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SUMMARY 
 

A novel computational technique, called genetic programming, is used in this work to 
model the fatigue life of adhesively-bonded FRP joints subjected to tensile fatigue 
loading under different environmental conditions. It is proved that genetic programming 
can effectively interpret fatigue data, without the need for the adoption of any 
assumptions, and can accurately model fatigue life of the material system under 
investigation.  

Keywords: Fatigue, genetic programming, life prediction, adhesive joints, temperature 

 

INTRODUCTION 
The effect of the environment on the fatigue behavior of adhesively-bonded joints has 
formed the subject of several investigations in the past, e.g. [1-5], mainly on joints used 
in the aerospace and/or automotive engineering domains. Previous studies showed that 
the fatigue behavior of the joints was considerably affected by environmental 
conditions. In addition, different failure modes were observed under different 
conditions. Cohesive failure of the adhesive occurred under hot, humid conditions. The 
failure mode changed to substrate failure for ambient temperature, while very rapid 
propagation was observed when testing at -50oC. The authors [1] attributed this 
behavior to the increased rigidity of the adhesive as it cooled. The static and fatigue 
behavior of different joint types used in the aerospace industry were investigated in [2] 
(composite joints with film or paste adhesives, composite-to-metal joints). The same 
group investigated the temperature-dependent fatigue behavior of CFRP/epoxy double-
lap joints over a wide temperature range of -50 to 90oC [3]. Unidirectional (UD) and 
multidirectional (MD) adherends were used. The MD joints were shown to be stronger 
at low temperatures, at which, according to the authors, joint strength was determined 
by the peak stresses. UD joints on the other hand were stronger at high temperatures 
where the strength was controlled by the creep of the joints, determined by the 
minimum developed stresses. The fatigue damage and failure mechanism of single-lap 
joints composed of E-glass/polyethylene adherends and an ethyl-cyanoacrylate adhesive 
were investigated in [4]. The specimens were preconditioned for up to 90 days in water 
at different temperatures prior to testing. A significant reduction in fatigue strength was 
observed with increased immersion time and when the water temperature exceeded the 



glass transition temperature of the adhesive this reduction was accelerated. The fatigue 
response of adhesively-bonded pultruded GFRP double-lap joints under different 
environmental conditions has been investigated in [5]. Tests were performed at -35°C, 
23°C and 40°C. A fourth set of fatigue data was collected from tests on preconditioned 
specimens in warm (40oC) water. The tests were performed at 40oC and at 90% relative 
humidity. The dominant failure mode was a fiber-tear failure that occurred in the mat 
layers of the GFRP laminates. In the presence of high humidity, the failure shifted to the 
adhesive/composite interface. Although the testing temperature was lower than the glass 
transition temperature of the adhesive, its influence on the fatigue life and fracture 
behavior of the examined joints was apparent and was aggravated by the presence of 
humidity 

Although a lot of research efforts were devoted to the characterization of the fatigue 
behaviour of adhesively-bonded composite joints and composite laminates under 
different temperature and humidity environments, there is no common method in the 
literature (to the authors knowledge) for the modeling and/or the prediction of such a 
behavior. A limited number of modeling approaches has been published, e.g., [6-8]. 
However, in order to accommodate a significant number of parameters that affect the 
fatigue life of FRP joints, these phenomenological models adopt a lot of assumptions, 
e.g., [6]. Therefore, their applicability could not be validated on different material 
system’s data.  

To this end, new computational methods have been presented in the literature [9-12] and 
it has been proved that they can be used to accurately model the fatigue life of 
composite laminates under various loading patterns. In fact, evolutionary computational 
methods have been emerged as one of the most powerful modeling tools in a number of 
scientific domains. In engineering, artificial neural networks and genetic programming 
have been used for optimization of design methods and manufacturing processes e.g., 
[13]. Modeling of fatigue life of composite materials and structures is a topic that has 
been addressed by this type of analysis tools only the last years. Since recently, artificial 
neural network was the only method that was used for the fatigue life modeling of 
composite materials and structures [9-10]. New tools, like genetic programming and 
adaptive neuro fuzzy inference system were applied lately [11-12]. A novel, in this 
field, computational technique, called genetic programming, has been presented in [11] 
for the modeling of the fatigue life of multidirectional composite laminates. The same 
tool is used in this work to model the fatigue life of adhesively-bonded FRP joints 
subjected to tensile fatigue loading under different environmental conditions.  

 

THEORETICAL BACKGROUND 
Genetic programming (GP) is a domain-independent problem-solving technique in 
which computer programs are evolved to solve, or approximately solve, problems. 
Genetic programming is a member of a broad family of techniques called evolutionary 
algorithms. All these techniques are based on the Darwinian principle of reproduction 
and survival of the fittest and are similar to the biological genetic operations such as 
crossover and mutation. Genetic programming addresses one of the central goals of 
computer science, namely automatic programming; which is to create, in an automated 
way, a computer program that enables a computer to solve a problem [14-15].  



In genetic programming, populations of thousands or millions of computer programs are 
evolved for hundreds, or thousands of generations. This evolution is done using the 
Darwinian principle of survival and reproduction of the fittest, along with a genetic 
crossover operation appropriate for mating and a mutation operator appropriate for 
randomly altering computer programs. A computer program that solves (or 
approximately solves) a given problem often emerges from this combination of 
Darwinian natural selection and genetic operations 

Genetic programming starts with an initial population (generation 0) of randomly 
generated computer programs composed of primitive functions and terminals. 
Typically, the size of each program is limited, for practical reasons, to a certain 
maximum number of points (i.e. total number of functions and terminals) or a maximum 
depth of the program tree. Typically, each computer program in the population is run 
over a number of different fitness cases so that its fitness is measured as a sum or an 
average over a variety of representative different situations. For example, the fitness of 
an individual computer program in the population may be measured in terms of the sum 
of the absolute value of the differences between the output produced by the program and 
the correct answer (desired output) to the problem (i.e., the Minkowski distance) or the 
square root of the sum of the squares (i.e., Euclidean distance). These sums are taken 
over a sampling of different inputs (fitness cases) to the program. The fitness cases may 
be chosen in a random way or may be chosen in some structured way (e.g., at regular 
intervals) [16]. The computer programs in generation 0 (initial population) will almost 
always have very poor performance. Nonetheless, some individuals in the population 
will turn out to be somewhat more fit than others. These differences in performance are 
then exploited by genetic programming. The Darwinian principle of reproduction and 
survival of the fittest and the genetic operations of crossover and mutation are used to 
create a new offspring population of individual computer programs from the current 
population. 

The reproduction operation involves selecting a computer program from the current 
population of programs based on fitness (i.e., the better the fitness, the more likely the 
individual is to be selected) and allowing it to survive by copying it into the new 
population. 

The crossover operation creates new offspring computer programs from two parental 
programs selected based on fitness. The parental programs in genetic programming are 
typically of different sizes and shapes. The offspring programs are composed of sub-
expressions from their parents. These offspring programs are typically of different sizes 
and shapes than their parents. Crossover operation creates new computer programs 
using parts of existing parental programs. Because entire sub-trees are swapped, the 
crossover operation always produces syntactically and semantically valid programs, as 
offspring, regardless of the choice of the two crossover points. Because programs are 
selected to participate in the crossover operation with a probability based on their 
fitness, crossover allocates future trials to regions of the search space whose programs 
contain parts from promising programs. [16] 

The mutation operation creates an offspring computer program from one parental 
program selected based on fitness. One mutation point is randomly and independently 
chosen and the sub-tree occurring at that point is deleted. Then, a new sub-tree is grown 
at that point using the same growth procedure as was originally used to create the initial 



random population (this is only one of the many different ways that mutation operation 
can be implemented), [16]. 

After the genetic operations have performed on the current population, the new 
population of offspring (the new generation) replaces the old population (the old 
generation) and generation index increases by one. Each individual in the new 
population is then measured for fitness, and the process is repeated over many 
generations until the termination criterion/criteria is/are satisfied. 

Genetic programming works in the following way: the available experimental data are 
separated, normally by using a randomization technique, to define two data sets, one 
designated “training set” and the other “validation set”. In these data sets the data points 
are divided into input and output values. The GP then develops programs that are able 
to describe the relation between inputs and outputs in the training data set. In a second 
phase, the best family of evolved programs is applied on the data provided with the 
validation data set. Normally, the validation data set is not used for the training of the 
model and development of programs. It is used only to validate the evolved programs 
and select the best one according to its ability to generalize (performing on data not 
used for training). At this stage the tool has been trained and the model has been set up. 
The predicting accuracy of the selected evolved programs can be tested against new 
data sets (test data) that have not been used at all in program development. 

In the present paper, genetic programming is used for the modeling and subsequent 
prediction of the thermomechanical behavior of double-lap adhesively-bonded 
pultruded joints. GP is used as a stochastic non-linear regression tool as one output 
(number of cycles to failure) is assigned to a number of input parameters (Load level, 
testing temperature and testing humidity). During the process, computer programs are 
evolved to describe the relation between the output and input parameters i.e., 
output=f(input), or for the present case: 

( ),  ,  fN f F T RH=      (1) 

Where Nf, denotes the number of cycles to failure when the maximum applied cyclic 
load is F, under testing temperature, T, and relative humidity RH. The selected program 
(the best fitted one according to the criterion of minimizing the error between the 
targeted output and the selected program output in the training data set) is used to 
predict outputs for artificial input variables in an applied data set.  

 

EXPERIMENTAL PROGRAM 
Balanced adhesively-bonded double-lap joints (DLJs), composed of pultruded GFRP 
laminates bonded by an epoxy adhesive system, were tested under axial tensile fatigue 
loads in four different environments in [5]. The objective of the experimental program 
was to demonstrate the influence of temperature and humidity on the fatigue behavior of 
the examined structural components. For all the cases investigated, the Load-N (F-N) 
curves were derived.  

The geometry of the examined joint configuration is shown schematically in Fig. 1. All 
specimens were manufactured in ambient laboratory conditions. After manufacture, all 
specimens were cured in ambient laboratory conditions (23oC±5oC, 50%±10% RH) for 
ten days. 



All tests were carried out on an INSTRON 8800 universal testing rig of 100 kN capacity 
under load control. An environmental chamber was used to control temperature and 
humidity during testing. Deviations of approximately ±1oC were recorded for the 
temperature, while ±2% differences in relative humidity were observed. Frequency was 
kept constant at 10 Hz for all joints, while the stress ratio (R=σmin/σmax) was equal to 
0.1, resulting in a tension-tension fatigue loading. The frequency of 10 Hz was chosen 
as a compromise between testing time and hysteretic heating effects. Four different load 
levels were predetermined for each condition (after an iterative pre-study) to collect 
experimental data in the range between 102 and 107 cycles.  

 

 
Figure 1. Geometric configuration of test specimen. [5] 

The tests were performed under four different controlled environmental conditions: a 
temperature of -35°C±1oC (humidity cannot be controlled for negative temperatures), a 
temperature of 23°C±1oC and relative humidity of 50%±2%, a temperature of 40oC±1oC 
and relative humidity of 50%±2% and finally, a temperature of 40oC±1oC and relative 
humidity of 90%±2%. The temperature and humidity ranges were selected in 
accordance with the properties of the adhesive (which has a glass transition temperature 
of approximately 50oC) and the operational conditions of the joints as parts of 
engineering structures. Prior to testing, the specimens were placed inside the chamber 
for an appropriate time period (approximately 90 min for temperatures above zero and 
150 min for the negative temperature) in order to attain the predetermined temperature 
and humidity levels. Special preconditioning was required for the specimens that were 
tested at high temperature and high relative humidity. Preliminary quasi-static tests 
showed that moisture absorption was initially rapid and reached saturation after 70 days. 
The ultimate load of the joints decreased with increased moisture concentration and also 
reached a plateau after 70 days. Based on these tests, the fatigue specimens were 
preconditioned for 70 days in a warm water bath at a temperature of 40oC. 

 

 



FATIGUE LIFE MODELLING USING GENETIC PROGRAMMING 
In the context of the present paper, the fatigue data of the pultruded joints were treated 
as follows: All fatigue data except those recorded at 40oC/50% RH were used for the 
training of the model; a total of 36 fatigue results, one for each tested joint. A training 
data set was created by using the maximum applied cyclic load F, the testing 
temperature, T, and the relative humidity RH as input variables. The corresponding to 
each set of input parameters number of cycles to failure, Nf, was set as the only output. 
The training file contained the data that the tool used for learning. In other words, the 
fitness function was calculated using the training file. Given the number of input and 
output parameters in the training set, the process is characterized as a non-linear 
stochastic regression analysis. During the training phase the genetic programming tool 
established several relations (by regression analysis) in the form of computer programs 
between the input and output variables. Using an iterative process the parameters of the 
established relations were adjusted in order to minimize the difference between the 
theoretical and the real outputs. The same set of data was used for the validation of the 
modeling.  

A test, or applied, data set was subsequently constructed, containing input data for 
which the output will be calculated by the selected evolved program, herein the data for 
the 40oC/50% RH loading case. The same model (the selected evolved program) can be 
stored and potentially be used to predict other output values for a new applied input data 
set. 

The training efficiency of the genetic programming tool was very good. As depicted in 
Fig. 2 where target output is compared with the best program output after the training 
process, the coefficient of multiple determination (R2) was 0.91. 
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Figure 2. Modeling accuracy of GP. 
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Figure 3. Predicting accuracy of GP. 

The same comment applies also on the prediction efficiency of the emerged GP model. 
As presented in Fig. 3, the predicting ability of the developed model is excellent 
presenting an R2 value of 0.92.  

This excellent modeling and predicting accuracy of the developed model is depicted on 
the derived S-N curves as well, see Fig. 4, for the modeling and Fig. 5 for the fatigue 
life prediction of the “unseen” during training data set.  
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Figure 4. Modeled fatigue data by using genetic programming. Open symbols with 

dashed curves correspond to model output. Experimental results are presented by closed 
symbols and solid lines. 
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Figure 5. Prediction of the S-N curve at 40oC and 50% RH based on five runs.  

CONCLUSIONS 
This study proved the ability of novel computational tools to model and predict the 
fatigue life behaviour of adhesively-bonded joints under different thermomechanical 
conditions. GP modeling is not based on any assumptions, for example that the data 
follow a specific statistical distribution, or that the F-N curve is described by a power 
curve equation or else. Moreover, the process does not take the mechanics of each 
material system into account. GP is a material-independent data-driven method that 
correlates input with output values in order to establish the fittest model for the 
establishment of a relationship between them. In that context the proposed method can 
be easily applied on any material, provided that an adequate amount of data exists.  
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