Skip to main content

Artificial Evolution for 3D PET Reconstruction

  • Conference paper
Book cover Artifical Evolution (EA 2009)

Abstract

This paper presents a method to take advantage of artificial evolution in positron emission tomography reconstruction. This imaging technique produces datasets that correspond to the concentration of positron emitters through the patient. Fully 3D tomographic reconstruction requires high computing power and leads to many challenges. Our aim is to reduce the computing cost and produce datasets while retaining the required quality. Our method is based on a coevolution strategy (also called Parisian evolution) named “fly algorithm”. Each fly represents a point of the space and acts as a positron emitter. The final population of flies corresponds to the reconstructed data. Using “marginal evaluation”, the fly’s fitness is the positive or negative contribution of this fly to the performance of the population. This is also used to skip the relatively costly step of selection and simplify the evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badawi, R.D.: Nuclear medicine. Phys. Educ. 36(6), 452–459 (2001)

    Article  Google Scholar 

  2. Bosman, P.A.N., Alderliesten, T.: Evolutionary algorithms for medical simulations: a case study in minimally-invasive vascular interventions. In: Proceedings of the 2005 workshops on Genetic and evolutionary computation (GECCO ’05), pp. 125–132 (2005)

    Google Scholar 

  3. Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–242. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive segmentation of 3D medical images. Image Vision Comput. 17(12), 881–895 (1999)

    Article  Google Scholar 

  5. Fahey, F.H.: Data acquisition in PET imaging. J. Nucl. Med. Technol. 30(2), 39–49 (2002)

    Google Scholar 

  6. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  7. Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proceedings of IEEE 91(10), 1588–1611 (2003)

    Article  Google Scholar 

  8. Louchet, J.: Stereo analysis using individual evolution strategy. In: Proceedings of the International Conference on Pattern Recognition (ICPR ’00), p. 1908 (2000)

    Google Scholar 

  9. Michael, G.: X-ray computed tomography. Phys. Educ. 36(6), 442–451 (2001)

    Article  Google Scholar 

  10. Olague, G., Cagnoni, S., Lutton, E.: Introduction to the special issue on evolutionary computer vision and image understanding. Pattern Recognit. Lett. 27(11), 1161–1163 (2006)

    Article  Google Scholar 

  11. Pea-Reyes, C., Sipper, M.: Evolutionary computation in medicine: an overview. Artif. Intell. Med. 19(1), 1–23 (2000)

    Article  Google Scholar 

  12. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  13. Silicon Graphics, Inc.: Standard template library programmer’s guide, http://www.sgi.com/tech/stl/

  14. Townsend, D.W.: Physical principles and technology of clinical PET imaging. Ann. Acad. Med. Singap. 33(2), 133–145 (2004)

    Google Scholar 

  15. Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification of mammograms. In: Giacobini, M., et al. (eds.) EvoCOMNET. LNCS, vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

    Google Scholar 

  16. Watt, A.: 3D Computer Graphics, 3rd edn. Addison-Wesley, Reading (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidal, F.P., Lazaro-Ponthus, D., Legoupil, S., Louchet, J., Lutton, É., Rocchisani, JM. (2010). Artificial Evolution for 3D PET Reconstruction. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds) Artifical Evolution. EA 2009. Lecture Notes in Computer Science, vol 5975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14156-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14156-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14155-3

  • Online ISBN: 978-3-642-14156-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics