Skip to main content

Genetic Programming — Introduction, Applications, Theory and Open Issues

  • Reference work entry
Book cover Handbook of Natural Computing

Abstract

Genetic programming (GP) is an evolutionary approach that extends genetic algorithms to allow the exploration of the space of computer programs. Like other evolutionary algorithms, GP works by defining a goal in the form of a quality criterion (or fitness) and then using this criterion to evolve a set (or population) of candidate solutions (individuals) by mimicking the basic principles of Darwinian evolution. GP breeds the solutions to problems using an iterative process involving the probabilistic selection of the fittest solutions and their variation by means of a set of genetic operators, usually crossover and mutation. GP has been successfully applied to a number of challenging real-world problem domains. Its operations and behavior are now reasonably well understood thanks to a variety of powerful theoretical results. In this chapter, we introduce the main definitions and features of GP and describe its typical operations. We then survey some of its applications. We also review some important theoretical results in this field, including some very recent ones, and discuss some of the most challenging open issues and directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenberg L (2009) Modularity in evolution: Some low-level questions. In: Rasskin-Gutman D, Callebaut W (eds), Modularity: Understanding the Development and Evolution of Complex Natural Systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Alves da Silva AP, Abrao PJ (2002) Applications of evolutionary computation in electric power systems. In: Fogel DB et al. (eds), Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pp. 1057–1062. IEEE Press

    Google Scholar 

  • Archetti F, Messina E, Lanzeni S, Vanneschi L (2007) Genetic programming for computational pharmacokinetics in drug discovery and development. Genet Programming Evol Mach 8(4):17–26

    Google Scholar 

  • Azaria Y, Sipper M (2005) GP-gammon: Genetically programming backgammon players. Genet Programming Evol Mach 6(3):283–300, Sept. Published online: 12 August 2005

    Article  Google Scholar 

  • Banzhaf W, Francone FD, Nordin P (1996) The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data sets. In: Ebeling W et al., (ed) 4th International Conference on Parallel Problem Solving from Nature (PPSN96), Springer, Berlin, pp. 300–309

    Chapter  Google Scholar 

  • Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic Programming, An Introduction. Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  • Barrett SJ, Langdon WB (2006) Advances in the application of machine learning techniques in drug discovery, design and development. In: Tiwari A et al. (eds), Applications of Soft Computing: Recent Trends, Advances in Soft Computing, On the World Wide Web, 19 Sept.–7 Oct. 2005. Springer, Berlin, 99–110

    Google Scholar 

  • Bojarczuk CC, Lopes HS, Freitas AA (July–Aug. 2008) Genetic programming for knowledge discovery in chest-pain diagnosis. IEEE Eng Med Biol Mag 19(4):38–44

    Article  Google Scholar 

  • Brameier M, Banzhaf W (2001) A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans Evol Comput 5(1):17–26

    Article  Google Scholar 

  • Cagnoni S, Rivero D, Vanneschi L (2005) A purely-evolutionary memetic algorithm as a first step towards symbiotic coevolution. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC’05), Edinburgh, Scotland, 2005. IEEE Press, Piscataway, NJ. pp. 1156–1163

    Chapter  Google Scholar 

  • Castillo F, Kordon A, Smits G (2006) Robust pareto front genetic programming parameter selection based on design of experiments and industrial data. In: Riolo RL, et al. (ed) Genetic Programming Theory and Practice IV, vol 5 of Genetic and Evolutionary Computation, chapter 2. Springer, Ann Arbor, 11–13 May

    Google Scholar 

  • Chen S-H, Liao C-C (2005) Agent-based computational modeling of the stock price-volume relation. Inf Sci 170(1):75–100, 18 Feb

    Article  MathSciNet  Google Scholar 

  • Chen S-H, Wang H-S, Zhang B-T (1999) Forecasting high-frequency financial time series with evolutionary neural trees: The case of Hang Seng stock index. In: Arabnia HR, (ed), Proceedings of the International Conference on Artificial Intelligence, IC-AI '99, vol 2, Las Vegas, NV, 28 June-1 July. CSREA Press pp. 437–443

    Google Scholar 

  • Da Costa LE, Landry JA (2006) Relaxed genetic programming. In: Keijzer M et al., editor, GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, vol 1, Seattle, Washington, DC, 8–12 July. ACM Press pp. 937–938

    Google Scholar 

  • Dassau E, Grosman B, Lewin DR (2006) Modeling and temperature control of rapid thermal processing. Comput Chem Eng 30(4):686–697, 15 Feb

    Article  Google Scholar 

  • Davis TE, Principe JC (1993) A Markov chain framework for the simple genetic algorithm. Evol Comput 1(3):269–288

    Article  Google Scholar 

  • De Jong KA (1988) Learning with genetic algorithms: An overview. Mach Learn 3:121–138

    Article  Google Scholar 

  • Dempsey I (2007) Grammatical evolution in dynamic environments. Ph.D. thesis, University College Dublin, Ireland

    Google Scholar 

  • Dignum S, Poli R (2007) Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat. In: Thierens, D et al. (eds), GECCO '07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, vol 2 London, 7–11 July 2007. ACM Press, pp. 1588–1595

    Google Scholar 

  • Domingos P (1999) The role of Occam's razor in knowledge discovery. Data Mining Knowl Discov 3(4):409–425

    Article  Google Scholar 

  • Eiben AE, Jelasity M (2002) A critical note on experimental research methodology in EC. In: Congress on Evolutionary Computation (CEC’02), Honolulu, HI, 2002. IEEE Press, Piscataway, NJ, pp. 582–587

    Google Scholar 

  • Esparcia-Alcazar AI, Sharman KC (Sept. 1996) Genetic programming techniques that evolve recurrent neural networks architectures for signal processing. In: IEEE Workshop on Neural Networks for Signal Processing, Seiko, Kyoto, Japan

    Google Scholar 

  • Fernandez F, Martin A (2004) Saving effort in parallel GP by means of plagues. In: Keijzer M, et al. (eds), Genetic Programming 7th European Conference, EuroGP 2004, Proceedings, vol 3003 of LNCS, Coimbra, Portugal, 5–7 Apr. Springer-Verlag, pp. 269–278

    Google Scholar 

  • Fernandez F, Tomassini M, Vanneschi L (2003) Saving computational effort in genetic programming by means of plagues. In: Sarker, R et al. (eds), Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, Camberra, 8–12 Dec. 2003. IEEE Press, pp. 2042–2049

    Google Scholar 

  • Fernandez F, Vanneschi L, Tomassini M (2003) The effect of plagues in genetic programming: A study of variable-size populations. In: Ryan, C et al. (ed) Genetic Programming, Proceedings of EuroGP'2003, vol 2610 of LNCS, Essex, 14–16 Apr. Springer-Verlag, pp. 317–326

    Google Scholar 

  • Forrest S, Mitchell M (1993) What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Mach Learn 13:285–319

    Article  Google Scholar 

  • Francone FD, Nordin P, Banzhaf W (1996) Benchmarking the generalization capabilities of a compiling genetic programming system using sparse data sets. In: Koza JR et al. (ed), Genetic Programming: Proceedings of the First Annual Conference, MIT Press, Cambridge, pp. 72–80

    Google Scholar 

  • Fukunaga A, Stechert A (1998) Evolving nonlinear predictive models for lossless image compression with genetic programming. In: Koza, JR et al. (eds), Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, WI, 22–25 July, Morgan Kaufmann pp. 95–102

    Google Scholar 

  • Gagné C, Schoenauer M, Parizeau M, Tomassini M (2006) Genetic programming, validation sets, and parsimony pressure. In: Collet P et al. (ed), Genetic Programming, 9th European Conference, EuroGP2006, Lecture Notes in Computer Science, LNCS 3905, pp. 109–120. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Giacobini M, Tomassini M, Vanneschi L (2002) Limiting the number of fitness cases in genetic programming using statistics. In: Merelo JJ, et al. (eds), Parallel Problem Solving from Nature – PPSN VII, vol 2439 of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, pp. 371–380

    Google Scholar 

  • Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston, MA

    MATH  Google Scholar 

  • Gustafson S, Vanneschi L (2005) Operator-based distance for genetic programming: Subtree crossover distance. In: Keijzer, M., et al. (ed), Genetic Programming, 8th European Conference, EuroGP2005, Lecture Notes in Computer Science, LNCS 3447, pp. 178–189. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Gustafson S, Vanneschi L (2008) Operator-based tree distance in genetic programming. IEEE Trans Evol Comput 12:4

    Article  Google Scholar 

  • Hansen JV, Lowry PB, Meservy RD, McDonald DM (Aug. 2007) Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection. Decis Support Syst 43(4):1362–1374, Special Issue Clusters

    Article  Google Scholar 

  • Hasan S, Daugelat S, Rao PSS, Schreiber M (June 2006) Prioritizing genomic drug targets in pathogens: Application to mycobacterium tuberculosis. PLoS Comput Biol 2(6):e61

    Article  Google Scholar 

  • Hauptman A, Sipper M (2007) Evolution of an efficient search algorithm for the mate-in-N problem in chess. In: Ebner, M et al. (eds), Proceedings of the 10th European Conference on Genetic Programming, vol 4445 of Lecture Notes in Computer Science Valencia, Spain, 11–13 Apr. Springer pp. 78–89

    Google Scholar 

  • Hemberg E, Gilligan C, O'Neill M, Brabazon A (2007) A grammatical genetic programming approach to modularity in genetic algorithms. In: Ebner, M et al. (eds), Proceedings of the 10th European Conference on Genetic Programming, vol 4445 of Lecture Notes in Computer Science, Valencia, Spain, 11–13 Apr. Springer pp. 1–11

    Google Scholar 

  • Holland JH (1975) Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Horn J, Goldberg DE (1995) Genetic algorithm difficulty and the modality of the fitness landscapes. In: Whitley D, Vose M (eds), Foundations of Genetic Algorithms, vol. 3, Morgan Kaufmann, pp. 243–269

    Google Scholar 

  • Howard D, Roberts SC (2004) Incident detection on highways. In: O'Reilly, U-M et al., (eds), Genetic Programming Theory and Practice II, chapter 16, Springer, Ann Arbor, 13–15 May pp. 263–282

    Google Scholar 

  • Jacob C (May–June 2000) The art of genetic programming. IEEE Intell Syst 15(3):83–84, May–June

    Google Scholar 

  • Jacob C (2001) Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Jakobović D, Budin L (2006) Dynamic scheduling with genetic programming. In: Collet, P et al. (eds), Proceedings of the 9th European Conference on Genetic Programming, vol 3905 of Lecture Notes in Computer Science, Budapest, Hungary, 10–12 Apr. Springer pp. 73–84

    Google Scholar 

  • Jin N, Tsang E (2006) Co-adaptive strategies for sequential bargaining problems with discount factors and outside options. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, 6–21 July. IEEE Press, pp. 7913–7920

    Google Scholar 

  • Jones T (1995) Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, University of New Mexico, Albuquerque

    Google Scholar 

  • Jonyer I, Himes A (2006) Improving modularity in genetic programming using graph-based data mining. In: Sutcliffe GCJ, Goebe RG (eds), Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference, pp. 556–561, Melbourne Beach, FL, May 11–13 2006. American Association for Artificial Intelligence

    Google Scholar 

  • Jordaan E, den Doelder J, Smits G (2006) Novel approach to develop structure-property relationships using genetic programming. In: Runarsson TP, et al. (eds), Parallel Problem Solving from Nature – PPSN IX, vol 4193 of LNCS, Reykjavik, Iceland, 9–13 Sept. Springer-Verlag pp. 322–331

    Google Scholar 

  • Kashtan N, Noor E, Alon U (2007) Varying environments can speed up evolution. Proceedings of the National Academy of Sciences, 104(34):13711–13716, August 21

    Article  Google Scholar 

  • Kattan A, Poli R (2008) Evolutionary lossless compression with GP-ZIP. In Proceedings of the IEEE World Congress on Computational Intelligence, Hong Kong, 1–6 June. IEEE

    Google Scholar 

  • Keijzer M (Sept. 2004) Scaled symbolic regression. Genetic Programming and Evolvable Machines, 5(3):259–269

    Article  Google Scholar 

  • Kibria RH, Li Y (2006) Optimizing the initialization of dynamic decision heuristics in DPLL SAT solvers using genetic programming. In: Collet P, et al. (eds), Proceedings of the 9th European Conference on Genetic Programming, vol. 3905 of Lecture Notes in Computer Science, Budapest, Hungary, 10–12 Apr. Springer. pp. 331–340

    Google Scholar 

  • Kinnear KE Jr (1994) Fitness landscapes and difficulty in genetic programming. In: Proceedings of the First IEEE Congress on Evolutionary Computation, IEEE Press, Piscataway, NY, pp. 142–147

    Google Scholar 

  • Kirchherr W, Li M, Vitanyi P (1997) The miraculous universal distribution. Math Intell 19:7–15

    Article  MathSciNet  MATH  Google Scholar 

  • Klappenecker A, May FU (1995) Evolving better wavelet compression schemes. In: Laine, AF et al. (ed), Wavelet Applications in Signal and Image Processing III, vol 2569, San Diego, CA 9–14 July. SPIE

    Google Scholar 

  • Kordon A (Sept. 2006) Evolutionary computation at Dow Chemical. SIGEVOlution, 1(3):4–9

    Article  Google Scholar 

  • Koza J, Poli R (2003) A genetic programming tutorial. In: Burke E (ed) Introductory Tutorials in Optimization, Search and Decision Support, Chapter 8. http://www.genetic-programming.com/jkpdf/burke2003tutorial.pdf

  • Koza JR (1992a) A genetic approach to the truck backer upper problem and the inter-twined spiral problem. In Proceedings of IJCNN International Joint Conference on Neural Networks, vol IV, IEEE Press, pp. 310–318

    Google Scholar 

  • Koza JR (1992b) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Koza JR (1994) Genetic Programming II. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Koza JR, Bennett FH III, Stiffelman O (1999) Genetic programming as a Darwinian invention machine. In: Poli R, et al. (eds) Genetic Programming, Proceedings of EuroGP'99, vol 1598 of LNCS, Goteborg, Sweden, 26–27 May. Springer-Verlag pp. 93–108

    Google Scholar 

  • Koza JR, Bennett FH III, Andre D, Keane MA (1999) Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  • Kushchu I (2002) An evaluation of evolutionary generalization in genetic programming. Artif Intell Rev 18(1):3–14

    Article  MATH  Google Scholar 

  • Langdon WB (2003) Convergence of program fitness landscapes. In: Cantú-Paz, E., et al. (ed) Genetic and Evolutionary Computation – GECCO-2003, vol 2724 of LNCS, Springer-Verlag, Berlin, pp. 1702–1714

    Google Scholar 

  • Langdon WB, Buxton BF (Sept. 2004) Genetic programming for mining DNA chip data from cancer patients. Genet Programming Evol Mach, 5(3):251–257

    Article  Google Scholar 

  • Langdon WB, Poli R (1998) Genetic programming bloat with dynamic fitness. In: Banzhaf W, et al. (eds), Proceedings of the First European Workshop on Genetic Programming, vol 1391 of LNCS, Paris, 14–15 Apr. Springer-Verlag. pp. 96–112

    Google Scholar 

  • Langdon WB, Poli R (2002) Foundations of Genetic Programming. Springer-Verlag

    Google Scholar 

  • Langdon WB, Poli R (2005) Evolutionary solo pong players. In: Corne, D et al. (eds), Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol 3, Edinburgh, U.K., 2–5 Sept. IEEE Press pp. 2621–2628

    Chapter  Google Scholar 

  • Langdon WB, Soule T, Poli R, Foster JA (June 1999) The evolution of size and shape. In Spector, L et al. (eds), Advances in Genetic Programming 3, chapter 8, pp. 163–190. MIT Press, Cambridge, MA

    Google Scholar 

  • Lew TL, Spencer AB, Scarpa F, Worden K, Rutherford A, Hemez F (Nov. 2006) Identification of response surface models using genetic programming. Mech Syst Signal Process 20(8):1819–1831

    Article  Google Scholar 

  • Lewin DR, Lachman-Shalem S, Grosman B (July 2006) The role of process system engineering (PSE) in integrated circuit (IC) manufacturing. Control Eng Pract 15(7):793–802 Special Issue on Award Winning Applications, 2005 IFAC World Congress

    Article  Google Scholar 

  • Louchet J (June 2001) Using an individual evolution strategy for stereovision. Genet Programming Evol Mach 2(2):101–109

    Article  MATH  Google Scholar 

  • Lutton E, Levy-Vehel J, Cretin G, Glevarec P, Roll C (1995) Mixed IFS: Resolution of the inverse problem using genetic programming. Research Report No 2631, INRIA

    Google Scholar 

  • Machado P, Romero J (eds). (2008) The Art of Artificial Evolution. Springer

    Google Scholar 

  • McPhee NF, Miller JD (1995) Accurate replication in genetic programming. In: Eshelman L (ed), Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), Pittsburgh, PA 15–19 July Morgan Kaufmann pp. 303–309

    Google Scholar 

  • Miller J (2001) What bloat? Cartesian genetic programming on Boolean problems. In: Goodman ED (ed), 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 295–302, San Francisco, CA 9–11 July

    Google Scholar 

  • Mitavskiy B, Rowe J (2006) Some results about the Markov chains associated to GPs and to general EAs. Theor Comput Sci 361(1):72–110 28 Aug

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell M, Forrest S, Holland J (1992) The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Varela F, Bourgine P (eds), Toward a Practice of Autonomous Systems, Proceedings of the First European Conference on Artificial Life, The MIT Press, pp. 245–254

    Google Scholar 

  • Nikolaev NI, Slavov V (1998) Concepts of inductive genetic programming. In: Banzhaf, W., et al. (ed), Genetic Programming, Proceedings of EuroGP’1998, vol 1391 of LNCS, Springer-Verlag, pp. 49–59

    Google Scholar 

  • Nordin P, Banzhaf W (1996) Programmatic compression of images and sound. In: Koza JR, et al. (eds), Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA 28–31 July. MIT Press pp. 345–350

    Google Scholar 

  • Poli R (1996) Genetic programming for image analysis. In: Koza JR et al. (eds), Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA 28–31 July MIT Press pp. 363–368

    Google Scholar 

  • Poli R (2001) Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genet Programming Evol Mach 2(2):123–163

    Article  MathSciNet  MATH  Google Scholar 

  • Poli R, Langdon WB (1997) Genetic programming with one-point crossover and point mutation. Tech. Rep. CSRP-97-13, University of Birmingham, B15 2TT, U.K., 15

    Google Scholar 

  • Poli R, Langdon WB (2006) Efficient Markov chain model of machine code program execution and halting. In: Riolo RL, et al. (eds), Genetic Programming Theory and Practice IV, vol 5 of Genetic and Evolutionary Computation, chapter 13. Springer, Ann Arbor, 11–13 May

    Google Scholar 

  • Poli R, Langdon WB, Dignum S (2007) On the limiting distribution of program sizes in tree-based genetic programming. In: Ebner, M et al. (eds), Proceedings of the 10th European Conference on Genetic Programming, vol 4445 of Lecture Notes in Computer Science, Valencia, Spain, 11–13 Apr. Springer pp. 193–204

    Google Scholar 

  • Poli R, McPhee NF (Mar. 2003a) General schema theory for genetic programming with subtree-swapping crossover: Part I. Evol Comput 11(1):53–66

    Article  Google Scholar 

  • Poli R, McPhee NF (June 2003b) General schema theory for genetic programming with subtree-swapping crossover: Part II. Evol Comput 11(2):169–206

    Article  Google Scholar 

  • Poli R, McPhee NF (2008) Parsimony pressure made easy. In: GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1267–1274, New York, NY, ACM

    Chapter  Google Scholar 

  • Poli R, McPhee NF, Rowe JE (Mar. 2004) Exact schema theory and Markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover. Genet Programming Evol Mach 5(1):31–70

    Article  Google Scholar 

  • Poli R, McPhee NF, Graff M (2009) Free lunches for symbolic regression. In: Foundations of Genetic Algorithms (FOGA). ACM, forthcoming

    Google Scholar 

  • Poli R, Langdon WB, McPhee NF (2008) A Field Guide to Genetic Programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, (With contributions by J. R. Koza)

  • Rissanen J (1978) Modeling by shortest data description. Automatica 14:465–471

    Article  MATH  Google Scholar 

  • Rochat D, Tomassini M, Vanneschi L (2005) Dynamic size populations in distributed genetic programming. In: Keijzer M, et al. (eds), Proceedings of the 8th European Conference on Genetic Programming, vol 3447 of Lecture Notes in Computer Science, Lausanne, Switzerland, 30 Mar.–1 Apr. Springer. pp. 50–61

    Google Scholar 

  • Rosca JP (1995) Towards automatic discovery of building blocks in genetic programming. In: Working Notes for the AAAI Symposium on Genetic Programming, AAAI, pp. 78–85

    Google Scholar 

  • Rudolph G (1994) Convergence analysis of canonical genetic algorithm. IEEE Trans Neural Netw 5(1):96–101

    Article  Google Scholar 

  • Rudolph G (1996) Convergence of evolutionary algorithms in general search spaces. In: International Conference on Evolutionary Computation, pp. 50–54

    Google Scholar 

  • Schumacher C, Vose MD, Whitley LD (2001) The no free lunch and problem description length. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Morgan Kaufmann, pp. 565–570

    Google Scholar 

  • Seront G (1995) External concepts reuse in genetic programming. In: Siegel EV, Koza JR (eds), Working Notes for the AAAI Symposium on Genetic Programming, MIT, Cambridge, MA 10–12 Nov. AAAI pp. 94–98

    Google Scholar 

  • Shah SC, Kusiak A (July 2004) Data mining and genetic algorithm based gene/SNP selection. Artif Intell Med 31(3):183–196

    Article  Google Scholar 

  • Silva S (2008) Controlling bloat: individual and population based approaches in genetic programming. Ph.D. thesis, Universidade de Coimbra, Faculdade de Ciences e Tecnologia, Departamento de Engenharia Informatica, Portugal

    Google Scholar 

  • Smola AJ, Scholkopf B (1999) A tutorial on support vector regression. Technical Report Technical Report Series – NC2-TR-1998-030, NeuroCOLT2

    Google Scholar 

  • Soule T, Foster JA (1998a) Effects of code growth and parsimony pressure on populations in genetic programming. Evol Comput 6(4):293–309, Winter

    Article  Google Scholar 

  • Soule T, Foster JA (1998b) Removal bias: A new cause of code growth in tree based evolutionary programming. In 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska 5–9 May IEEE Press. pp. 781–186

    Google Scholar 

  • Spector L (1995) Evolving control structures with automatically defined macros. In: Siegel EV, Koza JR (eds), Working Notes for the AAAI Symposium on Genetic Programming, MIT, Cambridge, MA 10–12 Nov. AAAI pp. 99–105

    Google Scholar 

  • Stadler PF (2002) Fitness landscapes. In: Lässig M, Valleriani A (eds), Biological Evolution and Statistical Physics, vol 585 of Lecture Notes Physics, pp. 187–207, Heidelberg, Springer-Verlag

    Google Scholar 

  • Stephens CR, Waelbroeck H (1999) Schemata evolution and building blocks. Evol Comput 7(2):109–124

    Article  Google Scholar 

  • Tomassini M, Vanneschi L, Cuendet J, Fernandez F (2004) A new technique for dynamic size populations in genetic programming. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Oregon, 20–23 June. IEEE Press pp. 486–493

    Google Scholar 

  • Tomassini M, Vanneschi L, Collard P, Clergue M (2005) A study of fitness distance correlation as a difficulty measure in genetic programming. Evol Comput 13(2):213–239, Summer

    Article  Google Scholar 

  • Trujillo L, Olague G (2006) Using evolution to learn how to perform interest point detection. In: X Y T et al. (ed), ICPR 2006 18th International Conference on Pattern Recognition, vol 1, IEEE, pp. 211–214. 20–24 Aug

    Google Scholar 

  • Tsang E, Jin N (2006) Incentive method to handle constraints in evolutionary. In: Collet P, et al. (eds), Proceedings of the 9th European Conference on Genetic Programming, vol 3905 of Lecture Notes in Computer Science, Budapest, Hungary, 10–12 Apr. Springer. pp. 133–144

    Google Scholar 

  • Vanneschi L (2004) Theory and practice for efficient genetic programming Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland

    Google Scholar 

  • Vanneschi L (2007) Investigating problem hardness of real life applications. In: R. R. et al., (ed), Genetic Programming Theory and Practice V, Springer, Computer Science Collection, pp. 107–124, Chapter 7

    Google Scholar 

  • Vanneschi L, Clergue M, Collard P, Tomassini M, Vérel S (2004) Fitness clouds and problem hardness in genetic programming. In: Deb K, et al. (eds), Genetic and Evolutionary Computation – GECCO-2004, Part II, vol 3103 of Lecture Notes in Computer Science Seattle, WA 26–30 June, Springer-Verlag pp. 690–701

    Google Scholar 

  • Vanneschi L, Gustafson S, Mauri G (2006) Using subtree crossover distance to investigate genetic programming dynamics. In: Collet, P., et al. (ed), Genetic Programming, 9th European Conference, EuroGP2006, Lecture Notes in Computer Science, LNCS 3905, pp. 238–249. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Vanneschi L, Mauri G, Valsecchi A, Cagnoni S (2006) Heterogeneous cooperative coevolution: strategies of integration between GP and GA. In: Keijzer M, et al. (eds), GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, vol 1, Seattle, Washington, DC, 8–12 July. ACM Press. pp. 361–368

    Google Scholar 

  • Vanneschi L, Rochat D, Tomassini M (2007) Multi-optimization improves genetic programming generalization ability. In: Thierens D, et al. (eds), GECCO '07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, vol 2, London, 7–11 July. ACM Press. pp. 1759–1759

    Chapter  Google Scholar 

  • Vanneschi L, Tomassini M, Collard P, Clergue M (2003) Fitness distance correlation in structural mutation genetic programming. In: Ryan, C., et al., (ed), Genetic Programming, 6th European Conference, EuroGP2003, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, pp 455–464

    Google Scholar 

  • Vanneschi L, Tomassini M, Collard P, Vérel S (2006) Negative slope coefficient. A measure to characterize genetic programming. In: Collet P, et al. (eds), Proceedings of the 9th European Conference on Genetic Programming, vol 3905 of Lecture Notes in Computer Science, Budapest, Hungary, 10–12 Apr. Springer. pp. 178–189

    Google Scholar 

  • Wagner N, Michalewicz Z, Khouja M, McGregor RR (Aug. 2007) Time series forecasting for dynamic environments: The DyFor genetic program model. IEEE Trans Evol Comput 11(4):433–452

    Article  Google Scholar 

  • Wang Y, Wineberg M (2006) Estimation of evolvability genetic algorithm and dynamic environments. Genet Programming Evol Mach 7(4):355–382

    Article  Google Scholar 

  • Wedge DC, Kell DB (2008) Rapid prediction of optimum population size in genetic programming using a novel genotype–fitness correlation. In: Keijzer M, et al. (eds), GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA, ACM pp. 1315–1322

    Google Scholar 

  • Whitley D, Watson JP (2005) Complexity theory and the no free lunch theorem. In: Burke EK, Kendall G (eds), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Chapter 11, pp. 317–339. Springer

    Google Scholar 

  • Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Woodward JR, Neil JR (2003) No free lunch, program induction and combinatorial problems. In: Ryan C, et al. (eds), Genetic Programming, Proceedings of EuroGP'2003, vol 2610 of LNCS, Essex, 14–16 Apr. Springer-Verlag pp. 475–484

    Google Scholar 

  • Xie H, Zhang M, Andreae P (2006) Genetic programming for automatic stress detection in spoken English. In: Rothlauf F, et al. (eds), Applications of Evolutionary Computing, EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInteraction, EvoMUSART, EvoSTOC, vol 3907 of LNCS, pp. 460–471, Budapest, 10–12 Apr. Springer Verlag

    Google Scholar 

  • Yang S, Ong Y-S, Jin Y (Dec. 2006) Editorial to special issue on evolutionary computation in dynamic and uncertain environments. Genet Programming Evol Mach 7(4):293–294, Editorial

    Article  Google Scholar 

  • Yu T, Chen S-H (2004) Using genetic programming with lambda abstraction to find technical trading rules. In: Computing in Economics and Finance, University of Amsterdam, 8–10 July

    Google Scholar 

  • Yu J, Yu J, Almal AA, Dhanasekaran SM, Ghosh D, Worzel WP, Chinnaiyan AM (Apr. 2007) Feature selection and molecular classification of cancer using genetic programming. Neoplasia 9(4):292–303

    Article  Google Scholar 

  • Zhang B-T, Mühlenbein H (1995) Balancing accuracy and parsimony in genetic programming. Evol Comput 3(1):17–38

    Article  Google Scholar 

  • Zhang M, Smart W (Aug. 2006) Using gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern Recog Lett 27(11):1266–1274. Evolutionary Computer Vision and Image Understanding

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Vanneschi or Riccardo Poli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Vanneschi, L., Poli, R. (2012). Genetic Programming — Introduction, Applications, Theory and Open Issues. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_24

Download citation

Publish with us

Policies and ethics