Skip to main content

Circuit Approximation Using Single- and Multi-objective Cartesian GP

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9025))

Included in the following conference series:

Abstract

In this paper, the approximate circuit design problem is formulated as a multi-objective optimization problem in which the circuit error and power consumption are conflicting design objectives. We compare multi-objective and single-objective Cartesian genetic programming in the task of parallel adder and multiplier approximation. It is analyzed how the setting of the methods, formulating the problem as multi-objective or single-objective, and constraining the execution time can influence the quality of results. One of the conclusions is that the multi-objective approach is useful if the number of allowed evaluations is low. When more time is available, the single-objective approach becomes more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakradhar, S.T., Raghunathan, A.: Best-effort computing: Re-thinking parallel software and hardware. In: Proceedings of the 47th Design Automation Conference - DAC, pp. 865–870. ACM (2010)

    Google Scholar 

  2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Gupta, V., Mohapatra, D., Raghunathan, A., Roy, K.: Low-power digital signal processing using approximate adders. IEEE Trans. CAD Integr. Circ. Syst. 32(1), 124–137 (2013)

    Article  Google Scholar 

  5. Han, J., Orshansky, M.: Approximate computing: An emerging paradigm for energy-efficient design. In: Proceedings of the 18th IEEE European Test Symposium, pp. 1–6. IEEE (2013)

    Google Scholar 

  6. Hilder, J., Walker, J., Tyrrell, A.: Use of a multi-objective fitness function to improve Cartesian genetic programming circuits. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 179–185. IEEE (2010)

    Google Scholar 

  7. Kulkarni, P., Gupta, P., Ercegovac, M.D.: Trading accuracy for power in a multiplier architecture. J. Low Power Electron. 7(4), 490–501 (2011)

    Article  Google Scholar 

  8. Miller, J.F.: Cartesian Genetic Programming. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Nepal, K., Li, Y., Bahar, R.I., Reda, S.: Abacus: A technique for automated behavioral synthesis of approximate computing circuits. In: Proceedings of the Design, Automation and Test in Europe, pp. 1–6. DATE 2014, EDA Consortium (2014)

    Google Scholar 

  10. Sekanina, L., Vasicek, Z.: Approximate circuits by means of evolvable hardware. In: IEEE Int. Conf. on Evolvable Systems, SSCI-ICES. pp. 21–28. IEEE CIS (2013)

    Google Scholar 

  11. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits design. IEEE Tran. on Evolutionary Computation, pp. 1–13 (2015 to appear)

    Google Scholar 

  12. Venkataramani, S., Roy, K., Raghunathan, A.: Substitute-and-simplify: a unified design paradigm for approximate and quality configurable circuits. Design. Automation and Test in Europe, DATE 2013, pp. 1367–1372. EDA Consortium San Jose, CA, USA (2013)

    Google Scholar 

  13. Venkataramani, S., Sabne, A., Kozhikkottu, V.J., Roy, K., Raghunathan, A.: Salsa: systematic logic synthesis of approximate circuits. In: The 49th Annual Design Automation Conference 2012, DAC 2012, pp. 796–801. ACM (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech science foundation project Advanced Methods for Evolutionary Design of Complex Digital Circuits 14-04197S. The authors would like to thank Jiri Petrlik for useful discussions on multi-objective evolutionary optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Sekanina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vasicek, Z., Sekanina, L. (2015). Circuit Approximation Using Single- and Multi-objective Cartesian GP. In: Machado, P., et al. Genetic Programming. EuroGP 2015. Lecture Notes in Computer Science(), vol 9025. Springer, Cham. https://doi.org/10.1007/978-3-319-16501-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16501-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16500-4

  • Online ISBN: 978-3-319-16501-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics