
Genetic Programming for Sensor Networks

Thomas Weise

University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany
weise@vs.uni-kassel.de

Abstract. In this paper we present an approach to automated program code
generation for sensor nodes and other small devices using Genetic
Programming. We give a short introduction to Genetic Algorithms. Our new
Distributed Genetic Programming Framework facilitates the development of
sensor network applications. Genetic evolution of programs requires program
testing. Therefore we use a simulation environment for distributed systems of
sensor nodes. The simulation model takes into account characteristic features of
sensor nodes, such as unreliable communication and resource constraints. Two
application examples are presented that demonstrate the feasibility of our
approach and its potential to create robust and adaptive code for sensor network
applications.

1 Introduction

Today we experience a growing demand for distributed systems of small devices, like
sensor nodes [1]. Such devices are restricted in resources like memory size,
processing speed, and battery power. The communication among them is not reliable
and the topology of their network is volatile. The program code created for sensor
nodes should thus be robust and as efficient as possible. Our goal is to develop a
methodology that supports the development of software for sensors and similar
resource-constrained devices.

In this paper we describe the structure and functionality of a framework that allows
the automated code generation for sensors by Genetic Programming. Using a
behavioral description called fitness function, programs that are close-to-optimal
solutions for problems can be found with our system.

The benefits of genetically engineering code are manifold. Fitness functions can be
combined using multi-objective Genetic Algorithms [2]. That way, programs can be
created that perform more than one task. For example, sensor networks can be
instructed to vote for a “master node” via election and send all important data to that
node, whereby the significance of the data is measured by one fitness function and the
election algorithm is defined by another one.

Genetic Programming is able to create functional code, but it can also pursue
nonfunctional optimizations concerning code size, execution speed and network
traffic. Furthermore, Genetic Programming allows prioritizing such quality aspects.
For some applications, code size might be such a vital aspect that it becomes even
more important than correctness – a program might be more useful even if it produces

2 Thomas Weise

correct data only in 95% of all cases than one that is always right but doubled in size.
For some applications, reliability of transmission could be the most important aspect
while code size is only of secondary interest.

Another interesting aspect of Genetic Programming is that it constitutes one
suitable back end for a Model Driven Architecture [3]. Providing a model of what a
program should do in form of a fitness function, the user obtains automatically
created and even optimized source code.

Separating the model from the target platform in a way close to MDA, fitness
functions, once defined, may be reused for a variety of hardware or software
environments. Therefore, we believe that Genetic Programming has the potential to
become an integral part of modern programming methodologies for ubiquitous
computing environments.

The remainder of this article is structured as follows: In section 2, we give a quick
overview on the principles of Genetic Programming. Section 3 presents our DGP
Framework. First experimental results may be found in section 4. Some information
about related work and an outlook on future work conclude the article.

The prototype software of the project can be found in the internet at
http://sourceforge.net/projects/dgpf, governed by an open source license (LGPL).

2 The Genetic Programming Approach

For a long time, Genetic Algorithms have been used in science to derive solutions for
any type of problems, from construction of wind turbines [4] to pattern-recognition
systems [5]. The application of Genetic Algorithms with the goal to evolve computer
programs is called Genetic Programming [6]. This section will give an overview on
how Genetic Algorithms work in common.

In nature, a species adapts to an environment because the individuals that are the

fittest in respect to that environment will have the best chance to reproduce, possibly
creating even fitter offspring. Though this is a very rough simplification, it sums up
the basic idea of genetic evolution. A more detailed explanation would be out of
scope here.

As shown in Fig. 1, Genetic Algorithms start with an initial population of random
solution candidates, called individuals. In our case, the individuals are small programs
that can be executed on sensor nodes. As in nature, the population will be refined step
by step in a cycle of computing the fitness of its individuals, selecting the best
individuals and creating a new generation derived from these. If a reasonable good
solution has evolved, the algorithm will stop. [7]

One of the strengths of the genetic approach is that the fitness of the individuals
can be computed in parallel. Reproduction can be treated in the same manner. That
way, many possible solutions of a problem can be tested at once.

Genetic Programming for Sensor Networks 3

Reproduction
create new individuals from
the se lected ones by
crossover and mutation

Selection
select the fittest individuals
for reproduction

Evaluation
compute the fitness
values of the individuals

Control
gather statistical data and
check if we found a good
enough solution to stop

Initial Population
create an initial population
of random individuals

Fig. 1. Common cycle of Genetic Algorithms.

3 The Distributed Genetic Programming Framework

We have developed a Distributed Genetic Programming Framework (DGPF) based on
Java. It provides a highly customizable, open-source infrastructure for the
development of sensor software. The basic idea behind its architecture is to unleash
the distribution ability of Genetic Algorithms mentioned in the previous section while
preserving its versatility of being applied to many different problem domains. The
overall structure of the DGPF is structured in multiple layers, as illustrated in Fig. 2.

Genetic Algorithms Layer

distributes arbitrary tasks over a heterogeneous network
provides load balancing

error recoveryprovides

supports arbitrary Genetic Algorithms
provides multiple selection algorithms
gathers statistical data and controls the evolution

the basic operations of an automaton
provides the virtual hardware to simulate an automaton

additional operations for communication
provides a virtual network

Automaton
Simulation Basic Operations

Network
Simulation

Communication
Operations

Genetic Programming Layer

Fig. 2. The layered architecture of the Distribute Genetic Programming Framework.

3.1 The Task Distribution System

The base layer is formed by a task distribution system which allows one client system
to let arbitrary tasks be processed by arbitrary many task servers. The integrated load

4 Thomas Weise

balancing feature ensures that the load of tasks distributed to servers is proportional to
their computational power. It also checks how many tasks one node can perform in
parallel which may be more than one even for off-the-shelf PCs since their CPU may
support, for example, Hyper-Threading [8]. Another service of that layer is error
recovery which is especially useful when running experiments outside of a dedicated
testbed. Even when all task-processing servers are rebooted simultaneously, the
system keeps its stability (of course, it has to wait until all servers are available
again).

3.2 The Genetic Algorithms Layer

Genetic Algorithms are a versatile tool for problem solving. We want to concentrate
on Genetic Programming, especially for sensor networks. Our framework remains
flexible by providing a general abstraction layer for Genetic Algorithms.

Using the Task Distribution System, the breeding of solutions for a problem will be
distributed over a network analogously to the description in the previous chapter. Fig.
3 illustrates how the basic cycle of Figure 1 maps on our framework.

Selection

one clientarbitrary many servers

Control
Evaluation

Reproduction

Fig. 3. Distribution of Genetic Programming

While reproduction and evaluation of an individual is located at a distant server,
the new individual and its fitness are received at the client side.

To investigate a new problem domain using Genetic Algorithms, the user can

introduce new types of individuals. For these individuals, he or she must provide
• creation, mutation and crossover routines
• a fitness function

In order to assist the user, a layer may be put on top of the Genetic Algorithm

abstraction which delivers a template with creation/mutation/crossover routines but
without a fitness function. This template could for example simulate a special
hardware. This leaves the user the opportunity to specify different problems (using
different fitness functions) to be solved by this hardware by using the intermediate
layer.

Genetic Programming for Sensor Networks 5

The Genetic Algorithm layer also provides mechanisms to influence the parameters
of the evolution while it is actually in progress. The mutation- and crossover-rate, the
selection algorithm used, and many other parameters can be modified during the
genetic process to maximize the performance and to improve the problem-space
examination. Gathering statistical data, even a feedback loop can be created that
enables dynamic tuning of the genetic evolution process. Optimal parameter
adaptation strategies are currently subject of our research. This concept of central
control was the main reason for not applying other distribution schemes, like the
island model [9], [10]and the diffusion model [11].

3.3 The Automaton Simulation Layer

Since we want to breed code that may run on sensor nodes, we need to simulate such
distributed systems in order to evaluate the fitness of individuals. Our model for
distributed systems is twofold; it divides into
• the separate automata, and
• the communication between them.

An automaton consists of a virtual hardware holding its execution status and a
program running on that hardware. Unlike most other approaches in Genetic
Programming which grow stateless functions, we have developed an automaton
architecture with a fixed-sized memory. This allows us to breed programs that are
stateful instruction sequences instead of expressions that must be called every time an
input value changes to determine a new output.

An automaton is driven by a virtual CPU which executes one instruction of a
program per tick. It also holds statistical information on the clock cycles performed
and the time spent in sleep-mode. The step-by-step execution permits the
specification of a run time limit which is needed since the programs grown by the
DGPF are purposed to drive sensor nodes and hence do normally not terminate. They
usually contain a main loop executing a sequence of actions infinitely. The simulation
of an automaton may be paused at any time, allowing, for example, taking a look on
its memory: This feature is essential when testing whether the value of a memory cell
converges to a constant or changes infinitely, because one must compare the values at
t and t+n for equality. In some experiments like the evolution of an automated unique
ID creation system, this option has proved particularly useful.

Program
@0:
 SendWord mem[0]
 SendMessage
@1:
 mem[1]=ReceiveWord
 IfJump mem[1]<=mem[0], @1
@2:
 mem[0]=mem[1]
 Goto @0 D

at
a

M
em

or
y

Ticks

Slept Time

IP

SegP

Execution Status

231
-1

5532
-1

39342
-234

-1
120

Automaton

stepwise execution
Fig. 4. The components of an automaton and its simulation.

6 Thomas Weise

In the Automaton Simulation Layer we also define the format of the instructions
and expressions that can be executed on the virtual hardware. Using this format, we
are able to specify mutation, crossover and individual creation routines for the
Genetic Algorithm Layer, leaving only the fitness function subject to user
implementation.

The predefined expression set contains constants, binary, and unary expressions -
both logical and numerical - and a memory read instruction. Memory access can be
done using either direct addressing to obtain a value stored at a specified address or
by indirect addressing. For indirect access, the value stored at one address will be read
and used as address of the target memory cell.

The basic instruction set of our automata consists of only three instructions: a
conditional jump which has an expression and a target label as parameter, a memory
write instruction which can write the value of an expression to a memory cell using
either direct or indirect addressing, and a sleep instruction which puts the virtual CPU
into sleep mode for a specified count of clock cycles.

The instruction set can be reduced to the one introduced by Teller [12], granting
Turing completeness [13] in the usually applied informal sense.

3.4 The Network Simulation Layer

Resting on the Automaton Simulation Layer, the Network Simulation Layer extends
the instruction and expression sets by communication primitives. Automata are now
able to write data to their output buffer, send the contents of that buffer as a message,
receive such a message in their input buffer and iterate over the data items in that
input buffer. Monitoring that activity, the Network Simulation Layer also provides
additional statistical data for each automaton, holding information on the number of
messages sent, lost due to input buffer overflow, and successfully processed.

To model a distributed system, many automata are simulated in parallel for each
grown program. For this set of automata, the following assumptions will hold:

1. All automata run at approximately the same speed, since they are based on the

same virtual hardware. The execution speed might differ from automaton to
automaton and cannot be regarded as constant either.

2. Hence, the system of automata runs asynchronously, like real sensor nodes running
asynchronously even if they were switched on at the same time.

3. The automata will be started at different times.

The network simulator instance provides an absolute system time, keeps track on the
transmissions currently underway, and also maintains global statistics. Fig. 5 shows
how the automata of Fig. 4 will interact in a simulated network. Multiple automata
need to be instantiated each time the fitness of an individual is evaluated; the network
simulator can be reused. Since it is the most complex component in the simulation,
this saves initialization time and memory capacity on the server nodes.

Genetic Programming for Sensor Networks 7

Lost
Time

MsgCount
Collisions

Network StatusExecution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost
Processed
Sent

Net Extension

Execution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost
Processed
Sent

Net Extension

Execution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost
Processed
Sent

Net Extension
Execution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost

Processed
Sent

Net Extension

Execution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost
Processed
Sent

Net Extension

Execution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost
Processed
Sent

Net Extension
Execution Status

D
at

a
M

em
or

y

Ticks
Slept

IP
SegP

231
-1

5532
-1

39342
-234

-1
120

Lost
Received
Sent

Net Extension

Network of Automata

randomized stepwise execution
Fig. 5. The Network Simulator.

The network simulator evaluates systems that are connected wirelessly, and cannot
a priori guarantee reliable communication [14]. It therefore has the following
properties:

1. The links between the nodes are randomly created, yet it will be ensured that there

are no network partitions.
2. Messages are simple sequences of memory words with no predefined structure.
3. Messages cannot be sent directly. Like radio broadcasts they will be received by

any node in transmission distance. Finding out which message is of concern will be
in the responsibility of each node.

4. Messages can get lost without special cause.
5. Transmissions may take a random time until they reach their target.
6. The collision of two transmissions underway leads to the loss of both messages.

Code working correctly in such an environment can also expected to be robust and
adaptive in a real-world application. One example for such programs is shown in Fig.
6. We will refer to it again later.

@0:
 SendWord mem[0]
 SendMessage
@1:
 mem[1]=ReceiveWord
 IfJump mem[1]<=mem[0], @1
@2:
 mem[0]=mem[1]
 Goto @0

Fig. 6. A small example of code written in an assembler-like language. If each automaton were
initialized with a random number in its first memory cell (mem[0]), the biggest one of these
numbers would be known by all automata in the network after some time.

8 Thomas Weise

3.5 Evaluation of the Fitness function

As illustrated in Fig. 7, the fitness of an individual can be determined by running its
code on all automata in a simulated network. The results of this simulation run will be
compared to the results that the ideal behavior would yield. To obtain stable values,
this process will be repeated multiple times.

create random network

simulate the generated
code on that network

compute the results
the specified behavior
would yield

compare both results

Fitness function

Repeat this times and calculate
the average/minimum fitness.

n

Fig. 7. Computation of the fitness function for sensor networks.

Starting with the problem introduced in Fig. 6, we will discuss fitness function in
the following.
We want to solve a problem very similar to the well known election-problem. Each of
our automata will be initialized knowing only a unique, random number. The DGPF
should then grow a program allowing the nodes to find the maximum of these
numbers.

The ideal program would lead to each automaton knowing the maximum number
after its execution. A proper fitness function would thus be:

f(p) = the count of automatons knowing the maximum number.

This will work but also leads to a slow evolution because knowing the maximum

number enforces a lot of steps to be taken by the program. An automaton must send
its own unique number to its neighbors. Then, all received numbers must be compared
to its number, storing them only if they are bigger. The sequence of these steps must
be guessed by the evolution if there is no reward for intermediate results. Breeding
speed can be increased by incorporating knowledge about interim results, like giving
points for
• knowing the number of any other automaton
• knowing the number of any other automaton bigger as the own one

4 Experimental Results

Our Genetic Programming framework has reached its second revision. The
framework is a distributed system itself and unleashes the full parallelization potential
of Genetic Programming. We will demonstrate the functionality of our approach
using two examples. First we will look at the Euclidian Algorithm for determining the
greatest common divisor (GCD) of two numbers. The second example will show the
system’s performance when growing solutions for election problem, (i.e. finding the
maximum) mentioned in the previous chapter.

4.1 The GCD-Example

The first instance will only involve simulation on the Automaton Simulation Layer
(see section 3.3). The objective is to breed an algorithm that finds the GCD of two
numbers stored in the memory of an automaton. The fitness function for this case is
straightforward. After executing some time the automaton will be stopped. The value
it has now stored in its first memory cell will be compared with the GCD of two
values initially stored in its memory. The fitness is inversely proportional to the
difference of the real GCD to the computed value.

An evolutionary process was started, using only one PC for the computation with
client and server running on it simultaneously. One of the test runs produced the
fitness curve illustrated in Fig. 8: Starting with a bogus solution, problem space
exploration derives a complex algorithm using lots of unnecessary instructions like
putting the CPU into sleep mode for some time (Sleep) or indirect memory access
(mem[[n]]). The complicated solution suggested a few cycles later, already
producing correct results sometimes, is then refined to a more simple but not perfect
version which is always right.1

1 At this point it is useful to mention that the arithmetic operations division and modulo

have been modified as proposed in [6]. A division (or modulo) by zero will not fail but yield
the same result as a division (or modulo) by one.

10 Thomas Weise

0 5 10 15

Generation

Fi
tn

es
s

@0:
 mem[[1]]=811
 Goto @0

@0:
 mem[0]=mem[0]
 mem[1]=(mem[1]%mem[0])
 mem[0]=(mem[0]-(mem[1]%mem[0]))
 IfJump mem[[1]], @0
 Sleep (mem[0]/mem[0])
 IfJump mem[2], @0
 mem[[2]]=(mem[0]/(0/mem[0]))
 Goto @0

@0:
 mem[0]=mem[0]
 mem[1]=(mem[1]%mem[0])
 mem[0]=(mem[0]-mem[1])
 Goto @0

Fig. 8. The evolutionary progress of the GCD example.

4.2 The Maximum Example

As specified in 3.5, each automaton will be initialized knowing one unique, random
number in its first memory cell. After running a network simulation (using the
Network Simulation Layer) for some time, each automaton should know the
maximum of all these unique numbers. This strategy equals a simple election
algorithm. The fitness function will first simulate the system of the automata and then
compare the numbers the automata have stored in their first memory cell afterwards.
The fitness function will be the sum of all fitness values that the single automata have
achieved. Non-zero fitness values will be assigned to an automaton only if it has
stored a valid number - that is one which was used for initializing another automaton.
The fitness values assigned are proportional to the size of this number. By doing so,
we allow also intermediate results to be incorporated, which has turned out to be a
good strategy.

For this experiment we ran the evolution process using standard PCs connected via
a 100 MBit/s LAN and measured the throughput (Fig. 9). The network connection is
the bottleneck in the test, restricting the performance to only being something
between doubled and tripled in comparison to only a single computer. To maximize
throughput in systems of only a few computers we recommend running the client
simultaneously with a server on one machine. This server will then be the fastest since
it has no network latency. For networks of many computers, we expect the

Genetic Programming for Sensor Networks 11

performance gain by this approach being nullified by the resulting slowdown of other
processes on the system, including the load balancer module of the client.

0 min 500 min 1000 min 1500 min 2000 min
Time

In
di

vi
du

al
s p

ro
ce

ss
ed

/1
5

m
in

Client + Server 1 Server 2 Server 3
Server 4 Overall Performance

Fig. 9. The throughput of the maximum example.

As in the previous example, at first very long programs will be created, containing
only some small segments of useful code. Since we set the runtime granted to a
program for testing proportional to its size, this leads to a performance breakdown at
the beginning. After better solutions have been found, these are fine-tuned during the
rest of the time leading to almost constant throughput. At the end of the evolution,
solutions like the code illustrated in Fig. 6 were found.

4.3 Experiment Summary

Our Genetic Programming system found the solution for the Euclidean Algorithm for
calculating the GCD and a near-to optimal solution for determining the node with the
maximum id, as shown in Fig. 6. To find an optimal automaton model, we have tested
three different program code architectures. The current assembler-like language has
replaced the previous high-level-language for the sake of faster interpretation and
more efficient genetic operations. The first model was basically a non-Turing
complete version of the current architecture.

12 Thomas Weise

We have also accumulated findings about mechanisms special to the evolution of
distributed systems that will help us in further experiments. For example, some
techniques have been developed to steer the evolution and increase the individual
diversity, if the evolution gets stuck on a local optimum.

5 Related Work

The main advantages of our framework compared to other existing Genetic
Programming or Genetic Algorithm libraries like GAUL [15], PMDGP [16], and
JAGA [17] are the high scalability reached by the distribution of evaluation and
reproduction (Fig. 3), the platform-independence allowing heterogeneous networks to
collaborate, and a user-defined, reusable simulation environment. Most Genetic
Programming frameworks which are based on interpreting use non-interruptible
interpreters. This denies intermediate memory introspection, (see section 3.3) and was
one of the reasons why we did not use ECJ [18], which is, in our opinion, the most
versatile and efficient open source Genetic Programming framework currently
available.

Another issue distinguishing our approach from many others is that we do not use
genomes. Instead we apply mutation and crossover directly to program code, allowing
statistic knowledge to influence individual altering. If a binary operation has been
selected for mutation, an “addition” instance for example, it will more likely be
changed to a “binary or” than to a “xor” operation, since “binary or” and “addition”
are more similar than “addition” and “xor” in terms of the likeness of the produced
results of the operations. This leads to more efficient genetic operations.

The built-in Network Simulator is structured simpler than pure simulation
applications like SENSE [19], ns [23], ATEMU [22], J-Sim [20], and GloMoSim
[21]. We do not put focus on simulating communications physically in a totally exact
way, but reflect its characteristics by a stochastic model which is close enough to
reality. Therefore, the performance is much higher than it would be when integrating
one of these simulators.

6 Conclusions and Future Work

In this article, we have presented our Genetic Programming framework for sensor
programming as well as first experimental results. The primary goal of our framework
is to develop implementations of distributed programs running on sensor nodes, using
Genetic Programming. The specific characteristics of sensor nodes like running
autonomously, asynchronously, and without direct connection, has been explicitly
modeled in our simulator. Our framework employs an assembler-like language which
is the base for the evolution of the distributed programs.

Currently, we are pursuing three short and medium term goals:

Genetic Programming for Sensor Networks 13

1. We pay special attention to determining the scalability limits of the Task
Distribution System used in our Genetic Programming Framework. Therefore we
run tests on clusters and, hopefully, in grid environments.

2. As already mentioned in section 3.2, research on parameter adaptation strategies
for Genetic Programming will be performed in spin-off projects. Studies show that
the efficiency of an adaptation strategy is closely linked to the problem domain:
methods that suit for numerical regression might fail completely for Genetic
Programming and vice versa.

3. A library of fitness functions for several algorithms for sensor networks will be
built and maintained. Multi-objective Genetic Algorithms, such as SPEA2 [25],
will be investigated for their utility for super-positioning fitness functions in our
System.

The ultimate goal of the project is to develop a methodology for automated sensor
network software design employing Genetic Programming including a layered tool
chain. The software designer will model the desired program by selecting predefined
functional and non-functional attributes. Limits of the hardware, such as memory
restricted to 100 words, can be composed with functional requirements, such as
routing sensor data to a special node in the network. Using this model, a fitness
function will be derived. With that fitness function, suitable programs can be grown
which are automatically transformed to assembler- or high level language code and
compiled to the target platform.

References

[1] Chee-Yee Chong; Kumar, S.P. Proc, "Sensor networks: Evolution, opportunities, and
challenges", IEEE, August 2003

[2] J. David Schaffer, “Multiple Objective Optimization with Vector Evaluated

 Genetic Algorithms”, PhD thesis, Vanderbilt University, 1984

[3] Architecture Board ORMSC, “Model Driven Architecture (MDA)”, 2001, document

number ormsc/2001-07-01, http://www.omg.org/mda/

[4] Benini, Ernesto and Andrea Toffolo. "Optimal design of horizontal-axis wind

turbines using blade-element theory and evolutionary computation." Journal of Solar
Energy Engineering, vol.124, no.4, p.357-363 (November 2002)

[5] Rizki, Mateen, Michael Zmuda and Louis Tamburino. "Evolving pattern recognition

systems." IEEE Transactions on Evolutionary Computation, vol.6, no.6, p.594-609
(December 2002)

[6] Koza, John R., “Genetic Programming - On the Programming of Computers by

Means of Natural Selection”, The MIT Press, Massachusetts Institute of Technology
(1992)

14 Thomas Weise

[7] D. Whitley, A genetic algorithm tutorial, Tech. Rep. CS-93-103, Department of
Computer Science, Colorado State University, Fort Collins, CO 8052, March 1993

[8] Hyper-Threading Technology , Intel, http://www.intel.com/technology/hyperthread/

[9] Spector, L., and J. Klein. 2005. "Trivial Geography in Genetic Programming” in

Genetic Programming Theory and Practice III, edited by T. Yu, R.L. Riolo, and B.
 Worzel, pp. 109–124. Boston, MA: Kluwer Academic Publishers.

[10] W.N. Martin, J. Lienig and J. P. Cohoon (1997), “Island (migration) models:

evolutionary algorithms based on punctuated equilibria”, in T. Back, D.B. Fogel, Z.
Michalewicz (eds.), Handbook of evolutionary Computation. IOP Publishing and
Oxford University Press.

[11] C. C. Pettey (1997), “Diffusion (cellular) models”, in T. Back, D.B. Fogel, Z.

Michalewicz (eds.), Handbook of evolutionary Computation. IOP Publishing and
Oxford University Press.

[12] Astro Teller, "Turing completeness in the language of genetic programming with

indexed memory", Proceedings of the 1994 {IEEE} World Congress on
Computational Intelligence Volume 1, IEEE Press, 1994

[13] Woodward, John R., "Evolving turing complete representations", In Congress on

Evolutionary Computation, Cake talk at Birmingham 11th August 2003

[14] Farinaz Koushanfar, Miodrag Potkonjak, Alberto Sangiovanni-Vincentelli, "Fault

Tolerance in Wireless Sensor Networks", http://www-
cad.eecs.berkeley.edu/~farinaz/Papers/chapter-FT_04.pdf

[15] S. Adcock, "GAUL, the Genetic Algorithm Utility Library", 2004,

http://gaul.sourceforge.net/

[16] Meulen, P.G.M. van der, H. Schipper, A.M. Bazen and S.H. Gerez, "PMDGP: A

Distributed Object-Oriented Genetic Programming Environment", 7th Annual
Conference of the Advanced School for Computing and Imaging, Heijen, The
Netherlands, (2001)

[17] Paperin, Greg, “JAGA - Java API for Genetic Algorithms”, 2004,

http://www.sourceforge.org

[18] Luke, Sean, “ECJ: A Java-based evolutionary computation and genetic programming

system”, 2000, http://cs.gmu.edu/~eclab/projects/ecj/

[19] Chen G., J. Branch, M. J. Pflug, L. Zhu and B. Szymanski (2004). ”SENSE: A Sensor

Network Simulator”. Advances in Pervasive Computing and Networking. B.
Szymanksi and B. Yener, Springer: 249-267

[20] Hung-ying Tyan, "Design, Realization, and Evaluation of a Componen-Based

Compositional Software Architecture for Network Simulation", Dissertation, 2002,
The Ohio State University

Genetic Programming for Sensor Networks 15

[21] Xiang Zeng, Rajive Bagrodia, Mario Gerla, "GloMoSim: a library for parallel
simulation of large-scale wireless networks", Proceedings of the twelfth workshop on
Parallel and distributed simulation, 1998

[22] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk, John S. Baras:

"ATEMU: A Fine-grained Sensor Network Simulator", Proceedings of First IEEE
International Conference on Sensor and Ad Hoc Communication Networks
(SECON'04), Santa Clara, CA, October 2004

[23] “The Network Simulator – ns”, http://nsnam.isi.edu/nsnam/index.php/Main_Page

[24] Lidia Yamamoto, Christian Tschudin, "Genetic Evolution of Protocol

Implementations and Configurations", IFIP/IEEE International workshop on Self-
Managed Systems and Services (SelfMan 2005), Nice, France

[25] Zitzler, Laumanns, Thiele, "SPEA2: Improving the Strength Pareto Evolutionary

Algorithm for Multiobjective Optimization", Evolutionary Methods for Design,
Optimization and Control, CIMNE, Barcelona, Spain 2002

