Skip to main content

Learning a Formula of Interpretability to Learn Interpretable Formulas

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

Many risk-sensitive applications require Machine Learning (ML) models to be interpretable. Attempts to obtain interpretable models typically rely on tuning, by trial-and-error, hyper-parameters of model complexity that are only loosely related to interpretability. We show that it is instead possible to take a meta-learning approach: an ML model of non-trivial Proxies of Human Interpretability (PHIs) can be learned from human feedback, then this model can be incorporated within an ML training process to directly optimize for interpretability. We show this for evolutionary symbolic regression. We first design and distribute a survey finalized at finding a link between features of mathematical formulas and two established PHIs, simulatability and decomposability. Next, we use the resulting dataset to learn an ML model of interpretability. Lastly, we query this model to estimate the interpretability of evolving solutions within bi-objective genetic programming. We perform experiments on five synthetic and eight real-world symbolic regression problems, comparing to the traditional use of solution size minimization. The results show that the use of our model leads to formulas that are, for a same level of accuracy-interpretability trade-off, either significantly more or equally accurate. Moreover, the formulas are also arguably more interpretable. Given the very positive results, we believe that our approach represents an important stepping stone for the design of next-generation interpretable (evolutionary) ML algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    Google Scholar 

  5. Burgess, T.F.: Guide to the design of questionnaires. A general introduction to the design of questionnaires for survey research. University of Leeds (2001)

    Google Scholar 

  6. Cano, A., Zafra, A., Ventura, S.: An interpretable classification rule mining algorithm. Inf. Sci. 240, 1–20 (2013)

    Article  Google Scholar 

  7. Chen, Q., Zhang, M., Xue, B.: Structural risk minimization-driven genetic programming for enhancing generalization in symbolic regression. IEEE Trans. Evol. Comput. 23(4), 703–717 (2018)

    Article  Google Scholar 

  8. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)

    Article  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)

  12. Dua, D., Graff, C.: UCI machine learning repository (2017). archive.ics.uci.edu/ml

  13. Ekárt, A., Nemeth, S.Z.: Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming. Genet. Program Evolvable Mach. 2(1), 61–73 (2001)

    Article  MATH  Google Scholar 

  14. Evans, B.P., Xue, B., Zhang, M.: What’s inside the black-box? A genetic programming method for interpreting complex machine learning models. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1012–1020 (2019)

    Google Scholar 

  15. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)

    Article  Google Scholar 

  16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93 (2018)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Hein, D., Udluft, S., Runkler, T.A.: Interpretable policies for reinforcement learning by genetic programming. Eng. Appl. Artif. Intell. 76, 158–169 (2018)

    Article  Google Scholar 

  19. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7

    Chapter  Google Scholar 

  21. Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3), 259–269 (2004)

    Article  Google Scholar 

  22. Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving a front of interpretable models for data visualization. IEEE Trans. Cybern., 1–15 (2020). https://ieeexplore.ieee.org/abstract/document/9007046

  23. Liang, Y., Zhang, M., Browne, W.N.: Multi-objective genetic programming for figure-ground image segmentation. In: Ray, T., Sarker, R., Li, X. (eds.) ACALCI 2016. LNCS (LNAI), vol. 9592, pp. 134–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28270-1_12

    Chapter  Google Scholar 

  24. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)

    Google Scholar 

  25. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158. ACM (2012)

    Google Scholar 

  26. Maruyama, M., Pallier, C., Jobert, A., Sigman, M., Dehaene, S.: The cortical representation of simple mathematical expressions. Neuroimage 61(4), 1444–1460 (2012)

    Article  Google Scholar 

  27. McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learning. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds.) EvoMUSART 2020. LNCS, vol. 12103, pp. 118–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43859-3_9

    Chapter  Google Scholar 

  28. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017)

    Article  Google Scholar 

  29. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu.com, Morrisville (2008)

    Google Scholar 

  31. Poli, R., McPhee, N.F.: Parsimony pressure made easy: solving the problem of bloat in GP. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled Methods for the Design of Metaheuristics. NCS, pp. 181–204. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-33206-7_9

    Chapter  MATH  Google Scholar 

  32. Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Vaughan, J.W., Wallach, H.: Manipulating and measuring model interpretability. arXiv preprint arXiv:1802.07810 (2018)

  33. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with Rademacher complexity for symbolic regression. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2657–2664 (2019)

    Google Scholar 

  34. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  35. Ruberto, S., Terragni, V., Moore, J.H.: SGP-DT: semantic genetic programming based on dynamic targets. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 167–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44094-7_11

    Chapter  Google Scholar 

  36. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  37. Sambo, A.S., Azad, R.M.A., Kovalchuk, Y., Indramohan, V.P., Shah, H.: Time control or size control? Reducing complexity and improving accuracy of genetic programming models. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 195–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44094-7_13

    Chapter  Google Scholar 

  38. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Genet. Program Evolvable Mach. 13(2), 197–238 (2012)

    Article  Google Scholar 

  39. Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In: O’Reilly, U.M., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II. GPEM, vol. 8, pp. 283–299. Springer, Boston (2005). https://doi.org/10.1007/0-387-23254-0_17

    Chapter  Google Scholar 

  40. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a survey of methodologies for promoting diversity in evolutionary optimization. Inf. Sci. 329, 782–799 (2016)

    Article  Google Scholar 

  41. Tran, B., Xue, B., Zhang, M.: Genetic programming for multiple-feature construction on high-dimensional classification. Pattern Recogn. 93, 404–417 (2019)

    Article  Google Scholar 

  42. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 877–884 (2010)

    Google Scholar 

  43. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Improving model-based genetic programming for symbolic regression of small expressions. Accepted in Evolutionary Computation. ArXiv preprint arXiv:1904.02050 (2019)

  44. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1084–1092. Association for Computing Machinery (2019)

    Google Scholar 

  45. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: On explaining machine learning models by evolving crucial and compact features. Swarm Evol. Comput. 53, 100640 (2020)

    Article  Google Scholar 

  46. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)

    Article  Google Scholar 

  47. Wang, P., Tang, K., Weise, T., Tsang, E., Yao, X.: Multiobjective genetic programming for maximizing ROC performance. Neurocomputing 125, 102–118 (2014)

    Article  Google Scholar 

  48. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2017)

    Article  MathSciNet  Google Scholar 

  49. Watchareeruetai, U., Matsumoto, T., Takeuchi, Y., Kudo, H., Ohnishi, N.: Construction of image feature extractors based on multi-objective genetic programming with redundancy regulations. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1328–1333. IEEE (2009)

    Google Scholar 

  50. White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program Evolvable Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  51. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evol. Comput. 3(1), 17–38 (1995)

    Article  Google Scholar 

  52. Zhao, H.: A multi-objective genetic programming approach to developing Pareto optimal decision trees. Decis. Support Syst. 43(3), 809–826 (2007)

    Article  Google Scholar 

  53. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments and Author Contributions

We thank the Maurits en Anna de Kock Foundation for financing a high-performance computing system that was used in this work. Author contributions, in order of importance, follow. Conceptualization: M.V.; methodology: M.V., E.M.; software: M.V., A.D.L., F.R.; writing: M.V., E.M., A.D.L., F.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Virgolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Virgolin, M., De Lorenzo, A., Medvet, E., Randone, F. (2020). Learning a Formula of Interpretability to Learn Interpretable Formulas. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics