
Derivation Tree Based

Genetic Programming

Summary of the Ph.D. Thesis

by

Róbert Ványi

supervisor:

apl. Prof. Dr.-Ing. Gabriella Kókai

Doctoral School of Computer Science

Faculty of Science and Informatics

University of Szeged

Szeged, 2012

1 Introduction

This booklet summarizes the results presented in the Ph.D. thesis enti-
tled Derivation Tree Based Genetic Programming. The thesis describes a
method with the same name.

The structure of this summary follows the outline of the thesis: after
introducing the problem domain in this section, the relevant subjects from
the field of evolutionary algorithms and formal grammars are summarized.
Section 4 describes the DTGP method, whereas Section 5 provides a sum-
mary of some extensions of the base method, like introducing semantic
constraints. Section 6 gives an overview of the results regarding several
applications of DTGP, and Section 7 lists the major findings of the thesis.

1.1 Problem domain

In computer science a very common task is to solve optimization problems.
This includes minimizing, maximizing or, in general, finding the best solu-
tion. One can distinguish between deterministic and stochastic methods.
While deterministic methods are usually easier to analyze, their time com-
plexity often makes them impractical. Stochastic algorithms, on the other
hand, come with some uncertainty due to their randomized nature, and
may yield a less optimal solution, but in many cases they provide better
results within a reasonable time frame.

Evolutionary algorithms are metaheuristic optimization algorithms that
use the evolution in nature and the survival of the fittest as the schema
for creating, examining and selecting candidate solutions. [3] Since their
introduction, various types of evolutionary algorithms, such as evolution
strategies, genetic algorithms and genetic programming have been defined
and used to solve diverse problems from engineering design optimization
to automated construction of computer programs.

The black box paradigm means that the optimization algorithm has lit-
tle to no information regarding the structure of the candidate solutions or
the solution space itself. This also means that often it cannot be guar-
anteed that the new candidate is a valid solution of the problem, which
has a negative impact on the quality of the search. The invalid solutions
decrease the effective population size and introduce extra computational
effort for detection, evaluation and sometimes correction.

1

One method for regulating the evolutionary search is to use formal
grammars to guide the evolutionary process. If the set of the candidate
solutions or their representations is a formal language, that is the set can be
described by a grammar, one can restrict the search to the set of solutions
by adhering to the rules of the grammar. Several grammar guided genetic
programming (GGGP) approaches have been defined, many of them use
context-free grammars for guidance, and representations of the derivations
as genotypes. Operating on derivations instead of solutions guarantees the
validity of the generated candidates. [6]

1.2 Proposed method

The method presented in the thesis uses derivation trees as representations
and defines the evolutionary operators in a way that the results are always
valid derivation trees. The improvement over existing GGGP methods is
the extensive use of parameters. These parameters are stored at each node
of the tree and can be used for various purposes, such as guaranteeing the
balanced behavior of the random node selection, reducing the evaluation
time from linear to logarithmic and introducing search bias or semantic
constraints.

1.3 Publications

The results presented in the thesis are based on the five publications listed
below in chronological order:

[11] R. Ványi and Sz. Zvada Avoiding syntactically incorrect individuals
via parameterized operators applied on derivation trees. In R. Sharker,
et al., editors, Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003, volume 4, pages 2791–2798, Canberra, 8-12
Dec 2003. IEEE Press.

[16] Sz. Zvada and R. Ványi Improving grammar-based evolutionary al-
gorithms via attributed derivation trees. In M. Keijzer, et al., editors,
Genetic Programming 7th European Conference, EuroGP 2004, Pro-
ceedings, volume 3003 of LNCS, pages 208–219, Coimbra, Portugal,
5-7 Apr 2004. Springer-Verlag.

2

[12] R. Ványi and Sz. Zvada Syntactically correct genetic programming.
In R. Poli et al., editors, GECCO 2004 Workshop Proceedings, Seat-
tle, Washington, USA, 26-30 Jun 2004.

[15] Sz. Zvada, G. Kókai, R. Ványi, and H.H. Frühauf EvolFIR: Evolving
redundancy-free FIR structures. In Second NASA/ESA Conference
on Adaptive Hardware and Systems (AHS 2007), pages 439–446.
IEEE Computer Society, 5-8 Aug 2007.

[10] R. Ványi Enforcing semantic constraints with derivation tree based
genetic programming. Abstract accepted to oral presentation at
Veszprém Optimization Conference: Advanced Algorithms (VOCAL
2012), 11-14 Dec 2012.

In [11] the foundations of the DTGP method were introduced with
the basic tree operators and random tree generation. In [16] the balanced
random node selector was constructed and some possibilities for parame-
ter usage were outlined. In [12] DTGP was compared with other GGGP
methods, pool crossover was introduced and the time complexity of the
operators was evaluated. In [15] a real-world application, developed in
cooperation with the Fraunhofer Institute for Integrated Circuits, was in-
troduced, and the first attempts to apply semantic constraints were made.
The first formalization of semantically constrained derivation including
distribution sets, distribution functions and forced synthesized attributes
will be presented in [10].

1.4 Nomenclature

Throughout the thesis the following notions are used. Function f to be
optimized is called target function. It is defined over a set S, called solution
space. The search algorithm might work on a superset of the solution
space, called hypothesis space. The elements of hypothesis space H are
called hypotheses, candidates or candidate solutions. The elements of the
solution space are called solutions.

Grammars in the thesis mean context-free grammars, and derivation
trees are complete derivation trees over a given context-free grammar. Pa-
rameters are values stored at nodes of the derivation trees, usually defined
in a bottom-up fashion, meaning they are calculated based on the values
in the subtrees.

3

2 Evolutionary algorithms

Evolutionary algorithms (or EAs for short) use a special way to find an
optimal solution. They are based upon the evolution that can be ob-
served in nature. When using evolutionary algorithms, the search method
is parallel, this means several hypotheses are examined at the same time.
These hypotheses are called individuals, and they make up a population.
The initial population is created randomly. Afterwards, each hypothesis is
evaluated using a fitness function, showing how good a hypothesis is con-
sidered. Then, proportionally to the fitness value, individuals are selected
as parents using a selection operator. Finally, by applying evolutionary
operators, such as mutation or recombination to the set of parents, a new
population of offsprings is generated, and the process is started over with
the new population.

During this process, in the population (also called generation at the
end of a given step) better and better individuals appear. The process
is stopped when the so called halting criterion is satisfied. Usual halting
criteria are the number of steps, small or no change in the best fitness, or
reaching close approximation of the optimum.

There are many types of evolutionary algorithms. [3] The two major
types are evolution strategies (ES) and genetic algorithms (GA). A third
type is called genetic programming (GP), which was derived from genetic
algorithms.

2.1 Optimizing complex structures

In the thesis an example was shown for optimizing a complex structure
with evolutionary algorithms. The goal was to find a Boolean expression,
possibly short, that matches a pre-defined Boolean function. Using genetic
algorithms the expressions were represented by strings over the alphabet
containing variables, negated variables, operator symbols for conjunction
and disjunction, and parentheses.

The test results showed that GA produces many syntactically incorrect
individuals, which prevents finding a solution. There are some methods to
tweak the algorithm and find correct solutions, but according to the test
results the number of invalid individuals still remains high and the success
rate remains low.

4

Genetic programming was designed to evolve abstract syntax trees,
especially ones that represent S-expressions of the LISP programming lan-
guage. Using GP, syntactically correct individuals can be created, but
only with some limitations: canonical GP requires the closure property to
be fulfilled. [5, 9] On one hand this requires type consistency, which means
that all arguments and return values must have the same type. It is re-
quired because the evolutionary operators can replace subtrees arbitrarily.
On the other hand the closure property includes evaluation safety, which
means that every possible expression that can be represented by a subtree
can be evaluated. It is necessary so that a fitness value can be assigned
to every candidate. Therefore, canonical GP does not provide a generic
solution for restricting the optimization process to syntactically correct
individuals.

However, GP can be extended to use formal grammars to ensure the
syntactical correctness during evolution. Such methods are called gram-
mar guided genetic programming (GGGP) algorithms. [6] The method
proposed in the thesis is also a GGGP method that uses context-free gram-
mars, therefore it relies on some important properties of these grammars.

3 Grammars and formal languages

The most commonly used tools to describe how to build languages from the
symbols of an alphabet are formal grammars as proposed by Chomsky. [2]
In the thesis context-free grammars are of special interest. A context-free
grammar G is a quadruple G = (N ,Σ,P, S), where N is an alphabet of
nonterminal symbols, Σ is an alphabet of terminal symbols, withN∩Σ = ∅,
P ⊂ N × (N ∪Σ)∗ is a finite set of rewriting rules, and S ∈ N is the start
symbol.

Grammars generate languages using derivations. The start symbol is
taken, and then it is replaced using an appropriate rule. There may be
nonterminal symbols in the new word, so they are also replaced. It is
repeated until a word containing only terminal symbols is reached. Since
there are usually multiple rules that can be applied, more than one word
can be generated using a single grammar. The concept of derivations is
essential for most GGGP methods, therefore a formal definition is also
given.

5

Definition 3.1 (Derivation)
Direct derivation over grammar G = (N ,Σ,P, S), denoted by ⇒G is a
binary relation over (N ∪ Σ)∗. For any γ, δ ∈ (N ∪ Σ)∗ γ ⇒G δ if and
only if ∃ϕ,ψ ∈ (N ∪ Σ)∗ and an A → β rule in P, such that γ = ϕAψ
and δ = ϕβψ. Derivation is the reflexive transitive closure of the direct
derivation relation, that is ⇒∗G.

With the help of direct derivation, one can also define a derivation
sequence, which is a finite sequence of words α0, α1, α2, . . . , αn, such that
αi ⇒G αi+1. The length of the derivation sequence is the number of direct
derivation steps, that is n.

Using the definition of derivation, the language generated by grammar
G, denoted by L(G) can be defined as follows: L(G) = {u ∈ Σ∗ | S ⇒∗G u}.

3.1 Derivation trees

Derivations over context-free grammars can easily be visualized. One can
consider the letters of the derived word as nodes. When a nonterminal
symbol is replaced with a string, that is a sequence of symbols, these
symbols can be represented as children of the node representing the original
symbol in a tree structure, which is called derivation tree. The actual
derived word can be found at the frontier of the tree, which is the sequence
of the leaves in a left-to-right ordering.

It is very important to note that a word can be derived from a symbol
if and only if there exists a derivation tree with the symbol as root and
the word as frontier. It is especially important for the start symbol and
the terminal words as stated by the following specialized theorem.

Theorem 3.2
For any u ∈ Σ∗ S ⇒∗ u if, and only if there exists T ∈ T (S), such that
fr(T) = u, where T (S) denotes the set of derivation trees with root S.

Corollary 3.3
For any u ∈ Σ∗ u ∈ L(G) if, and only if there exists T ∈ T (S), such that
fr(T) = u.

This corollary means that if one operates on derivation trees and en-
sures that the results are also valid derivation trees, then the words found
at the frontiers are always valid solutions as well.

6

3.1.1 Derivation tree sizes

In the thesis derivation tree is used as data type, therefore it is interesting
to examine the relation between the size of the derived words, derivations
and derivation trees. If the number of terminal symbols on the right-hand
side of rule r is denoted by |r|Σ, a correlation can be formulated as shown
by the following theorem.

Theorem 3.4 (Correlation of derivation related sizes)
Given a context-free grammar G = (N ,Σ,P, S). For an arbitrary deriva-
tion sequence α0, α1, . . . , αk with αk ∈ Σ∗, let us denote the size of the
assigned derivation tree by s and the length of the derived terminal word
αk by n. In this case s = O(k). Furthermore, if |r|Σ averaged over all
applied rule ri (1 ≤ i ≤ k) is at least 1, then k ≤ n.

3.2 Attribute grammars

Attribute grammars extend the concept of context-free grammars by defin-
ing attributes for the symbols and assigning values to these attributes
during derivation. [1]

An attribute grammar AG is a quadruple AG = (G,SD,AD,R), where
G is a context-free grammar, SD is the semantic domain, defining the at-
tribute types, functions and relations, AD contains the attribute descrip-
tions, and R = {R(p) | p ∈ P} is a family of sets defining the semantic
rules for each rewriting rule of grammar G.

In the thesis the following assumptions are used regarding attributes.
An attribute a is called inherited if for each rule X → Y1Y2 . . . Yn the
calculation schema is the following:

Yi.a = fa(X.a, Y1.a, . . . , Yi−1.a),

and synthesized if the calculation schema is the following:

X.a = ga(Y1.a, Y2.a, . . . , Yn.a).

More formal definitions are not required for the purposes of the thesis,
nevertheless they can be found in the literature. Informally, inherited
attributes can also be called top-down attributes, whereas synthesized at-
tributes can be called bottom-up attributes.

7

4 Derivation tree based genetic programming

The standard approach to handle invalid individuals is to rely on an eval-
uation function to filter them out, for example by using very low fitness
values. Another approach is not to allow such individuals at all, that is to
modify the representation or the evolutionary operators so that only valid
solutions are generated. This can be done in three different ways.

Allow any hypothesis The simplest way is to define the problem do-
main so that any hypothesis is a solution. This requires no change
in the evolutionary algorithm. An example for this approach is the
canonical GP as proposed by Koza. [5]

Restrict operators The straightforward approach is to modify the op-
erators. This, however, might not be a simple task. This is how
strongly typed genetic programming works. [7]

Redefine representations The third possibility is to redefine the set of
representations to be closed under the evolutionary operators, which
might also require some small changes in the operators. This ap-
proach is followed by DTGP.

4.1 Grammar guided genetic programming

Grammar guided genetic programming (GGGP) [6] is an approach recently
gaining popularity in the GP arena. GGGP methods assume that the set of
valid individuals is a context-free language, and use context-free grammars
to guide the evolutionary process. There are two approaches depending
on the data type.

4.1.1 Tree based GGGP

One of the first tree based GGGP experiments were done by Gruau [4],
who used derivation trees to check the validity of the individuals. However,
after the verification the trees were deleted, and were re-created again for
the offsprings. Whigham [13] represented the individuals in the popula-
tion as derivation trees and applied the operators directly to them. The
limitation of his approach is that the operators cannot be parameterized,
they can be influenced only by global parameters.

8

4.1.2 Linear GGGP

Currently the most researched linear GGGP method is grammatical evolu-
tion (GE). [8] It uses bitvectors to represent the individuals, which makes
it possible to use all the methodologies and knowledge from the field of
genetic algorithms.

The hypotheses are assumed to be words over an alphabet Σ and the
set of solutions is described by a grammar G. The valid representations,
that is the words of language L(G) can be described by left derivations,
which in turn are represented as index vectors in binary format. GE uses
these index vectors as individuals.

However, this approach has some disadvantages. First of all, as only
the sequence of the rule indices is stored, the derivations have to be carried
out and the derivation trees, or at least their frontier must be computed to
get the actual solution. Furthermore, there is no one-to-one mapping be-
tween bitstrings and derivations. This might lead to incomplete or infinite
derivations.

4.2 Basics of DTGP

Derivation tree based genetic programming (DTGP) is a tree based gram-
mar guided GP method. The representations are derivation trees over a
pre-defined context-free grammar G. The solutions, that is the words of
the language L(G), can be found at the frontiers of these trees. The evo-
lutionary operators are defined so that they only produce valid derivation
trees. As a consequence, only valid hypotheses can be generated by the
evolutionary process. The basics of this method are very similar to the
one proposed by Whigham [13], however, the data type is extended with
parameters that are used to improve the algorithm.

4.2.1 Derivation tree data type

The derivation tree is basically a standard tree data type, usually using a
pointer based implementation, storing the label at each node. However,
DTGP not only stores the labels at each node, but other information as
well. Thanks to these parameters this approach has some advantages over
other tree-based GGGP methods, as it is described in the thesis.

9

The notations used throughout the thesis are summarized in Table 1.
Note that sometimes node and tree are used interchangeably. For example
the size of a tree can be denoted by T.size, but it is usually stored as a
parameter of its root node N , thus denoted by N.size.

symbol meaning remark
T, T1, T2, . . . tree, subtree T1, T2, . . . denote the subtrees of T
N,N1, N2, . . . node N1, N2, . . . are the children of N
N [T1, . . . , Tn] tree root node N with subtrees T1, . . . , Tn
N.label label label of node N
T.label label label of the root node of tree T
N.param parameter parameter of node N
T.param parameter parameter of the root node of tree T

Table 1: Notations for components of the derivation tree data type

4.2.2 Parameterized derivation trees

During the evolutionary process several properties of the derivation trees
might be used by the evolutionary operators. However, recalculating this
data every time could be a huge effort. Therefore, DTGP stores these
properties as parameters in the root nodes of the subtrees.

The operations change subtrees, and we want these changes to have
an effect only on properties of a limited set of nodes, therefore we re-
quire that the properties of a tree depend only on the properties of its
subtrees. That means these properties should be bottom-up, that is for
each property p and each tree T = N [T1, . . . , Tn] the calculation schema
is T.p = fp(N,T1, . . . , Tn).

A disadvantage of storing parameters in each node is that they have to
be maintained during the evolutionary process. However, as we defined the
parameters to be bottom-up, it is easy to see that changing a subtree within
a derivation tree does not have an effect on nodes other than the ones on
the path from the subtree’s root node to the root of the derivation tree.
Therefore, the parameters can be updated by a simple algorithm, that only
requires logarithmic time with respect to the size of the tree. It starts at
the root of the recently changed subtree and updates the predecessors until
it reaches the root.

10

4.3 Evolutionary operators

The evolutionary operators are based on the usual tree operators, however
some modifications are needed, to ensure that only valid derivation trees
are generated. For DTGP several mutation and crossover operators are de-
fined. All these operators use two basic operations: random tree generation
(RTG) and random node selection (RNS). The operators were designed
not only to follow the restrictions imposed by the context-free grammar,
but also in a way that does not significantly increase the complexity of the
evolutionary algorithm.

4.3.1 Random tree generation

Random tree generator is used for creating the initial population and also
by the mutation operator. It is an essential part of DTGP, because it is the
only component that has any knowledge of the problem domain in form of a
context-free grammar. The basic idea is to start with a given nonterminal
symbol, take the applicable rules, randomly select a rule, apply it and
then proceed to the nonterminal symbols at the frontier of the current
tree. The algorithm continues as long as there are nonterminal symbols at
the frontier.

To limit the size of the tree, a constant called minp is assigned to each
rule p to show the minimal size a subtree can have, if it is started by
applying the given rule. Calculating minp takes some time, but it has to
be done only once, before starting the evolutionary process.

4.3.2 Random node selection

Each operator has to select one or more nodes of the derivation tree. How-
ever, due to the complex data structure, it is not a trivial task, especially
since not every node of the tree is a possible candidate for selection.

Randomly selecting an element of a vector is straightforward, but it is
not feasible to move all the nodes of a tree into a vector just to select a
node. Therefore, the random node selector of DTGP is designed based on
the selector method of the search tree, which needs logarithmic time. It
means that a path from the root down towards the leaves is traversed by
randomly selecting one of the children or the node itself at each step. If
the node itself is selected, the search is finished.

11

However, if all the children have the same selection weight, RNS will be
unbalanced, because nodes in smaller subtrees have higher probabilities.
Therefore, at each node X the size of the subtree, denoted by X.size is
stored, and used as selection weight. That is, the probability of making a
step X X ′ is defined as follows:

P (X X ′) =

{
1

X.size if X ′ = X,
X′.size
X.size if X ′ is a child of X.

It is can be seen that with this definition, each node in the tree has
the same probability to be selected. Furthermore, since the selection path
proceeds through the children, it always goes down, thus the maximal
length of this path is equal to the height of the tree, which in turn is
logarithmic with respect to the number of nodes. Since the value X.size
depends only onX ′.size, whereX ′ is a child ofX, X.size can be considered
as bottom-up property, and as such, it can be stored as parameter in the
nodes, making it available at no cost during random node selection. This
method can also be generalized to allow different selection weights at each
node.

4.3.3 Derivation tree mutation

Using random tree generation and random node selection as described in
the previous subsections, a simple mutation can easily be defined. First
a node is selected randomly, then its subtree is replaced by a randomly
generated subtree.

The generated subtree may or may not be restricted by the actual
attributes of the selected node. For instance, sometimes it makes sense
to replace a subtree having a certain depth with another having exactly
the same depth, however, in general no such restrictions are applied, other
than the global limit on the new subtree size.

It is important to note that the mutation operator introduces only local
changes and can be controlled by several parameters. The cost of a mu-
tation is mainly composed of the costs of the random tree generation and
the random node selection. Some additional computation has to be done
to update the attributes after a new subtree is inserted, but as discussed
in Section 4.2.2, it only requires logarithmic time.

12

4.3.4 Derivation tree crossover

A tree crossover for derivation trees can be defined easier than a mutation,
since no subtrees have to be generated. Only two nodes have to be selected
and the subtrees under these nodes have to be swapped. However, there
is one issue. The selected nodes must have the same label to ensure valid
derivation trees. If this is not the case, one can skip crossover or one can
retry selection. It is also possible to select a node in the first parent, and
then apply a special selection to select another one in the second parent
having the same label, but this can be very inefficient.

There is another possibility: to redefine crossover to operate on the
whole population instead of pairs of parents. This approach makes it
possible to swap subtrees even if the simple random node selection is used,
and the labels of the selected nodes are not specified in advance.

4.3.5 Pool crossover

The importance of crossover is that good candidates can contribute their
building blocks into the next generation. This can not only be achieved
by taking two parents and creating two offsprings. Crossover can also be
defined to work on the whole population, just like global ES recombination.
Based on this idea, a new operator for derivation trees called pool crossover
is defined.

This operator works as follows. In the first step subtrees are selected,
removed from the parents and inserted into a contribution pool, categorized
by the label of the selected node. In the second step, these subtrees are
inserted back into the parents, but in a random order.

4.3.6 Operator costs

The first look at the genetic operators might suggest that their costs are
significantly higher than the ones for bitvectors, because of the tree oper-
ations such as removing or inserting subtrees. However, using a pointer
based implementation, subtree removal and insertion can be solved in con-
stant time, similarly to linked lists.

The average case operator costs were analyzed in the thesis, and they
are summarized in Table 2. The analyzed operators were mutation (MUT)

13

with range r, and four types of crossover: standard (XO), with retry (XO-
R), with weighted node selector (XO-W), and pool crossover (POOL).
Columns RNS and OP show the time needed for random node selection
and for applying the operator itself. The size of the solution, that is the
length of the word is denoted by n and based on Theorem 3.4, the size of
the derivation tree is assumed to be O(n).

RNS OP update success size
MUT O(log n) O(|P|r) O(log n) 100% O(1)
XO O(log n) O(1) O(log n) 1/|N |a O(1)
XO-R O(|N | log n)a O(1) O(log n) 100% O(1)
XO-W O(log n) O(1) O(|N | log n) 100% O(|N |)
POOL O(log n) O(1) O(log n) ≈ 100%b O(1)

adepending on the frequency of the given nonterminal
bif the population is large compared to N

Table 2: Summary of DTGP operator costs

This analysis shows a slight disadvantage of DTGP (and other tree-
based GGGP methods) over string based GGGP methods, because the
latter often require only constant time to apply the operators, and the
success rate is 100%. However, it also demonstrates the advantages of
DTGP over other tree based methods. Using parameters in the nodes,
DTGP can decrease the time complexity from linear to logarithmic by
avoiding the need for visiting each node during random node selection.

When discussing operator costs, one must also consider the evaluation
costs. First the genotype, in this case a derivation tree, must be mapped
to a phenotype by reading the frontier of the tree, and then the phenotype
must be evaluated using a fitness function. It is important to note that
the phenotype is always a syntactically correct hypothesis, thus no syntax
check or correction has to be carried out. Reading the frontier normally
requires full traversal of the tree, which is comparable to applying a deriva-
tion required for linear GGGP. Thus the cost of genotype-phenotype map-
ping for both approaches is O(n). However, for certain problems DTGP
can use parameters to construct the phenotype or calculate the fitness
function, thus reducing the evaluation costs to O(1). Such an improve-
ment is not possible for algorithms that do not store the derivations, such

14

as linear GGGP methods.

4.4 DTGP example

To demonstrate how DTGP works and to examine some of its proper-
ties, an example was introduced and analyzed. The example was a five
dimensional Boolean regression problem, the same one that was used as
an example for genetic algorithms. The context-free grammar that gen-
erates the language of valid logical expressions for this example is very
straightforward and has been presented in many textbooks.

4.4.1 Results

The standard setup was to use a population size of 1000, make 100 steps
and apply standard mutation and pool crossover. For the initial popula-
tion, the height did not exceed 15. For random node selection, each node
had the same weight, except, of course, the leaves. During mutation, the
randomly generated subtrees had a height limit of 10.

To calculate the fitness, the expression has been calculated for all the
25 = 32 possible variable evaluations, and compared to the target function,
represented as 32-bit numbers. Each match has been awarded with 1000
points, then the size of the expression has been subtracted, making the
theoretical maximum of the fitness value 32000-1.

During a single test run, the algorithm was able to find an expression
that exactly describes the function by generation 40, and then it was able
to further optimize the size of the derivation tree from 532 down to 247.
The result is comparable to the one reached by the GA algorithm when
safe mutation is used. However, the GA process used a population of 10000
individuals, many of which were invalid. For the DTGP algorithm 1000
individuals were enough. The best solution found by the algorithm was a
93 symbol long expression.

Using the standard settings 100 independent runs were carried out. Of
those, 38 runs were able to reach fitness values above 31000, that is all 32
bits were matched, meaning the run was successful. However, the median
was below 31000, and in the worst case the fitness was slightly below 27000
meaning only a 27 bit match.

15

4.4.2 Parameter settings

A DTGP algorithm has many parameters that can be set. The most
important parameters are the operator application rates, the number of
steps and the population size. For a DTGP algorithm, one can also set
node selection parameters and bounds for random tree generation.

DTGP has been tested with many settings. The results of these tests
are summarized below.

Operator application rate Confirming the results presented in [14], the
tests with various application rates show that mutation is the most
important operator for DTGP, although a high application rate of
crossover also improves the algorithm. Furthermore, it has also been
verified that if the population is large enough, the chance that the
pool crossover fails is negligible.

Number of steps Since the average fitness of the best solutions found by
the algorithm gradually increases with each step, one can try to run
the algorithm longer. However, the rate of improvement decreases, as
it was also shown by the tests. It is mostly caused by the decreasing
diversity in the population, thus it has been concluded in the thesis
that making two independent runs can lead to better results than
having a single run with twice as many steps. For example, with the
setup used in the thesis, making 100 steps twice yields better results
than making 200 steps.

Population size The proper population size is important for evolution-
ary algorithms, because a certain number of individuals is needed to
maintain diversity. Furthermore, a large population covers a larger
portion of the search space. However, increasing the population size
improves results only up to a certain limit. Therefore, just like in
the case of the number of steps, sometimes it is better to have more
independent runs instead of increasing the population size. In the
tests presented in the thesis, the best results were achieved with a
population size of 500.

The search bias of the algorithm has also been examined in the thesis.
The method shows a slight tendency towards generating larger trees, which
is a common phenomenon in genetic programming, known as bloat. [9]

16

5 Improving DTGP

The tree structure used by DTGP is not expected to be asymptotically
larger than the structures used by linear GGGP, but it is still a bigger
and more complex data type. Fortunately, this data type also provides
opportunities for improving the algorithm. The improvements presented
in the thesis can be divided into three categories: harnessing the poten-
tials of the parameters, implementing semantic constraints and improving
randomization during tree generation.

5.1 Parameter utilization

Parameters can be used to store various subtree information at the nodes.
In the thesis this information has been used for the following purposes:

Run-time frontier recovery The frontier of a tree can be stored as pa-
rameter in its root node. This is a bottom-up parameter, thus it can
easily be handled by DTGP, and it makes the frontier of the tree
available in constant time. Note, however, that this parameter needs
a total of O(n log n) space for a derivation tree, instead of O(n).

Run-time hypothesis evaluation To evaluate an individual, construct-
ing the frontier itself is actually irrelevant, as long as the evaluation
of the represented hypothesis can be done. If the hypothesis can be
represented in a compact way, then it can be used as a parameter,
so it can be available during fitness calculation in constant time.

Run-time fitness calculation In certain cases it is also possible to par-
tially or even completely calculate and store the portion of the fitness
value associated with the subtree. For example the cost associated
with the hypothesis represented by the subtree.

Operator biasing For the random node selection, any selection weight
defined as bottom-up property can be stored as parameter and used
for biasing the random node selection. Three examples were shown in
the thesis: selection with a threshold based on height, a weight based
on breadth-height ratio, and an exponentially decreasing weight based
on height.

17

5.2 Semantic constraints

The bottom-up parameters used in DTGP can be considered as synthesized
attributes of an underlying attribute grammar, thus they can be referred to
as synthesized attributes, or just attributes. The set of all possible values
of attribute a is denoted by Va. Unless noted otherwise, attributes are
interpreted in a context of a single rule, because even if they represent the
same information at each node, their definition might be different for each
rule. Attributes are calculated based on the attribute values of the child
nodes, that is T.a = fa(T1.a, . . . , Tn.a).

Having semantic constraints means that pre-defined semantic informa-
tion has to be passed down to the subtrees, and might need to be updated
along the way. This process can be described with the help of distribution
sets and distribution functions that define how the semantic information
is distributed among the subtrees.

Definition 5.1 (Distribution set)
Given a synthesized attribute a defined by function

T.a = fa(T1.a, . . . , Tn.a)

The distribution set for attribute value v0 ∈ Va and nonnegative integer
n ∈ N is a set of vectors Da(v0, n) defined as follows

Da(v0, n) = {(v1, . . . , vn) ∈ (Va)n | fa(v1, . . . , vn) = v0}

In words the distribution set is the set of all value vectors that synthesize
the predefined value.

Definition 5.2 (Distribution function)
Given a synthesized attribute a. Let us define D ⊆ Va × Z+ as the
largest set, such that for each (v0, n) ∈ D distribution set Da(v0, n) is

not empty. A distribution function is a randomized function f̂a defined
over Dom(f̂a) = D such that

f̂a(v0, n) = ~v, where ~v ∈ Da(v0, n)

That is f̂a(v0, n) is a randomly selected element of Da(v0, n).

18

With the help of distribution sets and distribution functions, it is pos-
sible to define attributes that put semantic restrictions on the derivation
trees. These are called forced synthesized attributes, and unlike synthesized
attributes, these are not calculated based on subtree attributes. Instead,
their values are distributed from parents to children nodes using the dis-
tribution functions.

Note that there is a similarity between inherited and forced synthesized
attributes. In both cases the semantic information is propagated in a top-
down fashion, however, the definition itself is given as bottom-up for a
forced synthesized attribute.

Definition 5.3 (Semantically constrained derivation)
For a given grammar G = (N ,Σ,P, S), derivation sequence α0, α1, . . . , αn

with α0 = S is semantically constrained by forced synthesized attribute
a, if for each step i with αi−1 = ϕAψ, αi = ϕβψ and rule p : A → β the
following holds:

Da,p(A.a) 6= ∅,

and if there are k > 0 nonterminals B1, B2, . . . Bk in β, then

(B1.a, B2.a, . . . , Bk.a)
.
= f̂a,p(A.a),

where
.
= means equals to one of the possible values.

During a semantically constrained derivation in each step, when rule
A→ β is applied, the value v0 of the forced synthesized attribute a at the
current node labeled with A is taken. First Da,p(v0) is checked to see if the
value can be distributed. If Da,p(v0) is empty, then the given rule cannot
be applied. If no applicable rules are found, the derivation is terminated.
If an applicable rule is found, then the distribution function f̂a,p is used
to get the values for the new nonterminal symbols in β.

5.2.1 Random tree generation

During random tree generation, subtrees must be generated in a way that
their attributes synthesize the proper value for the parent tree. Therefore,
when their roots are created by applying the appropriate rule, the distri-
bution function is used to distribute the semantic constraints among the
subtree roots.

19

One issue with semantically constrained derivation is that it can lead
to a dead-end, that is to a partial derivation tree having some nonterminal
nodes with empty distribution sets. This is a problem-specific issue, and
has to be considered when the distribution functions are defined.

5.2.2 Crossover

During standard crossover two trees are taken and nodes selected in both,
such that they have the same label. However, if forced synthesized at-
tributes are used, the values of these attributes must match as well, oth-
erwise a conflict may occur.

To solve this issue, the crossover operator has to be modified, so that
not only the labels but also the forced synthesized attributes match when
two subtrees are swapped. Standard crossover can have difficulties even
with matching labels, but pool crossover can be updated to handle forced
synthesized attributes. To achieve this, pools are labeled not only with
nonterminals, but also with the values of the forced synthesized attributes.

There is a chance that even pool crossover does not work. It happens
when the size of a pool is exactly one. The probability of this to happen
increases with the number of possible pools, and decreases with the size of
the population. Therefore, pool crossover cannot be applied when there are
too many nonterminal–attribute value combinations, unless the population
size is increased.

5.2.3 Limitations of semantic constraints

When semantic constraints are defined, one has to consider the failed
derivations as well. If the constraint is very restrictive, it becomes very
difficult to generate correct solutions. This is the case if the target func-
tion is used as semantic constraint with the Boolean regression problem.
To avoid failed derivations, the maximum height of the derivation trees
has to be increased, but that exponentially increases the size of the trees.
Thus, introducing such semantic constraint is useful only up to a certain
limit. Furthermore, it is also easy to see that pool crossover becomes less
and less effective as the constraint size is increased, since the number of
pools is also increasing exponentially.

20

5.3 Randomization

Derivation tree based genetic programming, just like any other stochastic
algorithm depends greatly on the quality of randomization, since it can
introduce a bias in the search, and determines which parts of the search
space have higher probabilities to be discovered. In the thesis the following
aspects have been examined:

Selection Regarding the selection operator, DTGP is not different from
any other EA. There are many different selection types that are used
with evolutionary algorithms, and any of these can be used with
DTGP as well.

Random node selection operates based on the node weight, stored as
parameter. The standard definition of weight is 0 for the leaves
and 1 for the other nodes. In the thesis two further examples were
tested with the Boolean regression problem. Of the three tested node
weights, the standard one provided the best results.

Random rule selection To optimize random rule selection, weights can
be assigned to the rules based on several properties. In the thesis
three possibilities were tested: the minimum value of the rule stored
in constant minp as mentioned earlier, the number of nonterminals
on the right-hand side and the number of follow-up rules. The results
showed that using the minimum value provides the best outcome.

Subtree limit distribution After a rule is selected and applied, that
is new nodes are inserted into the derivation tree, the limits for the
subtrees have to be calculated and passed on to the random tree gen-
erator for each nonterminal node. There are various strategies how
to do this. The following were mentioned in the thesis: the standard
method using random distribution, weighted by minp and sequen-
tial. Nevertheless, the tests showed no significant improvement for
the Boolean regression problem or the integer generation, therefore
it is enough to use the standard limit distribution strategy.

21

6 DTGP applications

In the thesis the Boolean regression problem was used as an example to in-
troduce DTGP. However, some additional examples were discussed briefly
as well. The first example was the 6-Multiplexer problem, which is a
standard example for GP. The second example was the traveling sales-
man problem, which is often used to test optimization methods. The third
example was a practical application for optimizing finite input response
filters.

6.1 Multiplexer

The multiplexer is a logical gate with n address bits and 2n data bits that
returns the data bit selected by the address bits. In the thesis three pos-
sibilities were presented for solving the 6-Multiplexer problem (2 address
bits and 4 data bits) using derivation tree based genetic programming.

The results showed that DTGP is capable of solving the 6-Multiplexer
problem with 88% success rate, and when semantic constraints were used,
the results were even better, showing a clear advantage of DTGP compared
to other tree based GGGP methods.

6.2 Traveling salesman problem

The results of the various TSP tests showed that it is possible to construct a
DTGP algorithm for optimizing a TSP route, although the found solution
is not always optimal. Since the solutions for a TSP are paths or circles
in graphs, they have an internal structure very different from words of
context-free languages. Therefore, applying a syntactically constrained
optimization algorithm is not the best choice, and one can only find very
few examples in the literature of canonical or grammar guided genetic
programming being applied to solve the TSP.

6.3 Finite input response filters

DTGP has been used in a joint project with the Fraunhofer Institute for
Integrated Circuits to optimize finite input response filters. [15] In the
thesis a summary of this real-world application has also been given.

22

7 Conclusions

In the thesis a new grammar guided genetic programming method, called
derivation tree based genetic programming (DTGP) was defined and eval-
uated. It uses derivation trees over a pre-defined context-free grammar
to represent individuals, and applies genetic programming on these trees.
Thus, it can be categorized as tree-based GGGP, and like other grammar
guided methods, it is able to guarantee that the produced individuals are
always syntactically correct with respect to the given grammar.

Compared with linear GGGP approaches, the data type used by DTGP
is larger, although usually not asymptotically, but nevertheless more com-
plex. However, in the thesis it was presented how the evolutionary opera-
tors can be defined correctly and efficiently, such that the results are not
only correct derivation trees, but the time complexity remains logarithmic
most of the time.

How to use parameters to improve the algorithm was also shown. One
important use is for random node selection. Furthermore, as presented in
the thesis, bottom-up parameters can also be used to store information
related to fitness calculation. In some cases the phenotype, or even the
fitness value can be calculated as a parameter, making the evaluation a
constant time operator with additional logarithmic time work for param-
eter updates.

The values of bottom-up parameters can also be defined in advance, so
that they represent semantic constraints. By using distribution sets and
distribution functions, as defined in the thesis, these values can be passed
to the subtrees in a top-down fashion during random tree generation. This
process is called semantically constrained derivation. Introducing semantic
constraints is a significant improvement over standard GGGP approaches,
because previously these kinds of constraints were only incorporated in
the fitness function. That is, individuals not fulfilling the semantic criteria
were created, but later excluded based on the fitness values.

In the thesis DTGP was analyzed in detail using a Boolean regression
problem. Furthermore, the method was tested with the 6-Multiplexer
problem, and it was also presented how DTGP can be applied to the
traveling salesman problem. A real-world practical application optimizing
FIR (finite input response) filters using an extended version of DTGP was
also outlined.

23

The findings of the thesis can be summarized as follows:

Thesis I. DTGP, as defined in the thesis, is a specialized evolutionary
algorithm that can be used to optimize various problems using a
black-box principle, while still guaranteeing the syntactical correct-
ness of the generated candidates.

a. With the properly defined random tree generator, DTGP gen-
erates valid derivation trees while maintaining the required size
limitations.

b. Before applying an operator, DTGP can select a random node in
the derivation tree in logarithmic time, while ensuring that the
selection probability is the same for each node. Furthermore,
the set of selectable nodes can be limited and, if required, a
non-uniform selection weight can also be applied.

c. The poorly performing standard crossover can be replaced by
pool crossover, which has the same time complexity, but usually
runs with practically a 100% success rate.

Thesis II. By making use of the extensive data structure of the deriva-
tion trees, and applying properly defined parameters, the behavior
of DTGP can be adjusted and the algorithm can be improved.

a. By storing the appropriate information in the nodes, in certain
cases the fitness evaluation can be done in constant time. This
needs additional work to update the parameters after the oper-
ators are applied, but that does not increase their overall time
complexity.

b. Using parameters, the random node selection and therefore the
evolutionary operators can be biased, and the fitness evaluation
can also be influenced.

c. With the help of forced synthesized attributes, the DTGP al-
gorithm can enforce semantic constraints.

Thesis III. DTGP can be applied to various problems, especially when
the solutions have a structure that can be directly represented by a
context-free grammar.

24

References

[1] H. Alblas. Introduction to attribute grammars. In Proceedings of the
International Summer School on Attribute Grammars, Applications
and Systems (SAGA’91), volume 545 of LNCS, pages 1–16. Springer
Verlag, 1991.

[2] N. Chomsky. On certain formal properties of grammars. Information
and Control, 2:137–167, 1959.

[3] A. E. Eiben and J. Smith. Introduction to Evolutionary Computing.
Springer-Verlag, 2003.

[4] F. Gruau. On using syntactic constraints with genetic programming.
In P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 19, pages 377–394. MIT Press, Cambridge,
MA, USA, 1996.

[5] J. R. Koza. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[6] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill.
Grammar-based genetic programming: a survey. Genetic Program-
ming and Evolvable Machines, 11(3/4):365–396, Sept. 2010. Tenth
Anniversary Issue: Progress in Genetic Programming and Evolvable
Machines.

[7] D. J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, May 1995.

[8] M. O’Neill and C. Ryan. Grammatical Evolution - Evolving programs
in an arbitrary language., volume 4 of Genetic Programming. Kluwer
Academic Publishers, 2003.

[9] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by
J. R. Koza).

25

[10] R. Ványi. Enforcing semantic constraints with derivation tree based
genetic programming. Abstract accepted to oral presentation at
Veszprém Optimization Conference: Advanced Algorithms (VOCAL
2012), 11-14 dec 2012.

[11] R. Ványi and S. Zvada. Avoiding syntactically incorrect individuals
via parameterized operators applied on derivation trees. In R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, editors, Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003, volume 4, pages 2791–2798, Canberra, 8-12
dec 2003. IEEE Press.

[12] R. Ványi and S. Zvada. Syntactically correct genetic programming. In
R. Poli et al., editors, GECCO 2004 Workshop Proceedings, Seattle,
Washington, USA, 26-30 jun 2004.

[13] P. A. Whigham. Grammatically-based genetic programming. In J. P.
Rosca, editor, Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, pages 33–41, Tahoe City,
California, USA, 9July 1995.

[14] S. Zvada. Attribute Grammar Based Genetic Programming. Cuvillier
Verlag, 2010.

[15] S. Zvada, G. Kókai, R. Ványi, and H. H. Frühauf. EvolFIR: Evolving
redundancy-free fir structures. In Second NASA/ESA Conference on
Adaptive Hardware and Systems (AHS 2007), pages 439–446. IEEE
Computer Society, 5-8 aug 2007.

[16] S. Zvada and R. Ványi. Improving grammar-based evolutionary algo-
rithms via attributed derivation trees. In M. Keijzer, U.-M. O’Reilly,
S. M. Lucas, E. Costa, and T. Soule, editors, Genetic Programming
7th European Conference, EuroGP 2004, Proceedings, volume 3003
of LNCS, pages 208–219, Coimbra, Portugal, 5-7 apr 2004. Springer-
Verlag.

26

