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ABSTRACT
�e Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)

is a recently introduced model-based EA that has been shown to be

capable of outperforming state-of-the-art alternative EAs in terms

of scalability when solving discrete optimization problems. One of

the key aspects of GOMEA’s success is a variation operator that is

designed to extensively exploit linkage models by e�ectively com-

bining partial solutions. Here, we bring the strengths of GOMEA

to Genetic Programming (GP), introducing GP-GOMEA. Under the

hypothesis of having li�le problem-speci�c knowledge, and in an

e�ort to design easy-to-use EAs, GP-GOMEA requires no param-

eter speci�cation. On a set of well-known benchmark problems

we �nd that GP-GOMEA outperforms standard GP while being

on par with more recently introduced, state-of-the-art EAs. We

furthermore introduce Input-space Entropy-based Building-block

Learning (IEBL), a novel approach to identifying and encapsulating

relevant building blocks (subroutines) into new terminals and func-

tions. On problems with an inherent degree of modularity, IEBL can

contribute to compact solution representations, providing a large

potential for knock-on e�ects in performance. On the di�cult, but

highly modular Even Parity problem, GP-GOMEA+IEBL obtains

excellent scalability, solving the 14-bit instance in less than 1 hour.
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1 INTRODUCTION
When a problem’s structure has some inherent degree of modularity,

being able to e�ciently and e�ectively exploit this modularity in an

Evolutionary Algorithm (EA), e.g., by recombining partial solutions,

can lead to be�er solutions much faster than when using only blind

variation operators [18]. �e term schemata is o�en used in Genetic

Algorithms (GAs) to refer to such partial solutions, which can be

moderately to completely independent from each other.

In Black-Box Optimization (BBO), it is unknown how schemata

are encoded, hence it is not possible to design any speci�c recom-

bination operator beforehand that prevents their disruption when

mixing solutions. In an a�empt to learn and exploit problem struc-

ture, model-based EAs use a model to capture such structure [3].

In the case of BBO, model instances are inferred from the genotype
(i.e., the encoding) of promising solutions.

In Genetic Programming (GP), the term Building Blocks (BBs)

typically refers to connected parts of the genotype (i.e., connected

nodes in tree-based GP) that represent useful subroutines. Whereas

solutions in GAs have a �xed size and the main focus is to avoid

the disruption of schemata, solutions in GP are typically free to

grow. �erefore, many studies have explored steps to re-use BBs by

encapsulating them into compact representations. With one of the

�rst a�empts, the Automatically De�ned Functions (ADFs) [11], it

has been shown that the re-use of BBs can be extremely bene�cial,

making GP capable of tackling very di�cult, yet highly modular

problems such as Even Parity. Many di�erent approaches have been

proposed in the last 25 years (see Sec. 5.2 of [12] for an overview).

However, none of them has shown clear superiority in systemati-

cally identifying salient BBs [4]. Some works even synthesize BBs

from randomly chosen subtrees [1, 15]. Other proposals relax the

BBO hypothesis substantially to synthesize BBs from successful

runs on smaller problem instances [8, 9].

Our purpose is to introduce novel, general, and principled ways

to identify and exploit problem structure in tree-based GP. As a

�rst contribution, we bring key strenghts of the Gene-pool Opti-

mal Mixing Evolutionary Algorithm (GOMEA) to tree-based GP,

resulting in GP-GOMEA. GOMEA is a model-based EA which per-

forms a memetic variation of solutions by extensively exploiting
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linkage information, i.e., strong interdependencies between parts

of the genotype [17]. Our second contribution is a novel method

to identify and encapsulate BBs into new terminals and functions

in Boolean problems, thereby enhancing the search space with

atomic representations of partial solutions. We call this method

Input-space Entropy-based Building-block Learning (IEBL). IEBL is

inspired by information theory and construction heuristics for clas-

si�cation trees [2], and can potentially be applied to a number of

GP algorithms. To the best of our knowledge, no similar approach

to identify salient BBs in GP has ever been proposed. Finally, un-

der the hypothesis of no knowledge on the problem and for the

sake of usability, we set out to design this algorithm to require no

parameter speci�cation.

2 GP-GOMEA
�e current closest GOMEA implementation on which this GP

version is based on is described in [17]. �e general GOMEA out-

line is depicted in Algorithm 1. At the top level, GOMEA has the

characteristics of any EA with population initialization and the

generational loop that continues until a termination criterion is

met (e.g., population convergence, evaluations limit, time limit). A

generation consists of the learning of a linkage model F (which may

be provided beforehand if the problem structure is known a priori)

and the applying of the variation operator GOM to each solution in

the population, which extensively exploits F to improve a solution.

Algorithm 1 GOMEA general outline

1 procedure runGOMEA(n)

2 P ←initializePopulation(n)

3 while ¬shouldTerminate() do
4 F ← buildLinkageModel(P)

5 for Pi ∈ P do
6 Oi ← GOM(Pi , F , P)
7 P ← O = {O1, . . . , On }

2.1 Genotype
Although the original implementation of GOMEA works on �xed-

length strings of binary variables, handling variables of higher

cardinality is straightforward. �is representation is the �rst step

in using GOMEA for GP, as we use it to map discrete values to

program functions and program inputs. Like in Standard GP (SGP),

solutions in GP-GOMEA are trees of variable size composed of

terminal and function nodes. Trees can be encoded as �xed-length

strings using pre-order tree-traversal (Figure 1). All nodes but the

ones at maximum depth always have r child nodes, with r the

maximum arity (i.e., number of expected inputs) of the function

nodes. We make it possible for GOMEA to work with variable-size

trees even though they are encoded with �xed-length strings. Trees

always have a maximum height. Syntactically, trees are always full,

but semantically they are not. If a terminal appears in an internal

node, the subtrees below it are disregarded. Moreover, for function

nodes with arity lower than r , only the le�most child nodes are

evaluated. Hence, some nodes are introns, i.e., they will be ignored

during the evaluation of the tree.

2.2 Linkage Models
As in the original GOMEA, GP-GOMEA uses the Family Of Subsets

(FOS) as linkage model. �e FOS is a set of sets which contain loci,

Figure 1: GP tree encoded by the �xed-length string of size
15 “&+&bbadc¬bab+cd”. Gray nodes are introns.

i.e., indices representing positions in the genotype. Each one of

these sets speci�es which parts of the genotype should be replaced

en bloc during variation. Note that a FOS containing all and only

singletons of each locus, i.e., F = {{0}, {1}, . . . , {l − 1}}, with l the

length of the genotype, models complete independence among loci.

We call this FOS that allows only the variation of one locus at a

time Univariate (U). In this paper, we analyze the contribution of

three di�erent FOSs: U, Linkage Tree (LT) and Random Tree (RT).

We consider LT as it has so far been found to lead to the best

performance on a number of di�erent BBO problems [17]. A key

strength of this model is that it can capture at the same time multiple

levels of dependency (linkage) among loci. An LT can be seen as a

tree where the leaves are singletons (i.e., U) while its internal nodes

are built by merging sets in an iterative fashion, up to reaching the

root, i.e., the set that contains all loci. An LT may be �xed a priori,

but especially in a BBO se�ing, it is learned from the population at

each generation (line 4 of Algorithm 1). Speci�cally, a measure of

linkage between couples of loci is measured by means of mutual

information, which is the measure of mutual dependence between

two variables in information theory. New sets are iteratively built

by merging sets with the highest mutual information. Using only

combinations of mutual information between pairs of variables, the

hierarchical structure of dependencies expressed by an LT can be

e�ciently learned in O ( |P |l2), with |P | the population size [7].

Lastly, RT is built like LT, but using random information instead

of measured linkage. �is FOS enables the variation of multiple

parts of the genotype like LT, but does not assume that speci�c

parts of the genotype should be kept intact. RT is thus a model

that enables blind variation that di�ers from the classic GP subtree

crossover in that any con�guration of nodes can be swapped.

2.3 Gene-Pool Optimal Mixing
�e variation operator GOM, that also incorporates selection, al-

ways generates an o�spring that is at least as �t as the parent.

Di�erent from standard crossover in GP where full subtrees are

swapped, in our GP-GOMEA GOM mixes parts of the �xed-size

genotype, i.e., it mixes tree nodes. Moreover, instead of generating

two new solutions from two parents, it creates an o�spring by

iteratively mixing a parent solution with multiple other solutions.

�e procedure is described in Algorithm 2. Given an input solu-

tion s , an identical o�spring o is made, and each set Fi of the FOS F
is used to try to improve o. Given Fi , a donor d is randomly picked

from the population, and the symbols of o at the loci speci�ed by

Fi are replaced with the ones of d at the same loci. �is means that

the jth symbol of o can be replaced only with the jth symbol of d .

�is is not done when Fi contains all loci, since it would only fully

replace o, or when all loci in Fi identify introns of o, because the

semantic of the tree would not change. If the mixing results in a

syntactical change of o, then this new solution is evaluated. �e

changes are kept only if the �tness of o does not worsen.
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If o never changes during this �rst phase and no new best �tness

has been found in the last 1 + log
10
( |P |) generations, then the

forced improvement phase is entered. In this phase Optimal Mixing

is performed again, but this time o is mixed only with selitist
, the best

solution ever found. Also, this time changes to o are accepted only

in case of strict �tness improvement. Moreover, upon an accepted

change, the procedure is halted. If even this does not lead to any

change of o, then o becomes an exact copy of selitist
.

Because root nodes can only be exchanged with root nodes, in

the classic ramped half-and-half generation of the initial population

the �rst symbol is always initialized to represent a function.

Algorithm 2 Gene-Pool Optimal Mixing

1 function GOM(s, F , P)

2 o ← s ; fitness[o]← fitness[s]

3 b ← o; fitness[b]← fitness[o]

4 I ←inactiveNodes(o)

5 R ←randomPermutation({0, 1, . . . , |F − 1 | })
6 c ← 0

7 for i ∈ {0, 1, . . . , |F − 1 | } do
8 Fi ← F [R[i]]
9 if |Fi | , |o | & Fi * I then
10 d ←randomDonorSolution(P)

11 oFi ← dFi
12 if o , d then
13 evaluateFitness(o)

14 if fitness[o] ≥ fitness[b] then
15 bFi ← oFi ; fitness[b]← fitness[o]

16 I ←inactiveNodes(o)

17 c ← 1

18 else
19 oFi ← bFi ; fitness[o]← fitness[b]

20 if c = 0 & noImprovementsStretch() then
21 forcedImprovementOM(o, F )

22 return(o)

2.4 Partial Evaluations
To enhance the speed of evaluating solutions a simple mechanism

can be used in tree-based GP to perform partial evaluations. We use

this also for GP-GOMEA. �is is done by maintaining the output

of all tree nodes (i.e., string symbols) in memory. Note that introns

do not have any output. During GOM, track is kept of which

nodes are changed. Consequently, only subtrees where at least one

(active) node changed, need to be re-evaluated, whereas the roots

of unchanged subtrees can immediately return their cached output.

2.5 Interleaved Multistart Scheme
�e task of sizing a problem-speci�c population and genotype

(string length or, equivalently, tree height) is crucial in many EAs.

Tuning such parameters is o�en tedious and time-consuming but

also necessary to ensure e�ciency and to guarantee the successful

discovery of (near-)optimal solutions. Se�ing these parameters

wrong can give a vastly wrong impression of an algorithm’s capa-

bilities. For this reason, we designed GP-GOMEA so that it does

not require the user to specify any parameter. A similar scheme

as the one proposed in [14] is adopted, where multiple runs of the

algorithm with di�erent parameter se�ings are interleaved. We call

this scheme Interleaved Multistart Scheme (IMS).

Speci�cally, every д generations of a GP-GOMEA run, another

run with double the population size performs 1 generation. �is is

repeated recursively. Similarly, the maximum tree height (and thus

the encoding string length) increases by 1 every 2 runs.

�e �rst run is initialized with a population size of 2 in ramped

half-and-half, and with a maximum tree height such that full trees

have a number of nodes at maximal depth equal or bigger than the

number of inputs of the problem (i.e., for a problem with n inputs

and functions of maximum arity r , it is dlogr (n)e).

A copy of selitist
, the best solution ever found by any run so far,

is stored and used by all runs in the forced improvement phase of

GOM (Algorithm 2, line 21). If a new best solution selitist
is found

the size of which (i.e., maximum tree height or, equivalently, string

length) is smaller than the size of solutions evolved by a run R, then

a copy of selitist
is made for R that has the same size of the solutions

of R and in which empty loci are �lled with random introns. If the

new best solution selitist
has a larger size than the one of solutions

evolved by R, then R is immediately terminated.

Other criteria for the termination of a run R are the following:

(i) the population of R converged to all identical solutions; (ii) a run

R′ with larger population achieved a be�er average �tness than R
or than a run R′′ with bigger population size than R. Finally, the

whole multi-run scheme can be terminated at a speci�c threshold

by specifying a maximum number of evaluations or seconds.

3 IEBL
We here describe a novel method to identify and encapsulate useful,

small trees into new terminals and functions, called Input-space

Entropy-based Building-block Learning (IEBL). In this context, we

use the term BBs to refer to such small trees. IEBL is aimed at

improving the search process on Boolean problems which exhibit a

degree of decomposability, i.e., for which meaningful BBs exist.

�e identi�cation of salient BBs is based on �tness cases (pairs

of input values and desired output values) and is inspired by infor-

mation theory and heuristics to build classi�cation trees. To the

best of our knowledge, no similar approach exists in GP.

Whereas the identi�cation method a�empts to �nd those BBs

that represent partial solutions to the problem, the encapsulation

of BBs changes the search space by providing the EA with compact

representations of higher-level functionalities that can be used in

the search process. Moreover, IEBL can be applied iteratively, using

encapsulated BBs to generate higher-order BBs.

Here, we show how IEBL can be used in GP-GOMEA, but its

salient concepts can straightforwardly be used in a number of other

GP paradigms. �e following sections explain the method in detail.

3.1 Identi�cation of BBs
A dedicated population of small trees is used. �is is due to some

early experiments, con�rming literature [4], where we observed

that the frequency of known good subtructures in the population

(i.e., the XOR and XNOR functions for the Even Parity problem) does

not necessarily increase during optimization. To generate the ded-

icated population, we use a slight variation of the ramped half-

and-half method. Speci�cally, roots are always functions and for

each tree a subset of the set of all terminal nodes T is used, with

cardinality between 2 and |T |. �is increases the redundancy of

terminals contained in candidate BBs, increasing the probability of

generating complex interactions between few terminals.

Let I be the set of input variables. Given a BB b, we say that b
embodies an input variable i if there exists at least one non-intron
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Table 1: BB identi�cation in IEBL. Columns are the �tness
cases,O∗ is the desired output,O the observed output for the
tree depicted in Figure 1. Entropy is measured on red cells.

a 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

b 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

c 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

d 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

O 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
O∗ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

terminal node that represents i in b. Let J ⊂ I be the set of

input variables not embodied by b. We only consider BBs for which

J , ∅, as they represent partial solutions using part of the inputs.

Let E be the set of �tness cases for which the execution of b returns

a wrong Boolean output. If E = ∅, b is a solution to the problem and

the EA is terminated. A quality-score is assigned to b by looking

at the values taken by the input variables of J in E. Speci�cally,

the joint entropy of the values assumed by the inputs of J in E

is measured. Lower entropy is considered to be be�er because

this means that the �tness cases that are still wrong have more

regularities and thus represent a less complex problem to be solved.

For example, consider the task of regressing a circuit that, given 4

bits, returns 1 when an even number of bits are set to 1 (4-bits Even

Parity). �e BB consisting of the tree in Figure 1 outputs 1 only

when the input variables a and b are 0. Also, J = {c, d}. E contains

8 cases. Table 1 shows the con�gurations of the input values of c
and d over which the entropy is computed in red. Since “01” and “10”

appear each in 3 out of 8 cases, while “00” and “11” appear each 1 out

of 8 cases, the entropy is E = −
∑
p logp = −2

3

8
log( 3

8
) − 2

1

8
log( 1

8
).

Some BBs are discarded during this procedure, namely those

(i) that have the same output of another BB, but higher or equal

entropy; (ii) for which J = ∅; (iii) whose output is always-false or

always-true; (iv) for which I − J = {i}, since the only realizable

functions of i are always-false, always-true, identity and negation.

3.2 Encapsulation of BBs — Terminal Nodes
A�er the identi�cation method has computed the entropy of BBs,

we encapsulate into new terminals the best (i.e., with lowest en-

tropy) |I | BBs, thus doubling the number of terminals. Expanding

the terminal set e�ectively changes the search space. We limit the

number of new terminals to avoid an excessive complication of the

search space. If more than |I | BBs are found with minimal entropy,

then random |I | ones are kept and the others are discarded.

To enable running IEBL when earlier executions already iden-

ti�ed and encapsulated new BBs, we keep track of which input

variables are embodied. �is allows to always de�ne the set J

needed to compute the entropy.

3.3 Encapsulation of BBs — Function Nodes
�e best |I | BBs are also used for encapsulation into new function

nodes. Let r be the arity of a BB, i.e., the number of di�erent (non-

intron) terminal nodes in it. �e functional encapsulation of this BB

is achived by generating a function node that accepts r children and,

given one of the 2
r

possible binary con�gurations of the inputs,

returns the output of the BB for that con�guration. We discard

BBs leading to duplicate function nodes, i.e., those whose arity and

output are identical to an already-encapsulated one or to a function

from the starting set F . Further, we discard BBs which realize

always-false, always-true and functions of arity 1.

Similarly to what is done for terminal nodes, we impose a �xed

limit of |F | new function nodes to expand F . If more than |F |

BBs have minimal entropy, then |F | at random are kept.

3.4 Implementation of IEBL in GP-GOMEA
To alleviate users from having to choose the dedicated population

size and tree height for IEBL, we propose a scheme to include IEBL

in GP-GOMEA that requires no parameter speci�cation.

IEBL is applied at the start of each new GP-GOMEA run to

expand the terminal and function sets. In particular, for the ith
run, IEBL is iterated i times consecutively to discover higher-order

BBs. �is means that the nodes created by the jth iteration of IEBL

are used (together with the starting functions and terminals) for

the generation of the dedicated population of the j + 1th iteration

of IEBL. For the �rst GP-GOMEA run, the dedicated population

size for IEBL is set to |F |( |F | + t )r , which corresponds to the

number of possibilities for the �rst two levels of an r -ary tree with

any function as root, and with any function or terminal, among t
di�erent ones, as children of the root. For the function set of the

Boolean benchmark problems it is r = 2, and we �xed t = 4 to

ensure starting from a moderate dedicated population size (i.e., 256

trees). �e dedicated population size is doubled for each new GP-

GOMEA run, and the height of the trees constituting the candidate

BBs is initially set to 2 and is incremented by 1 every 4 runs. In

other words, IEBL is applied once before the �rst run of GP-GOMEA,

using a dedicated population size of 256 with trees of height 2; IEBL

is applied i times before the ith run, using a dedicated population

size of 256× 2
i−1

in each iteration, with trees of height 2+ bi/4c. If

the ith IEBL �nds a BB with an entropy of 0, then the number of

iterations for all next IEBLs is frozen to i . Because IEBL provides

nodes that inherently embody trees of a certain height, we lower

by 1 the starting tree height of the IMS of GP-GOMEA. To avoid

an unbounded growth of the genotype, we limit the learning of

new node functions to BBs with arity 2 only. Finally, unless a BB

entropy of 0 is reached, if no lower entropy is found a�er four

consecutive uses of IEBL (i.e., four new runs of GP-GOMEA), then

IEBL is disabled: all current GP-GOMEA runs are terminated (the

elite solution is also forgo�en), and subsequent runs will no longer

use IEBL to learn and use BBs.

4 EXPERIMENTAL SETUP
�e performance of GP-GOMEA

1
is tested in terms of scalability on

well-known GP benchmark problems. �is enables us to compare

our algorithm with SGP, but also with state-of-the-art work.

All experiments were executed on a machine mounting 2 Intel
®

Xeon
®

CPU E5-2699 v4 @ 2.20GHz and 630 GB of RAM. Each

experiment consists of 30 independent runs and only successful

experiments are considered. Runs exceeding a time limit of 24 hours

or a memory limit of 500 GB are aborted.

4.1 Benchmark Problems
We consider two sets of benchmark problems. �e �rst set is com-

posed of arti�cial problems o�en used to assess the performance of

model-based EAs, because of their focus on obtaining speci�c sub-

structures in the genotype. �e second set considers well-known

1
�e code is freely available on the homepage of the last author.
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regression problems of Boolean circuits, which di�er from the prob-

lems in the �rst set in that the solution encoding is much more

redundant, so that very di�erent solutions have the same output.

In all problems, maximization of the �tness is sought.

Arti�cial problems. Order is a GP version of the well-known

OneMax problem in GA research and is known to be easy to solve

for SGP [16]. Given a problem size n, the terminal set consists of

2n node variables Xi and their complement X̄i . �e function set

contains only one node which is a placeholder for a function of

arity 2 with no semantic meaning. �e output O of a tree is a list of

its inputs derived from the inorder parsing of its nodes, such that

there are no duplicates and only one of the two complementary

inputs is present, depending on which is encountered �rst in the

parsing. E.g., if {X3, X̄0,X1,X1,X0, X̄2} are the inputs appearing

in the inorder parsing, the tree outputs O = {X̄0,X1, X̄2,X3}. �e

�tness is f n
order

= |O \ {X̄0, X̄1, . . . , X̄n−1}|. In other words, the

optimal solution is a tree where Xi is present for each i , and if X̄i
is also present, then it appears a�er Xi in the inorder parse.

�e problem Trap employs the same terminal and function sets of

Order, but is considered a hard problem for SGP [16]. �is is because

of its deceptive �tness function de�ned for blocks of k variables,

which is inspired by the well-known deceptive trap functions in

GA research. �e deceptive a�ractor corresponds to the number of

X̄i in the output, while the needle in the haystack is the optimum

of Order. Speci�cally, for a block of k variables,

f k
Trap
=




1 if f k
order

= k

0.75

(
1 −

f k
order

k−1

)
if f k

order
< k

We denote with Trap-3 and Trap-4 the problem with trap length k
of 3 and 4 respectively. �e problem size n is the number of traps.

Like Order and Trap, the tunable benchmark problem introduced

in [10], here denoted with KÜ (from the authors’ surnames), uses

binary trees, but with a prede�ned maximum height. �e aim is to

synthesize a tree in which function nodes are arranged according

to positional constraints. �e size of the problem n corresponds

to the maximum tree height. �e terminal set contains only one

node, while the function set contains functions of arity 2, i.e., F =

{F0,F1, . . . }. F can be changed together with n to tune problem

di�culty. In this work, we always consider F = {F0, . . . ,F2n−1}.

�e output of a tree is the output of its root. A function node

outputs the weighted sum of its 2 children’s outputs, determined

according to the constraints: (i) the index of the parent function

must be lower than that of its children; (ii) the index of child 1 must

be smaller than the index of child 2. �e terminal has no index and

does not violate constraints. If child 1 violates the �rst constraint,

then its output is penalized with a weight of η, and similarly for

child 2. If the second constraint is violated, then the output of both

children is penalized with η (we use η = 0.25). Since the maximum

tree height is the problem size n, for this problem the maximum

tree height in the IMS is �xed to n.

Boolean problems. �ese problems are de�ned with �tness cases,

i.e., pairs of input and desired output values. Di�erent from the

arti�cial problems, inputs are now binary. In all these problems

the aim is to synthesize a tree that realizes a Boolean circuit which

satis�es all �tness cases, giving the correct output for any input

con�guration. �e �tness of a solution is the number of correct

�tness outputs. Boolean circuits we consider are: Comparator,

Even Parity, Majority and Multiplexer. �e terminal set contains

a terminal for each input, and the function set contains the logic

functions AND, OR, NAND, and NOR.

A circuit realizes the n-inputs Comparator if it outputs true only

if the �rst dn/2e bits represent a number that is lower than the one

encoded by the second bn/2c bits. �e Even Parity problem of n
inputs expects the output true when the number of input bits set to

1 is even and false otherwise. In Majority, the solution must return

true only when at least dn/2e out of a total of n input bits are set to

1. Finally, a Multiplexer has n =m + 2
m

input bits: the �rstm bits

encode the address, the second 2
m

bits encode the data. A circuit

satis�es the Multiplexer problem if it always outputs the value of

the data bit encoded by the address.

4.2 Standard GP and State-of-the-Art
We compare the scalability of GP-GOMEA with SGP and two state-

of-the-art algorithms. For Order and Trap, the model-based al-

gorithm extended Compact Genetic Programming (eCGP) is con-

sidered [16]. For the Boolean benchmark problems, we consider

the very recent algorithms based on Semantic Backpropagation

(SB): the Iterated Local Tree Improvement (ILTI) [6] and GP using

the Random Desired Operator (RDO) [13]. �ese two algorithms

inherently embody the partial evaluations method with which GP-

GOMEA is also equipped, since they require the memorization of

each node output. Di�erently from GP-GOMEA and SGP, these

former 2 algorithms always require the de�nition of �tness cases.

For eCGP, we consider the scalability reported in [16]. �e

performance is obtained with an empirically pre-computed good

population size and on a prede�ned maximum tree height.

Both ILTI and (GP with) RDO rely on SB, a recent technique in

which improvements at the level of single �tness cases are sought.

SB is applied top-down (from the root to the leaves) and computes,

for each node, a desired output O∗. For the root, O∗ is the vector

that satis�es all �tness cases of the problem. �e desired output

of a child of the root is computed by inverting the root function,

using O∗ and the current output of its other children as arguments.

�e design of inverted functions is not always straightforward,

as sometimes a solution does not exist (e.g., looking for an input

for AND with desired output 1 when the other input is 0) or can

assume any value (e.g., looking for an input for OR with desired

output 1 when the other input is 1). Among several di�erences,

ILTI is an (1,1)-EA, while RDO is population based. Here ILTI is

used in the best performing con�guration, that is with a (maximum,

when more are possible) library size of 450 full trees of height 2.

Similarly, for RDO we adopt the best-performing con�guration on

Boolean problems (named RDOp in [13]), which uses a dynamic

library of semantically-unique trees taken from the subtrees in the

population instead of a �xed-size library.

We propose two con�gurations for SGP: SGPparam, with hand-

picked population size and initial tree height as typically done in

literature, and SGPIMS , enclosed in a scheme similar to the IMS of

GP-GOMEA. For the former, we set the initial tree height to 6 and

the maximum allowed one to 12. �e population size for Order

is set to 2
n+2

(easy problem), for Trap-3 and KÜ to 2
n+7

(di�cult

problem), and for Trap-4 to 2
n+9

(very di�cult problem), with n
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the problem size. As to the Boolean problems, the population size

for Comparator and Majority is set to 2
n+5

(medium di�culty). For

Even Parity, known to be di�cult for SGP [11], the population size

is 2
n+7

. For the 3, 6, and 11-bits Multiplexer the population size

is set to 256, 1024, and 4096, respectively. SGPIMS works with no

parameter speci�cation, within a IMS scheme that di�ers from the

one of GP-GOMEA in the following aspects: (i) there is no common

elitist solution among runs, nor a stopping criteria related to it;

(ii) a run performs 1 generation every 8 generations of the smaller

run; (iii) the initial tree height h is computed as the maximum tree

height of GP-GOMEA (Section 2.5), and the maximum height ish+4.

We experimentally found that increasing the intervals of the IMS

is bene�cial for SGPIMS , since it performs much less evaluations

than GP-GOMEA (with any of the 3 linkage models) per generation.

Furthermore, we set a maximum tree height bigger than the initial

tree height because the standard crossover and mutation swap and

generate subtrees of arbitrary height. For both SGP con�gurations,

we set tournament selection size to 4, probability of crossover to

0.9, probability of mutation to 0.1, and reproduction of the best

solution. Finally, we equip SGP with the same caching method of

node outputs used in GP-GOMEA, to perform partial evaluations.

5 RESULTS & DISCUSSIONS
Scalability graphs are provided in Figure 3. GP-GOMEA, SGP, ILTI

and RDO use partial evaluations. When IEBL is applied, evaluations

of BBs candidates are also counted, and the number of nodes is

obtained by recursively unwrapping encapsulated BBs.

Arti�cial problems. Results show that GP-GOMEA with LT as

the linkage model (GP-GOMEALT) is generally the best perform-

ing algorithm in all metrics: number of evaluations, time, and size

of the �nal solution. On the easy Order problem, for which we

run a limited number of instances, no marked di�erence between

both SGP con�gurations and GP-GOMEA with any linkage model

is observed. However, the more di�cult the problem, the more

GP-GOMEALT shows superior performance. On Trap-3, SGPparam
markedly outperforms SGPIMS , and performs slightly be�er than

GP-GOMEALT. �is result is possibly due to the immediate em-

ployment of a big population size in SGPparam and a good se�ing of

the initial tree height. On Trap-4 and KÜ, however, GP-GOMEALT

scales be�er than any other algorithm, showing an e�ective ca-

pability of learning and exploiting the problem structure. On the

evaluations of Order and Trap-3, the scalability of eCGP ofO (n2.86)
and O (n3.18) respectively, as reported in [16], is shown. Although

it may appear that GP-GOMEALT performs slightly worse than

eCGP, it is important to remember that the performance of eCGP

is obtained on an empirically pre-computed good population size

and on a prede�ned initial tree height, whereas GP-GOMEA runs

according to the IMS.

Boolean problems. On the Boolean problems, the di�erence be-

tween the linkage models LT and RT used for GP-GOMEA is far

less pronounced, suggesting that the LT is not capable of modeling

key linkage information to help increase e�ciency substantially.

�is may well be because of the high redundancy in the repre-

sentation of solutions, and the consequential fact that locus-based

dependence is not the most important source of problem structure.

GP-GOMEALT and SGPIMS show similar scalability overall, with

exception of Majority, where SGPIMS performs best. Nonetheless,

in all other cases GP-GOMEALT reaches the optimal solution faster

and evolves much smaller solutions. �is is also re�ected when

comparing scalability in terms of time: partial evaluations are much

more bene�cial for the operators of SGP than for GOM (e.g., Figure 2

shows a comparison on how time scalability is a�ected by partial

evaluations in Majority). �is is because GOM exchanges multiple

nodes at the same time which are not necessarily connected, requir-

ing to re-compute the output of the chain of parent nodes sca�ered

in the solution. Di�erent output caching methods may thus be

much more bene�cial for GOM (e.g., storing hash-output of the

most recurrent subtrees). Moreover, GP-GOMEA typically needs

much smaller populations than SGPIMS thanks to the extensive

mixing trials performed by GOM, which is also much less prone to

bloat. �ese aspects are very bene�cial in terms of memory usage:

on di�cult problems like Trap-4 some runs of SGPIMS need even

100 times more memory than GP-GOMEALT.

Another crucial observation from our results comes from the

comparison of SGPIMS with SGPparam. Whereas the former has

inherent overhead due to multiple runs with increasing population

and tree size, the second sometimes fails to �nd the optimal solution

on complex problems. Although it is arguable that our parameter

choice for SGPparam is not optimal, some runs converge to a local

minimum and are unable to escape it with the sole aid of mutation.

Instead, the employment of multiple runs, each starting on random

genetic material, dramatically increases the chances of �nding the

optimal solution. �is also explains the success of GP-GOMEA.

�e state-of-the-art algorithms ILTI and RDO generally run faster

and require less evaluations than GP-GOMEA and SGP. It is worth

noticing that these algorithms rely on a �tness function which is de
facto di�erent: in the semantic �tness, improvements at the level

of single �tness cases are sought, whereas in its original speci�-

cation the �tness is de�ned as the sum of all correct �tness cases.

�erefore, SB needs a decomposition of the �tness to be de�ned,

as well as the design of inverted functions, which compromises

the applicability of this powerful technique to general problems.

Moreover, whereas SGPparam uses sub-optimal parameters, and GP-

GOMEA and SGPIMS run with the IMS, ILTI and RDO use the best

performing con�gurations reported. When comparing scalability,

ILTI and RDO are superior on Even Parity and Majority, but not on

Comparator and Multiplexer. In Comparator, the SB-based opera-

tors cause solutions to bloat even worse than the classic operators

of SGP, ultimately harming runtime. RDO has particularly poor

performance on Multiplexer, being unable to escape from a local

minimum within 24 hours in some runs of the 11-bits instance.

Lastly, we observe the e�ect of IEBL combined with the on

average well-performing GP-GOMEALT, and see that it is either

detrimental or very helpful. By encapsulating BBs into new termi-

nal and function nodes, the search space is increased consistently. If

such nodes represent partial solutions and can be readily combined

into bigger partial solutions, then the search improves. Otherwise,

the search is harmed. In the Multiplexer problem, we found that

IEBL is not capable of learning any reasonably useful BBs, sug-

gesting that the entropy-based identi�cation method cannot grasp

the complex relationships between bits present in this problem.

In Comparator, IEBL does catch some relevant relationships: e.g.,
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Figure 2: Example of the contribution of partial evaluations
in terms of time for the Majority problem.

in the 6-bits instance, which outputs true when b0b1b2 < b3b4b5,

the BB which returns 1 only if bi = 0 and bi+3 = 1 is o�en iden-

ti�ed. �is BB represents the 2-bits Comparator between equally

signi�cant bits. As another example, the BB returning 1 when b1b2

are set to 1 is learned, which is part of the solution for the case

011 < 100. However, the expansion of the search space is so big

that even learning seemingly-useful material ends up being more

detrimental than helpful. Similar considerations hold for the learn-

ing of new function nodes. In Majority there is no speci�c pa�ern

to learn, since no speci�c relationships between bits are needed:

the circuit outputs true as long as the majority of bits is set to one.

Finally, in Even Parity, IEBL really leads to excellent performance,

where in fact partial solutions can be combined to form bigger

ones, e.g., two 2-bits Even Parity solutions can be combined with

XNOR, which is the function performing a 2-bits Even Parity, to form

the 4-bits one. Although the learning of BBs is noisy, resulting

in a big performance di�erence among best and worst runs, the

scalability is the best among all algorithms, with the number of

evaluations increasing sublinearly with the number of �tness cases.

A downside of IEBL is the size of solutions, which may be lowered

by implementing mechanisms to prefer shorter BBs. In the plot

of the evaluations of Even Parity, we also report the best perfor-

mance we are aware of, obtained by the Binary Decision Diagrams

(BDD) [5]. BDD scales even be�er than GP-GOMEALT+IEBL in

evaluations. However, this EA is speci�cally designed for Boolean

problems, with a dedicated genotype (diagrams assuming a �xed

variable ordering of inputs) and particular parameter se�ings (pop-

ulation size of 5, mutation-only), while GP-GOMEALT+IEBL is a

combination of a much more general EA with a Boolean-dedicated

mechanism for learning and exploiting BBs. For future work, it

would be interesting to a�empt to automatically detect when the

addition of IEBL is useful so that highly negative e�ects in the

performance of GP-GOMEA are prevented.

6 CONCLUSIONS
In this paper we presented GP-GOMEA, a novel, scalable, model-

based approach to GP. Our algorithm requires no parameter speci-

�cation, which is important for making fair comparisons and for

ease-of-use by practitioners. Even though GP-GOMEA is inher-

ently not-tuned, it shows competitive scalability when compared

with the latest state-of-the-art algorithms, based on semantic back-

propagation. Moreover, while these algorithms need �tness cases

and inverted functions to be de�ned, GP-GOMEA does not have

these requirements, making it more generally applicable. Compared

to SGP, GP-GOMEA exhibits superior performance on structured

problems, while, in general, it evolves much smaller solutions and

requires much less memory and time.

We further introduced a novel method to identify and encapsu-

late useful BBs into new terminals and functions, termed IEBL. �e

novelty of this method is that it tries to harvest information from

the input-space on which �tness cases are de�ned. �e combination

of IEBL with GP-GOMEA has been shown to be detrimental in non-

modular problems, but extremely e�cient on a modular problem

like Even Parity. In fact, IEBL helps tackling the complexity of Even

Parity to a point where the scalability of GP-GOMEA becomes less

than linear, which ultimately leads to solving the 14-bits instance

in less than 1 hour.
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Figure 3: Average, maximum and minimum number of evaluations, time, and number of nodes in the �nal solution.
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