy from Chapter 4
as well as a Public Only scheduler that schedules all applications on the public
cloud using the algorithm and cost calculation described in Section 5.1. In all of
the experiments in this subsection, we use a public scheduling component with the
CE-Data policy.

We demonstrate the operation of the hybrid scheduling components by adding a
private cloud to the experimental setting used in Section 5.3. In the first experiment,
computational costs, data transfer costs as well as data transfer times are taken into
account, but runtimes are still assumed to be known a priori. Therefore, the value
of N –the interval between two consecutive runs of the queue scanning algorithm–
is of low importance and is set to 5 minutes. This scenario corresponds to the
experimental setting in Figure 5.3 with an average data set size of 50 GB and with
the addition of a private cluster of varying sizes.

The results for all scheduling policies in this experiment are shown relative to
Public Only policy, and can be found in Figure 5.4. Figure 5.4a shows the number
of applications that were completed within their deadline with varying sizes of the
private cloud. While the Public-Only scheduler misses 32% of the deadlines due
to the extra time needed to transfer the data, the incorporation of a private cloud
–on which such transfer times do not apply– allows the hybrid scheduler to meet
more deadlines by decreasing the amount of outgoing data. This is also clearly
depicted in Figure 5.4c. In addition, it is noteworthy from Figure 5.4a that the EDF-
based policies succeed to better take advantage of a private infrastructure in terms
of number of deadlines met. This is the result of both the intrinsic properties of
EDF to process more applications within deadline constraints, and of the operation
of the queue scanning algorithm that sends significantly more applications with
loose deadlines –which mostly reside at the tail of the queue– to a public cloud
provider. In Figure 5.4b, the average cost per application executed within deadline
is displayed. It is to be expected that adding a private cluster results in significant
cost reductions, but we also observe that the cost savings when using an EDF-based
scheduler over the other schedulers are very large. The cause of this difference lies in
the fact that EDF manages to efficiently schedule up to twice as much applications
on the private cluster as any other scheduling policy. The difference between the
Cheapest-to-public and the Unfeasible-to-public approaches is significant in case of
the FCFS approaches, but is limited to only a few percent for EDF-based approaches.
In our synthetic setting, the substitutability of the applications in terms of their
computational cost is high. Therefore, a “wrong” scheduling decision taken by the
Unfeasible-to-public policy has only a minor impact on the total cost reduction.
One side effect of the Cheapest-to-public approach is that significantly less data-
intensive applications are sent to the public cloud. This is illustrated in Figure 5.4c
that shows the total amount of data transferred to the public cloud, relative to the
amount of data transferred to the cloud in a public-only scenario. Finally, the average
turnaround time –the time between the submission and the end of the last task of
an application– is shown for applications that met their deadline in Figure 5.4d.
The Cost-Oriented algorithm leads to high turnaround times as it postpones the
execution of an application’s tasks as long as possible. The turnaround time for the
FCFS-schedulers is lower, but this comes at a cost of a higher number of deadline
misses. The EDF-schedulers’ turnaround times are lower than those of the Cost-
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Oriented policy but higher than those of the FCFS policies. The diverging turnaround
times of Cheapest-FCFS and Unfeasible-FCFS for larger private cloud sizes are
caused by the difference in handling data-intensive applications: when Cheapest-
FCFS outsources the cheapest applications, it consequently selects applications
with smaller data sets. This can be seen in Figure 5.4c. Applications with less data
transfer cause less delay due to data transfer time, ultimately resulting in a lower
turnaround time.
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Figure 5.4: Impact of hybrid scheduling policies on Deadlines, Cost, Outgoing data
and Turnaround Time.

We further explore the characteristics of the proposed scheduling algorithms
by examining the influence of the data set size on the potential cost reduction. As
the data set size increases, the number of failed deadlines will increase due to the
longer data transmission times when outsourcing an application. This is shown in
Figure 5.5a. The more efficient placement capabilities of the EDF-based policies
are robust with relation to the data set size. Figure 5.5b shows the cost savings
the algorithms achieve with a private infrastructure of 128 CPUs and with varying
average data set sizes, relative to the cost of scheduling the whole application set
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on a public cloud provider. With bigger data sets, the difference in cost between
the EDF algorithms and the FCFS policies quadruples. The cost reduction of the
Cheapest-EDF scheduling policy relative to the Unfeasible-EDF policy increases
from 2% (without data) up to 13% (with an average data set of 2.5TB).
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Figure 5.5: Influence of Data set size on hybrid scheduling

All of the algorithms discussed in this chapter depend to a greater or lesser
extent on the accuracy of the provided runtimes as they are used to calculate the
potential cost of running the application on the public cloud, as well as to select
the instance type necessary to finish tasks within deadline. Moreover, the private
scheduling algorithm relies on runtime estimates to determine the start time of a
task when searching for unfeasible tasks. The Cost-Oriented algorithm (Chapter 4)
already proved to be sensitive to estimation errors, because it attempts to delay the
scheduling decision as much as possible up until the application’s deadline.

We evaluate the degree of sensitivity of the proposed algorithms to runtime
estimation errors in a setting that supplements the previously used cloud providers
with a 512 CPU private cluster. Applications have an average data set size of 50 GB.
For different values of acc , we evaluate the number of deadlines met and the average
cost per application that finishes before its deadline. Figure 5.6a shows the value
of these two metrics relative to the scenario in which acc = 1. A decrease in the
accuracy causes the number of applications that meet their deadline to decrease.
The decrease is limited for EDF to less than 3%, while the same metric declines
about 5 times faster for the cost-oriented approach. The Cheapest-FCFS policy
performs in relative terms even worse, and loses the performance gains it had over
the Unfeasible-EDF and Cost-Oriented policies when acc = 1.

In Figure 5.6b, the average cost per application is shown for different values of
acc. All hybrid schedulers seem to follow the increasing trend set by the public
scheduling component, which selects larger and thus more expensive instance types
for overestimated tasks. In relative terms, the increase for the EDF-based queue sort
policies is stronger than the other scheduling policies because it manages to execute
more expensive –overestimated– applications, which are marked as unfeasible by
the other scheduling algorithms.
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Figure 5.6: Impact of Runtime Estimation Errors on hybrid scheduling.
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Figure 5.7: Influence of N on hybrid scheduling.

Up until now, the time interval N between two consecutive executions of the
queue scanning algorithm was chosen to be 5 minutes. However, in the presence
of runtime estimation errors, the value of N has an influence on the schedulers’
ability to quickly anticipate on a change in runtimes, but also on the computational
overhead of the scheduling logic. In the following, we evaluate for different values
of N ranging from 1 minute to 1 hour the influence on the number of deadlines
met as well as the time spent in the queue scanning mechanism. We again vary
acc according to a uniform distribution between 0 and 1. The results in Figure 5.7
show that increasing the value for N leads to a significant decrease in the number
of applications that meet their deadline, which is due to the decreased number
of times the algorithm is able to detect and correct deviations of the estimated
runtimes. This decrease is not present when ordering the queue based on deadline,
because the outsourced applications are generally further away from the front of the
queue and are therefore exposed to less tight deadlines. For other scenarios with
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tighter deadlines, the EDF-based policies exhibit a decrease, but more moderate
than the FCFS-policies. For example, in a scenario with a deadline factor between 1.2
and 6, the Cheapest-EDF and Unfeasible-EDF achieve 3% less deadlines in N = 60
than in N = 1. Furthermore, it is noticeable that the computational overhead for
Cheapest-EDF is up to an order of magnitude larger than the FCFS-based policies.
This overhead is caused by iteratively calculating the cost for a large number of
applications. In spite of the difference it should be noted that a total scheduling time
of 1400 seconds (N = 1) for almost 2000 applications over the course of a two weeks
scheduling period is negligibly small. Depending on the available computational
power to schedule applications and the arrival rate in the system, it should be
possible for a system administrator to set the value of N so that the amount of
deadlines met can be maximized.

5.4 Conclusion

Supplementing the private infrastructure of an organization with resources from
public cloud providers introduces the problem of cost-efficiently and automatically
managing application workloads within such a hybrid cloud environment. This
paper presents scheduling algorithms to deal with this optimization problem for
deadline-constrained bag-of-task type applications while taking into account data
constraints, data locality and inaccuracies in task runtime estimates. In Chapter 3,
we presented a linear programming formulation of the optimization problem for
a static set of applications. In this contribution, online hybrid scheduling algo-
rithms that operate on larger-scale problems with additional data constraints are
presented and evaluated in terms of deadlines met, cost-efficiency, computational
efficiency, application turnaround time, and robustness with regard to errors in
runtime estimates. Our results quantify the additional gains in cost-efficiency that
can be achieved by adopting an EDF approach on the private cloud. We demonstrate
that further cost reductions are realized if cost is used as a discriminating factor for
selecting outsourced applications. In addition, an EDF scheduling policy for the
private cloud is shown to significantly increase robustness with respect to runtime
estimation errors, at an additional cost in turnaround time. As such, our results can
provide guidance for system administrators to assess the trade-offs of adopting an
EDF policy for hybrid cloud deployments that focus on bag-of-task type applications.
Finally, our analysis of computational cost indicates that the proposed algorithms
are able to schedule a large number of applications within a practical timeframe.

Future work in line with this contribution consists of further generalizing the
workload model, increasing the detail of the private cloud model and incorporating
other public pricing models such as Amazon’s reserved and spot instances.
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Contract Portfolio
Optimization using Load

Prediction

Businesses and non-profit organizations increasingly rely on cloud computing to
handle (part of) their applications’ workloads. This has led to a shift in IT expense
management policies from purchasing hardware and support contracts to establi-
shing and maintaining company policies for cloud management and cost control.
At present however, few tools are available to support decision makers in this task.
Meanwhile, the need for automation is gradually increasing as cloud providers are
rapidly complexifying their products and associated contracts.

An IaaS cloud provider offers virtual machine instances for rent to its customers.
Instances are commonly offered according to a set of predetermined resource specifi-
cations, called instance types. An instance type defines the architecture, the number
of CPU cores and processing speed, the amount of memory, the network and disk
bandwidth and the hard disk size of that type. Although some cloud providers
offer more flexibility by allowing consumers to configure the different resource
dimensions independently, we specifically deal with fixed instance types in these
chapters.

Instance usage is generally charged for in a pay-as-you-go manner by associating
every instance type with a price per time unit. Amazon EC2, for example, adopts a
price-per-hour policy, rounding up partial hours of usage, while other providers –
such as Rackspace or Google Compute Engine– charge usage in 1 minute increments,
rounding up to the next minute. Besides this on-demand charging policy, some
providers –Amazon and Rackspace, among others– also offer reserved contracts of a
given length (1 or 3 years at Amazon EC2, 6 to 36 months at Rackspace). These imply
a significantly lower price per time unit in exchange for an up-front payment.

To illustrate the potential cost savings and complexity that comes with the selec-
tion of a reserved contract type, Table 5.7 illustrates all available contracts and prices
for an Amazon EC2 m1.small instance type in the US-East region. Column Utiliza-
tion optimum contains the instance utilization level (as a percentage of the total
time in the contract period) for which the reserved contract is the most cost-effective.
The last column shows the potential cost savings for each reserved instance plan,
compared to the use of on-demand instances. For example, the one-year medium
utilization reserved contract is the cheapest for an instance that runs at least 69%
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Usage level Up-front
cost

Hourly price Period Utilization opti-
mum

Cost reduction vs.
on demand

Heavy $169 $0.014 1 year 83%–100% 33%–45%

Medium $139 $0.021 1 year 69%–82% 27%–33%

Light $61 $0.034 1 year 27%–68% 0%–26%

On demand n/a $0.06 1 year 0%–26% 0%

Heavy $257 $0.012 3 years 80%–100% 55%–64%

Medium $215 $0.017 3 years 46%–79% 42%–54%

Light $96 $0.027 3 years 12%–45% 0%–41%

On demand n/a $0.06 3 years 0%–11% 0%

Table 5.7: Amazon EC2 prices for m1.small in the US-East Region (d.d. January, 1
2014).

and at most 82% of the contract period, which entails a cost reduction of 27% up to
33%.

Next to potential cost savings, reserved contracts can also increase quality of
service. In EC2 for example, the availability of instances purchased under a reserved
contract is guaranteed during the contract’s length, while requesting (a large number
of) on-demand instances might fail under congestion.

The availability of multiple reservation plans introduces complexity for the
customer in balancing the flexibility of on-demand instances with the potential cost
savings and increased quality of service of long-term commitments. We will only
focus on the first two aspects of this problem, relying on prediction techniques to
forecast server loads in order to find the right balance from a cost perspective. The
main reason for this is that very limited data is available on availability differences
and that the impact of a decreased availability depends heavily on the enterprise
and its applications.

Overview

Chapter 6 uses Genetic Programming to forecast future load patterns, which are
used by a resource manager to calculate an optimal contract portfolio. The proposed
approach assumes a fixed contract length of 90 days, and does not take into account
existing contracts. Its performance is evaluated using real-world traces with the
daily page view data of four well-known web applications.

Chapter 7 introduces a heuristic that allows for online optimization of an organi-
zation’s contract portfolio, given a future load predicted with time series forecasting
techniques. The algorithm takes into account an organization’s existing contracts,
and uses contracts with a length of 1 year. Its operation is illustrated as a case study
using four web application traces, similar to the approach in Chapter 6. Our analysis
explores the cost impact of a Double-Seasonal Holt-Winters prediction technique
compared to a clairvoyant predictor and compares the algorithm’s performance
with a stationary contract renewal approach.

Chapter 8 extends the algorithm presented in Chapter 7 with an additional pa-
rameter and two extra renewal policies. The evaluation comprises an extensive study
of over 50 workload traces, simulated with four time series forecasting models and a
reactive prediction technique in combination with four different renewal policies.
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The techniques are evaluated on their performance in terms of cost reduction, as
well as on their robustness and computational complexity.

Related Work

Chaisiri et al. [97] formulate a stochastic programming model to create an optimal
reserved contract procurement plan. The aim of their algorithm is to cover as much
demand as possible with reserved contracts. They take into account multiple cloud
providers, including private ones with limited resources, and show that the algorithm
makes a good trade off between reserved and on-demand instances. However, they
assume that the demand distribution is known and constant, and do not take into
account multiple contracts with the same length and different utilization levels.
They also do not consider scenarios of demand fluctuation, in which it is more
beneficial to use on demand instances to absorb some of the load peaks.

Shen et al. [98] introduce a cloud-based online hybrid scheduling policy for both
on-demand and reserved instances. Their algorithm relies on Integer Programming
to find an optimal solution, given the future workload distribution. The derivation
of this predicted workload distribution is not discussed. Their work also differs from
ours in the workload model: short jobs are scheduled on virtual machines using
common job scheduling heuristics.

Hong et al. [99] propose a commitment straddling approach, in which they
determine the optimal distribution of on-demand and reserved instances. They
assume the Cumulative Distribution Function of the future load is known a priori
and calculate the function values at the utilization optima for a reserved instance.
Multiple reserved utilization levels are not considered. Additionally, they do not
discuss methods for forecasting the CDF, and only use short web traces (< 6 months)
in their evaluation.

In Tian et al. [100], a linear program is used to minimize the provisioning cost
for deploying a web application on both reserved and on-demand instances. The
web application’s load can be classified as high, normal and low, and the authors
assume that the long-term load is constant: last year’s utilization (expressed as the
number of hours in each load class) is used as the prediction for the upcoming year.

Other efforts in optimizing cost in a cloud environment include [92, 57, 101, 102].
These do not take into account reserved contracts, but focus on optimizing virtual
machine placement over multiple public and/or private clouds.





CHAPTER 6
Genetic Programming-based

Load Models
This chapter is published as “Optimizing a Cloud contract portfolio using
Genetic Programming-based Load Models”, S. Stijven, R. Van den Bossche,
K. Vladislavleva, K. Vanmechelen, J. Broeckhove and M. Kotanchek in
Genetic Programming Theory and Practice XI, 2014 [103].

Abstract

Infrastructure-as-a-Service (IaaS) cloud providers offer a number of differ-
ent tariff structures. The user has to balance the flexibility of the often quoted
pay-by-the-hour, fixed price (“on demand”) model against the lower-cost-per-
hour rate of a “reserved contract”. These tariff structures offer a significantly
reduced cost per server hour (up to 50%), in exchange for an up-front payment
by the consumer. In order to reduce costs using these reserved contracts, a
user has to make an estimation of its future compute demands, and purchase
reserved contracts accordingly. The key to optimizing these cost benefits is to
have an accurate model of the customer’s future compute load – where that load
can have a variety of trends and cyclic behavior on multiple time scales. In this
chapter, we use genetic programming to develop load models for a number of
large-scale web sites based on real-world data. The predicted future load is sub-
sequently used by a resource manager to optimize the amount of IaaS servers
a consumer should allocate at a cloud provider, and the optimal tariff plans
(from a cost perspective) for that allocation. Our results illustrate the benefits of
load forecasting for cost-efficient IaaS portfolio selection. They also might be
of interest for the Genetic Programming (GP) community as a demonstration
that GP symbolic regression can be successfully used for modeling discrete time
series and has a tremendous potential for time lag identification and model
structure discovery.

6.1 Problem Domain

In this contribution, the focus is on the long term planning problem of purchasing
server instances with different service levels and prices from a public cloud provider

95



96 CHAPTER 6. GENETIC PROGRAMMING LOAD PREDICTION

in a cost-efficient manner, based on predictions of future load by using Genetic
Programming.

The tariff structure of a cloud provider is represented as a generalization of
Amazon’s on-demand and reserved pricing plans. We assume that a cloud provider
proposes a number of offerings, with an associated up-front cost (≥ 0) in exchange
for a cheaper hourly rate during a given period ρ (in days). An offering includes one
of the two charging methods:

As-you-go After paying the upfront cost, the customer is charged only for the actual
usage (hours) of the concerned instance. If an instance runs for h hours, the
customer is billed the upfront cost and h times the hourly rate.

Every hour The customer makes a commitment to use the instance continuously.
Even if the instance is not running, the hourly rate is charged. If an instance
type offering with this charging method is purchased, the cost at the end of
the period is always the same, regardless of the number of hours the instance
has actually been running.

An “on-demand” plan, in which no up-front cost is charged and server hours
are charged as-you-go can be modeled by setting the up-front cost = 0 and the
period ρ =∞.

The contract portfolio management approach in this chapter supposes that the
purchase decision is taken only once each period, and that all purchases are made at
the first day of that period. The expansion of the scheduling algorithms to a “sliding”
approach in which previous ongoing purchases are taken into account is left to
future work.

Divergent user requirements and heterogeneous workload characteristics com-
plicate the problem of identifying the best cloud provider for a specific application.
The approach presented here is confined to only some of the characteristics and
requirements, which we believe constitute a solid base to demonstrate the impact
and performance of the prediction and scheduling mechanics.

Our current application model focuses on web application workloads, because
they have a long lifetime which makes the use of prediction methods relevant.

6.2 Related Work

Symbolic regression via genetic programming (GP) has been used for time series
prediction since the seminal book by Koza [104]. In a majority of cases GP is given a
task to learn the time series trend and reconstruct a dynamic system that generated
time series using lagged (delayed) vectors. Given m lagged vectors vt−1, vt−2, ...vt−m

induce a function f , such that

vt = f (v) = f (vt−1, vt−2, ...vt−m). (6.1)

Parameter m is often called an embedding dimension, lag parameter or a sliding
time window. Sometimes another delay parameter τ is taken into account, and
delayed lagged vectors vt−τ, vt−2τ, ...vt−mτ are considered for model induction.
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With few exceptions, like [105, 106], GP employs a standard symbolic regression
representation. Each individual is a superposition of primitives (being mathematical
operators) with terminals sampled from a set of lagged vectors as well as constants.

Many use GP to complement autoregressive and moving average models to
capture the nonlinearity of time series. [107] created a separate GP individual for
each sample from the prediction horizon, but the vast majority of publications focus
on generating single step predictions (predicting the next value) and iterating them
over the test set. The problem with iterative predictions (when predicted values are
used as inputs for subsequent evaluations) is that they tend to magnify very quickly
(see [108]).

In this work we attempt to generate accurate load predictions over a horizon
of at least 90 unseen samples (days). Furthermore, all 90 samples are required to
construct an optimal contract portfolio, i.e. the target prediction has to be in a form

(vT , . . . , vT+ρ)T ∈Rρ , ρ = 90, (6.2)

given the training data (v1, . . . , vT−1)T .
As pointed out by [107] and [106], the main advantage of GP for discrete time

series prediction lies in its ability to discover dependencies among samples, and
automatically select only relevant variables for the models.

We have not found any GP references which used more than 20 consecutive
samples (lags) as candidate inputs. One, four and ten lags are the most popular
([109, 106, 110]). [111] use a time window of the previous 20 data points, but no
variable selection results are reported and only predictive accuracy of models rather
their interpretability was measured.

We believe that recent algorithmical improvements in the effectiveness of the
variable selection capability of GP should allow exploration of much larger spaces of
lagged variables. In this work we push GP towards m = 365 inputs, and let driving
variables be automatically discovered.

6.3 Algorithm Design for Contract Portfolio Optimization

In this section, an algorithm is outlined to find the optimal allocation of server
instances over the available pricing plans, given predicted (or real) load data for the
upcoming period. The algorithm should try to minimize cost, and output a purchase
suggestion in the form of a number of server instances for each pricing plan.

The inputs to the algorithm consist of the required instances with an associated
instance type for each hour in the scheduling period, and the set of available pric-
ing plans. The algorithm first calculates the utilization (in hours) for each of the
instances running in the period, after which the best pricing plan for this utilization
level is calculated based on the cost function described in Section 6.1. The cheapest
plan is added to the suggested purchases.

This approach, illustrated in Algorithm 6, gives preference to the instances with
the highest utilization throughout the relevant period. As a consequence, the result
set is first filled with pricing plans that offer the highest cost reduction in return for
the biggest upfront cost, and falls back on the plans with a lower or zero upfront cost
to cope with temporary load surges. This results in a very cost-efficient result set.
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result ←;
for all h ∈ ρ do

for all ι ∈ h do
utilization ← 0
for α← h to ρ do

if ι ∈α then
utilization ← utilization + 1
α←α\ ι

end if
end for
cheapest ←;
for all φ ∈Φ do

if Cost ιφ(utilization) <Cost ιcheapest(utilization) then
cheapest ←φ

end if
end for
result ← result ∪ {cheapest}

end for
end for
return result

Algorithm 6: Purchase Suggestion Algorithm

6.4 Data and Experimental Setup

Data

Server utilization data in cloud infrastructures is unfortunately not made available by
cloud providers. In our experiments, we therefore use the publicly available traces1

of the daily number of page views for a number of well-known websites. We assume
that the number of page views relates directly to the load that gets generated and
hence to the number of server instances required to handle that load. As the page
view data consists of daily averages, we assume the load is also constant through the
day, that the web application is deployed on a number of homogeneous instances of
the same instance type, and that number of instances is scaled linearly according to
the page views per instance ratio.

In order to evaluate the performance and robustness of the predictions and of
the scheduling algorithm, we use the daily page view data from four well-known
web applications with different characteristics (see also Figure 6.1):

1. stackoverflow.com: The page view data shows robust growth with a lower
number of views in the weekends and during the Christmas period.

2. imgur.com: For this website we used the visitor data as the page view data
contained odd properties, likely due to implementation details. The data
shows robust growth until the middle of 2012, after which the growth seems
to stagnate.

1http://www.quantcast.com

http://www.quantcast.com
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3. linkedin.com: The page view data shows a strong seasonal pattern with drops
in the weekends and holidays and a robust growth until the beginning of 2012,
which diminishes in the last 14 months.

4. tinypic.com: The page view data shows rapid decline with lower number of
views in the weekends, but no strong seasonal pattern.

The data is in many cases non-stationary (means, variances and covariances
change over time) and in all cases heteroscedastic (of different variability, i.e. not
allowing constant error variance when modeled using ordinary regression2), which
poses a good challenge to genetic programming, see Figure 6.1.

Experiment setup

We use the algorithm outlined in Section 6.3 with different inputs of expected future
load to assess the added value of using predicted future loads to purchase a portfolio
of reserved contracts and minimize infrastructure costs. The results of the following
predicted input scenarios are compared in Section 6.5.

1. Optimal: This scenario is the “reference” scenario, in which the customer has
full knowledge of the future, and selects an optimal portfolio based on the real
future load.

2. Prediction: The customer purchases reserved contracts by taking into account
the GP predicted load for the scheduling period of ρ days.

3. One period back: The customer purchases the same instances as were needed
in last ρ days.

4. One year back: The customer purchases the same instances as were needed in
the same period of ρ days exactly one year ago (assuming that that utilization
levels would be the same as in the period one year ago).

In all experiments of this contribution, we use a prediction and scheduling period
of ρ = 90 days. Although not veracious at the time of writing, it can be argued that
a cloud provider could be interested in providing shorter-time reservation periods
in addition to the 1-year and 3-year periods currently available at Amazon EC2.
This would enable customers with highly varying load patterns, which are currently
exclusively using on-demand instances, to also make up-front commitments for
shorter periods. The support for multiple offerings with different periods and the
incorporation of longer-term predictions is left for future work.

The inputs for the prediction scenario are calculated using symbolic regression
via GP implemented in DataModeler ([112]). We use Pareto-aware symbolic regres-
sion to optimize both accuracy and simplicity of the models. The fitness function
for prediction accuracy was defined as 1−R2 where R2 is the square of the scaled
correlation between prediction and response. As complexity measure we use the
sum of subtree sizes of the model expression, which is equivalent to the total number

2as in a model Yt =M (t )+σ(t )εt
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Figure 6.1: The data of the four websites plotted over time. Solid lines indicate the
part of the data that was used as training set. Dashed lines indicate the part of the
data that was used as test set.
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of links traversed starting from the root to each of the terminal nodes of the parse
tree.

In practice, data transformation and normalization methods precede analysis of
time series ([106], [109]). We, however, applied symbolic regression to raw data to
prepare for online modeling of streamed series.

To let GP automatically discover significant lags, we convert the original load vec-
tor to a data matrix in the following way: for a fixed length of a sliding time window
m, each load value vt was augmented to a row vector (vt , v t −1, . . . , vt−m) ∈ R1×m .
Omitting the first m samples of the response vector v = (v1, . . . , vT )T (for which not
all lags are available) leads to a data matrix with T −m rows and m columns.

The lag parameter m is fixed to m = 365 days in all experiments.
To generate predictions 90 days ahead without iteratively accumulating pre-

diction errors, we exclude lags (vt−1, . . . , vt−90) from the modeling and use the first
column vt of the augmented data table as the response. The modeling task for the
lag window m and the scheduling horizon ρ is now formulated as a search for a
model or a model ensemble f , such that:

vt = f (vt−ρ−1, vt−ρ−2, ...vt−m)+ε, m > ρ. (6.3)

Each experiment presented here consists of two modeling stages of 40 indepen-
dent symbolic regression runs, with each run executing for 900 seconds. The results
of stage one experiments define the driving variables and variable combinations
(optimal time lags), stage two experiments use only driving variables as inputs. Final
solution ensembles were constructed from stage two models. Prediction is then
evaluated on the test time period (see Figure 6.1), used for constructing an optimal
contract portfolio, and compared with a baseline on-demand strategy applied to
real loads in the test period.
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Figure 6.2: Pareto front plots showing the complexity accuracy profiles of the
LinkedIn.com models. The left plot shows all models of the SR run. The right plot
shows only the models using the driving variables for a quality box of complexity
200 and accuracy 0.1.

6.5 Results

SR results

Exclusion of the 90 most recent lags from the modeling allowed us to forecast the
loads 90 days into the future using the available training data without the need
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Usage level Up-front cost Hourly price Period ρ Charging method

Heavy $42.25 $0.014 90 days every hour

Medium $34.75 $0.021 90 days as-you-go

Light $15.25 $0.034 90 days as-you-go

On demand N.A. $0.06 N.A. as-you-go

Table 6.1: Assumed cloud offerings for instance type m1.small.

to iterate predicted loads and accumulate prediction error. The quality of predic-
tions was evaluated with respect to 1−R2, the Normalized Root Mean Square Error
(NRMSE) and the Hit percentage (HIT) ([109]).

The forecasts for the testing horizon for all four websites are depicted in Fig-
ure 6.3. The stackoverflow.com predictions are of high quality as the previously
observed growth in page views (from Figure 6.1 ) continues in the test period. The
imgur.com predictions do well for the first month of the predicted period, but after-
wards the growth stagnates and the prediction overshoots because this behavior is
not observed in the training data. The linkedin.com predictions follow the growth
curve as observed in the training data and are therefore very close to the actual data.
The tinypic.com data stagnates at the end of the training period and continues to
do so in the test period. SR predictions follow the declining trend of the training set
and therefore predict a page view count which is lower than the observed count. On
the other hand, the predictions are still closer to the test data than the data of the
previous period. Table 6.2 shows the prediction errors for both the training and test
data.

For the sake of completeness, Figure 6.4 depicts a Pareto front of all models
generated for linkedin.com data as well as a subset of models that use the driving
variables.

Validation through simulation

The main goal of this chapter is to explore the benefits of forecasting the compu-
tational load to make data-driven decisions about purchasing IaaS contracts. To
achieve this goal, we compare three data-driven load forecasting scenarios to a
straightforward paid on-demand service. The reference cost of an on-demand ser-
vice for the scheduling period is estimated using real load from the test data. The
three prediction scenarios employ loads predicted by GP, actual loads of the previous
scheduling period, and actual loads of the same period one year back.

To map page views to the computational cost, we assume that the page views per
instance ratio is known in advance for a certain instance type and that the ratio is
constant for different page requests.

The prices for the different offerings are derived from the Amazon EC2 reserved
prices for the m1.small instance type, in which the period is reduced to 90 days and
the upfront cost is proportionally reduced with three quarters. These prices and
conditions are listed in Table 6.1.

For each of the forecasting scenarios we construct an optimal contract portfolio
and compare the cost of this portfolio to the baseline cost of the optimal portfolio
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Figure 6.3: The GP prediction results for the four websites (shown in solid black).
The actual page view data is indicated by the dashed red lines.
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LinkedIn.com - Model Selection Report

Complexity 1-R2 Function

1 23 0.094 4.666+
-28.093

7+delay238+delay364

2 30 0.088 1.657+-0.098 H-3.150+delay238+delay364L2

3 34 0.088 0.733+-0.123 Hdelay238+delay364L H-5+delay287+delay364L

4 36 0.080 6.325+
-58.134

10+delay217+delay238-delay294+delay364

5 39 0.079 0.617+-0.147 Hdelay238+delay364L I-5+delay287+delay364
2M

6 40 0.071 2.040+-0.244 Idelay116+delay275+ H2.021-delay364L2M

7 46 0.066 1.646+-0.103 Idelay116+delay275+ H-2.848+delay238+delay364L2M

8 49 0.063 2.702+-0.183 Idelay116+delay296+delay301
2
+ H3-delay364L2M

9 53 0.062 2.934+-0.205 Idelay116+delay275+ H3-delay364L2+delay364+delay364
2M

10 62 0.059 1.012+0.260 I-delay109+delay238-delay294
2
-delay296+3 delay364M

11 63 0.052 3.580+-0.261 Idelay116+delay296+delay301
2
+ H3-delay364L2+2 delay364M

12 72 0.048 3.000+-0.215 Idelay116-delay238+delay275+delay301
2
+ H2.999-delay364L2+2 delay364M

13 77 0.048 1.058+0.215 I-delay116+delay238-delay296-delay301
2
+4 delay364-delay364

2M

14 115 0.048 1.009+0.101 I-2 delay109+delay217+delay231+delay238-delay294
2
-2 delay296-2 delay301

2
+8 delay364-delay364

2M

15 129 0.046 1.018+0.101 I-delay109-delay116+delay231+2 delay238-delay275-delay294
2
-delay296-2 delay301

2
+8 delay364-delay364

2M

Figure 6.4: Pareto front of models that use the driving variables – for the LinkedIn
data.

constructed for real data. The results for all four websites are presented in Figure
6.5.

Previous Year

Previous Period

Prediction

0 5 10 15

Extra Cost H%L

Optimal Stackoverflow.com
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0 5 10 15 20 25 30

Extra Cost H%L

Optimal Imgur.com

Previous Year

Previous Period

Prediction

0.0 0.5 1.0 1.5 2.0 2.5

Extra Cost H%L

Optimal LinkedIn.com

Previous Year

Previous Period
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Optimal Tinypic.com

Figure 6.5: The extra cost percentage compared to the optimal, for hosting the four
websites as calculated by the cloud scheduling simulator.

Figure 6.5 illustrates that optimal contracts generated using GP-based load fore-
casts (bars labeled as “Prediction”) provide superior results with respect to cost
benefits compared to the actual optimal purchasing decisions for all four websites.
In three out of four cases GP-based contracts are significantly better than the con-
tracts which anticipate the same loads as in the previous period of ρ days.

For clarity reasons, the cost when using only on demand instances is not shown
in Figure 6.5, but they exceed the cost in the “optimal” reserved scenario by 52%, 72%,
51%, and 73% for Stackoverflow.com, Imgur.com, LinkedIn.com, and tinypic.com
respectively. For the LinkedIn website the on-demand costs under our assump-
tions and prices from Table 6.1 would be $117,094, the contract portfolio in the
optimal scenario would cost $77,338, and the prediction based contract for any
GP-enthusiast would cost $77,975.
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These figures show that it is beneficial for IaaS customers to take into account
reserved contracts and consider using prediction models of future load to make
the right purchases. Genetic programming proves to be able to build such load
prediction models fairly well.

Data set 1−R21−R21−R2 NRMSE HIT

Stackoverflow.com

Training Data 0.0325 0.0509 0.838

Test
Data

day 01-30 0.0073 0.0714 0.793

day 31-60 0.0334 0.0726 0.826

day 61-90 0.0331 0.0700 0.931

day 01-90 0.0254 0.0576 0.843

Imgur.com

Training Data 0.0499 0.0496 0.764

Test
Data

day 01-30 0.2350 0.1941 0.862

day 31-60 0.5354 0.3506 0.828

day 61-90 0.3680 0.6109 0.828

day 01-90 0.5258 0.4123 0.843

LinkedIn.com

Training Data 0.0573 0.0612 0.942

Test
Data

day 01-30 0.0276 0.1643 0.966

day 31-60 0.0102 0.0886 0.897

day 61-90 0.0401 0.0944 0.966

day 01-90 0.0453 0.1080 0.944

Tinypic.com

Training Data 0.0233 0.0431 0.805

Test
Data

day 01-30 0.7009 0.3407 0.724

day 31-60 0.7132 0.8235 0.621

day 61-90 0.8601 0.5604 0.862

day 01-90 0.8291 0.4756 0.741

Table 6.2: Overview of the prediction errors for the data sets. The prediction errors
are show for the training data, the test data and the first, second and third 30 day
period of the test data.

6.6 Conclusion

In this chapter we illustrated the value of data analysis for taking smarter data-driven
decisions for the application of purchasing cloud computing services. We showed
that the most successful strategy for selecting contract portfolios is based on upfront
reservation of compute instances using forecasted utilization levels obtained by
genetic programming.

We showed that symbolic regression via genetic programming (implemented
in DataModeler) routinely filters out handfuls of driving variables out of several
hundreds of candidate inputs. We also demonstrated the competitive advantage of
running multi-objective symbolic regression to evolve not only accurate but also
‘short’ highly interpretable relationships.
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For future work we will avoid the limiting decisions taken to design experiments
in this chapter – fixing the sliding time window and maximal number of lags m,
and fixing the length of the analysis window T . [113] proposed a good heuristic to
estimate the optimal values for these parameters (albeit no lagged variables were
used as potential inputs). We believe that both the analysis window as well as the
sliding time window can be evolved in the same symbolic regression process.



CHAPTER 7
Optimizing Reserved Contract

Procurement: A Case Study
This chapter is accepted for publication as “Optimizing IaaS Reserved
Contract Procurement using Load Prediction”, R. Van den Bossche, K. Van-
mechelen, J. Broeckhove, Proceedings of the 7th IEEE International Con-
ference on Cloud Computing, July 2014.

Abstract

With the increased adoption of cloud computing, new challenges have
emerged related to the cost-effective management of cloud resources. The pro-
liferation of resource properties and pricing plans has made the selection, pro-
curement and management of cloud resources a time-consuming and complex
task, which stands to benefit from automation. This contribution focuses on
the procurement decision of reserved contracts in the context of Infrastructure-
as-a-Service (IaaS) providers such as Amazon EC2. Such reserved contracts
complement pay-by-the-hour pricing models, and offer a significant reduction
in price (up to 70%) for a particular period in return for an upfront payment.
Thus, customers can reduce costs by predicting and analyzing their future needs
in terms of the number and type of server instances. We present an algorithm
that uses load prediction with automated time series forecasting based on a
Double-seasonal Holt-Winters model, in order to make cost-efficient purchas-
ing decisions among a wide range of contract types while taking into account
an organization’s current contract portfolio. We analyze its cost effectiveness
through simulation of real-world web traffic traces. Our analysis investigates
the impact of different prediction techniques on cost compared to a clairvoyant
predictor and compares the algorithm’s performance with a stationary contract
renewal approach. Our results show that the algorithm is able to significantly
reduce IaaS resource costs through automated reserved contract procurement.
Moreover, the algorithm’s computational cost makes it applicable to large-scale
real-world settings.

107
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7.1 Problem Domain

Our problem domain concerns an organization that needs to execute workloads
originating from a number of applications under its control. The organization relies
on cloud provider(s) to handle (a part of) this workload and pursues the goal of
optimizing its contract portfolio based on the current and future load generated by
these applications.

We define an organization’s load l i t
t as the aggregated number of instances of

type i t that it has running at time instant t . The internal resource usage of an
instance and the type(s) of application(s) it executes are assumed to be unknown,
as they depend on specific application-level domain knowledge. In addition, we
assume that the workloads directed to instances of different types are independent
of each other, as an application’s migration of one instance type to another is a
decision that should not be taken without domain knowledge and is out of scope of
this thesis. This assumption is aligned with the Amazon EC2 configuration wherein
a load balancer and auto-scaler collaborate to automatically scale up and down an
instance pool of a given instance type in order to process the application workload
in accordance with configured QoS constraints (e.g. response time). Consequently,
we will omit the instance type qualification in our notation in what follows.

We model service levels and tariff structure as a generalization of the on-demand
and reserved offerings of Amazon EC2. A contract type is modeled as c = 〈n,u,h, l , p〉,
with cn a unique name identifying the type, cu ≥ 0 the contract’s up-front cost, ch the
hourly rate, cl the contract’s length, and cp one of the following charging policies:

• AYG (As-You-Go) : After paying cu , the customer is charged only for the actual
usage of the instance. If an instance runs for h hours during the contract’s
lifetime, the customer is billed cu +h × ch .

• EH (Every Hour) : After paying cu , the customer is charged ch per hour during
the contract’s lifetime, even if the instance is not running.

An “on-demand” policy as offered by EC2 can be modeled as 〈OD ,0,ch ,∞, AY G〉.
A purchased reserved contract of type c is denoted by c̄ = c ∪ 〈pti me〉 with

c̄pti me the contract’s purchase time. On-demand contract types with cu = 0 are
available. Customers in possession of a set of reserved contracts Rt and a running
server count lt at time t , have the reserved instance hourly rates applied first as
these are the cheapest. If lt ≤ |Rt |, all running instances are charged at hourly rates
of the contracts in |Rt |. We thereby match instances to contracts in the order of the
cheapest hourly rate contract first. If lt > |Rt |, the additional instance(s) are billed at
the on-demand contract’s hourly rate for the given instance type.

In order to take advantage of reserved instances with an optimal purchasing plan,
long-term predictions –as long as the longest available contract length γ– have to be
made. Predictions of future load are made based on historical load data. Selecting
the required historical data length to make reliable forecasts for seasonal data is
hard, and depends on the amount of randomness in the data [114]. In this chapter,
we assume that a load history with a duration of twice the longest seasonal period
–i.e. 2 years– is available.

As we do not focus on the differences in availability, we assume that the capacity
of the cloud provider’s data centers is infinite, that boot times for instances are
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negligible, and there is no difference in instance availability between on demand
and reserved instances. We adopt the EC2 charging policy of rounding up usage of
partial hours.

7.2 Purchase Management Algorithm

The scope of our Purchase Management Algorithm (PMA) is to decide on the number
of new contracts purchased, on the type of the contract(s), and on the renewal of
existing contracts. The PMA is iterative, in that it executes on a regular basis (e.g.
daily, weekly, monthly, etc.).

PMA Inputs

The inputs of the algorithm are:

• C : A set of contract types available to the organization. The length cl of the
longest reserved contract type (contracts with cu > 0) in C is defined as γ.

• lhi st : A set {lt−2γ, lt−2γ+1, ..., lt } per instance type with t the current time and
li the number of running instances at time i .

• R : The set {Rt ,Rt+1, ...,Rt+γ} at current time t , with Ri the set of all acquired
reserved contracts for which c̄pti me + c̄l > i .

• tN P : The next time the PMA runs.

The algorithm’s aim is to find out if the procurement of an additional reserved
contract c̄ will have a positive effect on the total cost. This is the case if c̄u is less
than the total reduction in hourly costs during c̄l , achieved by purchasing c̄. In this
respect, dealing with a contract with the Every Hour charging policy is different from
dealing with an As-You-Go policy. We therefore extend each contract type c with two
additional properties: the PMA hourly cost (hpma) and the PMA up-front fee (upma).
chpma (Equation 7.1) denotes the cost of running an instance for one time unit
given that the purchase of the contract has already been made. cupma (Equation 7.2)
represents the minimal cost due when purchasing the reserved contract, regardless
of the number of hours the associated instance will be running.

chpma
=

{
ch : cp = AY G

0 : cp = E H
(7.1)

cupma =
{

cu : cp = AY G

cu + cl ch : cp = E H
(7.2)

Contract Expiry

In order to decide whether or not to buy or renew reserved contracts at the current
time tcur , we need to determine when and for how long the already purchased
contracts are in force. Therefore, the algorithm constructs a current contract state
(CCS) data structure based on R, that stores for every time step t ∈ [tcur , tcur +γ] a
sorted list of c̄hpma for every c̄ ∈ Rt . This allows for an efficient calculation of the cost
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of running n instances at a time t by summation of the first n elements in the list
for time step t . If the length of the list is smaller than n, it is padded with additional
on-demand hourly contract fees prior to the summation.

If only the currently purchased contracts are taken into account when building
the CCS at time tcur , the algorithm neglects the potential to renew contracts in the
future. If the predicted load remains constant or increases, this causes the calculated
utilization over a potential contract’s length to increase, as the non-overlapping
period seems uncovered by a reserved contract. This in turn means that a cost-
based algorithm –such as the one presented in this chapter– will tend towards
buying contracts with a higher optimal utilization range and corresponding higher
price.

Therefore, we introduce two CCS contract views:

• Finite contracts (FC): In this view, contracts are added to the CCS only in the
time steps between t ∈ [tcur , c̄pti me + c̄l ]

• Infinite contracts (IC): Here, contracts in the distant future are assumed to
be renewed automatically, and the consideration of whether the renewal of a
contract is appropriate will only be made in the iteration of the algorithm just
before the expiration of the contract. In the construction of the CCS, contracts
with c̄pti me + c̄l > tN P are in this view treated as if c̄l =∞, and are added to
every list in the CCS. The c̄hpma value of reserved contracts expiring before tN P

are added only to the list of each time step t ∈ [tcur , c̄pti me + c̄l ].

Figure 7.1 illustrates this approach with |Rtcur | = 2. Contract 1 has c̄p = E H ,
and therefore c̄hpma = 0. It ends before tN P . Contract 2 has c̄p = AY G with
c̄hpma = 0.034, and ends after tN P .

RC1

t
cur

t
NP

RC2

t
cur 

+ γ

Current contract state

0.00

0.034

0.034 0.034 0.034 0.034 0.034 0.034

Figure 7.1: Example of a Current contract state (CCS) with “Infinite Contracts” view.

Operation

In each iteration, at time step tcur , the algorithm uses a prediction technique to
predict the future load l̂ = {l̂tcur +1, l̂tcur +2, ..., l̂tcur +γ}, based on lhi st . Then, l̂ is used
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to evaluate whether augmenting Rh with an additional reserved contract is cost-
effective. This is done by first calculating the expected cost, based on l̂ , given that
Rh remains unaltered. Subsequently, for every c ∈ C , the total expected cost is
calculated when adding a new contract of type c to Rh for each h ∈ [tcur , tcur + cl ].
The expected costs for adding a contract c are calculated in two ways:

• Total cost For each time step t ∈ [tcur , tcur +γ], the aggregated cost per time
step is calculated using the CCS and the predicted load l̂t by taking the sum of
the first l̂t elements of the ordered list at time t in the CCS.

• Next Purchase Time For each time step t ∈ [tcur , tN P ], the aggregated cost is
calculated similar to the Total cost, but instead of adding cupma to the subtotal,

it is being prorated by adding
cupma ×(tN P−tcur )

cl
.

This results in a set of 2·|C | aggregated cost values, two for each reserved contract
and two for the scenario in which excess demand is covered with the on-demand
contract. At this point in the algorithm, two decisions are taken:

1. Is it cost-beneficial to add the most cost-effective reserved contract, taking
into account the resulting costs for the period [tcur , tcur +γ]?

2. Is it cost-beneficial to add that reserved contract when considering only pe-
riod [tcur , tN P ]?

For making Decision 1, the total cost when adding the most cost-effective con-
tract c ∈C is compared to the status quo scenario. If a (long-term) cost reduction is
achieved when purchasing c , the impact of the purchase is evaluated for the shorter-
term in [tcur , tN P ]. This two-stage decision process avoid premature purchases; if c
does not yield an expected cost reduction for the short-term, it is better to postpone
the acquisition, thereby increasing the accuracy of the load predictions.

If acquiring c yields a cost gain both short- and long-term, it is added to the list
of purchase suggestions and added to Rh for every h ∈ [tcur , tcur +cl ]. Next, the CCS
is recalculated and the algorithm iterates to evaluate whether additional contract
purchases lead to further cost reductions. If the answer to Decision 1 or Decision 2
is negative, the PMA finishes and returns the list of purchase suggestions.

7.3 Experimental Setup

In order to evaluate the potential for cost savings with the PMA, a Python-based
simulator is used to simulate the performance of the algorithm for a specified
workload trace. The simulator executes a scenario in which contracts are bought
according to the suggestions made by the PMA, instances are spun up and down
based on the actual load at a given time (lt ), and the total cost for the scenario
is calculated based on the contract portfolio available at every moment in time
between the start and end of the simulation.

In a simulated environment, it is important to select a setting that models the
real-world as closely as possible. This experimental setup focuses on the deployment
of real-world web application workload traces on a cloud provider which resembles
Amazon EC2.
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Workload

To evaluate the PMA, we require a number of real-world load traces with diverse
characteristics; with and without trends and seasonal behavior, and of different
magnitude with respect to server load. The traces have to be of significant length as
a load history of two years is required.

Unfortunately, long-term cloud usage traces are unavailable, as they are not
published by cloud providers or organizations. Some cluster and grid job traces can
be found at the Parallel Workloads Archive (PWA) [115], the Grid Workloads Archive
(GWA) [82] and the Google Cluster Trace (GTC) [116]. These job traces however do
not fit our needs, as they are relatively short –only three traces from the PWA are
longer than 3 years– and their load is upper bounded by the available resources in
the cluster or grid.

We therefore rely on data provided by Quantcast1, an advertising company that
measures the audience of a large number of websites. Audience reports, containing
a historical view of the number of visits and page views per day, are freely available
on their website.

Our experiments utilize these page view reports to build a server instance history
that serves as input for the simulator. From the available reports, we selected four
well-known web applications with different load characteristics:

1. linkedin.com: The page view data shows a strong seasonal pattern with drops
in the weekends and holidays and a robust growth until the beginning of 2012,
which stagnates in the last 2 years.

2. stackoverflow.com: The page view data shows robust growth with a lower
number of views in the weekends and during the Christmas period.

3. time.com: The data for this website shows a relatively flat trend with multiple
positive outliers.

4. tinypic.com: The page view data shows rapid decline with no strong seasonal
pattern.

Each of these page view reports is converted into a server load pattern assuming
a linear relation between the number of views, HTTP requests and server instances
required to handle those requests. The page view reports contain daily aggregated
data. Since the addition of artificial day-night patterns would reduce the significance
of the real-world data without adding value to the evaluation of the algorithm, we as-
sume the load is constant through the day. This does not impact our results because
of the different timescales involved. We further assume that the web application
is deployed on instances of a single type and adopt the m1.xlarge instance type,
which is commonly used for web servers.

Given an average number of HTTP requests per page view (RPP ) and a num-
ber of requests a single m1.xlarge server can handle (RPS), the number of page
views pt at time t can be converted to a number of server instances lt following
Equation 7.3.

1http://www.quantcast.com

http://www.quantcast.com
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lt = pt ·RPP

RPS
(7.3)

According to [117], an average page view results in an RPP value of 44.56 GET
requests. The number of requests per second (RPS) a server instance is able to
handle is subject to a number of application-specific parameters, which are hard to
determine without application knowledge or benchmarking abilities. For example,
the mix of static versus dynamic content, the number of database requests and the
caching techniques used by an application are unknown. As this number has no
influence on our comparative results and only affects the absolute cost figures, we
assume that for one m1.xlarge server, RPS = 50. The resulting load patterns used
for our evaluation are presented in Figure 7.2.

In all experiments, the algorithm is executed weekly in a period between two
years after the beginning of each trace and one year before the end of the trace.

Contract types

The on-demand prices and reserved contracts for an EC2 m1.xlarge instance are
configured according to their actual prices. In the evaluation of our algorithm,
we assume that only reserved contracts with a duration of one year are available,
because of the unavailability of real-world trace data available for a longer period.
We also believe that making predictions for a period of three years would likely call
for additional domain and business-specific knowledge, as well as manual time
series modeling instead of relying solely on automatic forecasting methods; an
avenue for future work. The set of reserved contract types C used in the evaluation
can be found in Table 7.1.

c̄n c̄u c̄h c̄l c̄p

Heavy $1352 $0.112 1 year EH

Medium $1108 $0.168 1 year AYG

Light $486 $0.271 1 year AYG

On Demand $0.0 $0.480 1 year AYG

Table 7.1: Available contract types for m1.xlarge.

Scenario setup

The load traces’ non-zero starting point require an initial contract portfolio (ICP).
This portfolio is a cost-optimized set of contracts: 7 days before the start of the
simulation, the optimal set of reserved contracts for the last 90 days is calculated. We
distribute the start times of the contracts in the ICP uniformly between 7 days and
371 days prior to the simulation’s start time, in order to avoid that all contracts end
at the same time. This would overemphasize the importance of the load prediction
and procurement choices at that particular time, skewing the results.
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Simulation period

(a) Linkedin.com
Simulation period

(b) Stackoverflow.com
Simulation period

(c) Time.com
Simulation period

(d) Tinypic.com

Figure 7.2: The server instance traces
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Prediction techniques

The added value of the prediction techniques in the PMA depends on their ability
to capture the general trend of the organization’s load as well as their ability to
incorporate seasonal behavior, such as weekly or yearly recurring patterns. This
allows for a correct estimation of the number of required instances, and its increase
or decrease over time. Predicting the size and frequency of the load fluctuations
on the other hand, is required to optimize contract choices with respect to the
utilization level of the contract (cfr. Table 7.1).

The load patterns are a typical example of time series [118, 119]. Time series
analysis and forecasting deals with the use of statistical models to forecast values of a
future time based on the values observed in the past. In using time series models for
prediction purposes, the model selection, parameter estimation and forecasting are
complex and time-consuming. However, progress has been made in the accuracy of
automated forecasting methods [120, 121, 122].

In order to evaluate the performance of PMA with both perfect load predictions
and with different prediction techniques, the following predictors are compared in
Section 7.4:

1. Full Knowledge (FK): This predictor has access to the real load pattern. The
outcome of PMA with this predictor serves as a benchmark.

2. Previous Period (PP): Extrapolates the most recent period of length δ to the
predicted values by simply ‘repeating’ the period. If δ is chosen wisely, the
resulting load pattern includes simple seasonal patterns, such as a weekly
or monthly patterns. This technique corresponds to the manual approach
in which someone calculates the past utilization in period δ, and purchases
contracts accordingly. In our evaluation, we use the PP predictor with δ equal
to 7 days and 30 days.

3. Double-Seasonal Holt-Winters (DSHW): Taylor’s DSHW method [123] de-
composes the time series into a trend and two seasons, and uses exponential
smoothing [124, 119] to construct the forecast. We use an automatic forecast-
ing implementation of DSHW available in the Forecast package for R [125, 120].
We configure the method to use both weekly and yearly seasonality.

Cost calculation

In order to reliably compare the cost-effectiveness of different scenarios, the aggre-
gated cost has to be carefully calculated, given the limited timespan of the simulation.
If the PMA acquires a new reserved contract on the last day of the simulation for
example, attributing the full up-front cost to the scenario’s total cost would result
in a negative bias, as the purchase only becomes profitable in the time period after
the end of the simulation. Consequently, we introduce a cost calculation method
that spreads the up-front cost for each purchase over the whole period in which it is
valid. Therefore, for all contracts in which the period between c̄pti me and c̄pti me + c̄l

does not overlap entirely with the simulation period, the up-front cost c̄u and, in
case of c̄p = E H , the hourly rates c̄h are only accounted for in proportion to the time
in which the contract period and simulation period overlap.
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7.4 Results

We discuss the outcome of two experiments. First, for each load trace, the cost level
achieved by PMA is compared to the cost incurred when simply renewing the con-
tracts in the ICP as they expire. We use this Renewal Only (RO) as a reference point
for our evaluation. We first configure the PMA with the Full Knowledge predictor,
so it operates under “best case” conditions, and compare the results for both a CCS
with a “finite contract” (PMA+FC) and CCS with a “infinite contract” (PMA+IC) view.
Figure 7.3 shows the cost reduction of PMA relative to the cost of the RO policy.
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Figure 7.3: Cost reduction of PMA with Full Knowledge predictor, relative to the cost
of RO.

In each of the load traces, PMA+IC outperforms RO in terms of cost. In com-
parison with the PMA+FC algorithm, PMA+IC performs better in all cases except
for the tinypic.com trace. The cost reduction with respect to RO is the smallest
(2.02%) in the time.com case, which is to be expected given its stationary charac-
ter. Here, PMA+IC outperforms PMA+FC with 6.9% by assuming the renewal of
existing contracts. At both linkedin.com and stackoverflow.com, PMA+IC achieves a
significant cost reduction (12.6% and 14.9%) here compared to RO, and also does
slightly better (+2.6% and +1.5%) than PMA+FC. In these patterns, which exhibit
a sustained growth with a strong seasonal pattern, the potential cost reduction is
substantial, and PMA+IC manages to compose a better contract portfolio in terms
of purchase time and utilization level because of the delayed renewal decision for
existing contracts. For tinypic.com, PMA+FC scores better than PMA+IC in terms
of cost. The sharp decline in the number of server instances causes this; a contract
state view in which contracts run infinitely causes the algorithm to underbuy: too
few contracts and contracts with a smaller optimal utilization are bought. Compared
to RO, PMA+FC obtains a significant cost reduction of 56.9%, which is due to the
utilization decrease. The difference between both views for the different workload
traces shows the need for a hybrid technique that automatically selects the best
view depending on the current load trend. The development thereof is left for future
work.

The difference in optimization potential and the impact of prediction errors
between workloads with a rising and falling trend, appears to be substantial. This is
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inherent to the pricing structure of reserved contracts and our iterative approach:
an increasing load implies the purchase of additional contracts, a decision that
can be made at every iteration of the algorithm. In an increasing trend, or when
the predicted load is below the real server load, the excess demand can be covered
with on-demand instances for a limited surplus in cost. However, when the trend
decreases or the server load is overestimated, the up-front commitments of reserved
contracts offset the gains from their lower hourly rates.

The second experiment compares the three prediction techniques discussed in
Subsection 7.3. In Figure 7.4, the cost when using PMA with the Previous Period (7
and 30 days) and Double-Seasonal Holt-Winters prediction techniques is shown
relative to the cost with the Full Knowledge predictor, for the various workload traces.
The CCS in the algorithm is configured with the best performing view for each of the
traces, which is FC for tinypic.com and IC for all others. Larger values represent a
higher cost, relative to the cost of the full knowledge scenario at 0%.
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Figure 7.4: Cost of PMA with different prediction techniques, relative to that of PMA
with Full Knowledge predictor.

In both the linkedin.com and stackoverflow.com cases, the three prediction tech-
niques exhibit a cost effectiveness close (< 1%) to that of the Full Knowledge scenario.
The small cost difference in favor of the PP techniques in stackoverflow.com is caused
by one overprediction made by the DSHW technique at the end of the simulation
period, which resulted in the purchase of a number of unused light instances. In the
time.com case, it is remarkable that –compared to the DSHW predictor– the 7-day
PP predictor performs significantly worse. There is a large number of spikes in that
load trace and the PP technique erroneously assumes that these will reoccur. The
statistical Holt-Winters approach on the other hand distinguishes between one-time
and seasonal spikes, and considers the former as noise. Finally, in the tinypic.com
trace, DSHW also outperforms the PP prediction techniques but still remains 2.19%
more expensive than the Full Knowledge case.

We executed the experiments on a machine with four 12-core AMD Opteron
6234 processors and 196 GB of memory. In the linkedin.com case, the duration
for one run of the purchase management algorithm has a 95% confidence interval
between 4.97 and 106.26 seconds of CPU time, with an average runtime of 28.96
seconds. Calculating the predictions with the DSHW technique takes on average
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23.57 seconds, with a 95% confidence interval of [19.48,28.32]. These numbers show
that the PMA could be executed regularly and on a large scale, and its overhead does
not outweigh the potential cost savings.

The reported results depend on the start times of the contracts in the initial
contract portfolio, which are generated according to a uniform distribution. In order
to evaluate the significance of the presented results, we ran 100 iterations with
a different random seed for every scenario with the linkedin.com workload trace.
Relative standard deviations for the calculated cost of all prediction techniques were
below 0.11%, the relative standard deviations of the cost relative to the stationary
scenario remained below 0.76%.

7.5 Conclusion

This chapter tackles the problem of the selection, procurement and management of
reserved IaaS contracts by introducing a purchase management algorithm. The algo-
rithm iteratively produces contract procurement suggestions based on server load
predictions while taking into account a current contract portfolio. Using simulation,
we evaluated the cost reduction the algorithm achieves compared to a stationary
approach. We further quantified the cost differences between (a) full knowledge
predictions, (b) an automated forecasting approach using a Double-seasonal Holt-
Winters model and (c) a reactive approach that extrapolates past observations. Our
results show that the algorithm has a significant potential for cost reduction when
provided with good predictions and the right renewal approach, which is different
for load with a rising or falling trend. The results also show that the DSHW method is
a promising prediction technique when used in combination with the procurement
algorithm. The next chapter covers the automated selection of a renewal approach
and a more comprehensive statistical evaluation using a large number of workload
traces.



CHAPTER 8
Reserved Contract

Procurement Heuristic with
Load Prediction

This chapter is under review as “IaaS Reserved Contract Procurement
Optimisation with Load Prediction” for publication in Future Generation
Computer Systems, R. Van den Bossche, K. Vanmechelen, J. Broeckhove.

Abstract

With the increased adoption of cloud computing, new challenges have
emerged related to the cost-effective management of cloud resources. The
proliferation of resource properties and pricing plans has made the selection,
procurement and management of cloud resources a time-consuming and com-
plex task, which stands to benefit from automation. This chapter focuses on
the procurement decision of reserved contracts in the context of Infrastructure-
as-a-Service (IaaS) providers such as Amazon EC2. Such reserved contracts
complement pay-per-hour pricing models, offering a significant price reduction
in exchange for an upfront payment. This chapter evaluates whether customers
can reduce costs by predicting and analyzing their future needs in terms of the
number of server instances. We present an algorithm that uses load prediction
to make cost-efficient purchasing decisions, and evaluate whether the use of
automated time series forecasting proves useful in this context. The algorithm
takes into account a wide range of contract types as well as an organization’s
contract portfolio, and load predictors based on Holt-Winters and ARIMA mod-
els are used. We analyze its cost effectiveness through simulation of an extensive
amount of real-world web traffic traces. Results show that the algorithm is able
to significantly reduce IaaS resource costs through automated reserved contract
procurement, but that the use of advanced prediction techniques only proves
beneficial in specific cases.
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8.1 Problem Domain

Our problem domain concerns an organization that needs to execute workloads
originating from a number of applications under its control. The organization relies
on cloud provider(s) to handle (a part of) this workload and pursues the goal of
optimizing its contract portfolio based on the current and future load generated by
these applications.

We define an organization’s load l i t
t as the aggregated number of instances

of type i t running at time instant t . The internal resource usage of an instance
and the type(s) of application(s) it executes are assumed to be unknown, as they
depend on specific application-level domain knowledge. In addition, we assume
that the workloads directed to instances of different types are independent, as an
application’s migration of one instance type to another is a decision that should
not be taken without domain knowledge and is out of scope of this thesis. This
assumption is aligned with the Amazon EC2 configuration wherein a load balancer
and auto-scaler collaborate to automatically scale up and down an instance pool of
a given instance type in order to process the application workload in accordance
with configured QoS constraints (e.g. response time). Consequently, we will omit
the instance type qualification in our notation in what follows.

We model service levels and rates as a generalization of the on-demand and
reserved offerings of Amazon EC2. A contract type is modeled as c = 〈n,u,h, l , p〉,
with cn a unique name identifying the type, cu ≥ 0 the contract’s up-front cost, ch the
hourly rate, cl the contract’s length, and cp one of the following charging policies:

• AYG (As-You-Go) : After paying cu , the customer is charged only for the actual
usage of the instance. If an instance runs for h hours during the contract’s
lifetime, the customer is billed cu +h × ch .

• EH (Every Hour) : After paying cu , the customer is charged ch per hour during
the contract’s lifetime, even if the instance is not running.

An “on-demand” plan can be expressed as od = 〈OD ,0,h,∞, AY G〉. We assume
that an on-demand plan is available for each instance type. A purchased reserved
contract of type c is denoted by c̄ = c ∪〈pti me〉 with c̄pti me the contract’s purchase
time. Customers in possession of a set of reserved contracts R and a running server
count lt at time t , have the reserved instance hourly rates applied first as these
are the cheapest. If lt ≤ |R|, all running instances are charged at hourly rates of
the contracts in |R|. We thereby match instances to contracts in the order of the
cheapest hourly rate contract first. If lt > |R|, the additional instance(s) are billed
at the on-demand contract’s hourly rate odh . This approach is similar to the EC2
billing process.

In order to optimize the acquisition of reserved instances, long-term predictions
–as long as the longest available contract length γ– have to be made. We predict
future load using historical load data. Determining the history size required to
make reliable forecasts for seasonal data is hard, and depends on the amount of
randomness in the data [114]. We assume that a load history with a duration of twice
the longest seasonal period –i.e. 2 years– is available.

As we do not focus on the differences in availability, we assume that the capacity
of the cloud provider’s data centers is infinite, that boot times for instances are
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negligible, and there is no difference in instance availability between on-demand
and reserved instances. We adopt the EC2 charging policy of rounding up usage of
partial hours.

8.2 Purchase Management Algorithm

The scope of our Purchase Management Algorithm (PMA) is to decide on the number
of new contracts purchased, on the type of the contract(s), and on the renewal of
existing contracts. The PMA is iterative, in that it executes on a regular basis (e.g.
daily, weekly, monthly, etc.).

PMA Inputs

The inputs of the algorithm for a given instance type are:

• C : A set of available reserved contract types. The length cl of the longest
contract type in C is defined as γ.

• od : The on-demand contract.

• lhi st : A set {lt−2γ, lt−2γ+1, ..., lt } with t the current time and li the number of
running instances at time i .

• R : The set of all acquired reserved contracts.

• tN P : The next time the PMA runs.

• PLP : The period in time (purchase lookahead period) for which possible
purchases are considered relevant.

Operation

In each iteration, at time step tcur , the algorithm uses a prediction technique to
predict the future load l̂ = {l̂tcur +1, l̂tcur +2, ..., l̂tcur +γ}, based on lhi st . Then, l̂ is
used to evaluate whether augmenting R with an additional reserved contract is
cost-effective. For every c ∈ C ∪ {od}, the total expected cost is calculated when
adding c to the current set of purchased contracts R. If c is od , the calculated cost
corresponds to the scenario in which no additional contracts are purchased. The
expected costs for adding a contract c are calculated in two ways:

• Total cost The total cost is calculated by adding the upfront cost of c with the
aggregated cost per time step (for each time step t ∈ [tcur , tcur +γ]) taking
R ∪ c as the set of available contracts.

Costtot al (tcur ,R, lhi st ,c,od) = cu

+
tcur +γ∑
t=tcur

CostPer T i mestep(t ,R ∪ {c}, l̂ ,od) (8.1)
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• Purchase Lookahead Period The cost for the period up to PLP is calculated similar
to the total cost, except for the upfront cost. Instead of adding cu to the subtotal, it is
being prorated with regard to the length of PLP.

CostPLP (tcur ,R, lhi st ,c,od) = PLP

cl
· cu

+
tcur +PLP∑

t=tcur

CostPer T i mestep(t ,R ∪ {c}, l̂ ,od) (8.2)

The details of the CostPerTimestep-function are explained in Section 8.2.
These cost calculations result in a set of 2·(|C |+1) aggregated cost values, two for

each reserved contract and two for the scenario in which excess demand is covered
with on-demand instances. At this point in the algorithm, two decisions are taken:

1. Is it cost-beneficial to add the most cost-effective reserved contract, taking
into account the resulting costs for the period [tcur , tcur +γ]?

2. Is it cost-beneficial to add that reserved contract when considering only pe-
riod [tcur , tcur +PLP ]?

For making Decision 1, the total cost when adding the most cost-effective con-
tract c ∈C is compared to the status quo scenario. If a (long-term) cost reduction
is achieved when purchasing c, the impact of the purchase is evaluated for the
shorter-term in [tcur , tcur +PLP ]. This two-stage decision process avoids prema-
ture purchases; if c does not yield an expected cost reduction for the short-term, it
is better to postpone the acquisition, thereby increasing the accuracy of the load
predictions.

If acquiring c yields a cost gain both short- and long-term, the corresponding
contract c̄ with c̄pti me = tcur is added to the set of purchase suggestions and to R.
Next, the algorithm iterates to evaluate whether additional contract purchases lead
to further cost reductions. If the answer to Decision 1 or Decision 2 is negative, the
PMA finishes and returns the set of purchase suggestions. Note that it is possible to
optimize compute times of the algorithm by skipping the Costtot al calculations if
the most cost-beneficial plan up to PLP is od , because the answer to Decision 2 is
negative then anyway.

Cost Calculation per time step

When calculating the cost per time step, dealing with a contract with the Every Hour
charging policy is different from dealing with an As-You-Go policy. With the Every
Hour policy, the purchase decision comprises a commitment in terms of cost of both
the upfront fee and the hourly fee for every hour in the contract’s period. In our cost
calculations, we update the values of ch and cu of contracts with cp = E H to reflect
the monetary commitment the purchase decision includes. For these contracts, ch

is set to 0, as running an instance is free once the purchase is made, and cu is set to
cu + cl · ch , which represents the minimal cost due when purchasing the reserved
contract, regardless of its utilization.

In order to calculate the CostPer T i mestep(t ,R, l̂ ,od) at time t , we need to
determine which of the already purchased contracts are in force. Therefore, the
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algorithm turns the set of contracts c̄ ∈ R that are in effect at time t into a sequence
sorted by the contracts’ hourly cost c̄h . This current contract state (CC St ) is defined
in Equations 8.3 and 8.4. This allows for an efficient calculation of the cost of
running l̂t instances at time t by summation of the first l̂t elements in the sequence.
If |CC St | < l̂t , the sum is augmented with l̂t −|CC St | on-demand hourly contract
fees odh prior to the summation.

CC St = 〈c̄h | ∀ c̄ ∈ R : c̄pti me ≤ t < c̄pti me + c̄l 〉 (8.3)

∀i : CC St (i ) ≤CC St (i +1) (8.4)

CostPer T i mestep(t ,R, l̂ ,od) =


l̂t∑

i=1
CC St (i ) : |CC St | ≥ l̂t

odh · (l̂t −|CC St |)+∑
CC St : |CC St | < l̂t

(8.5)

The algorithm presented in Section 8.2 greedily takes purchase decisions at time
tcur , thereby neglecting the renewal of contracts ending in the future. This ensures
an efficient heuristic for an otherwise difficult and computationally hard packing
problem, but may result in suboptimal decisions and, consequently, a higher overall
cost. An example of such a suboptimal decision is illustrated in Figure 8.1. A single
contract (in blue) is in effect at time tcur , but expires before tcur +γ. If a reserved
contract with an optimal utilization level greater than 50% existed, the –unmodified–
algorithm would suggest to purchase an additional contract to cover the grey load
(which is not currently covered by any reserved contract). It however is a better idea
to renew the existing blue contract, and use an on-demand instance to handle the
short-term load spike.

t
cur

t
cur 

+ γ

Load

PLP

t
NP

Figure 8.1: Illustration of renewal problem

In order to deal with this shortcoming, we can assume that contracts in the
distant future are renewed automatically. In the construction of CC St (Equation 8.3),
contracts with c̄pti me + c̄l > tN P are treated as if c̄l =∞, and are added to every CC St .
This way, the decision to renew a contract is only made in the iteration of the
algorithm just before the contract’s expiration. Figure 8.2 illustrates this approach
with two contracts. Contract 1 has c̄p = E H , and therefore c̄h = 0. It ends before
tN P . Contract 2 has c̄p = AY G with c̄h = 0.034, and ends after tN P .

Intuitively, this “Infinite Contract” policy solves the aforementioned problem
and will likely be beneficial when the predicted load remains constant or increases.
However, in the previous chapter (Chapter 7) we presented a simple version of this
algorithm and illustrated its operation using a case study. Our results showed that
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Figure 8.2: Example of the “Infinite Contracts” policy.

the “Infinite Contract” policy is not the most cost-beneficial method in case of a
declining load. In fact, the view in which contracts run infinitely makes the algorithm
overestimate the amount of available contracts in the future. As a result, when the
load decreases below the number of active contracts, some of these contracts will
appear unused for the next period, and the algorithm will consequently buy or renew
fewer contracts than necessary.

We tackle this problem with the addition of two additional contract renewal
policies (CRPs), leading to four CRPs:

• Finite Contract (FC): In this view, contracts are added to the CC St only in the
time steps between t ∈ [tcur , c̄pti me + c̄l ], as formulated in Equations 8.3, 8.4
and 8.5.

• Infinite Contract (IC): Here, contracts expiring after tN P are assumed to renew
automatically, and have a duration c̄l =∞. The c̄h value of reserved contracts
expiring before tN P are added only to CC St each time step t ∈ [tcur , c̄pti me+c̄l ].
This corresponds to the scenario illustrated in Figure 8.2.

• Ensemble: Switch between the FC and IC policy depending on the slope of
the predicted load l̂ . If the least squares linear fit to l̂ has a slope ≥ 0, the IC
policy is applied. If not, FC is selected.

• Two-pass: Instead of approximating the best renewal behavior by selecting a
renewal approach based on the general slope of the future load and treating
all contracts in the same way, the renewal of existing contracts is done for each
contract individually in a separate step. At the beginning of each iteration of
the PMA, the CCS are constructed by completing the following three steps:

1. Add all existing contracts to the CCS in the time steps between t ∈ [tcur ,
c̄pti me + c̄l ], identical to the FC policy.

2. Iterate through the existing contracts in ascending order of end time
(c̄pti me + c̄l ), and decide for each of these contracts whether to renew

them or not, based on the predicted load l̂ . A contract c̄ is renewed, and
thus added to every CCS between c̄pti me + c̄l and min(c̄pti me +2c̄l , tcur +
γ), if the cost of running with the existing contracts in the CCS is higher
than the cost of running if the current contract is renewed. The upfront
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cost included in the renewal cost is prorated to the period up to γ, as
expressed in Equation 8.6:

Costr enew al (c̄,R, lhi st ,od) = γ− c̄pti me − c̄l

c̄l
· c̄u

+
min(c̄pti me+2c̄l ,tcur +γ)∑

t=c̄pti me+c̄l

CostPer T i mestep(t ,R ∪ {c}, l̂ ,od) (8.6)

3. The renewed contracts expiring before tN P are removed again from
the CCS, to allow the algorithm to exchange the original contract for
a contract of a different type, if necessary.

8.3 Workload Prediction

The added value of a prediction depends on whether it is able to capture the general
trend of the organization’s load, as well as its ability to incorporate seasonal behavior,
such as weekly or yearly recurring patterns. The trend is important to determine the
order of magnitude of the number of running instances, as well as its likely increase
or decrease over time. The size and the frequency of the fluctuations, on the other
hand, is important to differentiate between reserved contracts with a higher or lower
optimal utilization level.

A sequence of load observations over time is a typical example of a time series
[118]. Time series analysis and forecasting comprises the use of statistical models
to forecast values in the future based on past observations. In using time series
models for prediction purposes, the model selection, parameter estimation and
forecasting are complex and time-consuming. However, progress has been made
in the accuracy of automated forecasting methods [120, 121, 122]. In addition
to commercial products1, implementations for automated model and parameter
selection for ARIMA and various exponential smoothing methods are available in
the Forecast package for R [125, 120]. These methods are used in this chapter, and
are discussed here.

ARIMA

The auto-regressive integrated moving average model (ARIMA) is a generalization
of the auto-regressive moving average (ARMA) model [126, 118], in which the data
is differenced first in order to isolate eventual non-stationarity in the data. The
ARMA model itself consists of two parts, an autoregressive (AR) part and a moving
average (MA) part. The ARIMA model is referred to as ARI M A(p,d , q), where p,
d and q are positive integers that refer to the order of the auto-regressive (AR),
integrated (I) and moving average (MA) parts of the model. The general ARIMA
model is generally unable to cope with seasonal behavior. However, seasonal ARIMA
models that incorporate additional seasonal terms into the non-seasonal ARIMA
models exist. A seasonal ARIMA model is written as ARI M A(p,d , q)(P ,D,Q)m , in

1Forecast Pro and AutoBox, among others.
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which m represents the number of periods per season. The determination of the
parameters is usually found to be difficult and subjective. The auto.arima function
in the R Forecast package can automatically select the best ARIMA model for a given
time series, based on a number of tests as described in [120].

Exponential Smoothing

In its simplest form, an exponential smoothing model uses a weighted average with
exponentially decreasing weights in order to forecast the next value. In order to
predict more than one step ahead and take into account a trend, a slope component
is added which itself is updated by exponential smoothing [124, 119]. This is known
as Holt’s method. This method can be extended to time series with seasonality, in
which case the method is known as the Holt-Winters method.

In [127, 128], an approach for automated forecasting is presented based on an
extended range of exponential smoothing methods, with and without seasonality.
The automatic forecasting strategy, which is used as one of the forecasting methods
in this chapter, is implemented as ets in the R Forecast package.

DSHW

It is plausible that a data set contains more than one seasonal component, when
for example both weekly and monthly recurring patterns are present. An extension
of the Holt-Winters method adds a second seasonal component to the exponential
smoothing model, as described in [123]. This method is referred to as Double-
seasonal Holt-Winters (DSHW), and is implemented in the R Forecast package.

Robust DSHW

Exponential smoothing and Holt-Winters methods are known to be sensitive to
outliers in the input data. According to [129], outliers affect the forecasting methods
because they are part of the past series of values and thus affect the smoothed values.
The selection of the input parameters –which regulate the degree of smoothing–
is impacted by the outliers as well. Gelper et al. [129] present a robust version of
the Holt-Winters smoothing algorithm, in which the input values yt are replaced
in advance by a cleaned version y∗

t . The cleaned version is obtained by replacing
unexpectedly high or low values in the series by a boundary value, based on an
estimated scale σ̂t and a positive constant k. In practice, a value is considered to be
an outlier if the absolute difference between the observed value yt and its predicted
value ŷt |t−1 at t−1 is larger than k ·σ̂t . This is done by applying the Huberψ function
outlined in Equation 8.7 on the normalized error, as illustrated in Equation 8.8.

ψ(x) =
{

x if |x| < k

si g n(x)k otherwise.
(8.7)

y∗t =ψ

(
yt − ŷt |t−1

σ̂t

)
σ̂t + ŷt |t−1 (8.8)

At the time of writing, an implementation of robust exponential smoothing is not
available in the R forecast package. In order to incorporate a robust prediction model
in our contract procurement evaluation, we implement robust double-seasonal
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Holt-Winters model using the approach presented in [129]. As suggested in that
contribution, the value of k is fixed at 2. The estimated scale is calculated using the
Median Absolute Deviation (MAD, Equation 8.9) of the errors.

σ̂t = MAD
1≤s≤t

(rs ) = median
1≤s≤t

(|rs −median
1≤s≤t

(rs )|). (8.9)

Previous Period

Instead of using mathematical models to predict the future load based on the past
load pattern, a simple approach could be to adapt the reserved contract portfolio
reactively, based on the load in the previous period. The previous period method
extrapolates the most recent period of δ over a period of γ by simply repeating the
data points. If δ is chosen wisely, the resulting load pattern includes simple seasonal
patterns. When δ= 7 days, for example, difference in load between week days and
weekends would be permeated over γ, and would thus be taken into account when
estimating contract utilization levels.

This technique corresponds to the manual approach in which one calculates
the past utilization in period δ, and purchases contracts accordingly. This is a more
conservative approach, appropriate to quantify the difference between a proactive
prediction-based method and a reactive method based on past observations.

8.4 Experiment Setup

In order to evaluate the impact of the presented algorithm, simulation-based ex-
periments are performed. These focus on the deployment of web workloads that
correspond to real-world load traces, on Amazon EC2.

Simulation

We use a simulation environment in order to evaluate the impact the algorithm
presented in this chapter in combination with each of the Contract Renewal Poli-
cies (CRP) and each of the automated forecasting models. This allows a thorough
evaluation for different parameters and workloads.

Our Python-based simulator executes scenarios in which contracts are bought
according to the suggestions made by the purchase algorithm, server instances are
allocated based on a server load trace and the total cost for running this scenario
is calculated based on the contract portfolio available at every moment in time
between the start date and end date of the simulation.

Prediction

In order to evaluate the cost impact of different prediction techniques, a clairvoyant
“Full Knowledge” (FK) predictor is used as a point of reference. This predictor uses
the simulation’s workload traces to return completely accurate predictions. The real
prediction techniques are configured automatically by the software used, except for
the seasonal periods: predictors with a single seasonal period are configured with a
weekly seasonality, the double-seasonal models use a seasonality of 1 week and 1
year.



128 CHAPTER 8. RESERVED CONTRACT PROCUREMENT HEURISTIC

Workload

To evaluate PMA, we require a number of real-world load traces with diverse charac-
teristics; with and without trends and seasonal behavior, and of different magnitude
with respect to server load. The traces have to be of significant length as a load
history of two years is required. Unfortunately, long-term cloud usage traces are
hard to find, as they are not published by cloud providers or organizations. Some
cluster and grid job traces are available at the Parallel Workloads Archive (PWA) [115],
the Grid Workloads Archive (GWA) [82] and the Google Cluster Trace (GTC) [116].
These job traces do not fit our needs, because they are relatively short –only three
traces from the PWA are longer than 3 years– or they are upwardly limited by the
available resources in the cluster or grid.

The best suited traces for our purpose can be found at Quantcast2, an advertising
company that tracks page views on a large number of websites. These page view
reports are available for free on their website. Our experiments use these reports to
build a server instance history, that serves as input for the simulator. In the list of
the top-200 visited websites, all directly measured reports –excluding reports with
discontinuities (such as unmeasured periods) or insufficient data (less than 3 years)–
are converted into a list of server load patterns. This results in an extensive list of
51 server load patterns to be used for our evaluation. To the best of our knowledge,
we are the first to evaluate the performance of a cloud scheduling algorithm using
such an extensive set of application load traces. The list of load patterns is shown in
Table 8.1 for reference.

The page view reports contain daily aggregated data. We therefore assume the
load is constant throughout the day, as the addition of artificial day-night patterns
would not impact our results because of the different timescales involved. We further
assume that the web application is deployed on instances of a single type and adopt
the m1.xlarge instance type, which is commonly used for web servers. Given an
average number of HTTP requests per page view (RPP ) and a number of requests a
single m1.xlarge server can handle (RPS), the number of page views pt at time t
can be converted to a number of server instances lt following Equation 8.10.

lt = pt ·RPP

RPS
(8.10)

According to an extensive statistical study over 4.2 billion web pages performed
by Google [117], an average page view results in an RPP value of 44.56 GET requests.
The number of requests per second (RPS) a server instance is able to handle is
subject to a number of application-specific parameters, which are hard to determine
without application knowledge or benchmarking abilities. For example, the mix of
static versus dynamic content, the number of database requests and the caching
techniques used by an application are unknown. As this number has no influence
on our comparative results and only affects the absolute cost figures, we assume
that for one m1.xlarge server RPS = 50.

Contract Types

The on-demand prices and reserved contracts for an EC2 m1.xlarge instance are
configured according to their actual prices. In our evaluation, we focus on reserved

2http://www.quantcast.com

http://www.quantcast.com
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Website Start date End date Days # servers Avg. # servers

answers.com Apr 01, 2007 Dec 31, 2013 2466 [19, 1040] 145.15

bleacherreport.com Jan 11, 2009 Dec 31, 2013 1815 [1, 277] 52.14

break.com Oct 12, 2007 Dec 31, 2013 2272 [16, 286] 83.70

chacha.com Apr 22, 2009 Dec 31, 2013 1714 [2, 251] 43.90

cnbc.com Aug 19, 2008 Dec 31, 2013 1960 [1, 339] 115.42

complex.com Aug 18, 2007 Dec 31, 2013 2327 [1, 79] 10.58

csmonitor.com Jan 10, 2009 Dec 31, 2013 1816 [1, 50] 9.13

deadspin.com Apr 01, 2007 Dec 31, 2013 2466 [1, 84] 11.05

drudgereport.com Apr 17, 2008 Dec 31, 2013 2084 [131, 754] 267.11

ew.com Apr 14, 2008 Dec 31, 2013 2087 [4, 81] 20.01

examiner.com Nov 19, 2008 Dec 31, 2013 1868 [1, 65] 18.41

fool.com Jul 03, 2008 Dec 31, 2013 2007 [1, 29] 11.23

gawker.com Apr 01, 2007 Dec 31, 2013 2466 [1, 103] 17.29

gizmodo.com Apr 01, 2007 Dec 31, 2013 2466 [1, 230] 30.03

goodreads.com Dec 31, 2008 Dec 31, 2013 1826 [6, 120] 39.74

grindtv.com Apr 02, 2007 Dec 31, 2013 2465 [1, 74] 4.65

hollywoodlife.com Aug 12, 2009 Dec 31, 2013 1602 [1, 107] 12.55

hubpages.com Mar 03, 2008 Dec 31, 2013 2129 [4, 57] 21.36

huffingtonpost.com Apr 01, 2007 Dec 31, 2013 2466 [1, 534] 151.65

instructables.com Aug 31, 2007 Dec 31, 2013 2314 [3, 37] 19.28

jezebel.com Apr 13, 2007 Dec 31, 2013 2454 [1, 95] 13.81

legacy.com Sep 22, 2009 Dec 31, 2013 1561 [1, 110] 69.15

lifehacker.com Apr 01, 2007 Dec 31, 2013 2466 [1, 47] 15.14

linkedin.com Nov 06, 2008 Dec 31, 2013 1881 [63, 1626] 690.05

macrumors.com Oct 11, 2007 Dec 31, 2013 2273 [1, 105] 21.15

merriam-webster.com Nov 12, 2008 Dec 31, 2013 1875 [1, 84] 28.92

nationalgeographic.com May 08, 2008 Dec 31, 2013 2063 [10, 65] 21.42

nbc.com Feb 28, 2008 Dec 31, 2013 2133 [1, 155] 26.59

people.com Apr 07, 2008 Dec 31, 2013 2094 [1, 566] 112.87

quizlet.com Mar 02, 2008 Dec 31, 2013 2130 [1, 113] 15.57

rantsports.com Mar 26, 2010 Dec 31, 2013 1376 [1, 137] 13.74

rottentomatoes.com Jan 12, 2010 Dec 31, 2013 1449 [14, 52] 31.07

sbnation.com Jan 07, 2009 Dec 31, 2013 1819 [1, 44] 6.00

simplyhired.com Apr 15, 2008 Dec 31, 2013 2086 [1, 178] 35.55

squidoo.com Jan 26, 2008 Dec 31, 2013 2166 [1, 48] 15.01

stackoverflow.com Jun 11, 2009 Dec 31, 2013 1664 [4, 200] 57.21

thedailybeast.com Nov 16, 2008 Dec 31, 2013 1871 [2, 65] 11.50

theonion.com Jan 31, 2009 Dec 31, 2013 1795 [1, 73] 13.16

time.com May 13, 2008 Dec 31, 2013 2058 [3, 239] 32.15

tmz.com Oct 27, 2009 Dec 31, 2013 1526 [1, 152] 43.29

topix.com Oct 27, 2007 Dec 31, 2013 2257 [2, 64] 33.78

typepad.com Nov 07, 2007 Dec 31, 2013 2246 [1, 85] 29.55

urbandictionary.com May 03, 2007 Dec 31, 2013 2434 [1, 458] 28.41

usmagazine.com Sep 29, 2008 Dec 31, 2013 1919 [17, 339] 72.50

washingtontimes.com Aug 05, 2009 Dec 31, 2013 1609 [2, 36] 5.63

wattpad.com Sep 30, 2009 Dec 31, 2013 1553 [3, 271] 74.13

whitepages.com Sep 23, 2009 Dec 31, 2013 1560 [1, 164] 69.83

womensforum.com Sep 15, 2010 Dec 31, 2013 1203 [1, 57] 7.73

wordpress.com Apr 01, 2007 Dec 31, 2013 2466 [49, 1142] 383.27

wunderground.com Apr 01, 2007 Dec 31, 2013 2466 [1, 193] 60.27

zimbio.com May 27, 2007 Dec 31, 2013 2410 [1, 211] 56.38

Table 8.1: The list of server load traces.
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contracts with a duration of one year, because of the unavailability of real-world
trace data for a longer period. We also believe that making predictions for a period
of three years would call for the incorporation of additional domain and business-
specific knowledge; an avenue for future work. The set of reserved contract types C
used in the evaluation can be found in Table 8.2.

cn cu ch cl cp

Heavy $1352 $0.112 1 year EH

Medium $1108 $0.168 1 year AYG

Light $486 $0.271 1 year AYG

On Demand $0.0 $0.480 1 year AYG

Table 8.2: Available contract types for m1.xlarge.

Scenario Setup

Every combination of a purchase algorithm, a workload trace and a prediction
technique constitutes a scenario. In every scenario, the algorithm is executed on a
regular basis (daily, weekly or monthly) over the simulation period. The simulation
period starts two years after the beginning of each trace, the first two years serve as
the load history input for the algorithm. The simulation period ends one year before
the end of the trace, which follows from the data requirements of the clairvoyant FK
predictor.

The load traces’ non-zero starting point require an initial contract portfolio (ICP).
This portfolio is a cost-optimized set of contracts: 7 days before the start of the
simulation, the optimal set of reserved contracts for the last 90 days is calculated. We
distribute the start times of the contracts in the ICP uniformly between 7 days and
371 days prior to the simulation’s start time, in order to avoid that all contracts end
at the same time. This would overemphasize the importance of the load prediction
and procurement choices at that particular time, skewing the results.

In order to evaluate the cost impact of the PMA, a Renewal Only (RO) algorithm
is introduced that serves as a reference scenario. This simple algorithm renews
all expiring contracts at the appropriate moment in time, but does not take into
account predictions and does not purchase new reserved contracts other than the
existing ones. As both the PMA and the RO have the same ICP, the differences in cost
between both algorithms will be caused by changes made in the contract portfolio
by the PMA.

Evaluation Metrics

In order to reliably compare the cost-effectiveness of different scenarios, the aggre-
gated cost has to be carefully calculated, given the limited timespan of the simulation.
If the organization acquires a new reserved contract on –for example– the last day of
the simulation, attributing the full up-front cost to the scenario’s total cost would
result in a negative bias, as the purchase only becomes profitable in the time pe-
riod after the end of the simulation. Consequently, we introduce a cost calculation
method that spreads the up-front cost for each purchase over the whole period in
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which it is valid. For all contracts in which the period between c̄pti me and c̄pti me + c̄l

does not overlap entirely with the simulation period, the up-front cost c̄u and, in
case of c̄p = E H , the hourly rates c̄h are only accounted for in proportion to the time
in which the contract period and simulation period overlap.

Even using this cost calculation method, very small irregularities are possible if
the utilization level of a contract is not uniformly distributed over the entire contract
length. These are side effects of the use of simulation for which the impact on our
results was found to be negligible.

8.5 Results

In this section, we present and discuss the results of a number of experiments with
regard to the performance of the algorithm with different CRPs, the performance of
the proactive and reactive prediction techniques and the influence of the algorithm’s
configuration parameters. Finally, we discuss the significance of the presented
results as well as the computational complexity of the algorithm.

Box-and-whisker plots are used to show the distribution of the metrics over the
different workload traces, with the whiskers representing the 5th and 95th percentile
of the results. Outliers are not plotted for clarity reasons, but mentioned in the text
if they are relevant for the discussion.

Algorithm

In the first experiment, we evaluate the cost level achieved by PMA with each of the
Contract Renewal Policies (CRPs) relative to the cost of the baseline RO scenario.
We first configure the PMA with the Full Knowledge predictor, so it operates under
“best case” conditions, and compare the results of the PMA with each of the CRPs.
Figure 8.3 shows the cost reduction of PMA relative to the cost of the RO algorithm.
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Figure 8.3: PMA vs. RO (Iteration interval: weekly, Purchase Lookahead Period: 30
days)

In our set of load traces, the PMA obtains a cost reduction up to 30.7% compared
to the Renewal Only scenario. Averages range between 11.6% and 12.9%, depending
on the CRP. Note that every scenario is initialized with a set of contracts optimized
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for the period just before the start of the simulation, and that the achieved cost
reductions are the result of adaptations in the contract portfolio made based on the
future load.

If we compare the performance of the CRPs, the two-pass policy outperforms the
other CRPs on average with 1.5% (FC), 0.2% (IC) and 0.4% (Ensemble). It therefore
seems to be the best overall choice, although the differences between the policies
is small and –in this set of workload traces– even almost negligible. In a few cases,
however, the differences are significant. For tinypic.com for example, which is not
included in this chapter’s list of server load traces because it is outside of Quantcast’s
top-200, we showed in Chapter 7 that IC performs significantly worse than FC.
This is due to the decrease in load (see Figure 8.4a), which in turn causes the PMA
with the IC contract renewal policy to overestimate the future load and purchase
an insufficient amount of contracts. In that case, both the ensemble and two-
pass policies succeed in keeping the cost down. The cost results are presented in
Figure 8.4b. Compared to IC, the cost can be reduced with up to 5.3% using the
Ensemble CRP, the Two-pass CRP also manages to lower costs with 4.9%.
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Figure 8.4: tinypic.com Case

As the two-pass policy shows the best overall performance in our test set and
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does well in specific cases where IC underperforms, it is used in all subsequent
experiments in this section.

Prediction Models

Next, we compare the PMA with different prediction techniques for all workload
traces to the PMA scenario with the full knowledge (FK) predictor, and express their
expenditure increases relative to the latter scenario.

In this experiment, the purchase algorithms are executed on a weekly basis, the
Purchase Lookahead Period is set to 30 days and the two-pass renewal policy is
applied. The influence of these input parameters on the cost is discussed later on in
Section 8.5. The results of the six prediction techniques and 51 workload traces are
presented in Figure 8.5 as the distribution of the cost increase relative to PMA+FK.
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Figure 8.5: Prediction Model evaluation (Iteration interval: weekly, Purchase Looka-
head Period: 30 days)

In all prediction techniques, except for the previous period with δ= 30, a signifi-
cant amount of workload traces suffer from a surplus in cost up to 82%, with outliers
(not displayed) up to a 134% for ARIMA and 1010% for one scenario using DSHW.
This is a major downside to an automated approach, as the odds are pretty high that,
without intervention, the results of the PMA are unreliable if used in combination
with one of these prediction techniques.

DSHW and, to a lesser extent, ARIMA show to be the most susceptible to this
problem. While the robustness measures taken by the RDSHW approach seems to
partially fix the problem, in one RDSHW scenario (womensforum.com, +93.7%)
the cost still nearly doubles. A closer inspection shows that these scenarios are
workloads with a highly irregular behavior that is difficult to predict. If we drop
the annual seasonality and use exponential smoothing with only a 7-day seasonal
pattern (the ETS scenario), that behavior seems to occur less because the weekly
pattern occurs more frequently in the predictor’s input data and the irregularities in
the data are of less importance to the prediction model.

Using a previous period predictor with a period δ of 30 days, finally, the cost
rise is limited to at most 10.2% with an average cost increase of only 1.6%. PP-30
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performs better than RDSHW in 80.4% of the cases, and appears to be the best
prediction technique in the experiment. With δ = 7, the workload changes are
picked up more quickly, with a lag of at most one week, and the technique performs
considerably worse.

As the results show high sensitivity with respect to δ, Figure 8.6 illustrates the
impact of a δ value ranging between 7 days and 1 year. The results indicate that the
highest cost reductions can be achieved at δ= 30, with an average additional cost of
+1.6%. For lower and higher values of δ, the spread and average of the additional
cost increases.

-10 %

0 %

10 %

20 %

30 %

40 %

7 14 30 60 90 180 365

A
d

d
it
io

n
a
l 
C

o
s
t 
(%

)
re

l.
 t

o
 P

M
A

+
F

K

Length (days) of the Previous Period

Figure 8.6: Influence of δ on PP. (Iteration interval: weekly, Purchase Lookahead
Period: 30 days)

It appears that, for most of the load patterns in our test set, the use of PMA
in combination with a reactive approach in which the load of the last 30 days is
considered significant for the upcoming year, suffices to obtain good results. This
can be explained by the fact that an overestimation has a much higher impact
on the resulting cost than an underestimation, as overestimation will cause any
procurement algorithm to purchase too much and too expensive contracts, while
an underestimation can easily be taken care of by utilizing additional on-demand
instances and buying the required contracts in the next iteration of the algorithm.

In specific cases, however, it remains beneficial to use more advanced predic-
tion techniques. An example is gardenweb.com, a web site which has a significant
increase in visitors during spring and summer, and a decrease during the fall and
winter season. The load pattern is shown in Figure 8.7a. Figure 8.7b shows the
additional cost for each prediction technique relative to the full knowledge predictor.
The results show a substantial cost difference between the prediction techniques
based on exponential smoothing (ETS, DSHW and RDSHW) and the previous period
techniques. This is caused by the non-trivial seasonal pattern, which is picked up by
the seasonal predictors but causes the other prediction techniques to purchase too
much reserved contracts during spring.

Influence of iteration interval and Purchase Lookahead Period

Up until now, the PMA’s iteration interval was configured to run every week, and PLP
was set to 30 days. In the following, we evaluate the influence of both parameters on
the achieved cost reduction. For each workload trace, the cost is calculated for every
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Simulation period
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Figure 8.7: gardenweb.com Case

combination of the Iteration Interval and PLP, using both FK, PP-30 and RDSHW
predictors. The cost for each scenario is calculated relative to the scenario in which
the algorithm is run daily with PLP = 1 day. In Figure 8.8, the distribution of these
relative cost values for each combination are shown.

In case of FK, the iteration interval seems to be of little importance with regard to
the total cost. Changes in the PLP on the other hand cause the total cost to decrease
to on average 98.5% (weekly, PLP = 30) of the reference scenario and further increase
up to on average 105.5% (daily, PLP = 365) with outliers up to 244% (not plotted).

The scenario in which PLP = 365 is equivalent to an algorithm that does not take
into account this parameter, as the PMA will purchase any contracts that appear
beneficial over the next year without considering whether this is also the case over
a shorter time period. The use of such a short-term evaluation period next to the
contract length is beneficial only when there is a significant trend over the next year.
In a load pattern without a trend, the difference between the average utilization
for the PLP and the entire contract length is small, and the outcome of Decision 1
and Decision 2 (Section 8.2) will be identical. This is demonstrated when using the
Previous Period predictor in Figure 8.8b. This prediction approach assumes the load
is stationary, and repeats past values. Due to this stationarity, the PLP parameter has
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Figure 8.8: Influence of iteration interval and Purchase Lookahead Period

no influence (less than 0.01% on average) if it is larger than the repeated period of
30 days. Because of the lag with which the algorithm reacts on changes in the load,
the monthly scenarios perform slightly worse than the daily and weekly varieties.
The difference between the latter two is negligible.

With the RDSHW predictor, finally, the variance for increasing values of PLP
is more pronounced due to the predictor’s tendency to reinforce and sometimes
overestimate the trend. As there is no limit to the number of contracts purchased
in one time step, a decreased iteration interval causes the likelihood of errors. This
results to an average increase of 60.5% with outliers up to 574% (not plotted) for
running the algorithm on a daily basis without taking into account the PLP (= 365).
Good results are achieved using RDSHW for a weekly or monthly iteration interval
in combination with a PLP up to 14 days.

In conclusion, the introduction of a short-term purchase lookahead period (PLP)
pays off when the algorithm is used in tandem with a prediction technique that is
able to make non-stationary predictions, and the daily procurement of contracts
offers little advantage over the weekly evaluation of the contract portfolio.
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Significance of the results

The reported results depend on the start times of the contracts in the initial contract
portfolio, which are generated according to a uniform distribution. In order to evalu-
ate the significance of the presented results, we ran 100 iterations with a different
random seed for every scenario with the linkedin.com workload trace in the experi-
ment in which PMA with different prediction techniques is compared to PMA+FK.
Relative standard deviations for the calculated cost of all prediction techniques were
below 0.071%, the standard deviations of the additional cost relative to PMA+FK
–which is the reported metric in Figure 8.5– is at most 0.079%.

Computational Complexity

We executed the experiments on a machine with four 12-core AMD Opteron 6234
processors and 196 GB of memory. The average amount of CPU time necessary for
running the PMA purchase algorithm and for making one prediction is calculated
for each scenario.

The runtime of PMA is directly linked to the number of servers on which it
operates. Figure 8.9a shows the correlation between the average number of servers
in a workload trace and the average runtime of one run of the PMA+FK with different
CRPs. Points are plotted individually, the plotted lines represent the quadratic
functions that are fitted to the points. This O(n2) complexity is due to the cost
calculation method: for each additional server the cost for the next year is calculated
by summing the hourly rates for the load at each hour. On average, running an
iteration of PMA with the two-pass CRP is 4.7 times slower than with the ensemble
CRP. A quadratic runtime correlation combined with the orders of magnitude of
the achieved runtimes indicates that the algorithm offers a tractable solution to the
concerned procurement problem.

Figure 8.9b shows the distribution of the average prediction runtimes over the
different workload traces. Outliers are omitted for clarity reasons. Prediction run-
times for the double-seasonal models are over ten times the value of the ARIMA and
ETS models. The previous period runtime is negligible, as this technique simple
repeats past values without manipulating the data.

8.6 Conclusion

In this chapter, we have presented an algorithm to automate the procurement
of reserved IaaS contracts. We also evaluated whether the use of an automated
approach to load forecasting pays off in terms of reduced costs when purchasing
reserved IaaS contracts. The presented purchase management algorithm iteratively
produces contract procurement suggestions based on server load predictions while
taking into account a current contract portfolio. Using simulation, we evaluated the
cost reduction the algorithm achieves compared to a stationary approach using a
wide range of web application load traces. Further, we quantified the cost differences
between (a) full knowledge predictions, (b) an automated forecasting approach
using ARIMA and exponential smoothing models and (c) a reactive approach that
extrapolates past observations. Our results show that the algorithm has a significant
potential for cost reduction. The used seasonal time-series models however perform
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Figure 8.9: Average runtimes

worse in terms of cost than a stationary “previous period” method, except for specific
cases. This is caused by the imbalance between the penalties for overestimating
versus underestimating the future load. The former is penalized by a high up-
front cost, while the latter can be easily accommodated using the flexibility of on-
demand instances with only a limited additional cost. Our future work includes the
incorporation of Quality-of-Service differences between reserved and on-demand
contracts, such as unavailability of or upper limits to the number of on-demand
instances, as well as the expansion of this approach to a hybrid cloud setting in
which the procurement of physical servers is added as an additional long-term
commitment.
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CHAPTER 9
Conclusions and Future

Research

In the current era, the use of computing to support organizations’ business processes
and research projects is still expanding firmly. In this thesis, we identified a number
of areas in which additional research was necessary to support and ease this process.

Firstly, the benefits of using a fine-grained value-based scheduling algorithm were
compared to a coarse-grained scheduling technique. Our contributions in this field
included:

• A thorough evaluation of the conditions under which a fine-grained scheduler,
implemented as an online auction-based mechanism with static bids and
without preemption, can outperform a priority queue system.

• An evaluation of whether these conditions are common in real-world workload
traces.

• An explanation for the differences between our findings and results presented
in other contributions in the field.

Our findings showed that a priority queue approach with a limited number
of queues closely approximates the performance of the auction-based approach.
This is important, because a fine-grained value-based scheduling approach brings
about increased complexity for both end user and system administrator. The paral-
lelization degree and load of the cluster’s workload appeared determinative for the
performance of a fine-grained algorithm. These parameters must increase beyond
levels that are currently found in publicly available workload traces for the difference
between both techniques to become significant.

Secondly, the problem of dynamically extending private infrastructure with re-
sources from a public cloud provider was considered, and efforts were made in
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the scope of cost-efficiently scheduling batch-jobs with a hard deadline constraint
on hybrid clouds. Our contributions were:

• A Binary Integer Program for cost-optimal scheduling BoT applications with
hard deadline constraints on multiple public and private cloud providers. The
program considered computational and network costs.

• An online scheduling algorithm that tackles cost-efficient placement of those
applications, taking into account the transfer times of the necessary data sets
to the cloud providers.

• A study of the effect of errors in the user-provided runtime estimates on the
presented results.

Integer programming appeared to be feasible for taking scheduling decisions
concerning placement of BoT applications on public cloud providers, but high solve
time variances prevented it from being an attainable solution when scheduling in
a hybrid cloud setting. The presented heuristics resolve that issue and allow for
additional cost gains to be achieved. Our results demonstrated that adopting a job
queue with an EDF policy in combination with a cost-based approach for migrating
applications to the public cloud results in significant cost reductions. The proposed
algorithms proved to be able to schedule a large number of applications within a
practical timeframe. In addition, the queue-based policies showed to significantly
increase robustness with respect to runtime estimation errors in exchange for an
increased turnaround time.

Lastly, we elaborated on automating the process of reducing costs when using cloud
resources by incorporating reserved contracts. Time series forecasting techniques
were used to generate load predictions without application knowledge. Those were
fed to an algorithm that produced procurement suggestions for those reserved
contacts while taking into account an organization’s current contract portfolio. The
main contributions were:

• An algorithm for automated IaaS contract procurement of quadratic complex-
ity in the number of server instances, that takes into account an organization’s
existing contract portfolio.

• An illustration of the suitability of Genetic Programming-based symbolic
regression for time series forecasting in this context.

• The integration and evaluation of different time series forecasting techniques
(including both seasonal and non-seasonal models) to guide contract acquisi-
tion through workload prediction. We analyze in which cases such forecasting
techniques can prove valuable and present their limitations with respect to
acquiring current real-world IaaS contracts.

• An illustration of the operation of the algorithm by means of a case study.

• An extensive empirical evaluation of the proposed algorithm and forecasting
techniques using a large dataset of real-world web traffic workloads.
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Our results showed that the algorithm’s potential for cost reduction is significant,
with cost reductions up to 30% compared to a stagnant scenario, but that the applied
prediction models perform worse in terms of cost than a stationary “previous period”
method except for specific cases. In the current reserved pricing landscape and
given the evaluated web application workloads, the use of prediction models to
make better procurement decisions is only beneficial when the workload shows
non-trivial but predictable seasonal patterns.

After analyzing the approaches and contributions discussed in this dissertation, new
questions arise and some questions remain unanswered. Some of these possible
avenues for future work are discussed in the remaining of this chapter.

• Chapter 2 reviewed fine- and coarse-grained value-based scheduling ap-
proaches to regulate access to an organization’s shared compute resources.
Regardless of which variant is used, an incentive system is needed to encour-
age users to trade in value in return for less tight deadlines. When using a
priority queue system, one way to deal with this problem could be to introduce
dynamic prices that take into account the current load of the infrastructure.
The design of such a price setting mechanism is an interesting challenge, es-
pecially when taking into account more complex QoS constraints such as soft
deadlines.

• Part II of this thesis discussed the scheduling problem of BoT applications with
a hard deadline in a hybrid cloud setup. Often, however, users do not have a
single deadline in mind when it comes to running their applications. Trading
off cost and QoS constraints such as a deadline is a complex task for the owner
of the application. Users need assistance in determining the valuation of their
workload and selecting the right options from the numerous options available.
A decision support system could provide users with sufficient information on
the (expected) costs that a workload’s execution will generate and how the
cost level is expected to change with the provided level of QoS.

• In this thesis, instance types were either fixed or the selection of a suitable in-
stance type for an application was performed using a simplified model based
on Amdahl’s law. One aspect of the flexibility of the current cloud offerings is
the ability to quickly change the instance type of the infrastructure, given the
application’s requirements. This is called vertical scaling (as opposed to hori-
zontal scaling, i.e. adding more instances). Selecting the most cost-efficient
instance type for a specific application, however, is still an unresolved issue.
Given performance figures on cloud providers and instance types and infor-
mation on the performance and speedup of an organization’s applications,
a cost-minimizing scheduling approach could deal flexibly with an applica-
tion’s instance type based on the current load and deadlines of that or other
applications.

• When dealing with reserved contracts to minimize the overall cost for an ap-
plication, the addition of load prediction techniques proved beneficial in only
a limited number of cases. In this study, the higher Quality-of-Service offered
by these reserved contracts was not taken into account when evaluating the
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benefit of such an automated approach. The impact of incorporating these
Quality-of-Service differences between reserved and on-demand contracts
has not yet been quantified. In addition, the expansion of the automated
procurement approach to a hybrid cloud setting in which the procurement
of physical servers is added as an additional long-term commitment is also a
remaining challenge.

• Next to on-demand and reserved rates, some cloud providers offer an addi-
tional spot market model in which prices fluctuate based on the current load
in their data centers. Although this spot market and its behavior has been
studied already in related work in the field, its cost-efficient and reliable use as
an extension of an organization’s private compute infrastructure still remains
an open problem.



BIJLAGE A
Samenvatting

Kostenbewust Beheer van Computerinfrastructuur in Clusters en Clouds

Organisaties en bedrijven gebruiken steeds vaker applicaties die ingezet worden om
bedrijfskritische taken te vervullen. Vaak worden deze applicaties uitgevoerd op zo-
genaamde “clusters”, een aantal door een netwerk met elkaar verbonden computers
waartoe verschillende gebruikers in de organisatie gelijktijdig toegang hebben. Wan-
neer meerdere gebruikers hun applicaties gelijktijdig op dezelfde computerbronnen
willen uitvoeren, stelt er zich een planningsprobleem en is er een manier nodig om
aan die applicaties prioriteiten toe te kennen. De softwarecomponent die instaat
voor het plannen van applicaties in een context met meerdere gebruikers heet een
scheduler, het planningsproces wordt scheduling genoemd.

De computerinfrastructuur waarop die applicaties uitgevoerd worden, evolu-
eerde de voorbije jaren ook enorm. Daarbij wordt deze infrastructuur steeds vaker
beschouwd als een nutsvoorziening, die toelaat om geconsumeerd te worden wan-
neer nodig, waarvoor betaald wordt op basis van het gemeten verbruik en waarbij
de drempel voor het gebruik erg laag is. Dat is de basis van “cloud computing”,
een verzamelnaam voor diensten waarbij toegang tot computerinfrastructuur en
-applicaties gehuurd kan worden. Belangrijk aspect daarbij is flexibiliteit: de toe-
gang tot een nieuwe server wordt quasi onmiddellijk verschaft, en wordt afgerekend
per gebruikt uur. Die flexibiliteit opent deuren voor organisaties: niet langer is de
hoeveelheid servers die ze zelf in hun bezit hebben een belemmering voor de uit
te voeren applicaties. Dat voegt aan het eerder genoemde planningsprobleem een
aspect van kostenefficiëntie toe: aangezien elk uur rekentijd in de cloud verbonden
is met een kost, is het belangrijk dat de gebruikers en applicaties in zo’n organisatie
daar bewust mee omgaan.

Het onderzoek dat in dit proefwerk gepresenteerd wordt, situeert zich in het
domein van gedistribueerde computerinfrastructuur, en probeert een antwoord
te bieden op onderzoeksvragen in het kader van het kostenbewust beheren van
computerinfrastructuur in clusters en clouds. Dit proefschrift is onderverdeeld in
drie delen.

Deel 1 beschouwt het plannen van applicaties in cluster-systemen gebaseerd op
de waarde die de eigenaars van die applicaties hechten aan de correcte en intijdse
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uitvoering van hun applicatie. Daarbij wordt gekeken naar gerelateerde weten-
schappelijke publicaties in het gebied van waarde-gebaseerd plannen, en wordt
de toegevoegde waarde van zo’n waarde-gebaseerd planningsmechanisme verge-
leken met een eenvoudiger systeem gebaseerd op een aantal vaste wachtrijen. Uit
onze resultaten blijkt dat zo’n wachtrij-gebaseerd systeem met een beperkt aantal
wachtrijen de prestaties van een waarde-gebaseerd systeem benadert op vlak van
gegenereerde waarde.

In Deel 2 van dit werk wordt het planningsprobleem onderzocht dat zich stelt
wanneer een private cluster in een organisatie uitgebreid wordt met de flexibele
infrastructuur van één of meerdere cloud providers. We beperken ons daarbij tot het
planningsprobleem met betrekking tot applicaties van het type “batch jobs” die voor
een bepaalde deadline uitgevoerd moeten worden. Het probleem wordt benaderd
vanuit het oogpunt van kostenefficiëntie, en er wordt bij de voorgestelde oplos-
singsmethodologieën opeenvolgend gebruik gemaakt van lineair programmeren
en heuristieken. De aanpak die gebruik maakt van een lineair programmeringsfor-
mulering blijkt uit onze resultaten onhaalbaar vanuit computationeel standpunt
wanneer private en publieke cloud bronnen gecombineerd worden. De voorgestelde
heuristieken lossen die kwestie op en tonen aan dat significantie kostenwinsten
geboekt kunnen worden op dat vlak. Bovendien zijn ze robuust ten aanzien van
fouten in de afgeschatte duurtijd van de taken van een applicatie.

Deel 3 van deze thesis neemt het kosten-optimalisatieprobleem verder onder
de loep. Door gebruik te maken van goedkopere cloud contracten waarvoor een
voorafbetaling nodig is, kunnen cloud gebruikers hun infrastructuurkosten terug-
drijven zonder zwaar in te moeten boeten aan flexibiliteit. Om optimaal gebruik
te maken van zo’n contracten is echter inzicht nodig in hoe de benodigde hoeveel-
heid computerbronnen van een gebruiker of organisatie zich in de toekomst zal
gedragen. Wanneer er te veel contracten aangekocht worden, kunnen de kosten
immers snel oplopen, tot zelfs boven het niveau waarbij er geen gebruik wordt
gemaakt van de goedkopere contracten. Onze aanpak in dit proefwerk maakt ge-
bruik van voorspellingstechnieken om de toekomstige belasting te voorspellen,
waarna het voorgestelde algoritme automatisch voorstellen genereert omtrent de
hoeveelheid contracten en de types ervan die aangekocht moeten worden. Onze
resultaten tonen aan dat het algoritme potentieel heeft om de kosten voor cloud
infrastructuur met tot 30% terug te drijven, maar dat het gebruik van geavanceerde
voorspellingstechnieken slechts een significant kostenvoordeel biedt wanneer de
belasting niet-triviale maar wel-voorspelbare seizoenspatronen vertoont.
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Evaluating the Divisible Load Assumption in the context of
Economic Grid Scheduling with deadline-based QoS guarantees

W. Depoorter, R. Van den Bossche, K. Vanmechelen, J. Broeckhove
Proceedings of CCGrid 2009, May 18-21 2009, Shangai, China, pp. 452–459.

Abstract

The efficient scheduling of jobs is an essential part of any grid resource
management system. At its core, it involves finding a solution to a problem
which is NP-complete by reduction to the knapsack problem. Consequently,
this problem is often tackled by using heuristics to derive a more pragmatic
solution. Other than the use of heuristics, simplifications and abstractions
of the workload model may also be employed to increase the tractability of
the scheduling problem. A possible abstraction in this context is the use of
Divisible Load Theory (DLT), in which it is assumed that an application consists
of an arbitrarily divisible load (ADL). Many applications however, are composed
of a number of atomic tasks and are only modularly divisible. In this paper
we evaluate the consequences of the ADL assumption on the performance
of economic scheduling approaches for grids, in the context of CPU-bound
modularly divisible applications with hard deadlines. Our goal is to evaluate to
what extent DLT can still serve as a useful workload abstraction for obtaining
tractable scheduling algorithms in this setting. The focus of our evaluation
is on the recently proposed tsfGrid heuristic for economic scheduling of grid
workloads which operates under the assumptions of ADL. We demonstrate the
effect of the ADL assumption on the actual instantiation of schedules and on
the user value realized by the RMS. In addition we describe how the usage of
a DLT heuristic in a high-level admission controller for a mechanism which
does take into account the atomicity of individual tasks, can significantly reduce
communication and computational overhead.
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Evaluating Nested Virtualization Support

S. Verboven, R. Van den Bossche, O. Berghmans K. Vanmechelen, J. Broeckhove
Proceedings of PDCN 2011, February 15-17 2011, Innsbruck, Austria.

Abstract

Recent evolutions in the hard- and software used to virtualize x86 archi-
tectures have led to a rising popularity for numerous virtualization products
and services. Virtualization has become a common layer between an operating
system and physical hardware. Virtualized systems have already transparently
replaced many physical server setups while virtual machines themselves are
increasingly popular as a means to package, distribute and rapidly deploy soft-
ware. Nested virtualization –running a virtual machine inside another virtual
machine– seems a logical next step. Presently, however, there is little to no infor-
mation available on nested virtualization support by widely used virtualization
applications such as VMware, VirtualBox, Xen or KVM. In this contribution, we
evaluate the feasibility of nested virtualization using a range of currently avail-
able hard- and software products. We briefly explain the different techniques
behind the tested virtualization software and an analysis is made whether par-
ticular nested virtualization setups should be feasible. All theoretically possible
options are explored and the results are presented and analyzed. We conclude
with a presentation of the results of some initial performance experiments. Our
results show that nested virtualization is currently possible in selected combi-
nations with promising results regarding recent evolutions in hardware assisted
virtualization.
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