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Abstract

Neutrality of genetic programming Boolean function landscapes is investigated in this paper. Compared with
some well known contributions on the same issue, (i) we first define new measures which help characterizing neutral
landscapes; (if) we use a new sampling methodology, which captures features that are disregarded by uniform random
sampling; (iii) we introduce new genetic operators to define the neighborhood of tree structures; and (iv) we compare the
fitness landscape induced by different sets of functional operators. This study indicates the existence of a relationship
between our neutrality measures and the performance of genetic programming for the problems studied.

Keywords: Neutrality, Fitness Landscapes, Boolean Functions, Genetic Programming, Problem Difficulty, Negative
Slope Coefficient.

1. Introduction

The role played by neutrality in determining the ability of evolutionary algorithms to find good quality solutions
for a given problem has been a controversial issue in the last few years. A good introduction on the role of neutrality
has been done by Reidys and Stadler in [1]. In [2], Collard et al. studied synthetic neutrality and its effects on the
evolvability of Genetic Algorithms (GAs). They showed that a GA is able to explore new regions of the search space,
and thus sometimes improve its performance, owing to this synthetic neutrality. Later, in [3], Toussaint and Igel
claim the necessity of a certain degree of neutrality in fitness landscapes for self-adaptation. Consistently with the
work of Collard et al., they showed that, in the absence of external control, neutrality allows a variation of the search
distribution without the risk of fitness loss, and that this is beneficial for the effectiveness of the evolutionary process
on a set of GA benchmarks. In the same year, Geard and coworkers [4] compared the neutrality of some binary
landscapes, once again claiming a relationship between neutrality and performance of GAs. In particular, they consider
the Kauffman’s well-known NK landscape model, studying two variants of it, with significantly different structural
properties: NKp and NKq. The fitness distributions of these neutral landscapes reveal that their levels of correlation
with non-neutral landscapes are significantly different, as are the distributions of neutral mutations. They describe a
series of simulations on NK, NKp and NKq landscapes with varying levels of epistatic interaction, claiming that these
simulations demonstrate differences in the way that epistatic interaction affects the “searchability” of neutral landscapes.
They conclude that neutrality has an impact on both the structure of the resulting landscape and on the performance
of evolutionary search algorithms on these landscapes. Two years later, Collard and coworkers [5] proposed a new
search heuristic using the scuba diving metaphor. This approach is based on the concept of evolvability and tends to
exploit the neutrality that exists in many problems. Despite the fact that natural evolution does not directly select for
evolvability, the basic idea behind the scuba search heuristic is to explicitly push evolvability to increase. This idea has
been deepened by Galvan-Lopez in his PhD thesis [6]. In particular, he studied the relationship between neutrality and
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effectiveness of evolutionary search algorithms by measuring the “amount” of neutrality synthetically added to fitness
landscapes with some well known difficulty measures such as fitness-distance correlation [7, 8]. This idea has, at least
partially, inspired the present work, where we study the neutrality of some genetic programming (GP) Boolean function
landscapes and we also estimate their difficulty by using another difficulty measure that we have recently introduced,
called negative slope coefficient [9, 10, 11].

The study of neutrality for GP has had a slower start, probably because of the higher complexity of GP fitness
landscapes. The first contribution is probably due to the work of Yu and Miller: in [12], they showed that artificially
introducing neutrality can help Cartesian GP to navigate some restricted fitness landscapes. In particular, they claim
that synthetically adding neutrality to “needle in haystacks” landscapes, it is possible to improve the effectiveness of
Cartesian GP in finding the optimal solution. These results have been recently criticized by Collins and coworkers
in [13]. In particular, they showed that the method of sampling used by the Cartesian GP is significantly less effective
at locating solutions for “needle in haystacks” landscapes than the solution density of the corresponding formula
space would warrant. They presented results indicating that the loss of performance is caused by the sampling bias of
Cartesian GP, due to the neutrality-friendly representation. They also implemented a simple intron-free (i.e., without
neutrality) random sampling algorithm, showing that it performs considerably better on the same problem, giving an
interpretation of such performance. Even though the work of Collins and coworkers casts a shadow on the effectiveness
of neutrality in evolutionary search, many other contributions on the importance of artificially introducing neutrality
into fitness landscapes can be found (see for instance [14, 15, 16]), all of them showing that the approach is beneficial
on some particular classes of problems.

We feel that, in controversial debate on the usefulness of neutrality for GP, what may often be misleading is what
kind of neutrality is being considered: many different ways of intending and formalizing the concept of neutrality
may exist and each one of them may lead to different, and in some cases conflicting, conclusions. For this reason,
in this paper we take up a different point of view: first of all, we study Boolean function landscapes for standard
tree-based GP [17] rather than Cartesian GP. Second, we study the landscapes without explicitly modifying their
neutrality. Our only modification to the studied fitness landscapes consists in the use of a set of simple genetic operators,
that have not been explicitly designed to alter neutrality. Third, we introduce some new neutrality measures, such
as the average neutrality ratio, the average A-fitness of neutral networks and the ratio of some particular solutions
contained into the neutral networks, called non-improvable and non-degradable solutions (see Section 2 for the
definitions of these measures). These measures are based on the concept of neutral network, that has been used in many
contributions [18, 19, 20, 21], and that has been studied for GP Boolean spaces, for instance, by Banzhaf and Leier
in [22]. These measures give a particular view of neutrality, which we believe is particularly useful to make inferences
or diagnoses on the hardness of the underlying fitness landscape. The goal of the neutrality measures introduced here
is to provide tools for investigating the shape and features of Boolean fitness landscapes, possibly allowing some
inference on their difficulty. None of them is intended to be a “stand-alone”, infallible hardness measure, since each
one of them focuses only on one particular feature of the landscape; but considering them all together should allow us
to have an interesting picture of fitness landscapes, especially those related to neutrality.

Given that these measures have been defined to help characterizing problem difficulty, it is natural to investigate the
relationship between them and other hardness measures that can be found in literature. In this paper, we match the results
obtained by these measures both with Success Rate statistics, obtained executing a set of GP experiments and with the
results of a GP hardness measure called Negative Slope Coefficient (NSC) that we have recently introduced [9, 10, 11].
Finally, instead of using a fixed set of functions to build solutions, we compare the landscapes induced by different sets
of Boolean operators ({NaND} and {X0R, NoT} for the even parity landscapes, and {NanD} and {1F} for multiplexer).

Boolean functions represent a very important set of benchmarks for GP, mainly because many application domains
exist for which these types of landscapes are a good model, as for example applications of automatic synthesis of digital
circuits, or applications in the fields of cryptography and telecommunications. Furthermore, some characteristics of
these functions make them particularly suitable to study neutrality. For instance, they have a more restricted domain
than other well known GP benchmarks like various forms of real-valued symbolic regression.

Boolean function landscapes have already been studied, among others, in [23]. In those contributions, either
landscapes of small size have been studied exhaustively (i.e., taking into account all the possible solutions) or larger
fitness landscapes have been studied by means of uniform random samplings. The shape and features of the Boolean
function fitness landscapes make them hard to study by means of uniform random samplings (as we explain in Section 3)
and thus more sophisticated sampling methods are needed. The first attempt to study them by means of some well
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known sampling techniques can be found in [11, 24]. In this paper we define a new, and more elaborate, sampling
methodology to study Boolean function landscapes, but the techniques that we propose are general and can potentially
be used for any GP space.

This paper is structured as follows: in Section 2 we give some preliminary definitions about fitness landscapes,
neutrality and some hardness measures that will be used later. Section 3 introduces Boolean function landscapes and
some of their most significant characteristics. In Section 4, we present our new sampling methodology. Section 5
contains experimental results for some even parity and multiplexer Boolean landscapes. Finally, in Section 6 we offer
our conclusions and hints for future research.

2. Preliminary Definitions

In this section, we review some fundamental concepts used in the rest of the paper. In particular, in the first part we
formally define the concept of fitness landscapes and neutrality, while in the second part we present a measure, called
Negative Slope Coefficient, that has been proposed to characterize (and possibly predict) the problem difficulty for GP.

2.1. Fitness Landscapes and Neutrality

Using a landscape metaphor to gain insight about the workings of a complex system originates with the work of
Wright on genetics [25]. A simple definition of fitness landscape in EAs is a plot where the points in the horizontal
plane represent the different individual genotypes in a search space (placed according to a particular neighborhood
relationship) and the points in the vertical direction represent the fitness of each one of these individuals [23]. Generally,
the neighborhood relationship is defined in terms of the genetic operators used to “traverse” the search space [26, 23, 11].
This can be done easily for unary genetic operators like mutation, but it is clearly more difficult if binary or multi-parent
operators, like crossover, are considered. Formal definitions of fitness landscape have been given (e.g. in [27]).
Following these definitions, in this work a fitness landscape is a triple £ = (S, V, f) where S is the set of all possible
solutions, V : § — P(S) is a neighborhood function specifying, for each s € S, the set of its neighbors V(s), and
f 8 — Ris the fitness function. Given the set of variation operators, V' can be defined as V(s) = {s’ € S| s’ can
be obtained from s by a single variation}. In some cases, as for the even parity problems, even though the size of the
search space S is huge, f can only assume a limited set of values (as we clarify in Section 3). Thus, a large number of
different solutions have the same fitness. In this case, we say that the landscape has a high degree of neutrality [1].
Given a solution s, a particular subset of V(s) can be defined: the one composed of neighbor solutions that are also
neutral. Formally, the neutral neighborhood of s is the set N(s) = {s’ € V(s) | f(s") = f(s)}. If continuous fitness
functions are used, considering exactly the same fitness values can be unrealistic. In those cases, a threshold ¢ is usually
fixed such that a fitness difference between neighbors smaller than § is considered neutral. In that case, the previous
definition would become: N(s) = {s” € V(s) | |f(s") — f(s)| < 6}. Given that Boolean functions induce discrete fitness
landscape, in this paper we only consider the first one of these definitions: two neighbors are considered as neutral if
and only if the have exactly the same fitness value. The number of neutral neighbors of s is called the neutrality degree
of s and the ratio between neutrality degree and cardinality of V(s) is the neutrality ratio of s. Given these definitions,
we can imagine a fitness landscape as being composed of a set of (possibly large) plateaus. More formally, a neutral
network [28] can be defined as a connected component of the graph (S, Ey) where En = {(s1, 52) € S? | 5 € N(s1)}.
We define the fitness of a neutral network (or network fitness) as the fitness value shared by all individuals of this
neutral network. Finally, the neutrality graph of a fitness landscape is a graph (V, A) such that N is the set of neutral
networks, and two neutral networks n;, n; are connected by an edge (n;, n;) € A if there exists an individual s; of »; that
has a neighbor s; € V(s;) belonging to n;.

2.2. Negative Slope Coefficient

Evolvability is a feature that is intuitively related to problem difficulty, although with much broader connotations.
It has been defined as the ability of genetic operators to improve fitness quality [29]. Many other definitions of
evolvability, with interesting differences compared to the one in [29] can be found in literature. For instance in [30], it
is defined as the ability of a system to continually improve its fitness. One possible and very simple way of studying
evolvability is to plot the fitness values of individuals against the fitness values of their neighbors, where a neighbor
is obtained by applying one step of a genetic operator to the individual. We have called such a plot fitness cloud
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in [31]. Let £ = (S,V, f) be a fitness landscape as defined above. The following set of points can be defined:
S ={(f(s), f(s") | s €S, s’ € V(s)}. The graphical representation of S on a bidimensional plane, or fitness cloud, is
the scatterplot of the fitness of all the individuals belonging to the search space against the fitness of all their neighbors.

In general, the sizes of the search space and of the neighborhoods do not allow one to consider all the possible
individuals. Thus, samples are needed. Since the EA’s selection algorithm is likely to eliminate bad individuals
from the population, sampling techniques that assign a higher priority of being sampled to good individuals must to
be used. In [11, 10, 9], the well-known Metropolis-Hastings technique [32] is used to sample the search space and
the k-tournament selection algorithm [17] (with k = 10) is used to sample neighborhoods (see [11] for a detailed
motivation of these choices). In this case, the fitness cloud is plotted for a sample of individuals (obtained by the
Metropolis-Hastings technique) and a subset of their neighborhood (obtained by applying tournament selection).

The fitness cloud can be of help in determining some characteristics of the fitness landscape related to evolvability
and problem difficulty. But the mere observation of the scatterplot is not sufficient to quantify these features. In [11, 10,
9] we have introduced an algebraic measure called Negative Slope Coefficient (NSC). It can be calculated as follows:
the abscissae of a fitness cloud can be partitioned into k segments {/}, I», .. ., I;}. The algorithms that can be used to
suitably perform this partitioning are described in [9] and will not be discussed here. From those segments, one can
obtain the set {Jy, J», ..., Ji}, where each J; contains all the ordinates corresponding to the abscissas contained in /;.
Let M, M,, ..., My be the averages of all the abscissa fitness values contained inside the segments I, I», .. ., [ and
let Ny, Na,. .., N; be the averages of the corresponding ordinate values in Ji, J», ..., Jr. Then, the set of segments
{S1,52,...,5k1} can be defined, where each §; connects the point (M;, N;) to the point (M;,, N;;1). For each one of
these segments S ;, the slope P; is defined as P; = (Nix1 — N;)/(M;+1 — M;). Finally, the Negative Slope Coeflicient is

defined as
k-1

NSC = Z min(0, P;)
i=1

The hypothesis proposed in [10] is that NSC should classify problems in the following way: if NSC= 0, the problem
should be easy; if NSC< 0 the problem should be difficult and the value of NSC should quantify its difficulty: the
smaller its value, the more difficult the problem (in other words problem difficulty increases as NSC decreases further
away from zero). The informal idea behind this hypothesis is that the presence of a segment with negative slope
indicates a difficulty in improving evolvability for individuals having fitness values contained in that segment [11].
In [33], we have given a more formal justification of the NSC, while in [34], we have pointed out some drawbacks of
this measure, among which the fact that it is not normalized into a given interval, and this makes it impossible to use it
to categorize problems of different nature into difficulty classes. On the other hand, results shown in [11, 10, 9] report
good predictions of the problem hardness for a large set of GP benchmarks, including various versions of symbolic
regression, the artificial ant on the Santa Fe trail, the intertwined spirals problem and also Boolean problems, like the
even parity and the multiplexer. Finally, in [35], we have pointed out the ability of the NSC to correctly quantify the
difficulty of some real-life applications.

3. Boolean Function Landscapes

Boolean symbolic regression problems (BSRP) are a class of problems that are very often used as benchmarks in
GP, given the difficulty of GP in finding optimal solutions for some of their instances, despite the high simplicity of
their specifications. The goal of these problems is to find a Boolean expression that exactly represents a given truth
table. In tree-based GP, the set of acceptable solutions is defined as the set of all the well formed trees having a depth
less then or equal to a fixed value % and that can be constructed using a set of operators # and a set of terminal symbols
7. From now on, a BSRP is called of order k if k = |77, i.e. if the Boolean expressions can be built on a set of k
variables. The fitness function f of an expression E is calculated as the number of input data for which E does return
the same value as the target function. In this paper, the fitness values have always been normalized into the [0, 1] range,
by dividing them by 2, where k is the problem’s order. Thus, from now on a solution with fitness equal to 0 represents
an optimal solution, while 1 is the worst possible fitness value. To define a neighborhood structure, we have to choose a
suitable set of variation operators. Standard crossover or subtree mutation [17] generate neighborhoods that are too
wide and complex to be studied. In this paper, we consider a simplified version of the inflate and deflate mutation
operators that we have introduced in [11, 26] (also called structural mutation operators in those works): (1) Strict
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deflate mutation, which transforms a subtree of depth 1 into a randomly selected leaf chosen among its children. (2)
Strict inflate mutation, which transforms a leaf into a tree of depth 1, rooted in a random operator and whose children
are a random list of variables containing also the original leaf in a random position. (3) Point terminal mutation, that
replaces a leaf with another random terminal symbol. This set of genetic operators (that will be called Strict-Structural,
or StSt, mutation operators from now on) is easy enough to study and provides enough exploration power to GP. For
instance, StSt mutations present two important properties:

(i) each mutation has an inverse: let M be the set of StS7 mutation operators and let S be the set of all the possible
individuals (search space). For each pair of individuals (i, j) € S, if an operator m € M exists such that m(i) = j,
then an operator m~' € M such that m~'(j) = i always exists. In other words, if an individual i can generate an
individual j by one application of a StSt mutation operator, i can always be generated from j by one application
of another StSt mutation operator;

(i1) for each pair of solutions, a sequence of mutations that transforms the first one into the second exists (not
necessarily unique).

See [24, 36] for the formal proofs of these properties. Thus, the associated graph (S, V) of fitness landscape is an
undirected (by Property (i)) and connected (by Property (ii)) graph.

In the rest of this section, we introduce the Boolean fitness landscapes that have been actually used in our study. In
particular, we considered the Even Parity and the Multiplexer problems under different sets of Boolean operators. We
empirically show that the different sets of operators induce problems of different hardness for the GP. Such a difference
is immediate by considering the results of two problem difficulty measures that we computed on our landscapes, namely
the Success Rate and the Negative Slope Coefficient.

3.1. The Even Parity Problem

The goal of the even-k parity problem [17] is to find a Boolean function of k variables that returns True if an even
number of inputs are True and False otherwise. The set 7 is composed of k variables (where k is the order of the
problem). Two different function sets are studied in this work: {xor,~or} and {NanDp}. Obviously, both the sets can
describe an exact solution for the even parity problem. However, the “minimal” exact solution (in term of size of the
expression) that uses only xors and NoTs is considerably smaller than the minimal exact solution that uses only NANDS.
We chose these sets because it would be, intuitively, easier to construct an exact solution using the set {Xor, Not} than
using the set {nanD}. Notice that the set {xor,Not}, although it allows to “easily” describe an exact solution of the
even parity problem, cannot represent all the Boolean functions (i.e., it is not functionally complete [37, 24, 36]) and
should not used for other Boolean symbolic regression problems. Every Boolean function, instead, can be expressed as
composition of NANDs (i.e., {NAND} is functionally complete [37]), and, therefore, the second function set can be used to
solve other BSR problems. We have chosen these function sets because they are small enough to limit the cardinality
of the search space but also rich enough to represent some perfect solutions. Furthermore, these function sets induce
two fitness landscapes with different difficulties for GP [11]: the landscape induced by {xor, NoT} is easy to search,
while the one induced by {~Nanp} is generally hard. This fact is confirmed by the results shown in Table 1, where the
values of the success rate (indicated by SR in the table) for three different values of the mutation rate and NSC are
reported for both landscapes. The success rate is the percentage of runs in which the global optimum was found within

Set of Operators S R(pm:O.95) SR([,m:()j) S R(pm:O.ZS) NSC
{xor, NOT} 1 1 1 0
{NAND} 0.03 0 0 -0.14

Table 1: Values of the success rate for p,, = 0.95, p,, = 0.5 and p,, = 0.25 and of the NSC for the even-4 parity problem using two different sets of
operators to build the individuals. The fitness landscapes induced by these two sets of operators clearly have different difficulties for GP.

200 generations (100 total runs have been executed in this paper). This definition is informal and prone to criticism: for
example, in some cases, to calculate the success rate, one is forced to choose an error threshold, under which a fitness
value is considered successful, and this is usually a rather arbitrary choice that can affect results. Nevertheless, good or
bad success rate values, in particular when they are very different to each other, can correspond to our intuition of what
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“easy” or “hard” means in practice. Thus S R can be used as a broad measure to experimentally confirm our difficulty
predictions. The success rate results reported in Table 1 have been obtained by executing 100 independent GP runs
using the even-4 parity problem, maximum tree depth for the individuals equal to 8, population of size 100, ramped
half-and-half population initialization, tournament selection of size 10, StSt mutations as genetic operators. Only one
StSt mutation operator has been applied (100 runs have been executed with mutation probability equal to 0.95, 100 runs
with mutation probability equal to 0.5 and 100 runs with mutation probability equal to 0.25) to each selected individual.
The choice of the particular mutation operator has been done uniformly at random between the three SzSt mutations.
The results related to the NSC reported in Table 1 have been obtained by generating a sample of 40000 individuals by
means of the Metropolis-Hastings algorithm and, for each of them, a neighbor has been generated by applying one SzSt
mutation. Once again, the choice of the particular mutation operator has been done uniformly at random between the
three SzSt mutations. Further results of the NSC for the even parity problem can be found in [10, 11].

The interpretation of the results in Table 1 is straightforward: the landscape induced by the {xor,Not} set of
operators is easier than the one induced by {NanD} for GP (for all the mutation rates that we have used) and these results
are also confirmed by the NSC values. Thus, we can compare the two landscapes (indicated by Léxm*) ot and L(EA;)D
from now on, where k is the problem order and 4 is the prefixed tree depth limit; k£ and /& will be omitted when not
necessary), to find some interpretations of their different difficulties.

We recall some other interesting properties of the even parity fitness landscapes that we proved and discussed,
among others, in [24, 36]. First of all, assuming that all fitness values have been normalized into the range [0, 1], if an
expression does not contain at least one occurrence of each variable, then its fitness value is exactly equal to 0.5. For
this reason, the wide majority of individuals in the even parity landscapes have fitness 0.5 [11]. Secondly, an expression
in the L xor-Nor} landscape can only have a fitness value equal to 0, 0.5 or 1. (see for instance [23, 24, 36] for the formal
proofs of these properties). If we chose the StSt mutation operators, some other properties of the £***"" Jandscape
exist: (a) there is only one neutral network at fitness 0.5 (we call it the central network), (b) all the other networks
(we call them the peripheral networks) are composed by one single individual (and thus we can call them degenerate
networks) and (c) all the peripheral networks are adjacent to the central one (in the graph-theoretic sense). Property (c)
can be easily proved by showing that, for each solution s, a single application of one StS? mutation on s leads to an
individual of fitness 0.5. Property (b) can be proved by showing that every S¢St mutations of an individual of fitness 0
or 1 produce an offspring with a different fitness value. Finally, Property (a) can be proved by showing that for each
pair of solutions with fitness 0.5 a sequence of neutral SzSt mutations that transforms the former into the latter exists.
The full proofs of these properties can be found in [24, 36].

3.2. The Multiplexer Problem

The goal of the k-multiplexer [17] problem is to design a Boolean function with & inputs and one output. The first x
of the k inputs can be considered as address lines. They describe the binary representation of an integer number. This
integer chooses one of the 2* (= k — x) remaining inputs. The correct output for the multiplexer is the input on the line
specified by the address lines. The terminals are the k inputs to the function. In this paper, we have used two different
sets of non-terminals: {1F} (where Ir(x, y, z) is a ternary Boolean function that returns y if x is true and z otherwise) and
{nanD}. As for the case of the even parity benchmark, we have chosen these two sets because they are small enough to
limit the cardinality of the search space but rich enough to represent some perfect solutions. These two sets of Boolean
operators induce two landscapes (indicated by .E( w and L NAND} from now on, where k is the problem order and £ is the
prefixed tree depth limit) with two different difficulties for GP This fact is confirmed by the results shown in Table 2,
where the values of the success rate (S R) for three different mutation rates and NSC are reported for both landscapes.
The success rate results reported in Table 2 have been obtained by executing 100 independent GP runs using the

Set of operators S R(17m=0-95) SR(pm:()j) S R(,,m=()_25) NSC
{1F} 1 0.98 0.71 0
{NAND} 0 0 0 -0.21

Table 2: Values of the success rate for three different mutation rates and of the NSC for the 6-multiplexer problem using two different sets of operators
to build the individuals. The fitness landscapes induced by these two sets of operators clearly have different difficulties for GP.

6-multiplexer problem, maximum tree depth for the individuals equal to 6 for the landscape induced by {NaND} and
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to 5 for the landscape induced by {1} (this difference in the tree depths for the two landscapes is justified by the fact
that these are the landscapes that will be studied later in this paper; the choice of these values for the tree depths are
motivated in Section 5.2.2), population of size 100, ramped half-and-half population initialization, tournament selection
of size 10, SzSt mutations as genetic operators. As in the case of even parity problem, only one SzSt mutation operator
has been applied (with probability equal to 0.95, 0.5 and 0.25 in the three sets of runs) to each selected individual.
The choice of the particular mutation operator has been done uniformly at random between the three SzSt mutations.
In this case, a run has been considered successful when an individual with a lower fitness than 0.15 has been found.
The results related to the NSC reported in Table 2 have been obtained by generating a sample of 40000 individuals
generated with the Metropolis-Hastings algorithm and, for each of them, a neighbor by applying one StSt mutation.
Once again, the choice of the particular mutation operator to generate the neighbor has been done uniformly at random
between the three StSt mutations. Further results of the NSC for the multiplexer problem can be found in [9]. The
interpretation of the results in Table 2 is straightforward: L™ is an easier landscape than L™ for GP.

4. Sampling Methodology

Boolean function fitness landscapes are in general very hard to sample. For instance, for the even-k parity problem,
the large majority of the individuals have fitness equal to 0.5 and as the order k of the problem increases, the percentage
of individuals with a fitness equal to 0.5 increases too. In [23] uniform random samplings for these spaces have
been presented. In [11] sampling techniques such as Metropolis and Metropolis-Hastings [32] have been used. Even
though the results obtained were satisfactory for the purposes of those works, still many individuals had fitness equal
to 0.5 and too few ones with different fitness were considered. Thus, those samples did not capture some important
characteristics of the fitness landscape, such as the number and size of the neutral networks at fitness values different
from 0.5 and the connectivity of optimal solutions to these networks. In other words, those samplings did not offer a
useful “view” of the fitness landscapes and did not allow us to completely understand the behavior of GP on them.
In this paper, we present a new methodology to generate samples containing trees of many (possibly all) different
fitness values and forming connected neutral networks, if possible. This technique is composed of three steps: we
have called them modified Metropolis, vertical expansion, and horizontal expansion. Modified Metropolis generates a
sample S of individuals. The vertical expansion tries to enrich S by adding to it some non-neutral neighbors of its
individuals. Finally, the horizontal expansion tries to enrich S by adding to it some neutral neighbors of its individuals.
The meaning of names “vertical” and “horizontal” becomes apparent if we think of our sampling methodology as an
exploration of a bi-dimensional plane. In fact, if we project the solution space to a plane where the y-axis represents
the fitness values, then the vertical expansion is the step that tries to expand the initial sample along the y-axis (i.e.,
non-neutral neighbors), while the horizontal expansion step tries to add solutions that lay on the same horizontal line of
the previously found ones (i.e., neutral neighbors).

4.1. Modified Metropolis Sampling

Our sampling methodology has been inspired by the Metropolis technique. According to that technique, a solution
is generated at random at the beginning and considered as the current solution P. Successively, a loop is executed. At
each iteration of that loop, a new solution 7 is generated at random and accepted (and thus inserted into the sample and
considered as the new current solution P) or rejected according to a certain probability distribution. In the Metropolis
technique, the distribution for accepting or rejecting individuals is equal to @/ (f(P), f(T)) = min (1, ];.E—ITJ))), where f is
the fitness function. In this way, the Metropolis technique favors fitter solutions but it does not penalize solutions at
fitness 0.5. In our methodology, instead, we define a probability distribution « that rewards solutions with a different
fitness than the previously accepted one. In this way, we intend to reward solutions with a different fitness than 0.5.

Let p,.in be the minimum probability of accepting a solution, then our definition of the « function is:

9-17(P)— f(T)
max(f(P), 1 — f(P))
In this way, if | f(P) — f(T)| is equal to 0, the new solution T gets a small probability (equal to p,,;,) of being accepted.

If we set p,in = 0 and f(P) is equal to 0.5, then the algorithm is likely to never terminate. Thus, a value of p,,,
larger than zero, even though “as small as possible”, has to be used. On the other hand, the larger the value of

7

a(f(P), f(T)) = (1 = ppin) - IOgm( + 1) + Pumin ey



|f(P) — f(T)|, the higher the probability. In particular, if 7 has the most different possible fitness value from P,
then |f(P) — f(T)| = max(f(P),1 — f(P)). In that case, the logarithmic term becomes log;,(9 + 1) = 1, and thus
a(f(P), f(T)) = 1. We have chosen a logarithmic function because its returned value increases very quickly for small
differences (a small delta in the value of |f(P) — f(T)| results in a large change in the value of the logarithm) and thus
it also rewards solutions 7 with a slightly different fitness from P. Moreover, we have chosen the base-10 logarithm
because we wanted the maximum value of a(f(P), f(T)) to be equal to 1.

4.2. Vertical Expansion

The vertical expansion of our methodology takes as input the sample S generated by the modified Metropolis
algorithm and enriches it by adding some new individuals. In synthesis, it works as follows: for each individual i € S,
L different neighbors of i are generated by means of L StSt mutations. Each one of these neighbors can be accepted or
rejected according to the probability distribution expressed by Equation 1. All accepted neighbors are finally inserted
in §, that is returned as output of the vertical expansion phase. Since the value of p,,;, is “small”, there is a “small”
probability of having neutral neighbors in S at the end of the vertical phase.

4.3. Horizontal Expansion

Let an incomplete neutral network be a sample Iy of a neutral network N such that at least one neutral neighbor
j of an individual i € Iy exists such that j ¢ Iy. The horizontal expansion phase of our sampling technique takes as
arguments the sample S returned by the vertical expansion phase, the minimum admitted size of an incomplete neutral
network 7,,;, and the maximum size of the sample that has to be generated S ,,,,. These last two measures are parameters
of our sampling technique and have to be manually defined. The horizontal phase returns a new sample S, possibly
enriched with some individuals that are neutral neighbors of the individuals belonging to the sample returned by the
vertical phase. Thus, the sample S returned by the horizontal phase will hopefully contain larger neutral networks than
the ones contained in the sample returned by the vertical phase. The horizontal expansion algorithm can be defined
by the pseudo-code in Algorithm 1, where rnd (0, 1) is a random number generated with uniform probability from

Algorithm 1: The pseudo-code describing the horizontal expansion of our sampling methodology.

iter — 1
while at least one incomplete neutral network exists in § and |S| < S .4 do
N « set of incomplete networks in S of size less than I,,,;, ;
forall the N € N do
forall the i € N do
forall the j € V(i) do
if rnd(0, 1) < B(f (@), f(j), iter) and |S| < S .ax then
| S S Ul
end
end
end

end
iter « iter +1 ;

end
return S ;

the range (0, 1), ifer is a variable containing the number of iterations that have been executed and B(f (i), f()), iter) is
defined as follows:

1 if £(0) = £()),
Mﬂ&ﬂﬂmnz{ if £G) = £()) o

k7" otherwise

where k is a constant that has to be chosen in such a way that probability S decreases “quickly enough” with iterations
(in this work, k = 4). Horizontal expansion stops when the sample reaches the maximum size S ,,,, or when an iteration
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{NAND} {XOR,NOT}
‘L(273) ‘5(2,3)

No. of individuals 1,446 5,552
No. of optimal solutions 8 660
No. of neutral networks 31 1,389
Average network size 46.64 3.99
Median of network sizes 9 1

Table 3: Some characteristics of the “small” fitness landscapes for the even-2 parity problem that we have exhaustively studied.

does not add any new individual. This algorithm is very useful to study neutrality, but it has some bias: for instance,
a large neutral network could be represented in our sample by many smaller ones. It is the case, for instance, of the
central network for the £*°*"" even parity landscape (as we show in Section 5.1.2). However, in this particular
case, this is not a problem, since we are aware of the unicity of the central network because of the theoretical results
presented in Section 3.1 (Property (a)). Those theoretical results should contribute to the understanding of the real
shape of the fitness landscapes under study.

5. Experimental Results

In this section, we present our new measures that describe various aspects related to the neutrality of fitness
landscapes. The new measures are presented by discussing the distribution of their values on the fitness landscapes
that have been introduced in Section 3. In particular, in Section 5.1, we studied 4 fitness landscapes of the even parity
problem, while in Section 5.2, we studied 4 landscapes of the multiplexer problem.

5.1. Even-k Parity Problem

The main aim of this section is to discuss the aspects related to neutrality of 4 fitness landscapes of the even parity
problem and how they possibly determine the problem difficulty for the GP. Neutrality of the fitness landscapes is
captured by a set of new measures that are here introduced and defined. In the first part (Section 5.1.1) we exhaustively
studied 2 small fitness landscapes, while in the second part (Section 5.1.2) we investigated 2 larger fitness landscapes by
means of samples obtained by our new sampling methodology. As discussed in the following, the results obtained for
the “small” and “large” landscapes consistently support the existence of a relationship between neutrality and problem
difficulty and, moreover, they empirically support the soundness of our sampling methodology.

5.1.1. Exhaustive analysis of a “small” landscape

The first step of our study is to investigate a fitness landscape of small size, in order to be able to exhaustively
generate all the possible individuals contained in it. We have built it by considering the even-2 parity problem and
trees with a maximum depth equal to 3. The resulting Lgf’;’m] and Lg‘g‘f} landscapes both contain at least one perfect
solution. In Table 3 some characteristics of these fitness landscapes are reported. In agreement with the theoretical
observations presented in Section 3.1, Lgi’;)’mﬂ has a large number (1388) of neutral networks at fitness 0 and 1
composed by only one individual and one large (4164 individuals) central network at fitness 0.5. On the other hand,

.Eg";)”} has smaller size and it has few networks, all of them medium-sized. Figures 1 and 2 are a graphical representation

of the neutrality graphs of Lgf;)”’ and LE;%R)’N‘"’ respectively (see Section 2.1 for the definition of neutrality graph).
Each square represents a neutral network, and its size is proportional to the logarithm of the network size. The node
color indicates the fitness value of the network (from 1, black, to 0, which represents the best possible fitness, white).

The first parameter we study is the average neutrality ratio, r. It is defined as the mean of the neutrality ratios
(as defined in Section 2.1) of all the individuals in a network. High values 7 (near to 1) correspond to a large amount
of neutral mutations. Figure 3 presents the scatterplot of 7 against fitness for each one of the neutral networks in the
two landscapes. In this figure, as in all the subsequent ones, to guide the eye, a gray line is drawn, joining all the
average points for each considered fitness value. These averages have been weighted according to the size of networks
representing each point. Furthermore, points at the same coordinates have been artificially (slightly) displaced, so that
they can be distinguished. In .Eggk)’m”, the central network (fitness equal to 0.5) has high values of 7, while for the
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23) ) for the even-2 parity problem.

Figure 1: Graphical representation of the neutrality graph of £

{XOR,NOT!
(2.3)

Figure 2: Graphical representation of the neutrality graph of £ ! for the even-2 parity problem.
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Figure 3: Scatterplot between fitness and average neutrality ratio in £$";)”) (left part) and Lg‘g’mﬂ (right part) for the even-2 parity problem.

other networks 7 = 0. Furthermore, the scatterplot is nearly symmetrical around fitness equal to 0.5. In L)

7 values
are, on average, larger than 0.2 for some bad fitness values (fitness equal to 0.75) and smaller than 0.2 fgf32good ones
(fitness equal to 0 and 0.25): in general, in ng’;” networks with bad fitness seem to be “more neutral” than networks
with good fitness.

The second measure we study is the average A-fitness of the neutral networks. This measure is the average fitness
change (positive or negative) achieved after a mutation of the individuals belonging to the network. Formally, let N be

a neutral network, then its average A-fitness can be defined as:

Af(N) = i Z [Zveq/(s)(f(v) — f(s)

Nl & [V(s)l

This measure is clearly related to the notions of evolvability [29] and innovation rate [38]. A negative value of A 7
corresponds to a fitness improvement (because it reduces the error) while a positive one corresponds to a worsening

(because it increases the error). As Figure 4 shows, in .l:g“?)”} the possible values of Af are included into a narrower
range than in LE;OSR)’N(’T]. We conclude that in LE;A;)D} mutations cannot produce large fitness improvements (on average).
{nand} {xor,not}
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Figure 4: Scatterplot between fitness and average A-fitness in .Cg;N)D) (left part) and LE;%R)’N"T) (right part) for the even-2 parity problem.
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Thus, to solve the problem, GP has to find individuals with many different fitness values. This is not the case for

L"‘OR’N(’”, where a mutation of an individual contained into the central network can produce an individual with a fitness

(2,3)
equal to O (global optimum). Furthermore, in Lg";)')) good fitness networks (fitness equal to 0.25 or 0.5) have positive

{NAND}
(23) >

Now, we present two measures that we have called Non-Improvable (NI) Solution ratio (r,;) and Non-Degradable'
(ND) Solution ratio (r,q). The first one is defined as the number of non-improvable solutions, or non-strict local optima
(i.e., individuals i that cannot generate offspring j by applying a StSt mutation such that the fitness of j is better than
the fitness of i) that are contained in a network divided by the size of the network. The second one is the ratio of the
individuals i that cannot generate offspring j (by applying a StSt mutation) such that the fitness of j is worse than the
fitness of i. Figures 5 and 6 present the scatterplots of r,; and r,,4 for each fitness value, respectively. NI solution ratio is

values of Af. In other words, in £ it is unlikely that mutations of good individuals generate better offspring.
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Figure 5: Scatterplot between fitness and NT solution ratio in ngo) (left part) and Lg‘;'l)'”m} (right part) for the even-2 parity problem.
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Figure 6: Scatterplot between fitness and ND solution ratio in LEEA;)D} (left part) and Lg‘g’”oﬂ (right part) for the even-2 parity problem.

1 in O-networks (they are composed of optimal solutions, so they cannot further improve) and it is 0 in 1-networks.

'We are aware that the word “degradable” is normally used to indicate something different (”capable of being chemically degraded” from the
English dictionary). Nevertheless we use it here as a contrary of “improvable”, i.e. as something that cannot get worse.

12



fitness = 0.25 fitness = 0.5 fitness = 0.75

1.00

0.75

0.50

0.25+

NI solution ratio

0.00 + * .
T T T T T T T T T T T T T T T

000 025 050 075 1.00 000 025 050 075 100 0.00 025 050 0.75 1.00
ND solution ratio

{NAND}

Figure 7: Scatterplot between ND and NI solution ratio in .[:(2 3)

for the even-2 parity problem.

Fitness Value NI solution ratio ND solution ratio
0 1 0
0.5 0.5156 0.4844
1 0 1

Table 4: NI solution ratios and ND solution ratios in L(;";) T} for the three possible fitness values.

Analogously, ND solution ratio is 1 in 1-networks and it is 0 in O-networks. In .[Z NAND , there are some good networks
(low fitness) with high r,; values. At fitness 0.25, all the networks have a high Value of ryi (larger than 0.6) and 5 of
them (over a total of 9 networks) have a value of r,; equal to 1 and thus they are plateaus of non-strict local optima.
We call these networks trap networks, since their individuals cannot generate better offspring and thus once GP has
reached these networks, it cannot escape from them by means of a StSt mutation improving fitness. Trap networks do

XOR,NOT}
not exist in L(z 3)

Finally, we study the ND solution ratio against N/ for relevant fitness values in L};";)D} (Figure 7) and for all the

(Table 4). The scatterplot at fitness values equal to 1 and O for L

XOR,] NUT
(2.3)

to save space. However, they are obviously identical to the case of £

NAND

possible fitness values in L N

are not reported
{XOR,NOT}
(2,3)
In Lg?;)’wﬂ all the points are approximately placed along the segment ((1,0), (0, 1)). In L(;A;)D , the points are
approximately positioned on the Cartesian axes and networks located at good fitness values have a large number of NI
solutions. Thus, it is unlikely to mutate their individuals generating better offspring. This is not the case for Lg%“)’m}
As a partial conclusion, we claim that none of the measures presented until now is able to completely justify the
reason why the L(;’g’;’ landscape is hard for GP, while L"“)R) o1l s easy. Nevertheless, each one of them gives a partial
explanation and cons1der1ng them all together, we can conclude that: (1) S¢St mutations can produce larger fitness

improvements in .Eé";‘) T} than in Lg";)[’ ; (2) Good individuals are harder to improve for L(;A;)D than for ng“)’ml; 3)
{xoR,NOT}

LE;A;D’ contains some “trap networks” at good fitness, which is not the case for L(z 3 - Even though these are not

reported in Table 4.

formal proofs that L W0} s harder than LE’Z‘OSR)’NOT], these are at least strong evidences, and all of them are based on the
concept of neutrahty A bond between neutrality (expressed by our neutrality measures) and GP performance seems to

exist. Below, we investigate the existence of that relationship for a larger landscape, studied by means of samples.

5.1.2. Analysis of larger landscapes by means of samples

The largest even parity search spaces that we have been able to study correspond to the even-4 parity problems
using trees of a maximum depth equal to 8. We indicate with L(XOSR) T and LEZ’}?)D} the landscapes using {xor, Not} and
{nanD} as function sets respectively. Both these spaces contain optimal solutions for the even-4 parity. Nevertheless, for
.Qng)D} they are difficult to automatically generate (either by a Metropolis algorithm or by GP, as we have empirically

shown in Section 3.1). Thus, if we want to sample all the possible fitness values, one feasible solution is to manually
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add one of them to the S sample that is given as input to the vertical expansion phase. For the same reason, we
have manually added to S an individual with the worst possible fitness (fitness equal to 1). Table 5 summarizes the
parameters used to generate the samples of the two landscapes (upper part) and some data about the samples that have
been generated by our algorithm (lower part). It is particularly interesting to remark that our algorithms have generated

{NAND} {XOR, NOT}
Pmin for Modified Metropolis 0.005
Pmin Tor vertical expansion 0.00005
k for horizontal expansion 4
Minimal size of an incomplete network 2
Sample size of Modified Metropolis 3 10
L of vertical expansion 10 100
Size of generated sample 794,191 968,423
No. of networks contained into the sample 22,261 32,012
Average network size 35.68 30.25
Median of network sizes 35 31

Table 5: Parameters used to sample the LEZog")’NO") and £§Z"8”)D) landscapes for the even-4 parity problem.

a higher number of neutral networks for Lg‘g‘)’mﬂ (32,012) than for LEZAZ?)D} (22,261). This reflects the structures of the

“small” landscapes studied in Section 5.1.1, where we have shown that the number of neutral networks in .ng’;)’m” is
higher than the one in Lgﬁ‘;;” (see for instance Figures 1 and 2).

Figure 8 is an histogram of the fitness distributions and shows that our samples have covered the whole range of
possible fitness values for the two landscapes. We remark that the principal aim of our sampling methodology is to
cover a wide range of different fitness values, and it is not able to generate optimal solutions for landscapes that are
more complex than the ones considered in this work. In particular, the sample of L{XOSR’NOT} has 930 individuals with

fitness 0 and 954 individuals of fitness 1. It is important to remind that each fitness ’landscape built using xor and

{nand} {xor,not}
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Figure 8: Frequency distribution of fitness in the sampled ng)‘)) (left part) and ng‘mﬂ (right part) for the even-4 parity problem.
Not can only contain individuals of fitness 0, 0.5, or 1 (as formally proven in [24, 36]). Furthermore, we remark that
many individuals of fitness different from 0.5 have been generated by means of our sampling technique. We would not
have been able to study those individuals if we had used a uniform random sampling or a standard Metropolis-Hastings
technique. A dissertation about the fact that with uniform random sampling and with standard Metropolis-Hastings
techniques only a limited number of individuals with a different fitness from 0.5 can be generated is contained in [11].
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Figure 9: Scatterplot between fitness and average neutrality ratio in the sampled LEZA;)"’ (left part) and Lg‘;’*)’m” (right part) for the even-4 parity
problem.

In Figure 9, we present the average neutrality ratios (F) results. The ratios calculated over the sample of LZOSR)‘NOT]

are not affected by the presence of multiple 0.5-networks (caused by the bias of our sampling methodology) instead of
having only one central network: all the ratios of these networks are close to the “large” single one observed for the

even-2 parity (Figure 3). Furthermore, as for LE;A;)D’ (Figure 3), also in LEZ“Q)D} the networks with good fitness values

have a lower 7 than ones with bad fitness values. In other words, the networks with good fitness in £
“less neutral” than ones with bad fitness.
The scatterplot of the average A-fitness is shown in Figure 10. In £

}ZA;)D} seem to be
{XOR,NOT

@8 ! this scatterplot reflects the behavior
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Figure 10: Scatterplot between fitness and average A-fitness in the sampled LEZA;)D) (left part) and Lﬁj"g”‘") (right part) for the even-4 parity problem.

{NAND}
(4.8)

values. Our interpretation is that it is more difficult to significantly improve a solution in LEZ?;D’ than in .E&OSR)’N"T]

because the majority of the mutations generate solutions with similar fitness. Thus the optimum in £ can be found

observed for the even-2 parity (Figure 4), whereas in £ it varies over a more limited range of average A-fitness

{NAND}
4.8)
by GP only generating individuals of many different fitness values, i.e. GP cannot perform “large jumps” as in £~

4.8)
Remark that in the Lm;‘)’”oﬂ landscape, GP can only perform large jumps: the only possible fitness values are 0, 0.5 and
1, with no intermediate fitness values. The reason why GP search performs very efficiently for this landscape, even
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though the “central” network at fitness 0.5 contains the large majority of the individuals, is that the central” network is

very well connected to the other networks, at different fitness values, as we explained above. Thus, “large jumps” are
frequent in Lifg“)"“’ﬂ. Here, we have shown that they are not so frequent in Lg’,‘gf’.

The scatterplot of NI and ND solution ratios (Figures 11 and 12 respectively) present some differences with respect
to the ones observed for the landscape studied exhaustively (Figures 5 and 6), especially for L}Zg”}. Nevertheless, as
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Figure 11: Scatterplot between fitness and N7 solution ratio in the sampled LEZ’;;’)D} (left part) and Lgf’;”oﬂ (right part) for the even-4 parity problem.
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Figure 12: Scatterplot between fitness and ND solution ratio in the sampled Lg"g”) (left part) and Lgogk)’wﬂ (right part) for the even-4 parity problem.

in .Cg";)"}, networks with good fitness contain a large number of NI solutions (trap networks), which confirms that, in

LEZA;D’, it is unlikely that mutating individuals belonging to good fitness neutral networks will generate better offspring.

The differences for LEZ;R)’NOT} can likely be imputed to the sampling algorithm, that breaks down the central network in

many smaller ones.

To save space, we do not show the mutual correlation scatterplots between ND and NI solution ratios for .EZO;)’NOT}
and LEZAE?)D}. Nevertheless, we can point out that these results are very similar to the ones obtained for the “small”
landscapes shown in Figure 7 and Table 4. In particular, in the sample of Lzog“)’”m}, as in Lgo;)’”m}, the 0.5-networks

are approximately placed above the segment ((0, 1), (1, 0)). Furthermore, in the sample of ‘EEZA;)D)’ as in .[:g";)')’, the
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scatterplots of networks with fitness values smaller than 0.5 are approximately parallel to the y-axis and those of

networks with larger fitness values are approximately parallel to the x-axis. Thus, as for Lg";)”’ (Section 5.1.1), also in

LEEA;)D} networks with good fitness values have a large number of NI solutions and thus it is unlikely to escape from

them mutating their individuals, which is not the case for LEZ(;;R)’NWJ
The conclusions of this section are exactly the same as the ones of Section 5.1.1: studying neutrality is helpful for
understanding some characteristics of the fitness landscape and help us to make some inference on the difficulty of the

problem. The proposed neutrality measures can be used for this goal.

5.2. k-Multiplexer Problem

In this section, as for the even parity problem, we first study two “small” fitness landscapes by considering the
their whole sets of individuals (Section 5.2.1), and we then investigate “large” landscapes by means of samples
(Section 5.2.2).

5.2.1. Exhaustive analysis of a “small” landscape

As we have done for the even parity, also for the multiplexer problem, we study two fitness landscapes with some
precise characteristics: (1) they have to be small enough to allow us to exhaustively generate all the possible solutions,
at least as a first step; (2) they must contain at least one perfect solution for the problem; (3) their difficulties for GP
must be different (generally speaking, one of them must be “easy” and the other one must be “hard”). To match all
these requirements, we have initially set the problem order to k = 3 (in this way, expressions can be built using only
three possible terminal symbols) and we have decided to choose the two sets of operators {NaND} and {1F}. Many other
sets of operators for which some perfect solutions could be found might have been chosen. For instance, one might
have studied the well known and mostly used set {AND, OR, NOT}, but in this way, the resulting fitness landscape would
have been larger and studying it exhaustively would have been difficult. On the other hand, considering sets composed
by one operator keeps the landscapes small enough while containing perfect solutions. In particular, if we consider
the {1r} set (where 1F(x, y, z) returns y is x is equal to true and z otherwise), the perfect solution for the 3-multiplexer is
straightforward and one perfect solution for the 6-multiplexer can be found in a very simple way by composing some
solutions to the 3-multiplexer (3 nested IF operations). On the basis of these considerations, and also of the experiments
shown in Section 3.2 we can say that the multiplexer problem (in particular for reduced orders like k = 3 or k = 6) is
easy to solve for GP if we consider # = {1F}, while it is hard if we consider ¥ = {NaND}.

The largest fitness landscapes that we have been able to exhaustively study are composed of trees of a maximum
depth equal to 3 when we have considered the {NaND} set of functions and equal to 2 for {ir} (the NAND operator is binary,
while Ir has three arguments, thus individuals built by IF are larger; this is the reason why we need to keep depth more
limited). Table 6 reports some of the most important characteristics of the two landscapes induced by these operators,
ie. £ and £ If we compare these results with the ones of Table 3 (exhaustive study of small landscapes for the

3,2) 3,3)
o 2
No. of individuals 21,612 27,003
No. of optimal solutions 24 539
No. of neutral networks 39 17
Average network size 554.15 1,588.41
Median of network sizes 9 4

Table 6: Some characteristics of the “small” fitness landscapes of the 3-multiplexer problem that we have exhaustively studied.

even parity problem), the most apparent difference is that for the multiplexer problem the number of neutral networks
is, in general, smaller than the one for the even parity. This observation can be explained by the fact that neighborhoods
are larger for the multiplexer, since the cardinality of the set of terminals is larger (we have considered a problem
order k = 3 for the multiplexer problem, against k = 2 for the even parity). Furthermore, 1r has three arguments and
this contributes to have even larger neighborhoods. As a consequence, it is easier (or more likely) to find at least one
neutral neighbor. Thus neutral networks for the multiplexer are larger than for the even parity. We also remark that,
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even though the depth limit is equal to 2 for £™ and to 3 for L™, the number of individuals in L™ is larger than
the one in L™, Finally, L(S ,, has a much larger number of perfect solutions than LY,

(3,3)
The distributions of fitness values in these two landscapes are reported in Figure 13. In L(I;E) the majority of
{nand} {if}
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Figure 13: Frequency distribution of fitness in Lgf‘;)[’) (left part) and L(l;}z) (right part) for the 3-multiplexer problem.
individuals have a fitness value equal to 0.25 and many individuals have a fitness equal or near to zero (optimal fitness);
no individuals with a fitness value larger (i.e., worse) than 0.75 can be found in L{'F} On the other hand, in Lg“;)')’ the
majority of the individuals have a fitness equal to 0.75, i.e. they have a bad fitness value and only a very small portion
of the individuals have a fitness less then or equal to 0.25.

Neutrality ratio scatterplots for L(3 5, and L(I;A;)D} are shown in Figure 14. Neutrality ratio is high for neutral
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Figure 14: Scatterplot between fitness and average neutrality ratio in LgA;)D) (left part) and 'C(3 2 (right part) for the 3-multiplexer problem.

networks at good fitness values and low for networks at bad ones in L 3.2)» While the opposite holds for _£ NAND .
Figure 15 shows the average A-fitness scatterplots. Even though for both landscapes individuals belonglng to neutral
networks at good fitness values are hard to improve (no negative values of the average A-fitness in correspondence

to good fitness values), for L(];A;)D the values of A-fitness for fitness values near zero are larger than for £'* . Our

(3,2)°
interpretation is that for £ (3.0, improving good individuals is easier than for Lg‘?)[’ )
Figure 16 shows the scatterplot of NI solution ratio. The most important difference between the scatterplots of the
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Figure 16: Scatterplot between fitness and NI solution ratio in .Cg";)o) (left part) and 'Cg)z) (right part) for the 3-multiplexer problem.

{NAND}
(3.3)

This indicates the presence of some trap neutral networks at this fitness value. This is not the case for Lglz) where NI
solution ratio at fitness 0.25 (and at good fitness values in general) is low (smaller than 0.2 for fitness equal to 0.125
and around 0.05 for fitness equal to 0.25).

We do not show here the scatterplots of ND solutions for Lg‘f;)')} and Lg,]z)’ even though we have generated and

&
offspring by means of mutation, which is not the case in ng‘;;’]

Figures 17 and 18 show the scatterplots of NI solution ratio against ND solution ratio for neutral networks at
different fitness values for ng‘;f} and Lg,’z)’ respectively. One different scatterplot is shown for three different fitness
ranges for both landscapes: fitness between 0 and 0.5, fitness equal to 0.5 and fitness between 0.5 and 1. Since a large
part of the individuals in the multiplexer problem share a fitness equal to 0.5, as discussed above, this fitness value
deserves to be studied separately. On the other hand, we study the ranges of fitness values between 0 and 0.5 and
between 0.5 and 1, meaning by them the ranges of good and bad fitness respectively. The fitness values 0 and 1 have
not been included into these ranges, because their values of NI and ND solutions are obvious: for fitness equal to 0,

both landscapes have only NI solutions (perfect solutions cannot be further improved) and for fitness equal to 1, both

two fitness landscapes is that in the case of £ there is a high number of NI solutions for fitness value equal to 0.25.

studied them. It is sufficient to point out that in £’ there are some good individuals that cannot generate worse
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Figure 18: Scatterplot between NI and ND solution ratio in Lg’z) for the 3-multiplexer problem.

landscapes have only ND solutions. For fitness values between 0 and 0.5 (that, we could informally say, represents
the range of good, although not optimal fitness values), both landscapes have no ND solutions, but while L{’;A;)D , for
some fitness values, has a NI solution ratio equal to 1 (i.e. no solution can be improved), the maximum value of the
NI solution ratio for .CF;’Z) is approximately equal to 0.2. These results confirm that it is easier for GP to improve

good solutions for Lg ) than for L(I;A;)D For fitness values between 0.5 and 1, no NI solution is present in the two

landscapes, but while L{N"ND} has some networks with ND solution ratio equal to 0 and 0.25, £(3 %) has only networks
with ND solution ratio equal to 0.75 or 1.

Figure 19 shows the scatterplot of a new measure that we have called profitable mutation ratio: for each neutral
network, we have calculated the number of mutations that generate better offspring and divided it by the total number
of possible mutations of the individuals in that network. As Figure 19 clearly shows, the number of profitable mutations

NAND

for L('; }2) for fitness values ranging from O to 0.5 is much higher than for £(3 3) for the same fitness range. Thus, it is

much easier for GP to improve good solutions for LE'F} than for £ NAND].
To save space we do not show the scatterplots of the proﬁtable mutatlon ratios agamst the unprofitable ones for

L and 'E(3 »); nevertheless, we point out that for fitness values between 0 and 0.5, L(3 », has a higher number of

(3,3)
profitable mutations and a lower number of unprofitable ones than LENA;)D}

All the results discussed in this section corroborate the hypothesis of the ex1stence ofa relatlonshlp between our
neutrality measures and GP performance and give an indication of the fact that £(3 ») 18 easier than L(;A;)D for GP.

5.2.2. Analysis of larger landscapes by means of samples
In analogy with the study on the even parity problem (presented in Section 5.1.2), in this section we present a study
of two landscapes of “large” size for the multiplexer problem. These two landscapes are respectively induced by the
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Figure 19: Scatterplot between fitness and profitable mutation ratio in Lg";)”) (left part) and 413”2) (right part) for the 3-multiplexer problem.

{NanD} and {1} sets of operators, as for the “small” landscapes that have been studied in Section 5.2.1. The sampling
methodology we have used to study these landscapes is the same as the one presented in Section 4 and that has been
used for the even parity problem. The larger search space induced by {NanD} that we have been able to study is the
6-multiplexer problem with a maximum depth equal to 6. In analogy with the terminology used above, we indicate

with Li’gfg)n} this landscape. The larger search space induced by {ir} that we have been able to study is the 6-multiplexer

with a maximum tree depth equal to 5. This landscape will be indicated by LEE}S)' As for the limited size landscapes
studied in Section 5.2.1, this difference in the tree depth limit for the two landscapes is due to the fact that NaND is an
operator of arity 2 while IF is an operator of arity 3. Thus, given a fixed tree depth, the trees that can be built with IF are
on average larger than the ones that can be built with Nanp. Table 7 shows some of the most important characteristics
of the samples of £ and £ A remarkable difference between these two sampled landscapes is that £

(6,6) (6,5)° (6,6)
{NAND} {1r}

Tree-depth limit 6 5

Dumin for Modified Metropolis 1073

Pmin for vertical expansion 1077

k for horizontal expansion 4

Minimal size of an incomplete network 5

Sample size of Modified Metropolis 3 10

L of vertical expansion 15 20

Size of generated sample 708,627 431,145

No. of networks contained into the sample 21,092 4,673

Average network size 33.60 92.26

Median of network sizes 32 50

Table 7: Parameters used to sample the 4;’5) and Légi‘g)‘)) landscapes for the 6-multiplexer problem.

has a larger number of neutral networks than LEIGFIS). This happened also for the small sized landscapes that we have
studied in Section 5.2.1 (see results reported in Table 6). Thus, this characteristic is probably not caused by a bias of

our sampling methodology, but it is present in the actual (complete) LEE’?GN)D’ and ‘£EI6F,]5) landscapes. In other words, our

sampling technique keeps the proportions of the number of neutral networks in L}g"g)n} and in LEZJS)
real landscapes.
Figure 20 shows the fitness distributions for the two samples. For £

as they are in the

{17}

65)° all the sampled fitness values are included
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Figure 20: Frequency distribution of fitness in the sampled sz“g)')) (left part) and Ltg’s) (right part) for the 6-multiplexer problem.

into the range [0, 0.625]; in other words, no bad individual has been sampled. The same characteristic was present in the
distribution of the “small” landscape shown in Figure 13, where no bad individuals (fitness larger than 0.75) exist and
the number of individuals with a fitness value larger than 0.5 is low (smaller than 4% of the total number of individuals
in the search space). Nevertheless, the shapes of the two distributions are not identical: our sampling technique differs
from a uniform random sampling and has been designed to study some characteristics of the landscapes related to
neutrality and not to exactly maintain the original distributions.

For L{g’fgf}, a large part of the sampled individuals have a bad fitness value (included in the range [0.75, 1]), and
this is similar to what happened in the histograms of the small size landscapes that we have studied exhaustively (see
Figure 13), where the largest number of individuals had fitness equal to 0.75. Nevertheless, also in this case, the two

distributions (Figures 13 and 20) are not identical; in particular, the sample of Lg"gf} generated by our technique
{NAND

contains fewer “good” individuals than the whole landscape £(3!3) ! This is probably due to the fact that the hardness of
the problem increases as the problem order increases, thus “good” individuals for the 6-multiplexer problem are harder
to find (and to sample) than for the 3-multiplexer problem. Finally, we point out that with our sampling technique, as it
was the case for the even parity problem, we have been able to generate individuals with many different fitness values.
This would not have been possible if we had used a uniform random sampling or a standard Metropolis sampling.

Figure 21 reports the average neutrality ratio scatterplots for Lizf‘g’)”} (left part) and Lig’}s) (right part). As for the

small landscape (results reported in Figure 14), also in this case L™ has a higher neutrality ratio than L™} for
networks at good fitness values. In particular for networks at fitness values around 0.25, the average neutrality ratio in
4?5) is approximately included between 0.3 and 0.5 and the average (gray line in figure) is around 0.45. For the same

fitness values the average neutrality ratio in Lég"g;’} is approximately included between 0.1 and 0.4 and the average

value in about 0.2. If we consider networks with fitness values better than 0.25, the trend is even more marked: for

networks at fitness 0.1, Lg}s) has an average neutrality ratio around 0.4 while LézAg)D} has an average neutrality ratio

approximately equal to 0.05. In conclusion, £™ is “more neutral” than £™"}in good regions of the fitness landscape.

The average A-fitness scatterplots are not reported here, but we have studied them and they confirm that improving
good individuals for £™ is easier than for £™, in fact for neutral networks at good fitness values the value of the
average A-fitness for 42’2;)} is positive and much larger than the one for Li‘g’ }5) (this behavior is very similar to the one
of the “small” landscapes shown in Figure 15).

The scatterplots of NI solution ratios are reported in Figure 22. ngfg)”’ presents some NI solution ratios larger than
0.2 for some good fitness values (see for instance the peaks at fitness values approximately equal to 0.125, 0.375, and
0.5). This indicates the presence of some trap neutral networks at this fitness values. This is not the case for 415,]5)
where NI solution ratios are always equal to zero, except the obvious case of fitness equal to zero, where the NI solution
ratio is, of course, equal to one.
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{NAND}
(6,6

(ng), respectively). As in Figures 17 and 18, one separate scatterplot is shown for three different fitness ranges for
both landscapes: fitness values between 0 and 0.5, fitness equal to 0.5 and fitness values between 0.5 and 1. The fitness

values 0 and 1 have not been included into these ranges. The most remarkable difference between the .Eéz"g)')} and

the Lig}s) results can be seen in the respective scatterplots reporting results at fitness values between 0 and 0.5 (good,

{NAND}
(6,6)

all the neutral networks

Figure 23 (Figure 24, respectively) shows the scatterplots of N/ solution ratio against ND solution ratio for £

although not optimal fitness values). For these fitness values, both fitness landscapes contain no ND solution, but £
{1r}

(5.6)
have an NI solution ratio equal to 0. In other words, for LEEAQ)D’ some good individuals exist that cannot be improved by

{17}
6.,5)°

Figure 25 shows the scatterplot of unprofitable mutation ratios for Li’g"g’;’] and Li‘g}s). Values of the unprofitable

mutation ratios are higher for good fitness values in Lég“g”} than in Lg’s). In particular, for fitness values between 0 and
NAND}

0.25, the majority of the possible mutations in 46 6 Aare unprofitable, while for LE?S) only about half of the possible
mutations appear to be unprofitable. We do not show the scatterplots of profitable mutation ratios here, but they lead us

23
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to the same conclusions as the unprofitable ones.
Our conclusion is that all the neutrality measures that we have studied indicate that £
GP.

{1F}
(6.,5)

{NAND

}
66) for

is easier than £

5.3. On the Generality of the Proposed Approach

Neutrality within various landscapes can have complex properties and can deeply affect the performance of
evolutionary algorithms. This complexity has contributed to the controversy surrounding neutrality and a proper study
of such properties requires more nuanced tools. This paper is a contribution along this line. The proposed sampling
technique is quite general. It can be used, in principle, for any fitness landscape and it has the property of sampling
many different fitness values and to identify neutral networks at each different sampled fitness value. This property
is important when using the proposed measures, which clearly work better if different fitness values are sampled. It
is particularly useful for landscapes in which the set of possible fitness values is limited, like the Boolean ones. In
this case, sampling many different possible fitness values is useful to have a view as wide as possible of the fitness
landscape. In the case of continuous fitness functions, like real-valued symbolic regression, one should consider fixing
a threshold to study neutrality, i.e. to consider two neighbors as neutral if the absolute value of their difference is
smaller than a pre-fixed parameter.

The proposed neutrality measures are also quite general, but an important consideration needs to be done: in order
to calculate the measures, one has basically to count some neighbors of the sampled individuals. The smaller the
neighborhoods, the more the counted neighbors represent the whole neighborhood, and thus the more reliable the
measures are. For this reason, it is suitable to use restricted mutation operators as the ones used in this work. If on the
one side, it is possible to define such operators for any problem (as discussed in [11]), on the other hand it is also true
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that these operators are not the ones that are usually employed by GP practitioners and induce a different landscape.
Attempts to formally define the neighborhood induced by standard GP subtree crossover and mutation have recently
been done [39, 40, 41] and extending the present work using those results is one of our main research activities.

Once stated that these measures are general, in the sense that they can be calculated for any problem, the question
remains open if they are informative for every possible fitness landscape. In particular, it is straightforward to remark
that we have considered problem instances whose differences in the difficulties are rather marked. what happens when
the differences in the difficulty of the landscape are finer? Are these measures precise enough to catch those small
differences? Or similarly: how precise (fine) these measures are? The problem in answering to such a question is that
the difficulty of a problem can depend on many factors, and not only on the limited characteristics bound to neutrality
that we are interested in quantifying using our measures. For instance, we believe that if the cause of the different
difficulties of two problems is the number of improvable solutions at good fitness levels, then our measure will be
able to catch those differences even if they are small. If it is due to another cause, in particular if that cause is not
bound to neutrality, like for instance a lack of correlation between fitness and distance to the goal, then our measures
will probably fail to identify it (but this is not their target). What is important to remark here is that our measures are
not intended to be difficulty measures, but, taken all together, their goal is just to offer a particular view of the fitness
landscape. This view can be helpful in some cases.

6. Conclusions and Future Work

Some new characteristics of fitness landscapes related to neutrality have been defined in this paper and studied
for different versions of the Boolean parity and multiplexer problems. In particular, we have defined: (i) the average
neutrality ratio of a neutral network, which quantifies the amount of possible neutral mutations of its individuals;
(ii) the average A-fitness of a neutral network, which quantifies the average change in fitness achieved by mutating
its individuals; (iii) the non-improvable (respectively “non-degradable’) solution ratio of a neutral network, which
quantifies the amount of solutions that cannot generate better (respectively worse) offspring in the network; (iv) the
profitable (respectively unprofitable) mutation ratio of a neutral network, which quantifies the amount of mutations that
generate better (respectively worse) offspring than their parents in the network.

Each measure, if considered separately, does not allow us to draw strong conclusions about fitness landscape
difficulty because it only provides a narrow view of the landscape. But considered all together, they allowed us to have
a clear picture of the characteristics of some particular, but important, tree-based GP Boolean function landscapes.
Interestingly, all the studied measures always agree on the difficulty of the studied problems, motivating it from different
viewpoints.
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In synthesis, all these measures have made clear that the set of operators {xor,Not} induces an easier fitness
landscape than {NanD} for the even parity problem and that the set of operators {1} induces an easier fitness landscape
than {nanD} for the multiplexer problem. This fact has also been experimentally demonstrated by executing 100
independent GP runs for each one of these problems and calculating the rate of successful runs. As a further
confirmation, we have also calculated the value of another GP hardness indicator, called Negative Slope Coefficient.

Another interesting result that we have obtained with our measures is that the landscape induced by {xor, Not} for
the even parity and by {ir} for the multiplexer appears to be “more neutral” than the corresponding ones induced by
{nanp}. Thus, in these particular case studies, neutrality (as expressed by the average neutrality ratio measure) is helpful
for GP, in particular when located in good regions of the fitness landscape. This fact, of course, does not allow us at
all to conclude that more neutral landscapes are easier; nevertheless, studying the average neutrality ratios could be
helpful to formulate some hypothesis on the difficulty of a given problem. All our results allow us to conclude that
the proposed measures are helpful in establishing some good tools to study neutrality and to relate it to GP problem
hardness, and to investigate some important features of fitness landscapes related to neutrality.

Results shown in this paper hold both for “small” even parity and multiplexer fitness landscapes, that we have been
able to study by exhaustively generating all the individuals, and for “large” fitness landscapes, obtained by increasing
the problem order and the maximum size of the individuals, and that we have sampled using a new methodology
defined in this paper. This methodology is based on a modified version of the Metropolis algorithm (in which we
have changed the probability of accepting a new individual into the sample), enriched by two extensions that we have
called vertical and horizontal expansion. Vertical expansion has been introduced to enrich the sample with some
non-neutral neighbors of its individuals, while the horizontal expansion has been introduced to enrich the sample with
some neutral neighbors of its individuals. In this way, the resulting sample should be rich enough to describe both the
characteristics of the fitness landscape related to neutrality and the ones that are not. All the results obtained using
our sampling methodology may suggest its suitability both for the Boolean even parity and multiplexer problems. In
particular, by means of our sampling strategy, it has been possible to generate and to study a large number of individuals
that would not (or would very rarely) have been generated by means of a uniform random sampling or a standard
Metropolis algorithm, like individuals with a fitness value different from 0.5 for the even parity. Furthermore, our
sampling technique has allowed us to generate individuals with many different fitness values, thus giving us a wider
view of the fitness landscapes.

Since our techniques are general and can be used for any GP program space, future work includes extending this
kind of study to other problems and possibly defining new measures of problem hardness based on neutrality.
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