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Abstract: The research into the ability of building self-learning natural language parser based on context–free grammar (CFG ) 
was presented. The paper investigates the use of evolutionary methods: a genetic algorithm, a genetic programming and learning 
classifier systems for inferring CFG based parser. The experiments were conducted on the real set of natural language sentences. 
The gained results confirm the feasibility of applying evolutionary algorithms for context-free grammatical inference. 
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1   Introduction 
The large amount of verbal data from common 
knowledge-elicitation methods suggests using 
knowledge acquisition by means of natural language 
processing systems (NLP systems). Additionally, 
knowledge acquisition via natural language much 
resembles man-man communication. To make possible 
wide use of NLP systems, we have to first equip the 
NLP system with the “smart” parser, which can be 
designed while working.  
     The problem of designing parsers (i.e. a correct 
grammars or equivalent automata) from actual sentences 
of the language is known as grammatical inference [7]. 
Grammatical inference is the gradual construction of a 
parser based on a finite set of sample expressions. In 
general, the training set may contain both positive and 
negative examples from the language under study. If 
only positive examples are available, no language class 
other than the finite cardinality languages is 
learnable [7]. 
     It has been proved that deterministic finite automata 
are the largest class that can be efficiently learned by 
provable converging algorithms. There is no context-free 
grammatical inference theory which provable converges, 
if language defined by a grammar is infinite [32]. 
Building algorithms that learn context–free grammars is 
one of the open and crucial problems in the grammatical 
inference [9]. 
     Many researchers have attacked the problem of 
evolving of (stochastic) CFG or equivalent pushdown 
automata [39, 38, 13, 5, 24, 21, 23, 14, 30, 16, 17], but 
very often for artificial languages (brackets, 
palindromes). The survey of the non-evolutionary 
approaches for context-free grammatical inference one 
can find in [22]. Here, we concentrate on applying three 
different evolutionary methods, i.e. a genetic algorithm, 
a genetic programming and learning classifier systems, 

for context-free grammatical inference of natural 
language sentences. 
     Section 2 discusses the evolutionary programming 
paradigms; section 3 states the motivation behind using 
evolutionary methods for context – free grammatical 
inference; the approach based on a genetic algorithm has 
been given in section 4; section 5 is on the genetic 
programming approach; section 6 describes the use of 
learning classifier systems in induction of context-free 
grammar, section 7 concludes the paper. 
 
 
2   Evolutionary programming paradigms 
Evolutionary algorithms are distinguished by the fact 
that they act on a population of potential solutions; they 
adapt an entire population of candidate solutions to the 
problem. These methods are based on biological 
populations and include selection operators which 
increase the number of better solutions in the population 
and decrease the number of the poorer ones, and other 
operators which generate new solutions. These methods 
differ in the standard representation of the problems and 
in the form and relative importance of the operations 
which introduce new solutions. 
     Genetic Algorithms (GA) were first proposed by 
Holland [10]. It is well known that the elements of 
genetic algorithms are initial population, crossover 
(emphasised by Holland), mutation, selection, 
reproduction and number of generations [8, 26]. In 
Evolutionary Programming (EP) Fogel [6] used selection 
and mutation to search over finite-state automata as 
solutions to a range of problems. Rechenberg [27] and 
Schwefel [29] developed a method called Evolutionary 
Strategies (ES) in which solutions to a problem were 
represented as real numbers. Koza [19] introduced 
Genetic Programming (GP), in which genetic algorithms 
are used to search parse trees of s-expressions. Learning 



 

Classifier Systems (LCS) are a machine learning 
paradigm developed by Holland [11]. CLS use a GA to 
generate condition/action rules or classifiers which are 
evaluated during interaction with      the problem 
environment. 
     These are the five so-called evolutionary 
programming paradigms. 
 
 
3   Evolutionary context-free grammatical 
inference 
Context–free grammar is a formal language grammar G 
= (VN, VP, P, S) where the production rules are of the 
form: A α where A ∈VN and α ∈ (VT∪VN)*. Most work 
in inference of CFGs has focused on learning the 
standardized Chomsky Normal Form of CFG in which 
the rules are of the form A  BC or A  a where A, B, C 
∈VN and a ∈ VT. Given a CFG G and a string α ∈ VT* 
we are interested in determining whether or not α is 
generated by the rules of G and if so, how is derived. 
     It is known, that there are very strong negative results 
for the learnability of CFGs. The main theorem is that it 
is impossible to identify context-free language in the 
limit if the data consists only of strings in the language 
being inferred [7]. Stochastic grammar induction tries to 
use distributional information to substitute for negative 
examples. Unfortunately, the “zero-frequency” problem 
entails assigning a small probability to all possible word 
patterns, thus ungrammatical n-grams become as 
probable as unseen grammatical ones. Due to their 
population-based approach, evolutionary methods are 
ideally suited for implementation in searching the right 
grammar, i.e. architecture of natural language parser 
(NLPa). Use of evolutionary methods can also bring to 
the grammar induction the ability to balance exploration 
and exploitation. The encouraging performance of 
evolutionary algorithms and their properties stimulated 
the present research. 
 
 
4   NLPa inference by GA 
Genetic algorithms are the search and optimisation 
techniques based on the “survival of the fittest” principle 
of natural evolution. Genetic algorithms – the 
probabilistic search technique – are powerful tools for 
exploring the multidimensional large search space with 
multimodality, discontinuity and noise. 
     The basic construction is to consider a population of 
individuals (the chromosomes) that each represents a 
potential solution to the given problem. The relative 
success of each individual on this problem is considered 
its fitness, and used to selectively reproduce fitter 
individual to produce similar but not identical offspring 

for the next generation. A set of genetic operators is 
applied to these offspring to make their genetic 
information different from their parents. By iterating this 
process, the population efficiently samples the spaces of 
potential individuals and eventually converges on the 
most fit. 
     A context-free grammar form was limited to Greibach 
normal form. This kind of representation of grammar is 
encoded as a three-dimensional matrix-chromosome. 
The left-hand symbols are represented by the first 
dimension. The options of the right-hand side of the rule 
are represented by the second dimension. The third 
dimension delimits the maximum length of the rules. 
The genetic operators were modified in the hope of 
better performance and adjusted to the grammar 
representation. The evaluation function evaluates the 
fitness value for each production rule proportionally to 
how often the rule was used, and which examples the 
rule let analyse. 
     The modified mutation factor for each rule is 
calculated on the bases of the classical mutation factor 
and the fitness value. The proposed selection operator is 
based on a roulette-wheel algorithm. Three main 
experiments for the natural languages: Polish, English 
and German were carried out. About 110 legal and 38 
illegal examples of sentences (ratio about of three to 
one) were used for each language. The examples of 
sentences were taken from language-course-books for 
first grade foreign students. All the main experiments 
were carried out with the same values of genetic 
algorithm parameters. The probability of crossover and 
probability of mutation were linearly changed from the 
initial value until the final value throughout the 
experiment. Values of genetic algorithm parameters used 
in experiments: number of nonterminal symbols 14, 
number of terminal symbols 14, number of rules in each 
nonterminal 7, maximal length of rule 5 symbols, the 
size of population 200, generations 8000, the probability 
of crossover at the beginning of the experiment 0.4, the 
probability of crossover at the end of the experiment 0.6, 
the probability of mutation at the beginning of 
experiment 0.5, the probability of mutation at the end of 
experiment 0.001.  
     Figure 1 demonstrates the maximal fitness of a 
population in selected experiment with natural language 
sentences. After the fitness reached the level of 0.008 it 
kept this value for rest of the process for Polish and 
English language. Apparently the GA was driven to a 
local optimum from which it could not escape. Only the 
grammar derived from German sentences is able to find 
new niche.  
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Fig. 1. The maximal fitness in the experiment with 
natural language sentences 
 
 
5   NLPa inference by GP 
A context-free grammar can be represented by a 
pushdown automaton [15]. The automaton serves both as 
an acceptor for the language (that is, it can decide 
whether or not any arbitrary sentence is in the language) 
and as a generator for the language (that is, it can 
generate any finite sentence in the language in finite 
time). The recent application of finite-state approach in 
natural language processing shows the usefulness of 
automata in this area of AI [18, 28].  
     Unold [33, 34, 35] proposed a pushdown automaton-
based parser of natural language texts, so called PDAMS 
(nondeterministic PushDown Automaton with 
associative Memory accesS), and in [36] presented 
theoretical bases for the use of two classes of 
evolutionary computation, that is evolutionary 
programming and genetic programming, that support 
inference of automaton-driven parser of natural 
language.  
     Genetic programming [19] breeds a population of 
rooted, point-labelled trees with ordered branches. From 
here also, to be able to use this class of evolutionary 
computation in evaluating the architecture of parser, one 
should first find a suitable method of mapping the 
transition graph of PDAMS onto a tree structure. There 
are two encoding techniques that we can apply i.e. 
cellular encoding and edge encoding. Both methods rely 
in fact on operating on indirect structures, the so-called 
grammar-trees, which are subject to genetic 
programming process. Every structure represents a 
graph. The grammar-tree is a genotype and the PDMAS 
constructed in accordance with the tree's instruction is a 
phenotype. 

     Experimental assessment for the proposed approach 
has been done for several grammars, including formal 
and English grammar. Figure 2 demonstrates the average 
and maximal fitness of a population in selected 
experiment with an English adverbial group. The 
crossover probability of 0.4, mutation probability of 0.9, 
population size of 30. 
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6   NLPa inference by LCS 
Learning Classifier Systems (LCS) exploit evolutionary 
computation and reinforcement learning to develop a set 
of condition-rules (the classifiers) which represent a 
target task that the system has learned from experience. 
LCS learns by interacting with an environment from 
which it receives feedback in the form of numerical 
reward. Learning is achieved by trying to maximize the 
amount of reward received. There are many models of 
LCSs and therefore classifier systems (for example 
Wilson’s XCS [37], Stolzmann’s ACS [31] or Holmes’s 
EpiCS [12]). All LCSs models comprise four main 
components: a finite population of condition-action rules 
(the classifiers); the performance component, which 
governs the interaction with the environment (the rule 
and message system); the reinforcement component (the 
credit assignment component), which distributes the 
reward received from the environment to the classifiers 
accountable for the rewards obtained; the discovery 
component, which is responsible for discovering better 
rules and improving existing ones through a genetic 
algorithm. 
     In the system mentioned, the population of grammars 
plays the role of system classifiers. Every classifier is of 
a form: grammar_production: message, where 
grammar_production is one of productions of the given 



 

grammar, and message is a message sent to the list if the 
respective classifier reacts. Execution of a rule takes 
place when a production can parse a part of a sentence or 
a whole sentence that is currently being analysed. 
     Every classifier has an assigned strength, whose task 
is to determine the respective classifier’s / production’s 
usability for the given grammar. In the beginning all 
classifiers have the same strength, but in the analysis 
process they receive positive or negative reward, which 
is the result of the actions they undertake.  
     Every sentence of the given natural language is 
analysed in turns by the whole population. The initial 
form of the grammars used by the system is randomly 
generated. The LCS has two aims. The first is checking 
the adjustment level of the grammars, that is the 
correctness of analyses of the given sentences in a 
natural language. The second is paying to the classifiers, 
or reducing the strength assigned to the classifiers, 
context-free grammar productions taking part in the 
analysis.   The list of messages is the system memory 
storing the results of every classifier’s action. The first 
item in the list is always a sentence sent by the system 
environment. The messages in the list are acted on by the 
classifiers in turns. These classifiers which are able to 
match the production to the particular sentence get the 
right to place their own message in the list. The list is 
compiled until none of the classifiers can execute its 
action, that is none of the production matches the 
sentence part being currently analysed. Every classifier 
placing its message in the list has to pay a conventional 
fee, being a part of its strength. The fee is then 
transferred to a classifier (or distributed among a greater 
number of classifiers) that placed in the message 
reinforcing the execution of the current rule. The 
classifier finishing a sentence analysis receives reward 
from the system environment.  Moreover, all classifiers 
taking part in the full or partial analysis of a given 
sentence can be additionally paid a conventional number 
of strength points. The algorithm described concerns 
correct sentences. The only modification of the 
algorithm concerning incorrect sentences is the negative 
value of the reward.  
     Genetic algorithm takes the particular grammars as 
chromosomes, and the grammar productions as genes. 
Crossing and selection are carried out upon all the 
grammars (treated as production vectors), whereas 
mutation modifies (adds, deletes, replaces) singular 
symbols of the particular productions.  
     About a hundred of correct and thirty incorrect 
sentences were used in the experiments. The average 
adjustment strength for all grammar classifiers / 
productions, and the difference of the number of the 
analysed correct and incorrect sentences were taken as 
the fitness function. 

     Figure 3 illustrates the results of one of the numerous 
experiments conducted upon English sentences. Figure 
shows values of the analysed features averaged for all 
grammars in the given population. Graph A denotes the 
number of full parse paths performed in a single analysis 
cycle. Graph B denotes the number of correct sentences 
fully analysed by the grammars in a single analysis 
cycle. The number of sentences analysed correctly by the 
evolved grammars reaches 90%. The values of certain 
parameters were as follows: 5000 generations, 14 
terminals, 8 nonterminals, maximally 16 rules for one 
nonterminal, 8 symbols in a rule, fitness function of the 
type ‘number of correct sentences analysed by the 
grammar minus number of incorrect sentences analysed’, 
size of the population 30, 3-point crossing, crossing 
probability 90%, mutation probability 1%, genetic 
algorithm operation every 10 cycles, reward for a full 
analysis of a correct sentence 40 points, reward for a 
partial analysis 25 points, negative reward for full 
analysis of an incorrect sentence 20 points, negative 
reward for partial analysis 10 points, 102 correct and 30 
incorrect sentences in the learning set.  
 
 
 
 

 
 

 
Fig. 3. The averaged values of parameters for evolved 
grammars 
 
 
7   Conclusions 
The goal of presented research is to build “smart” natural 
language parser based on CFG. This kind of parser 
acquires a language as a child – on the basis of the 
sentences that it encounters during the learning. This 
paper investigates the use of evolutionary methods: a 
genetic algorithm, a genetic programming and learning 
classifier systems for inferring CFG based parser. It is 
worth noticing, that the experiments were conducted on 
the real set of natural language sentences. 
     The first approach, in which a genetic algorithm was 
applied simply, is not very effective. Grammatical 
inference is a difficult problem for GA, due to the lack 
of natural building blocks in matrix-encoded grammars. 
Moreover, the adapted crossover operators shift the rule 
productions between the nonterminals. Crossover would 
take care of improving a grammar, but remember that a 
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grammar is a complex structure, and the particular parts 
of grammar (the rule productions) are only good in 
relation to other parts.  
     The best results were obtained in LCS approach. First 
of all, we have restricted the movement of the rule 
production during the crossover. Next, the generalization 
of LCS was exploited with success. Better results can be 
obtained by employing a greater population of 
grammars, than by increasing sizes of individuals, that is 
by increasing excessively the number of productions and 
their lengths. 
     The genetic programming approach based on the 
pushdown automaton shows great promise, although it 
still has few weak points. Proper inferring of the 
PDMAS parser relays in fact mainly on the proper 
definition of the edge encoding operators. For the 
simpler languages, as regular ones, the method and 
representation has been proven to be effective. 
     In summary, the results obtained confirm the 
feasibility of applying evolutionary algorithms for 
context–free grammatical inference, where CFG 
represents the natural language grammar.  
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