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Abstract. In this paper we present an approach to automated program code 
generation for sensor nodes and other small devices using Genetic 
Programming. We give a short introduction to Genetic Algorithms. Our new 
Distributed Genetic Programming Framework facilitates the development of 
sensor network applications. Genetic evolution of programs requires program 
testing. Therefore we use a simulation environment for distributed systems of 
sensor nodes. The simulation model takes into account characteristic features of 
sensor nodes, such as unreliable communication and resource constraints. Two 
application examples are presented that demonstrate the feasibility of our 
approach and its potential to create robust and adaptive code for sensor network 
applications. 

1 Introduction 

Today we experience a growing demand for distributed systems of small devices, like 
sensor nodes [1]. Such devices are restricted in resources like memory size, 
processing speed, and battery power. The communication among them is not reliable 
and the topology of their network is volatile. The program code created for sensor 
nodes should thus be robust and as efficient as possible. Our goal is to develop a 
methodology that supports the development of software for sensors and similar 
resource-constrained devices. 

In this paper we describe the structure and functionality of a framework that allows 
the automated code generation for sensors by Genetic Programming. Using a 
behavioral description called fitness function, programs that are close-to-optimal 
solutions for problems can be found with our system. 

The benefits of genetically engineering code are manifold. Fitness functions can be 
combined using multi-objective Genetic Algorithms [2]. That way, programs can be 
created that perform more than one task. For example, sensor networks can be 
instructed to vote for a “master node” via election and send all important data to that 
node, whereby the significance of the data is measured by one fitness function and the 
election algorithm is defined by another one. 

Genetic Programming is able to create functional code, but it can also pursue 
nonfunctional optimizations concerning code size, execution speed and network 
traffic. Furthermore, Genetic Programming allows prioritizing such quality aspects. 
For some applications, code size might be such a vital aspect that it becomes even 
more important than correctness – a program might be more useful even if it produces 
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correct data only in 95% of all cases than one that is always right but doubled in size. 
For some applications, reliability of transmission could be the most important aspect 
while code size is only of secondary interest.  

Another interesting aspect of Genetic Programming is that it constitutes one 
suitable back end for a Model Driven Architecture [3]. Providing a model of what a 
program should do in form of a fitness function, the user obtains automatically 
created and even optimized source code.  

Separating the model from the target platform in a way close to MDA, fitness 
functions, once defined, may be reused for a variety of hardware or software 
environments. Therefore, we believe that Genetic Programming has the potential to 
become an integral part of modern programming methodologies for ubiquitous 
computing environments. 

The remainder of this article is structured as follows: In section 2, we give a quick 
overview on the principles of Genetic Programming. Section 3 presents our DGP 
Framework. First experimental results may be found in section 4. Some information 
about related work and an outlook on future work conclude the article. 

The prototype software of the project can be found in the internet at 
http://sourceforge.net/projects/dgpf, governed by an open source license (LGPL). 

2 The Genetic Programming Approach 

For a long time, Genetic Algorithms have been used in science to derive solutions for 
any type of problems, from construction of wind turbines [4] to pattern-recognition 
systems [5]. The application of Genetic Algorithms with the goal to evolve computer 
programs is called Genetic Programming [6]. This section will give an overview on 
how Genetic Algorithms work in common. 

 
In nature, a species adapts to an environment because the individuals that are the 

fittest in respect to that environment will have the best chance to reproduce, possibly 
creating even fitter offspring. Though this is a very rough simplification, it sums up 
the basic idea of genetic evolution. A more detailed explanation would be out of 
scope here. 

As shown in Fig. 1, Genetic Algorithms start with an initial population of random 
solution candidates, called individuals. In our case, the individuals are small programs 
that can be executed on sensor nodes. As in nature, the population will be refined step 
by step in a cycle of computing the fitness of its individuals, selecting the best 
individuals and creating a new generation derived from these. If a reasonable good 
solution has evolved, the algorithm will stop. [7]  

One of the strengths of the genetic approach is that the fitness of the individuals 
can be computed in parallel. Reproduction can be treated in the same manner. That 
way, many possible solutions of a problem can be tested at once. 
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Reproduction
create new individuals from
the se lected ones  by
crossover and mutation

Selection
select the fittest individuals
for reproduction

Evaluation
compute the fitness
values of the individuals

Control
gather statistical data and
check if we found a good
enough solution to stop

Initial Population
create an initial population
of random individuals

 
Fig. 1. Common cycle of Genetic Algorithms. 

3 The Distributed Genetic Programming Framework 

We have developed a Distributed Genetic Programming Framework (DGPF) based on 
Java. It provides a highly customizable, open-source infrastructure for the 
development of sensor software. The basic idea behind its architecture is to unleash 
the distribution ability of Genetic Algorithms mentioned in the previous section while 
preserving its versatility of being applied to many different problem domains. The 
overall structure of the DGPF is structured in multiple layers, as illustrated in Fig. 2. 

 

Genetic Algorithms Layer

distributes arbitrary tasks over a heterogeneous network
provides load balancing

error recoveryprovides 

supports arbitrary Genetic Algorithms
provides multiple selection algorithms
gathers statistical data and controls the evolution

the basic operations of an automaton
provides the virtual hardware to simulate an automaton

additional operations for communication
provides a virtual network

Automaton
Simulation Basic Operations

Network
Simulation

Communication
Operations

Genetic Programming Layer

 
Fig. 2. The layered architecture of the Distribute Genetic Programming Framework. 

 

3.1 The Task Distribution System 

The base layer is formed by a task distribution system which allows one client system 
to let arbitrary tasks be processed by arbitrary many task servers. The integrated load 



4      Thomas Weise 

balancing feature ensures that the load of tasks distributed to servers is proportional to 
their computational power. It also checks how many tasks one node can perform in 
parallel which may be more than one even for off-the-shelf PCs since their CPU may 
support, for example, Hyper-Threading [8]. Another service of that layer is error 
recovery which is especially useful when running experiments outside of a dedicated 
testbed. Even when all task-processing servers are rebooted simultaneously, the 
system keeps its stability (of course, it has to wait until all servers are available 
again). 

3.2 The Genetic Algorithms Layer 

Genetic Algorithms are a versatile tool for problem solving. We want to concentrate 
on Genetic Programming, especially for sensor networks. Our framework remains 
flexible by providing a general abstraction layer for Genetic Algorithms. 
 

Using the Task Distribution System, the breeding of solutions for a problem will be 
distributed over a network analogously to the description in the previous chapter. Fig. 
3 illustrates how the basic cycle of Figure 1 maps on our framework. 

 

Selection

one clientarbitrary many servers

Control
Evaluation

Reproduction

 
Fig. 3. Distribution of Genetic Programming 

While reproduction and evaluation of an individual is located at a distant server, 
the new individual and its fitness are received at the client side.   

 
To investigate a new problem domain using Genetic Algorithms, the user can 

introduce new types of individuals. For these individuals, he or she must provide 
• creation, mutation and crossover routines 
• a fitness function 

 
In order to assist the user, a layer may be put on top of the Genetic Algorithm 

abstraction which delivers a template with creation/mutation/crossover routines but 
without a fitness function. This template could for example simulate a special 
hardware. This leaves the user the opportunity to specify different problems (using 
different fitness functions) to be solved by this hardware by using the intermediate 
layer. 
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The Genetic Algorithm layer also provides mechanisms to influence the parameters 
of the evolution while it is actually in progress. The mutation- and crossover-rate, the 
selection algorithm used, and many other parameters can be modified during the 
genetic process to maximize the performance and to improve the problem-space 
examination. Gathering statistical data, even a feedback loop can be created that 
enables dynamic tuning of the genetic evolution process. Optimal parameter 
adaptation strategies are currently subject of our research. This concept of central 
control was the main reason for not applying other distribution schemes, like the 
island model [9], [10]and the diffusion model [11]. 

3.3 The Automaton Simulation Layer 

Since we want to breed code that may run on sensor nodes, we need to simulate such 
distributed systems in order to evaluate the fitness of individuals. Our model for 
distributed systems is twofold; it divides into 
• the separate automata, and 
• the communication between them. 
 

An automaton consists of a virtual hardware holding its execution status and a 
program running on that hardware. Unlike most other approaches in Genetic 
Programming which grow stateless functions, we have developed an automaton 
architecture with a fixed-sized memory. This allows us to breed programs that are 
stateful instruction sequences instead of expressions that must be called every time an 
input value changes to determine a new output. 

An automaton is driven by a virtual CPU which executes one instruction of a 
program per tick. It also holds statistical information on the clock cycles performed 
and the time spent in sleep-mode. The step-by-step execution permits the 
specification of a run time limit which is needed since the programs grown by the 
DGPF are purposed to drive sensor nodes and hence do normally not terminate. They 
usually contain a main loop executing a sequence of actions infinitely. The simulation 
of an automaton may be paused at any time, allowing, for example, taking a look on 
its memory: This feature is essential when testing whether the value of a memory cell 
converges to a constant or changes infinitely, because one must compare the values at 
t and t+n for equality. In some experiments like the evolution of an automated unique 
ID creation system, this option has proved particularly useful. 

 

Program
@0:
  SendWord mem[0]
  SendMessage
@1:  
  mem[1]=ReceiveWord
  IfJump mem[1]<=mem[0], @1
@2:
  mem[0]=mem[1]
  Goto @0 D
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a 
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Ticks

Slept Time

IP
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Execution Status
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-1
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39342
-234

-1
120

Automaton

stepwise execution  
Fig. 4. The components of an automaton and its simulation. 
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In the Automaton Simulation Layer we also define the format of the instructions 
and expressions that can be executed on the virtual hardware. Using this format, we 
are able to specify mutation, crossover and individual creation routines for the 
Genetic Algorithm Layer, leaving only the fitness function subject to user 
implementation. 

The predefined expression set contains constants, binary, and unary expressions - 
both logical and numerical - and a memory read instruction. Memory access can be 
done using either direct addressing to obtain a value stored at a specified address or 
by indirect addressing. For indirect access, the value stored at one address will be read 
and used as address of the target memory cell.  

The basic instruction set of our automata consists of only three instructions: a 
conditional jump which has an expression and a target label as parameter, a memory 
write instruction which can write the value of an expression to a memory cell using 
either direct or indirect addressing, and a sleep instruction which puts the virtual CPU 
into sleep mode for a specified count of clock cycles. 

The instruction set can be reduced to the one introduced by Teller [12], granting 
Turing completeness [13] in the usually applied informal sense. 

3.4 The Network Simulation Layer 

Resting on the Automaton Simulation Layer, the Network Simulation Layer extends 
the instruction and expression sets by communication primitives. Automata are now 
able to write data to their output buffer, send the contents of that buffer as a message, 
receive such a message in their input buffer and iterate over the data items in that 
input buffer. Monitoring that activity, the Network Simulation Layer also provides 
additional statistical data for each automaton, holding information on the number of 
messages sent, lost due to input buffer overflow, and successfully processed. 
 
To model a distributed system, many automata are simulated in parallel for each 
grown program. For this set of automata, the following assumptions will hold: 
 
1. All automata run at approximately the same speed, since they are based on the 

same virtual hardware. The execution speed might differ from automaton to 
automaton and cannot be regarded as constant either. 

2. Hence, the system of automata runs asynchronously, like real sensor nodes running 
asynchronously even if they were switched on at the same time. 

3. The automata will be started at different times. 
 

The network simulator instance provides an absolute system time, keeps track on the 
transmissions currently underway, and also maintains global statistics. Fig. 5 shows 
how the automata of Fig. 4 will interact in a simulated network. Multiple automata 
need to be instantiated each time the fitness of an individual is evaluated; the network 
simulator can be reused. Since it is the most complex component in the simulation, 
this saves initialization time and memory capacity on the server nodes. 
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Fig. 5. The Network Simulator. 

The network simulator evaluates systems that are connected wirelessly, and cannot 
a priori guarantee reliable communication [14]. It therefore has the following 
properties: 

 
1. The links between the nodes are randomly created, yet it will be ensured that there 

are no network partitions.  
2. Messages are simple sequences of memory words with no predefined structure. 
3. Messages cannot be sent directly. Like radio broadcasts they will be received by 

any node in transmission distance. Finding out which message is of concern will be 
in the responsibility of each node. 

4. Messages can get lost without special cause. 
5. Transmissions may take a random time until they reach their target. 
6. The collision of two transmissions underway leads to the loss of both messages. 
 

Code working correctly in such an environment can also expected to be robust and 
adaptive in a real-world application. One example for such programs is shown in Fig. 
6. We will refer to it again later. 
 

@0:
  SendWord mem[0]
  SendMessage
@1:  
  mem[1]=ReceiveWord
  IfJump mem[1]<=mem[0], @1
@2:
  mem[0]=mem[1]
  Goto @0

 
Fig. 6. A small example of code written in an assembler-like language. If each automaton were 
initialized with a random number in its first memory cell (mem[0]), the biggest one of these 
numbers would be known by all automata in the network after some time. 
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3.5 Evaluation of the Fitness function 

As illustrated in Fig. 7, the fitness of an individual can be determined by running its 
code on all automata in a simulated network. The results of this simulation run will be 
compared to the results that the ideal behavior would yield. To obtain stable values, 
this process will be repeated multiple times.  
 

create random network

simulate the generated
code on that network

compute the results
the specified behavior
would yield

 

compare both results

Fitness function

Repeat this  times and calculate
the average/minimum fitness.

n
 

Fig. 7. Computation of the fitness function for sensor networks. 

Starting with the problem introduced in Fig. 6, we will discuss fitness function in 
the following. 
We want to solve a problem very similar to the well known election-problem. Each of 
our automata will be initialized knowing only a unique, random number. The DGPF 
should then grow a program allowing the nodes to find the maximum of these 
numbers. 

The ideal program would lead to each automaton knowing the maximum number 
after its execution. A proper fitness function would thus be: 

 
f(p) = the count of automatons knowing the maximum number. 

 
This will work but also leads to a slow evolution because knowing the maximum 

number enforces a lot of steps to be taken by the program. An automaton must send 
its own unique number to its neighbors. Then, all received numbers must be compared 
to its number, storing them only if they are bigger. The sequence of these steps must 
be guessed by the evolution if there is no reward for intermediate results. Breeding 
speed can be increased by incorporating knowledge about interim results, like giving 
points for 
• knowing the number of any other automaton 
• knowing the number of any other automaton bigger as the own one 



4 Experimental Results 

Our Genetic Programming framework has reached its second revision. The 
framework is a distributed system itself and unleashes the full parallelization potential 
of Genetic Programming. We will demonstrate the functionality of our approach 
using two examples. First we will look at the Euclidian Algorithm for determining the 
greatest common divisor (GCD) of two numbers. The second example will show the 
system’s performance when growing solutions for election problem, (i.e. finding the 
maximum) mentioned in the previous chapter. 

4.1 The GCD-Example 

The first instance will only involve simulation on the Automaton Simulation Layer 
(see section 3.3). The objective is to breed an algorithm that finds the GCD of two 
numbers stored in the memory of an automaton. The fitness function for this case is 
straightforward. After executing some time the automaton will be stopped. The value 
it has now stored in its first memory cell will be compared with the GCD of two 
values initially stored in its memory. The fitness is inversely proportional to the 
difference of the real GCD to the computed value. 

An evolutionary process was started, using only one PC for the computation with 
client and server running on it simultaneously. One of the test runs produced the 
fitness curve illustrated in Fig. 8: Starting with a bogus solution, problem space 
exploration derives a complex algorithm using lots of unnecessary instructions like 
putting the CPU into sleep mode for some time (Sleep) or indirect memory access 
(mem[[n]]). The complicated solution suggested a few cycles later, already 
producing correct results sometimes, is then refined to a more simple but not perfect 
version which is always right.1 
 

                                                           
1 At this point it is useful to mention that the arithmetic operations division and modulo 

have been modified as proposed in [6]. A division (or modulo) by zero will not fail but yield 
the same result as a division (or modulo) by one.  
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@0:
  mem[[1]]=811
  Goto @0

@0:
  mem[0]=mem[0]
  mem[1]=(mem[1]%mem[0])
  mem[0]=(mem[0]-(mem[1]%mem[0]))
  IfJump mem[[1]], @0
  Sleep (mem[0]/mem[0])
  IfJump mem[2], @0
  mem[[2]]=(mem[0]/(0/mem[0]))
  Goto @0

@0:
 mem[0]=mem[0]
 mem[1]=(mem[1]%mem[0])
 mem[0]=(mem[0]-mem[1])
  Goto @0

 
Fig. 8. The evolutionary progress of the GCD example. 

4.2 The Maximum Example 

As specified in 3.5, each automaton will be initialized knowing one unique, random 
number in its first memory cell. After running a network simulation (using the 
Network Simulation Layer) for some time, each automaton should know the 
maximum of all these unique numbers. This strategy equals a simple election 
algorithm. The fitness function will first simulate the system of the automata and then 
compare the numbers the automata have stored in their first memory cell afterwards. 
The fitness function will be the sum of all fitness values that the single automata have 
achieved. Non-zero fitness values will be assigned to an automaton only if it has 
stored a valid number - that is one which was used for initializing another automaton. 
The fitness values assigned are proportional to the size of this number. By doing so, 
we allow also intermediate results to be incorporated, which has turned out to be a 
good strategy. 

For this experiment we ran the evolution process using standard PCs connected via 
a 100 MBit/s LAN and measured the throughput (Fig. 9). The network connection is 
the bottleneck in the test, restricting the performance to only being something 
between doubled and tripled in comparison to only a single computer. To maximize 
throughput in systems of only a few computers we recommend running the client 
simultaneously with a server on one machine. This server will then be the fastest since 
it has no network latency. For networks of many computers, we expect the 
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performance gain by this approach being nullified by the resulting slowdown of other 
processes on the system, including the load balancer module of the client. 
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Fig. 9. The throughput of the maximum example. 

As in the previous example, at first very long programs will be created, containing 
only some small segments of useful code. Since we set the runtime granted to a 
program for testing proportional to its size, this leads to a performance breakdown at 
the beginning. After better solutions have been found, these are fine-tuned during the 
rest of the time leading to almost constant throughput. At the end of the evolution, 
solutions like the code illustrated in Fig. 6 were found. 
 

4.3 Experiment Summary 

Our Genetic Programming system found the solution for the Euclidean Algorithm for 
calculating the GCD and a near-to optimal solution for determining the node with the 
maximum id, as shown in Fig. 6. To find an optimal automaton model, we have tested 
three different program code architectures. The current assembler-like language has 
replaced the previous high-level-language for the sake of faster interpretation and 
more efficient genetic operations. The first model was basically a non-Turing 
complete version of the current architecture. 
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We have also accumulated findings about mechanisms special to the evolution of 
distributed systems that will help us in further experiments. For example, some 
techniques have been developed to steer the evolution and increase the individual 
diversity, if the evolution gets stuck on a local optimum. 

5 Related Work 

The main advantages of our framework compared to other existing Genetic 
Programming or Genetic Algorithm libraries like GAUL [15], PMDGP [16], and 
JAGA [17] are the high scalability reached by the distribution of evaluation and 
reproduction (Fig. 3), the platform-independence allowing heterogeneous networks to 
collaborate, and a user-defined, reusable simulation environment. Most Genetic 
Programming frameworks which are based on interpreting use non-interruptible 
interpreters. This denies intermediate memory introspection, (see section 3.3) and was 
one of the reasons why we did not use ECJ [18], which is, in our opinion, the most 
versatile and efficient open source Genetic Programming framework currently 
available.  

Another issue distinguishing our approach from many others is that we do not use 
genomes. Instead we apply mutation and crossover directly to program code, allowing 
statistic knowledge to influence individual altering. If a binary operation has been 
selected for mutation, an “addition” instance for example, it will more likely be 
changed to a “binary or” than to a “xor” operation, since “binary or” and “addition” 
are more similar than “addition” and “xor” in terms of the likeness of the produced 
results of the operations. This leads to more efficient genetic operations. 

The built-in Network Simulator is structured simpler than pure simulation 
applications like SENSE [19], ns [23], ATEMU [22], J-Sim [20], and GloMoSim 
[21]. We do not put focus on simulating communications physically in a totally exact 
way, but reflect its characteristics by a stochastic model which is close enough to 
reality. Therefore, the performance is much higher than it would be when integrating 
one of these simulators.  

6 Conclusions and Future Work 

In this article, we have presented our Genetic Programming framework for sensor 
programming as well as first experimental results. The primary goal of our framework 
is to develop implementations of distributed programs running on sensor nodes, using 
Genetic Programming. The specific characteristics of sensor nodes like running 
autonomously, asynchronously, and without direct connection, has been explicitly 
modeled in our simulator. Our framework employs an assembler-like language which 
is the base for the evolution of the distributed programs. 

 
Currently, we are pursuing three short and medium term goals: 
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1. We pay special attention to determining the scalability limits of the Task 
Distribution System used in our Genetic Programming Framework. Therefore we 
run tests on clusters and, hopefully, in grid environments. 

2. As already mentioned in section 3.2, research on parameter adaptation strategies 
for Genetic Programming will be performed in spin-off projects. Studies show that 
the efficiency of an adaptation strategy is closely linked to the problem domain: 
methods that suit for numerical regression might fail completely for Genetic 
Programming and vice versa. 

3. A library of fitness functions for several algorithms for sensor networks will be 
built and maintained. Multi-objective Genetic Algorithms, such as SPEA2 [25], 
will be investigated for their utility for super-positioning fitness functions in our 
System. 

 
The ultimate goal of the project is to develop a methodology for automated sensor 
network software design employing Genetic Programming including a layered tool 
chain. The software designer will model the desired program by selecting predefined 
functional and non-functional attributes. Limits of the hardware, such as memory 
restricted to 100 words, can be composed with functional requirements, such as 
routing sensor data to a special node in the network. Using this model, a fitness 
function will be derived. With that fitness function, suitable programs can be grown 
which are automatically transformed to assembler- or high level language code and 
compiled to the target platform. 
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