On the Automatic Discovery of Variants of the NEH
Procedure for Flow Shop Scheduling Using Genetic

Programming

José Antonio Vazquez-Rodriguez and Gabriela Ochoa

ASAP Research Group, School of Computer Science
University of Nottingham, Nottingham, U.K.

jav@cs.nott.ac.uk, gxoQcs.nott.ac.uk

February 19, 2010

Abstract

We use genetic programming to find variants of the well known Nawaz, En-
score and Ham (NEH) heuristic for the permutation flow shop problem. Each
variant uses a different ranking function to prioritise operations during schedule
construction. We have tested our ideas on problems where jobs have release times,
due dates, and weights and have considered five objective functions: makespan,
sum of tardiness, sum of weighted tardiness, sum of completion times and sum of
weighted completion times. The implemented genetic programming system has
been carefully tuned and used to generate one variant of NEH for each objec-
tive function. The new NEHSs, obtained with genetic programming, have been
compared with the original NEH and randomised NEH versions on a large set of
benchmark problems. Our results indicate that the NEH variants discovered by
genetic programming are superior to the original NEH and its stochastic version

on most of the problems investigated.

keywords: Heuristics, Production

1 Introduction

This paper proposes an approach for the improvement of deterministic algorithms and
the discovery of interesting algorithm variants. Typically, researchers in the combina-
torial and heuristic optimisation community incorporate elements of randomness into

one or more components of an algorithm in order to improve its performance. The

idea is that the repeated use of the randomised algorithm may lead to a better solution
than the one found deterministically. Although this is often the case, and indeed very
powerful meta-heuristics have been devised in this way, the price to pay in compu-
tational time is often excessive. It is common, for example, that such algorithms are
incorporated into population based iterative procedures where the algorithm is invoked
hundreds or thousands of times. We propose to use a search mechanism, genetic pro-
gramming (Koza, 1992, Poli et al., 2008), to find a variant of the original algorithm that
is more effective for a problem or is specialised on a reduced set of problem instances.

In the proposed idea, one of the components of the deterministic algorithm is re-
placed by an alternative compatible component discovered automatically by genetic
programming. In contrast to randomised versions of an algorithm, the new algorithm
found by genetic programming is still deterministic and, if it has been obtained after
a large enough search, it may be more effective than the original one. Once an im-
proved algorithm has been found, this is readily available to solve any instance of the
problem in a time equal or very close to the one required by the original algorithm.
Alternatively, genetic programming can be used to find algorithms that are tailored
to a reduced set of the possible problem instances. This is of a particular relevance
in practice given that companies usually require to solve the same type of instance
repeatedly, each time with minor differences in input data.

It is important to mention that in this paper genetic programming solves a combi-
natorial problem which requires to find the best among a large set of possible heuristic
components. Such methodologies, which search the space of other lower-level heuris-
tics or heuristic components are known as hyper-heuristics (Cowling et al., 2000, Burke
et al., 2003a). This paper, then, proposes a genetic programming-based hyper-heuristic
for the discovery of improved algorithm variants.

The proposed hyper-heuristic was tested in the context of the permutation flow shop
problem (Pinedo, 2002), with five different objective functions, and using the Nawaz,
Enscore and Ham (NEH) procedure as the “base” algorithm (Nawaz et al., 1983). The
NEH procedure consists of two main steps. In the first step, jobs are ranked and sorted
according to a certain criterion that depends on the job parameters. We shall refer to
this criterion as ranking function. The ranking of jobs is used in step two to build a
schedule. We will discuss this procedure in detail in Section 3. The NEH procedure
is a well established heuristic for the permutation flow shop problem in its most basic
form, when all jobs are available at the same time and the objective to minimise is the
makespan. The task of genetic programming is to find new ranking functions that lead
to NEH variants that are superior to the original one on problems that consider extra
constraints and objective functions that are inline with real world requirements.

Experimentation was carried out in two stages. In the first stage genetic program-

ming was used to find five NEH variants, one for each objective function investigated.

In the second stage, these new algorithms were compared with the original NEH pro-
cedure, and a randomised version of NEH, on a large set of instances. The analysis
of our results indicate that the ranking functions discovered by genetic programming
lead to algorithms that are superior to the original NEH and its stochastic version on
most of the problems investigated.

The rest of the paper is organised as follows. Section 2 describes the permutation
flow shop problems that are investigated here. This section introduces the relevant no-
tation to be used through out the rest of the paper. The NEH procedure is described in
detail in Section 3. Section 4 is a literature review on hyper-heuristics including recent
applications of genetic programming to the discovery or improvement of algorithms.
Section 5 provides an introduction to genetic programming. It explains the overall
functioning of the algorithm and the implementation details of our particular applica-
tion. Section 6 describes the experimentation that was carried out in order to discover
new NEH variants. These variants are evaluated and compared with the original NEH

in Section 7. Section 8 is the discussion and Section 9 concludes the paper.

2 The Permutation Flow Shop Problem

The permutation flow shop problem requires to find the order in which n jobs are to
be processed in m consecutive machines. The jobs are processed in the order machine
1, machine 2, ..., machine m. Machines can only process one job at a time and jobs
can be processed by only one machine at a time. No job can jump over any other
job, meaning that the order in which jobs are processed in machine 1 is maintained
throughout the system. Moreover, no machine is allowed to remain idle when a job
is ready for processing. Each job ¢ requires a processing time on machine j denoted
by pi;. Each job i has also a release time 7; and a due date d; which are the earliest
time when job ¢ can start in machine 1 and the time when the job is required to be
completed, respectively. Job i has also a weight w; which indicates its priority.

Given a permutation 7 = 7(1),...,m(n), where m(q) is the index of the job assigned
in the g-th place, a unique schedule is obtained by calculating the starting and com-
pletion time of each job on each machine. The starting time start,(; of the g-th job

on machine j is calculated as:
startz(g),; = max{startr(g) j—1,startzq-1),},

with

startz); =0 and startrg)o = Tr(g):

and its completion time is calculated as:

Cr(g)j = Startz(g) + Pr(q),j-

Given a schedule, let C; be the time when job ¢ finishes its processing on machine
m (last machine on the shop) and 7; = max{0,C; — d;} be the tardiness of job i.
The permutation flow shop problem investigated here requires to find the processing
order of n jobs in such a way that the resultant schedule minimises one of the five cost
functions given in Table 1. Each objective function leads to a different variant of the
problem, denoted, using the standard notation proposed in (Graham et al., 1979), as

shown in the second column of Table 1.

[Table 1 about here.]

3 The NEH Procedure

Many heuristics have been proposed for the permutation flow shop problem, excellent
reviews and comparisons are provided in (Framinan et al., 2004, Ruiz and Maroto,
2005). Despite the abundance of heuristic approaches, the NEH procedure (Nawaz
et al., 1983), originally proposed for the special case where all jobs are available at time
0 and for the makespan objective (denoted F,|prmu|Chyax), is the absolute favorite.
The NEH heuristic is frequently used as the basis of more elaborated (meta-)heuristics
to deal with different objective functions and flow shop scenarios (Garcia and Maroto,
2006, Ruiz and Stiitzle, 2007, Framinan et al., 2003). Despite its simplicity, so far there
is no evidence that confirms that the NEH procedure has been outperformed by any
other heuristic for the F,|prmu|Cyax problem. The functioning of the NEH procedure
is described in Figure 1, where sumP; = 27:1 pi; is the sum of processing times of job
1, i.e. the total processing time required by job 7. In step 1, operations are sorted in
decreasing order of their sum of processing times. In step 2, a schedule is built from
scratch by assigning jobs in the order given by 7. The first job, m(1), is assigned to an
empty schedule. Job 7(2) is then considered in places 1 and 2 in the new permutation
and fixed to the place where it leads to the partial schedule with the smallest objective
function value. Job 7(3) is considered in places 1, 2 and 3 and fixed to the place where
it leads to the smallest cost function value, and so on. The complexity of the NEH
heuristic, as proposed in (Nawaz et al., 1983), is O(n®m). For certain problems, this
can be improved to O(n?m) by exploiting the graph representation of the problem, as
explained in (Taillard, 1990).

[Figure 1 about here.|

We can see, by looking at Figure 1, that one can generate new NEH variants by
modifying the way in which jobs are sorted in step 1 of the algorithm. One could, for
example, talk of NEH-random schedules if the initial ordering is given by a random
permutation. The alternative that we pursue here is to use genetic programming
to find a function of the job parameters to be used to sort the operations. This is a
natural approach given that genetic programming is particularly well suited for function
approximation problems.

It is important to mention that NEH-random schedules are of a remarkably good
quality. As an illustration, Figure 2 shows the distribution of the C\,.. value of ten
thousand NEH-random schedules and ten thousand random schedules for a 20 x 10
(20 jobs and 10 machines) Taillard instance (Taillard, 1993). The mean of the random
schedules is 2795.26 with a standard deviation of 172.06, whereas the mean of the
NEH-random schedules is 1970.96 with a standard deviation of 45.59. The difference
between both means is approximately 4.8 standard deviations. This means that an
NEH-random schedule is, in terms of quality, roughly one in a million among the whole
set, of random schedules. The same exercise was repeated on the 120 Taillard instances
and observed that, on average, the mean completion time of the NEH-random schedules
is 6.25 standard deviations smaller than the mean completion time of the whole set of

random schedules.
[Figure 2 about here.|

The sorting of jobs by decreasing order of sum of processing times (step 1) of NEH,
seems simplistic but it is, by no means, naive. Indeed, some authors have tested many
other job ranking functions with no success and have conjectured that this ranking
function is “optimum” for the F,,|prmu|Cpax problem (Framinan et al., 2003, Kalczyn-
ski and Kamburowski, 2007). We have compared the schedules produced by the NEH
procedure against a set of NEH-random schedules on the set of Taillard instances. On
average, the NEH procedure generated schedules with a makespan that is 1.04 standard
deviations smaller than the makespan of the average NEH-random schedule. Moreover,
the NEH procedure generated a better than average NEH-random schedule in 99 out of
120 instances. These observations, however, only hold for the F),|prmu|Ciax problem
and not for the more realistic problems investigated here. Of course, as mentioned
in the introduction, one could trivially improve the NEH performance by calling the
NEH procedure many times using different random permutations. We suggest a more
intelligent approach: to substitute the ranking function used by NEH with alternative

functions discovered by genetic programming.

4 Hyper-heuristics

As discussed above, the proposed approach can be considered as a genetic program-
ming based hyper-heuristic to improve the performance of the NEH heuristic for the
permutation flow shop problem. The term hyper-heuristic was first used in 1997 (Den-
zinger et al., 1997) to describe a protocol that combines several Artificial Intelligence
methods in the context of automated theorem proving. It was independently used in
2000 (Cowling et al., 2000) to describe ‘heuristics to choose heuristics’ in the context
of combinatorial optimisation. In this context, the first journal paper to use the term
was (Burke et al., 2003b). The idea of automating the design of heuristics, however, is
not new. It can be traced back to the early 1960s (Fisher and Thompson, 1961).

One of the main motivations behind hyper-heuristic research is to develop method-
ologies that can generalise and thus solve a class of problems, instead of a single problem
or instance. The main distinguishing feature of these methods is that they operate on
a search space of heuristics, rather than directly through a search space of problem so-
lutions (Burke et al., 2003a, Ross, 2005). In (Burke et al., 2009) a unified classification
and definition of hyper-heuristics is presented which captures the work that is being
undertaken in this field. Two main hyper-heuristic categories are identified: heuristic
selection and heuristic generation. In heuristic selection, the idea is to come up with
automated methods for choosing or combining existing human designed (low-level)
heuristics, taken from the literature, and with good performance in practice. On the
other hand, in heuristic generation, the idea is to automatically produce new heuristics
from a set of potential heuristic components.

Heuristic selection methodologies have been successfully applied to solve a wide
range of real world problems including university timetabling (Burke et al., 2007b,
2006¢,b), nurse rostering (Aickelin and Li, 2007), shelf space allocation (Bai et al.,
2008, Bai and Kendall, 2005), cutting stock (Terashima-Marin et al., 2006), production
scheduling (Petrovic et al., 2008, Rodriguez et al., 2007) and others (Cowling et al.,
2002, Kendall and Mohamad, 2004, Ross et al., 2002).

In automated heuristic generation , genetic programming (introduced in the next
section) is the most widely used methodology. It has been successfully applied to the
automated generation of heuristics that solve hard combinatorial problems, such as
boolean satisfiability, (Bader-El-Den and Poli, 2008, Kibria and Li, 2006, Fukunaga,
2008), bin packing (Burke et al., 2006a, 2007c), traveling salesman problem (Keller
and Poli, 2007a,b) and production scheduling (Dimopoulos and Zalzala, 2001, Geiger
et al., 2006, Tay and Ho, 2008). One approach to use genetic programming as a hyper-
heuristic has been to evolve local search heuristics or even evolutionary algorithms
(Fukunaga, 2002, 2004, 2008, Oltean, 2005, Poli et al., 2005, Oltean, 2003, Bader-El-

Den and Poli, 2008). An alternative idea has been to use genetic programming to

evolve a function that is part of the processing of a given problem specific construction
heuristic. The hyper-heuristic approach for bin-packing proposed in (Burke et al.,
2006a, 2007c), for instance, evolves a function that receives as parameters the size of
the items to be packed and the bin capacities. Whenever a new item has to be placed,
the evolved function assigns a score to each of the bins and the item is located in the
bin with the lowest score. If no bin receives a score greater or equal to a certain value,
then a new bin is open. A related approach in production scheduling (Dimopoulos and
Zalzala, 1999, 2001, Geiger et al., 2006, Tay and Ho, 2008) uses genetic programming
for learning a function of the job parameters, such as processing times and release
dates, as well as some floor shop parameters such as the release time of machines, etc.
In this way genetic programming is used to evolve dispatching rules that are used to
schedule the floor shop. The proposed approach, discussed in detail below, belongs to
this last category of hyper-heuristic methods.

5 Genetic programming, overview and

implementation details

Genetic programming is a paradigm from evolutionary computation concerned with the
automatic generation of computer programs (Koza, 1992). It is a problem-independent
methodology that genetically breeds a population of computer programs to solve a
problem. Genetic programming typically starts from a randomly generated set (pop-
ulation) of computer programs (individuals) composed of the available algorithmic
components (given by the human designer). The methodology iteratively transform
the population of computer programs into a new generation by applying analogs of
naturally occurring genetic operations (such as mutation and recombination). A fit-
ness function assigns a value to each individual depending on its performance on the
problem. The individuals are probabilistically selected to participate in the genetic op-
erations based on their fitness. This process is repeated until a termination condition
is satisfied. Genetic programming is, therefore, a method of generating syntactically
valid programs, according to some predefined grammar, and a fitness function is used
to decide which programs are better suited to the task at hand.

A distinction can often be drawn between an optimisation and a learning (or mod-
eling) task. In the former, we seek the highest quality solution with respect to some
evaluation function. An example is the minimisation of a non-linear function, where
we seek a value of x such that f(x) is a minimum. In the latter, which may be seen as a
special case of the former, we seek a representation or model which better adjusts to the
validation data. For example, in symbolic function regression we seek a representation

of a function f(z) that best matches a set of fitness cases. In this paper, the task is

to find a function f(z, E) — R of the job 7 and problem instance k parameters in such
a way that when the jobs are ordered according to f (Z, lg), the resulting permutation
leads NEH to produce high quality schedules. This is an optimisation task.

Genetic programming starts from a high-level statement of the problem require-
ments and attempts to generate a computer program that solves it. The human de-

signer communicates this statement by specifying the following major components:
1. the individual representation
2. the fitness measure

3. the set of terminals (i.e. the independent problem variables, constants and zero

argument functions)
4. the set of operators

5. the evolutionary control parameters (such as population size and genetic opera-

tor’s rates)

6. the termination criterion (generally, a predefined maximum number of genera-

tions).

The rest of this section describes each of these components in general terms and in
greater detail for our specific application. There are numerous tutorials, introductory
articles and text books on genetic programming. The series of books by Koza (Koza,
1992, 1994, Koza et al., 1999, 2003) and the book by Banzhaf et al. (Banzhaf et al.,
1998), treat the subject thoroughly. Also, (Koza and Poli, 2005) and (Poli et al., 2008)
are more recent introductory texts. Introductory articles can also be found in most

current textbooks on machine learning and evolutionary computation.

5.1 Individual representation and fitness evaluation

In genetic programming, the programs that comprise the population are traditionally
represented as syntax trees rather than lines of code. Other program structures can be
evolved, such as linear sequences of instructions, and grammars. In this paper we use
the tree-based representation. Consider the simple arithmetic expression discussed in
(Koza and Poli, 2005):

max(z X x, x + 3 X y).

This is represented as a tree in Figure 3. The tree contains nodes, which indicate
instructions to execute, and links, which indicate the arguments for each instruction.
In genetic programming terminology, the internal nodes in a tree are called operators,

while the leaves are called terminals. Interpreting a program tree means executing the

nodes in the tree in an order that guarantees that nodes are not executed before the
value of their arguments (if any) is known. This is usually done by traversing the tree
in a recursive way starting from the root node, and postponing the evaluation of each

node until the value of its children (arguments) is known.
|[Figure 3 about here.|

Irrespective of the execution strategy adopted, the fitness of a program may be
measured in many different ways, including, for instance, in terms of the amount of
error between its output and the desired output, the amount of time (or other resources)
required to bring a system to a desired target state, the accuracy of the program in
pattern recognition or classification, etc. For many problems, each program in the
population is executed over a representative sample of different fitness cases. These
cases may represent different values of the program’s input(s), different conditions of
a system or different environments.

In this paper, a tree or individual Ind is interpreted as a ranking function / nd(;, E) >
R, where i is a vector that refers to the data specific to job ¢ and k is a vector that
refers to the data specific to a problem instance k. Given an instance k an individual
can be used as a ranking function for the NEH procedure by following the steps 1
to 4 described in Figure 4, where Rank; = I nd(;, k) is a real value assigned by the
individual being evaluated to job i on instance k. The fitness function of an individual
is evaluated not only on one but on a set of instances. Let f; refer to the function
value obtained by an individual on instance £ and let f; be the best of one million
NEH-random schedules that were generated a priori for the same instance. In order to
be able to aggregate on a single fitness measure the results of an individual on different
instances, the percentage deviation (PD) of the f; value obtained by an individual was

calculated as
e — T
Ir

The fitness of an individual is the sum of the PD values on the N instances in the

PD, =

x 100. (1)

fitness case set: Zszl PDy. Notice that PDj; may be a negative quantity. This has no
harmful effect given that the sum of PDj values is to be minimised. The process to

evaluate an individual on a set of fitness cases is given in algorithmic form in Figure 4.

|[Figure 4 about here.|

5.2 Terminals and operators

The function and terminal sets conform the ingredients that are available to create
the computer programs. Identifying these sets for a particular problem (or class of

problems) is usually a straightforward process. For some problems, the function set may

9

simply consist of the arithmetic functions of addition, substraction, multiplication, and
division as well as a conditional branching operator. The terminal set may consist of the
program’s external inputs (independent variables) and numerical constants. For other
problems, the ingredients include specialised functions and terminals. For example if
the goal is to automatically control a robot to mop the floor of an obstacle-laden room
(Koza and Poli, 2005), the function set needs to specify what the robot is capable of
doing. For example, the robot may be capable of executing functions such as moving,
turning and swishing the mop. The terminal set may provide sensory information, such
as how far an obstacle is from the robot.

In this work the terminal set consists of job specific data, including: the release
time, r;, the due date, d; and the weight, w;, of job 7, as well as the following four

indicators:

e the sum of processing times of job i:
m
sumpP; = Z Dij
j=1
e the weighted sum of processing times of job ¢:

wSumpP; = Z(m —J+1)pij

J=1

e the sum of the absolute differences of a job ¢’s processing times with respect to
the other jobs:

sumAbsDif; = Z Z |pij — p§j|

J=1 =1
i#i
e the weighted sum of the absolute differences of a job i’s processing times with

respect to other jobs:

wSumAbsDif; = ZZ — i+ 1)|pi; — pyl-
J=li=1
14
The set of constants consists of the number of jobs, n, the number of machines, m, and
the integer numbers 1,2, ..., 10.
The operators set consists of the common arithmetic operators: +, —, X, =+ and two

specialised monadic operators, the sum of the processing times of job ¢ from machine

10

a to machine m (last machine)
FSumPi(a) = Zpij
j=a

where a € {1,2,...,m}, and the sum of the processing times of job ¢ from machine 1

to machine a

1
BSumP;(a) = Zpij'
j=a

Following genetic programming convention, the <+ operator returns a very large penalty
number when attempting to divide by zero. The F'SumP;(a) and BSumP;(a) operators
do also require protection against a values that are not in {1,2,...,m}. In both cases,
rather than penalising for illegal values, the input value is repaired by first transforming
a into an integer using the floor operator, and second, by setting a to 1 or m if the

resultant integer is less than 1 or larger than m, respectively.

5.3 Genetic operators and reproduction

The implemented genetic programming algorithm is the standard well established de-
sign described in (Koza, 1992) and illustrated in Figure 5. In this, the population is
initialised using the ramped half-and-half method. In this method, a maximum initial
depth for trees (D,,q.) is selected, and each member of the initial population is ran-
domly generated from the set of functions and terminals using, with equal probability,

one of the two following methods:

e Full method: each branch of the tree has depth D,,.,. The content of nodes at
depth d are chosen from the function set if d < D,,,, or from the terminal set if
d= Dz

e Growth method: the branches of the tree may have different depths (up to the
limit D,,,). The tree is generated starting from the root, with the content of
each node selected probabilistically from the union of function and terminal sets
(if d < Dinag)-

|[Figure 5 about here.|

At every iteration (generation) a whole new population of individuals is created
and evaluated. This is done by selecting parents from the current population and
modifying them using genetic operators in order to produce new solutions. Individuals
are selected to participate as parents in the new population using a K tournament
selection mechanism, which gives higher chances of being selected to those individuals

that are the fittest. In tournament selection, K parents are randomly selected and only

11

the fittest participates as a parent in the new population. Parameter K, which has to
be tuned, controls to some extent the speed of convergence of the algorithm.

Creating a new individual is a two step process. First an individual is generated with
crossover with a probability X, or with direct reproduction with probability 1 — X,.
The crossover operator receives two parents, selects randomly one subtree from each of
them, and swaps the sub-trees between the two parents creating two new individuals.
In direct reproduction, the parent is copied directly from the current population. In the
second step the new individual is mutated with a certain probability p,, in which case
a randomly chosen subtree of the individual is replaced with a new random subtree.

In many genetic programming applications there is a naturally occurring ideal state
that determines the stopping condition of the algorithm. In these cases, it is often
easy to measure how close is a given solution to the desired one. Once a good enough
solution has been found, the algorithm stops. This is the case, for example, of symbolic
regression applications, where the algorithm stops once a solution that delivers a close
to zero sum of errors is found. Of course, the algorithm may never find such high
quality solutions and is customary to stop the algorithm after it reaches a certain
number of solution evaluations or iterations (generations). In our application, it is not
easy to determine such an ideal state since this would require knowing a priori the
solution of the problems that we are ultimately trying to solve. Therefore we only use
the second type of stopping condition and stop the algorithm after a certain number,
iter, of iterations or solution evaluations has been reached.

A major concern when implementing genetic programming algorithms is the control
of the tree sizes. Without a controlling mechanism, the standard genetic and selection
operators lead to ever increasing trees. This phenomenon is known as bloat. In our
implementation, the crossover operator was modified in order to only return trees
that are equal or smaller to a certain size, where size is the number of nodes in the
tree. Notice that after applying the crossover operator, if one of the new individuals
is greater than the permitted size then the other will always be equal or smaller. A
second implementation detail is whether or not the algorithm keeps the best solution
found so far in the population at all times. If this is true, as in our implementation,

the algorithm is said to be elitist.

6 Discovering new NEH variants with genetic pro-

gramming

6.1 Training set

For each problem investigated (each objective function), genetic programming was run

on a randomly generated set of instances of sizes given by each n € {10, 20, 30, 40, 50}

12

and m € {4,5,10,20} combination, giving a total of 5 x 4 = 20 instances. The reason
for keeping the instances relatively small is to allow genetic programming to run for
a large enough number of generations within a reasonable amount of time. As it is
common practice, the processing times, job weights and release times of jobs are random
integers within the ranges [1,...,99], [1,...,10] and [0,1.5->"" | P;], respectively. The
due dates were generated as proposed in (Ruiz-Torres and Centeno, 2008): as random
integers in the range [0.3W,0.7W], where

Zn+zz A (n—1) maxZR] .
vl)

=1 j=1

Factor W controls the difficulty to meet a particular due date; due dates between 0.3W
and 0.5W are considered tight, i.e. difficult to meet, whereas due dates between 0.5
and 0.7W are loose. In all cases, data was drawn from a discrete uniform distribution,

which is known to lead to difficult instances due to its large variance.

6.2 Parameter Tuning

Most of the genetic programming parameter values were decided after a two stages
full factorial design experimentation (Montgomery, 2005) in which the crossover prob-
ability, X,,, the mutation probability 1,, the population size, pop, and the tournament
size, K, were allowed to vary at 3 equally spaced levels each, giving a total of 3* = 81
experiments. The best combination of parameters is the one that lead to the individual
with the best average function value on the training set, after 10 runs. The parameter
values of such best combination were used as the central values for a second full facto-
rial experimentation. The two extreme values were set at half the distance used on the
first factorial experiment from the central value. A similar third full factorial experi-
mentation was carried out but without further improvement. The stopping condition
was set to 100000 solution evaluations, which means that the number of generations
depends on the population size. The design of the implemented genetic programming
system and the final values of the pertinent parameters are summarised in Table 2
More on design of experiments and its application to the tuning and comparison of

heuristics can be found in (Bartz-Beielstein, 2006).

[Table 2 about here.]

6.3 Training results

The genetic programming system described in Table 2 was run on the training set for
each of the problems described in Section 2. The genetic programming implementation

was done in Java and all experiments, including those for parameter tuning, were

13

carried out on a Cluster of identical dual Opteron 248 (2.2GHz) processors, running
Unix, part of the High Performance Computing of the University of Nottingham, UK.

The best ranking function for each problem, found after 5 training runs, are given
in Table 3. We can see that genetic programming found a generalisation of the ranking
function used by the original NEH to deal with the release times in the problems studied
here. In fact, the expression found for the F,|r;, prmu|Cyax problem can be reduced to
r; X sumP;;. This is because the argument for the F"SumF; operator is, on all problems
investigated, including those used later to evaluate the ranking functions, a negative
number. Recall that negative numbers are repaired to 1 by the operator and we know
that F'SumP;(1) = sumP;;. The ranking function found by genetic programming for
the second problem gives high priority to jobs with large processing times, particularly
in the last stages of the shop floor. For the third problem, genetic programming found
a ranking function that gives preference to jobs with long processing times and large
weights. The ranking functions found for the last two problems assign a certain priority
to the sum of the processing times of jobs, the release and due dates and the weights.
However, the relation between such variables and the rank of jobs is not intuitive.
We note, nonetheless, that the capability of genetic programming for finding such non

intuitive solutions is partly responsible for its success in many domains.

[Table 3 about here.]

7 Evaluation of Ranking Functions

The best solution found on the training set was incorporated into the NEH algorithm
and used to solve variants of the 120 Taillard instances (Taillard, 1993) which were
modified to match the problems investigated here. The original Taillard instances are
given in 12 sizes (10 instances of each size): the nine combinations of n € {20, 50,100}
and m € {5,10,20} and the sizes 200 x 10, 200 x 20 and 500 x 20. The processing
times are uniformly distributed integers in {1,...,99}. Extra data was added to each
job in order to generate new instances: a weight, a release time and a due date; all
generated in the same way as the training set described in Section 6.1.

The competing algorithms are three variants of the NEH procedure; each distin-
guishing from the others on the method used to prioritise operations in step 1. The
first competitor, NEH,.,,.q4, uses a random permutation to prioritise operations. Results
reported for the NEH,.,,,4 algorithm are the minimum on 100 runs. The second com-
petitor, NEHgp, uses the ranking function proposed by genetic programming and the
third competitor, NEH, is the original algorithm, which ranks jobs in decreasing order
of sumP; values. Notice that, except NEH,,,q4, the algorithms are deterministic and

were run only once on each problem instance.

14

A visual summary of the results is given in Figure 6, which presents the box plots
of the results obtained by the NEH variants on each problem size and for each ob-
jective function. In all plots, the x—axis represents the NEH variant, and the y—axis
represents the corresponding objective function value normalised to the [0, 1] range. In
55 out of 60 cases NEHqp is either clearly better or potentially better than the other
competitors. These are the cases where the median of NEHgp is smaller to that of the
other algorithms or is equal or very close, but the lower end of the box is lower to that
of the competitors. In 41 of these cases, the box of NEHgp does not overlap with the
box of any of the other algorithms; it is safe in these cases to conclude that the differ-
ence in performance of the algorithms is statistically significant. For the remaining 19
cases, where the boxes overlap, we carried out the adequate t—test pair comparisons
between NEHgp and the other two algorithms. The results are given in Table 4. In
there, the first three columns indicate the group of instances being analysed, the third
and fourth columns present the comparison tests between NEHsp and NEH,,,,4 and
the fifth and sixth columns are the comparisons between NEHgp and NEH. We can
see that NEHgp was superior to NEH in 15 cases, non-distinguishable in 3 cases, and
inferior in only one case. When compared to NEH,.,,,q, NEHgp was superior in 8 cases,
non-distinguishable in 10 cases, and inferior in 1 case. Summarising, NEHsp had a
statistically significant superiority to the other two algorithms in 49 out of 60 cases.
It was superior to one algorithm but non distinguishable from the other in 7 cases.
It was non-distinguishable from both algorithms in 2 cases. Inferior to one algorithm
but non-distinguishable from the second one in 2 cases. In no instance, NEHsp was

significantly inferior to both of the competitors.
[Figure 6 about here.]

[Table 4 about here.]

Results were also summarised by taking the Percentage Deviation (PD) from the
best solution found. For each instance k, let f; be the best of the 102 solutions found
by all NEH variants (100 by NEH,.q,,4, one by NEHgp and one by NEH). The PD value
was calculated using Equation 1 for each instance and each algorithm. Note that in this
occasion, subindex k = 1,...,120, refers to one of the modified Taillard instances used
in this section. The Average PD values on the instances grouped according to their
size and for each algorithm are given in Table 5, where the best results are given in
bold. Again, NEHgp obtained the best results on all, except one, groups of instances.
Remarkably, NEHgp very frequently obtained an Average PD value of 0.0, meaning
that for that particular group, NEHgp found the best solution to all instances. The
original NEH obtained the worst results overall, very close to those found by NEH,.,,.4.

[Table 5 about here.]

15

The Friedman non-parametric test was used to validate our results statistically on
large groups of instances. The Friedman test acts on the ranks of the results obtained
by the algorithms, giving smaller ranks to small objective function values. By taking
the ranks, the test allows to block the effect due to instance characteristics and to
obtain conclusions that are valid not only on one instance or type of instance but
on a wide range of instances. The ranks achieved by each algorithm are added up
and the test evaluates whether the independent controllable variable, in this case the
algorithm type, has a significant effect on the sum of the ranks. The null hypothesis
is that there is no significant effect; if this is rejected, we conclude that one or more
algorithms are superior to one or more of the other algorithms. In order to obtain
precise conclusions, the test was performed on two algorithms at a time. If the test
rejects the null hypothesis, i.e. if a P — value < 0.05 is obtained, then we conclude in
favor of the algorithm with the smallest sum of ranks. The results of the test on the
whole set of instances, and on the instances grouped by objective function are given in
Table 6. In there, the first column indicates the group of instances being analysed, the
next columns indicate the sum of the ranks obtained by the algorithms being compared
and the P — value of the corresponding tests. In all tests, NEHgp is demonstrated to
be superior to the alternative algorithm. In most tests involving NEH,,,; and NEH,
the former is superior to the latter. The exception is in the C,,,, objective where both
algorithms are considered equivalent. Similar tests were carried out grouping instances
by size. We do not provide detailed information given that the results were the same;
NEHgp is superior to the other two in all cases, and NEH,.,,,4 is equivalent to NEH in

two cases and superior in the rest.

[Table 6 about here.]

8 Discussion

One could easily argue that the fact that NEHgp outperformed the original NEH
on the investigated instances does not necessarily confirm that the ranking functions
discovered by genetic programming are any “good”. It probably indicates that the
original NEH ranking function is “bad” on the investigated problems. We claim that
the ranking functions found by genetic programming are as successful or more successful
for the investigated problems as it is the original ranking function for the F}, |prmu|Ciax
problem. In order to sustain this claim we use as a reference point the performance
of NEH, 4,4, i.e. we evaluate the performance of NEHgp in terms of the number of
standard deviations that its results are shifted from the mean of those obtained by
NEH, 4,q. This was done with the purpose of isolating the effect due to the ranking

function from the rest of the algorithm. The use of deviations from a best known

16

solution, as it is commonly done, is only an indicator of the performance of an algorithm
as a whole and is not appropriate for our purpose.

We measured, for each instance, the number of standard deviations of the solution
found by NEHgp from the mean of the 100 solutions found by NEH,.,,,4. The average
of the deviations obtained by NEHgp and NEH on each group of instances are given
in Table 7. A negative value means that the algorithm in the corresponding column
found better solutions on average than NEH,.,,,4. For example, for the ten problems of
size 500 x 20 and the C\,. objective, NEHgp found solutions that are 23.87 standard
deviations smaller than the average solution found by NEH,,,q. This result can be
interpreted as that one would require to generate a very large number (billions or
probably more) of solutions with NEH,,,s in order to find one that is as good as
the average solution found by NEHgp. Except for two groups of instances, NEHgp
obtained better results (a negative deviation) than the average NEH, 4. NEH, on the
other hand, consistently obtained poor results.

Recall that for the F,|prmu|Ciax problem, NEH obtained solutions that were, on
average -1.04 standard deviations from the solutions found by NEH,.,,,q. We can claim,
therefore, that NEHgp found three very successful ranking functions with deviations
of -7.1, -3.73 and -3.77 for the C,,,., sumW C and sumW'T objective, respectively, and
two which are also good, with deviations of -0.61 and -0.60 for the sumC" and sumT
objectives, respectively, but that are not as successful as the original NEH ranking

function is for the F,,|prmu|Cax problem.

[Table 7 about here.]

8.1 Scalability

A property of the newly found ranking functions is that their performance remains
as good or it even improves as the problem escalates in size. The results of NEHgp
were remarkably good, compared to the other algorithms, for the medium and large
instances. This is surprising if one considers that the training set contains only rela-
tively small instances. This behaviour has been previously observed and thoroughly
analysed in (Burke et al., 2007a) for evolved heuristics for online bin packing. The
authors concluded that the genetic programming-evolved heuristics, which were ob-
tained after training on a set of small instances, appeared to show a certain look-ahead
behaviour that was particularly useful on large instances. The question that remained
unanswered, however, is why heuristics that were evolved on small instances acquired
such features that allowed them to escalate well, specially as it was conceded that the
heuristics do not have explicit access to state information. In this paper, we believe
that what originated this situation is the fact that heuristics were evolved on a training

set with instances of varying sizes, ranging from very-small to small-medium. In order

17

to be successful, an individual had to perform well on a variety of instance sizes. Such
ability extrapolated to the largest cases. In the work of (Burke et al., 2007a), however,
heuristics were obtained after training on instances of one size only. The heuristic that
escalated the best was obtained after training on instances of size 500, and tested later
on instances of size 100 000. This is probably because an instance of size 500 is already
large enough to benefit from the look-ahead behaviour and hence the evolution process

lead to its discovery.

8.2 Algorithm Tailoring

Our genetic programming algorithm was trained on a set of instances of varying sizes
hoping that it would be able to find a ranking function that performs well on a variety
of instances. Genetic programming succeeded overall, but for two of the objective
functions, namely sumT and sumC', the superiority of NEHgp over its competitors is
more modest than for the rest of the objective functions. On a real world scenario, one
may be able to specialise on a particular type of problem: fixed size, data distribution,
a specific objective function and may be able to train genetic programming for a longer
period of time. Instances that consider objective functions sumT and sumC' are the
best candidates for specialisation at the problem size level. One would expect, however,
that such over-specialisation would compromise the performance of NEH on other types
of instances. Our point is that genetic programming can be easily used as a tool for
algorithm tailoring.

As an illustration of how algorithm tailoring could work, we used genetic program-
ming to find a ranking function specialised on problems of size 20 x 20 with the sumC
objective. One can see in Table 7 that it is on these instances where NEHqp performed
the poorest. We trained genetic programming on a set of 20 randomly generated in-
stances of size 20 x 20 with the rest of the data generated as in Section 6.1. We allowed
genetic programming to run for 100000 evaluations using the genetic programming
specifications given in Table 2. The best ranking function, after 5 genetic program-
ming runs, was incorporated to NEH and used to solve the 10 test problems of interest.
The ranking function lead to a deviation on the sumC' 20 x 20 instances of -2.19, which
is considerable better than the original 0.021. The same ranking function obtained,
overall, a deviation of -0.51 standard deviations, which is slightly worse than the -0.61
previously found; we payed the price for the specialisation on instances of size 20 x 20,
with a slightly worse performance on the rest of the instances. This observation agrees
with the conclusions of (Burke et al., 2007¢), where it was found that heuristics for
bin packing could be evolved to be specialists in one sub-problem, at the expense of
their performance in other sub-problems. There is a trade-off between performance

and generalisation.

18

8.3 Results on the F,|prmu|Chpa.x problem

Researches have tried unsuccessfully to find better ranking functions than that of the
original NEH procedure for the F,,,|prmu|Cyax problem. In (Framinan et al., 2003), 176
different ranking functions, which ranged from the very simple to the very sophisticated,
were tested and none lead to an improvement. In (Kalczynski and Kamburowski, 2007),
the authors repeated some of these experiments and obtained the same results. Here,
a much difficult test was put on the ranking function of NEH; literally hundreds of
thousands of new ranking functions were compared. Genetic programming, as one
would expect, very frequently rediscovered the original NEH ranking function. This
was a problem since the algorithm got very easily stuck on such a solution. In our
attempt at improving on such a ranking function, we penalised ranking functions that
were equivalent to sumP;;. After 10 runs, using the specifications in Table 2, we found
a ranking function that lead to the results given in Table 8, where NEHgp is compared
with NEH. We can see that NEHp obtained better results on the small instances, both
algorithms had a similar performance on the medium instances and NEH was best on
the large instances. Overall, NEH obtained better average results than NEHsp and
obtained a better solution than NEHgp on 59 out of 120 instances, whereas NEHgp
obtained the best solution on 56 instances. The results, in all cases, are fairly close,
and indeed their difference is statistically non significant. Our results agree with those
in (Framinan et al., 2003, Kalczynski and Kamburowski, 2007), where the authors
observed that the ranking function of NEH is indeed very good for the F,,|prmu|Ciax

problem.

[Table 8 about here.]

9 Summary and Conclusion

This paper proposes a genetic programming based hyper-heuristic to improve the per-
formance of the NEH heuristic for the permutation flow shop problem with release
times, due dates, job weights and five objective functions (one at a time). The NEH
heuristic is known to be highly influenced by a ranking function that it uses to prioritise
operations previous to the construction of a schedule. The proposed hyper-heuristic
aims at discovering ranking functions which lead the NEH procedure towards good
solutions. Experimentation was carried out in two stages (1) a training stage in which
five ranking functions (one for each objective function investigated) where obtained
by genetic programming and (2) an evaluation stage in which NEH with the newly
discovered ranking functions (NEHgp) was used to solve modified versions of the 120
Taillard instances (Taillard, 1993).

19

The improved algorithms obtained very good results on all the problems investi-
gated. There were problems, where, for instance, the average function value obtained
by NEHgp was 3 standard deviations smaller than the mean of the results obtained
by a randomised NEH. For the makespan objective, the difference was of more than
7 standard deviations, and for the instances of size 500 x 20 the difference was of 23
standard deviations. As a comparison point, when NEH is used to solve the problem
for which it was originally designed, it obtains results that are 1.04 standard devia-
tions smaller than those obtained by the randomised NEH. Even though 1.04 does not
seem impressive, neither (Framinan et al., 2003), or ourselves, after testing millions of
ranking functions, could improve on it.

We have discussed the reasons of why the NEHgp heuristics escalate well with
problem size. We attribute this behaviour to the fact that the training set contains
instances of varying sizes. Which means that an individual, in order to be successful,
has to be able to escalate well on a range of instance sizes. We have also suggested that
genetic programming can be used as an algorithm tailoring tool, and have provided
an example of how genetic programming can be used to specialise an algorithm to a
particular type of instance at the price of a decrease in performance on the rest of the
instances.

Our observations on the scalability of the proposed heuristics motivates interesting
paths for future research. In general terms, it is interesting to know how the selection
of the training set affects the properties of the evolved heuristics. Moreover, and closely
related, we would like to know how to assign a fitness value to an individual based on
its performance on a set of problem instances. In this paper, the aggregated deviations
from previously known good solutions worked well. However, this approach may be
difficult to execute in other circumstances, e.g. when good solutions are difficult to
know a priori. Moreover, one may desire heuristics with different properties, e.g. that
are stable, obtain good solutions on average, or that escalate well, among others. Of
course, it is also natural, as future research, to test the proposed idea on other problem

domains.

References

U. Aickelin and J. Li. An estimation of distribution algorithm for nurse scheduling. Annals of
Operations Research, 155(1):289-309, 2007.

M. Bader-El-Den and R. Poli. Generating sat local-search heuristics using a gp hyperheuristic frame-
work. In Proceedings of Fvolution Artificielle, volume 4926 of Lecture Notes in Computer Science,
pages 37-49. Springer-Verlag, 2008.

R. Bai and G. Kendall. An investigation of automated planograms using a simulated annealing based
hyper-heuristic. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as
Real Problem Solvers - (Operations Research/Computer Science Interfaces Series, Vol. 32), pages
87-108, Berlin, Heidelberg, New York, 2005. Springer.

R. Bai, E. K. Burke, and G. Kendall. Heuristic,meta-heuristic and hyper-heuristic approaches for

20

fresh produce inventory control and shelf space allocation. Journal of the Operational Research
Society, 59:1387-1397, 2008.

W. Banzhaf, P. Nordin, R. Keller, and F. Francone, editors. Genetic Programming - An Introduction.

T.

E.

K.

H.

J.

J.

A.

Morgan Kaufmann, San Francisco, CA, 1998.

Bartz-Beielstein. Ezxperimental Research in Evolutionary Computation. Natural Computing Series.
Springer, 2006.

Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In Fred Glover and Gary Kochenberger, editors, Handbook
of Metaheuristics, pages 457-474. Springer, 2003a.

. K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyper-heuristic for timetabling and rostering.

Journal of Heuristics, 9:451-470, 2003b.

. K. Burke, M. Hyde, and G. Kendall. Evolving bin packing heuristics with genetic programming. In

Proceedings of the 9th International Conference on Parallel Problem Solving from Nature (PPSN
2006),, volume 4193 of Lecture Notes in Computer Science, pages 860-869, 2006a.

. K. Burke, B. L. MacCarthy, S. Petrovic, and R. Qu. Multiple-retrieval case based reasoning for

course timetabling problems. Journal of the Operational Research Society, 57(2):148-162, 2006b.

. K. Burke, S. Petrovic, and R. Qu. Case-based heuristic selection for timetabling problems. Journal

of Scheduling, 9(2):115-132, 2006c.

. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. The scalability of evolved on line bin

packing heuristics. In Dipti Srinivasan and Lipo Wang, editors, 2007 IEEE Congress on Evolu-
tionary Computation, pages 2530-2537, Singapore, 25-28 September 2007a. IEEE Computational
Intelligence Society, IEEE Press. ISBN 1-4244-1340-0.

. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic for

educational timetabling problems. European Journal of Operational Research, 2007Db.

. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward. Handbook of Metaheuris-

tics, chapter A Classification of Hyper-heuristic Approaches. International Series in Operations
Research & Management Science. Springer, 2009.

Burke, M. R. Hyde, G. Kendall, and J. Woodward. Automatic heuristic generation with genetic
programming: evolving a jack-of-all-trades or a master of one. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, volume 2, pages 1559-1565, 2007c.

. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling a sales summit. In

E. K. Burke and W. Erben, editors, LNCS 2079, Practice and Theory of Automated Timetabling
IIT : Third International Conference, PATAT 2000, pages 176-190. Springer-Verlag, 2000.

. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic genetic algorithm applied to

a trainer scheduling problem. In Proceedings of Congress on Evolutionary Computation (CEC2002),
pages 1185-1190. IEEE, 2002.

. Denzinger, M. Fuchs, and M. Fuchs. High performance ATP systems by combining several ai

methods. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI ’97), pages 102-107, 1997.

. Dimopoulos and A. M. S. Zalzala. Investigating the use of genetic programming for a classic

one-machine scheduling problem. Advances in Engineering Software, 32(6):489-498, 2001.

. Dimopoulos and A. MS Zalzala. A genetic programming heuristic for the one-machine total tardi-

ness problem. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC ’99), pages
2207-2214, 1999.

Fisher and G. L. Thompson. Probabilistic learning combinations of local job-shop scheduling rules.
In In Factory Scheduling Conference, pages 225-251, Carnegie Institute of Technology, 1961.

M. Framinan, R. Leisten, and C. Rajendran. Different initial sequences for the heuristic of nawaz,
enscore and ham to minimize makespan, idletime or flowtime in the static permutation flowshop
sequencing problem. International Journal of Production Research, 41:121-148, 2003.

M. Framinan, J. N. D. Gupta, and R. Leisten. A review and classification of heuristics for permu-
tation flow-shop scheduling with makespan objective. Journal of the Operational Research Society,
55:1243-1255, 2004.

. Fukunaga. Automated discovery of composite SAT variable selection heuristics. In Proceedings of

the National Conference on Artificial Intelligence (AAAI), pages 641-648, 2002.

. S. Fukunaga. Evolving local search heuristics for SAT using genetic programming. In Genetic and

Evolutionary Computation — GECCO-2004, Part II, Lecture Notes in Computer Science, pages
483-494. Springer-Verlag, 2004.
S. Fukunaga. Automated discovery of local search heuristics for satisfiability testing. Fvolutionary

21

Computation, 16(1):31-61, 2008. ISSN 1063-6560.

R. R. Garcia and C. Maroto. A genetic algorithm for hybrid flow shops with sequence dependent
setup times and machine elegibility. Furopean Journal of Operational Research, 169:781-800, 2006.

C. D. Geiger, R. Uzsoy, and H.Aytiig. Rapid modeling and discovery of priority dispatching rules: An
autonomous learning approach. Journal of Scheduling, 9:7-34, 2006.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approx-
imation in deterministic sequence and scheduling: a survey. Annals of Discrete Mathematics, 5:
287-326, 1979.

P. J. Kalczynski and J. Kamburowski. On thenehheuristic for minimizing the makespan in permutation
flowshops. OMEGA-International Journal of Management Science, 35:53-60, 2007.

R. E. Keller and R. Poli. Linear genetic programming of parsimonious metaheuristics. In Proceedings
of IEEE Congress on Evolutionary Computation (CEC 2007), pages 4508-4515, 2007a.

R. E. Keller and R. Poli. Cost-benefit investigation of a genetic-programming hyperheuristic. In
Proceedings of Evolution Artificielle, volume 4926 of Lecture Notes in Computer Science, pages
13-24, 2007b.

G. Kendall and M. Mohamad. Channel assignment optimisation using a hyper-heuristic. In Proceedings
of the 2004 IEEE Conference on Cybernetic and Intelligent Systems (CIS2004), pages 790-795.
IEEE, 2004.

R. H. Kibria and Y. Li. Optimizing the initialization of dynamic decision heuristics in DPLL SAT
solvers using genetic programming. In Proceedings of the 9th European Conference on Genetic
Programming, volume 3905 of Lecture Notes in Computer Science, pages 331-340, 2006.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, 1992.

J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, 1994.

J. R. Koza and R. Poli. Genetic programming. In E. K. Burke and G. Kendall, editors, Search
Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, chapter 5,
pages 127—-164. Springer, 2005.

J.R. Koza, F. H. Bennett, D. Andre, and K. A. Keane. Genetic Programming III: Darwinian Invention
and Problem solving. Morgan Kaufmann, 1999.

J. R. Koza, K. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and H. Lanza. Genetic Programming
IV : Routine Human-Competitive Machine Intelligence. Springer, 2003.

D. C. Montgomery. Design and analysis of experiments. J. Wiley & Sons, Inc., 6 edition, 2005.

M. Nawaz, E. Enscore-Jr., and I. Ham. A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. OMEGA-International Journal of Management Science, 11(1):91-95, 1983.
Mihai Oltean. Evolving evolutionary algorithms for function optimization. In Proceedings of the 5th

International Workshop on Frontiers in Evolutionary Algorithms, pages 295-298, 2003.

Mihai Oltean. Evolving evolutionary algorithms using linear genetic programming. FEwvolutionary
Computation, 13(3):387-410, 2005.

S. Petrovic, C. Fayad, D. Petrovic, E. Burke, and G. Kendall. Fuzzy job shop scheduling with lot-
sizing. Annals of Operations Research, 159(1):275-292, 2008.

M. Pinedo. Scheduling Theory, Algorithms and Systems. Prentice Hall, 2002.

R. Poli, C. Di Chio, and W. B. Langdon. Exploring extended particle swarms: a genetic programming
approach. In GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, pages 169-176. ACM Press, 2005.

R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published
via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. With
contributions by J. R. Koza.

J. A. V. Rodriguez, S. Petrovic, and A. Salhi. A combined meta-heuristic with hyper-heuristic ap-
proach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform
machines. In P. Baptiste, G. Kendall, A. Munier-Kordon, and F. Sourd, editors, Proceedings of
the 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications, pages
506-513, Paris, France, August 2007.

P. Ross. Hyper-heuristics. In E. K. Burke and G. Kendall, editors, Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques, chapter 17, pages 529-556. Springer,
2005.

P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart. Hyper-heuristics: Learning to combine
simple heuristics in bin-packing problems. In Genetic and Evolutionary Computation Conference
(GECCO 2002), 2002.

22

R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165(2):479-494, 2005.

R. Ruiz and T. G. Stiitzle. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. FEuropean Journal of Operational Research, 177:2033—2049, 2007.

A. J. Ruiz-Torres and G. Centeno. Minimizing the number of late jobs for the permutation flowshop
problem with secondary resources. Computers €& Operations Research, 35(4):1227-1249, 2008.

E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. Furopean Journal
of Operational Research, 47:65-74, 1990.

E. Taillard. Benchmarks for basic scheduling problems. FEuropean Journal of Operational Research,
64(2):278-285, 1993.

J. C. Tay and N. B. Ho. Evolving dispatching rules using genetic programming for solving multi-
objective flexible job-shop problems. Computers € Industrial Engineering, 54:453-473, 2008.

H. Terashima-Marin, C. J. F. Zarate, P. Ross, and M. Valenzuela-Rendén. A ga-based method to
produce generalized hyper-heuristics for the 2d-regular cutting stock problem. In Proceedings of
the 8th annual conference on Genetic and evolutionary computation (GECCO 2006), 2006.

23

Figures

Initialisation: calculate sumP; values for i = 1,...,n. Let 7" be an empty
permutation.

1: Sort operations in descending order of sumpP; values and denote by 7 the
ordered job permutation.

2: Repeat until 7 is empty:

e Remove the first job in 7 and add it to sequence 7* in the position
where f(7*) is minimum, i.e. where the f value of the partial schedule
is the smallest.

3: Return the permutation found in step 2.

Figure 1: NEH procedure (Nawaz et al., 1983)

24

3000 ' ' ' ' ' ' ' ' ' '
_ random schedules ===
2500 o [NEH schedules ———1 [
2000 || -
1500 ||| -
L1000 - | | | [-
500 -
0
%QQ\/ %\’(0% fb,,;f\ 'bbgo%

Figure 2: Distribution of the Cy,ax value of 10000 NEH-random schedules and 10 000 random
schedules

25

max

X -

ANZN
/N
3y

Figure 3: Basic tree-like program representation used in genetic programming. The tree
corresponds to the arithmetic expression: maz(x X z,x + 3 X y).

26

Input: Ind (an individual), a set of flow shop problem instances.

e Repeat for each flow shop instance k =1,..., N in the fitness case set.

1. Execute tree:

e Calculate Rank; = Ind(i, k) fori =1,...,n.

2. Initial sequencing (step 1 of NEH):
e Sort jobs in decreasing order of Rank values.
e Let 7 be the ordered permutation of jobs.
3. Insertion of jobs (step 2 of NEH):
Let 7* be an empty permutation
While 7 is not empty
e Remove the first element in 7 and insert it in 7* in the position
where fi(7*) is minimum.
4. Calculate: fi(7*) and PDj,

e Return: Y1, PD;

Figure 4: Procedure to calculate the fitness of a genetic programming tree

27

1. Initialisation: Use ramped-half-and-half method to generate initial popu-
lation

2. Evolution: Repeat iter times

2.1 Fitness evaluation: execute each program in the population and cal-
culate its fitness.

2.2 Create new individual program(s) either by

e Reproduction: Copy the selected individual program to the new
population.

e Crossover: Create new offspring program(s) for the new popula-
tion by recombining randomly chosen parts from two selected pro-
grams.

2.3 Mutation: For each individual generated in 2.2 proceed as follows.
Toss a biased coin, if heads, copy the solution into the new population.
If tails, mutate the individual and include in new population.

3. Return the best-so-far individual program.

Figure 5: Genetic programming algorithm

28

20x20
Cmax sumC sumWC sumT sumWT

20x10

Cmax sumC sumWC sumT sumWT

20x5
Cmax sumC sumWC sumT sumWT

1

Ll

| i i s p L h,l”

L

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HEAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HEAN
dBHAN
PURIHAN

HAN
dbHAN
PURIHAN

HEAN
dBHAN
PUBRIHAN

HAN
dBHAN
PURIHAN

HEAN
dBHAN
PURIHAN

HEAN
dBHAN
PUBRIHAN

HAN
dbHAN
PURIHAN

HEAN
dBHAN
PUBRIHAN

HAN
dbHAN
PURIHAN

HEAN
dBHAN
PUBRIHAN

50x20
Cmax sumC sumWC sumT sumWT

50x10

Cmax sumC sumWC sumT sumWT

50x5
Cmax sumC sumWC sumT sumWT

b5

1

HE

0.4l
0.2

)

T,

HEN
dBHEN
PURIHAN

HEN
dBHAN
PURIHAN

HEN
dBHEN
PURIHAN

HEN
dBHAN
PURIHAN

HEN
dBHEN
PURIHAN

HEN
dBHEN
PURIHAN

HEN
dBHAN
PURIHAN

HEN
dBHEN
PURIHAN

HEN
dBHAN
PURIHAN

HEN
dBHEN
PURIHAN

HEN
dBHEN
PURIHAN

HEN
dBHAN
PURIHAN

HEN
dBHEN
PURIHAN

HAN
dBHAN
PUBRIHAN

HEN
dBHEN
PURIHAN

100x20
Cmax sumC sumWC sumT sumWT

100x10

Cmax sumC sumWC sumT sumWT

100x5
Cmax sumC sumWC sumT sumWT

L
51— E
e 4
= 4o
s B B—
HIH E
T -
AT
e
I=CTH E
e mm E
T -
1
I
S o oo
TTTT
R B,
e E
i
mm—E
e 4
i L
[e R
s
I i
I
HT— E
HI—H —
il
I
S o oo
L
EEE 7]
==cRERNY
T | i
F TH
T .
s -
g TR
13— i
i
0 H
1 | 4
i B
Il
®O<No
S o oo

HAN
dBHEN
PURIHAN

HAN
dBHAN
PUBRIHAN

HEAN
dBHEN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHEN
PURIHAN

HEAN
dBHEN
PURIHAN

HAN
dbHAN
PURIHAN

HAN
dBHEN
PUBRIHEN

HAN
dBHAN
PURIHAN

HEAN
dBHEN
PURIHAN

HEAN
dBHEN
PUBRIHAN

HAN
dbHAN
PURIHAN

HEAN
dBHAEN
PUBRIHEN

HAN
dbHEN
PURIHAN

HEAN
dBHEN
PUBRIHEN

500x20
Cmax sumC sumWC sumT sumWT

200x20

Cmax sumC sumWC sumT sumWT

200x10
Cmax sumC sumWC sumT sumWT

T

1T

0.6
0.4

0.2

L
il

T

|
EE

€T

0.6
0.4

0.2

:
i

,%,

0.8

0.4
0.2

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PUBRIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PURIHAN

HAN
dBHAN
PUBRIHAN

Boxplots of the normalised results obtained by NEH,.,,s, NEHgp and NEH on

Figure 6

the modified Taillard instances. All objective functions are to be minimised.

29

Tables

Table 1: Objective functions and problems investigated

objective function problem

Chax = max; C; Fou|ri, prmu|Chax

sumC =), C; Fou|ri, prmu|sumC
sumWC =), w;C; Fo|ri, wi, prmu|sumW C
sumT =3, T; Fo|ri, prmu|sumT

sumWT =" w/T; Fo|ri, wi, prmu|sumWT

30

Table 2: Parameter values used during the genetic programming training experimentation

Objective

Terminals
Operators
Initial Pop
Fitness
Selection

Parameters

Termination
Fitness cases

Find a program to assign ranking values to jobs.
The ranking should lead NEH to obtain good solutions
for a specific variant of the flow shop problem.
ri, diy, Wi, n, m, sumP;; wSumP;,
absDif;, wAbsDif;, constants 1,...,10
+, —,+, X, FSumP;, BSumP;
Note that =, F'SumP; and BSumP; are protected operators.
Created using “ramped half-and-half” method Koza (1992)
with a maximum initial depth of D,,.. =7
20:1P Dy
K =5 tournament selection, elitist
Population size pop = 200, Crossover probability X, = 96%,
mutation probability p, = 4%, maximum tree size of 500 nodes
iter=500 generations (100000 solution evaluations)
20 randomly generated flow shop problems

31

Table 3: Best ranking functions found by genetic programming after five training runs for
each of the investigated problems

problem ranking function
Fo|ri, prmu| Cax FSumP;(4 — 2sumP1J)
Folri, prmu|sumC FSumPy(———— umAblef)+
FSumPy(7) + 5 - sumAbsDif +7
F|ri, wi, prmulsumW C BSumP((FSumP(lO) — 100 - wy))+
BSumP,;(w;) 4 10 - (w;)* + 10

Fo|ri, prmulsumT and ~ (sumPij —m) - (d; — %}W)
Eylry, wi, prmu|sumWT (r; — di — BSumP;(m)) - % + d; - m+

BSumP;(m) +m — w; + FSumP;(w;)

32

Table 4: Paired t—test (a = 0.05) of the average results obtained by the algorithms on the
instances for which the boxplots of Figure 6 overlap. A P value < 0.05 indicates a significant
difference on means. In case of a difference, the best algorithm is indicated in column “winner”.

n m obj. function NEHgp vs NEH, 44 NEHgp vs NEH
winner P value winner P value

20 5 sumC NEHgp 0.0420 NEHqgp 0.0003
20 5 sumT NEHgp 0.0106 NEHgp 0.0001
20 10 Chiax NEHgp 0.0002 NEHgp 0.0000
20 10 sumC' 0.1441 NEHgp 0.0000
20 10 sumT 0.0762 NEHgp 0.0001
20 20 Chax NEH,.,s 0.0001 0.1438
20 20 sumC' 0.4266 NEHgp 0.0040
20 20 sumT’ 0.4055 NEH 0.0043
50 5 sumC 0.1286 NEHgp 0.0431
50 5 sumT 0.0621 NEHgp 0.0165
50 10 sumC 0.1310 NEHgp 0.0359
50 10 sumT 0.1408 NEHgp 0.0307
100 20 sumC' 0.2615 0.4369
100 20 sumT 0.3318 0.4866

200 10 sumC NEH¢p 0.0363 NEHqgp 0.0018
200 10 sumT NEH¢p 0.0216 NEHqgp 0.0014
200 20 sumC' NEH¢gp 0.0089 NEHgp 0.0001
200 20 sumT NEH¢gp 0.0084 NEHgp 0.0002
500 20 sumT NEH¢gp 0.0000 NEHgp 0.0001

33

Table 5: Average PD values (to be minimised) obtained by NEH,.,,4, NEHgp and NEH on
the modified Taillard instances

Chax sumC' sumWC' sumT sumWT

n m NEHjmq NEHgp NEH NEH,mq NEHgp NEH NEH,m¢ NEHgp NEH — NEH,mq NEHgp NEH — NEH,ug NEHep

20 5 5.771 1.645 4.997 2.088 1.468 3.281 3.608 0.956 5.085 10.917 7.684 16.559 22.255 5.904

0 4.659 2.126 4.054 1.936 1.551 3.001 2.760 1.229 4135 9.807 8.020 15.716 16.693 8.100

20 3.501 1.940 1.727 1.651 1.584 2.466 2.478 1.589 4.077 8.162 8.000 12.272 14.601 9.272

50 5 11.731 0.000 11.154 1.558 1.160 1.820 2.896 0.150 3.172 9.738 7.325 11.471 25.778 1.604

10 7.208 0.000 7.990 2.200 1.908 2.769 3.859 0.053 5.165 8.098 11.523 24.912 0.757

20 5.047 0.477 4929 1.700 0.911 2.285 3.142 0.069 3.268 4,172 9.848 15.906 0.204

100 5 15.737 0.000 15.469 1.520 0.569 2.276 4.518 0.000 5.018 9.721 4.021 14307 42.929 0.000

10 12.814 0.000 11.725 1.416 0.970 1.626 3.707 0.000 4.429 7.716 5.488 8.556 27.456 0.099

20 9.329 0.000 10.142 1.333 1.107 1.263 3.562 0.000 4.034 6.469 5.652 5.873 21.437 0.000

200 10 17.243 0.000 16.722 1.071 0.774 1.336 4.199 0.000 4.441 6.962 5.172 8.512 40.923 0.000

20 13.631 0.000 13.019 1.068 0.728 1.363 4.263 0.000 5.158 5.780 3.957 7.244 30.190 0.000

500 20 19.706 0.000 19.920 0.617 0.403 0.757 3.987 0.000 4.358 4.388 2.855 5.320 41.970 0.000
total 10.531 0.516 10.154 1.513 1.094 2.020 3.582 0.337 4.362 8.019 5.870 10.600 27.087 2.162 32.338

34

Table 6: Friedman multicomparison tests (o = 0.05) of the algorithms on the whole set
of instances and grouped by objective function. A P value < 0.05 indicates a significant
difference on the sum of the ranks. Small ranks are preferred.

NEHgp vs NEH, 44 NEHgp vs NEH NEH, 4,q vs NEH
group NEHqgp NEH, 4. P value NEHgp NEH P value NEH,,,.« NEH P value
overall 673 1127 0.0000 664 1136 0.0000 795 1005 0.0000
Chnax 123 237 0.0000 126 234 0.0000 189 171 0.100
sumC' 154 206 0.0000 145 215 0.0000 150 210 0.0000
sumT 150 210 0.0000 145 215 0.0000 149 211 0.0000
sumWC 123 237 0.0000 124 236 0.0000 151 209 0.0000
sumWT 123 237 0.0000 124 236 0.0000 156 204 0.0000

35

Table 7: Average deviation of the results obtained by NEHgp and NEH from those obtained
by NEH,.,q. The deviation is measured in standard deviations of the results obtained by
NEH, ;4. Large negative values are preferred.

Crnax sumC' sumWC sumT sumWT
n m NEHgp NEH NEHgr NEH NEHgr NEH NEHgr NEH NEHgr NEH
20 5 -1.563 -0.300 -0.536 1.140 -1.300 0.721 -0.619 1.091 -1.359 0.825
10 -1.086 -0.228 -0.250 1.194 -1.108 0.930 -0.264 1.122 -1.067 0.931
20 -0.852 -0.999 0.021 0.811 -0.257 1.031 0.084 0.865 -0.361 0.952
50 5 -4.836 -0.208 -0.335 0.343 -2.446 0.252 -0.299 0.443 -2.485 0.144
10 -3.397 0.321 -0.263 0.566 -2.807 0.949 -0.229 0.611 -2.739 0.833
20 -2.866 -0.073 -1.086 0.740 -2.803 0.129 -1.068 0.826 -2.895 0.106
100 5 -7.990 -0.127 -1.438 1.248 -4.604 0.546 -1.426 1.295 -4.403 0.468
10 -7.642 -0.651 -0.701 0.412 -3.944 0.706 -0.680 0.327 -4.033 0.691
20 -6.562 0.578 -0.383 -0.115 -4.080 0.544 -0.383 -0.162 -4.051 0.625
200 10 -13.309 -0.425 -0.660 0.565 -6.095 0.370 -0.717 0.548 -5.994 0.388
20 -11.411 -0.542 -0.820 0.731 -5.903 1.257 -0.791 0.716 -6.249 1.252
500 20 -23.870 0.267 -0.887 0.569 -9.444 0.815 -0.868 0.553 -9.636 0.755
total -7.115 -0.199 -0.611 0.684 -3.733 0.688 -0.605 0.686 -3.773 0.664

36

Table 8: Average makespan value obtained by NEH and NEHgp on the Taillard instances
for the F,,|r;, prmu|Cyax problem

n m NEH NEH¢p
20 5 1261.1 1253
10 1583.1 1581.8
20 2318.7 2316.4
50 5 2756.1 2757.5
10 3134.8 3145.3
20 3956.9 3946.8
100 5 5272.3 5267.5
10 5752 5774
20 6634.4 6623.3
200 10 10804.2 10815

20 11752.6 11769.4
500 20 26907.4 26944.7
total 6844.46 6849.55

37

