

Context–free grammar induction using evolutionary methods

OLGIERD UNOLD
Institute of Engineering Cybernetics
Wroclaw University of Technology

Wyb. Wyspianskiego 27, 50-370 Wroclaw
POLAND

Abstract: The research into the ability of building self-learning natural language parser based on context–free grammar (CFG)
was presented. The paper investigates the use of evolutionary methods: a genetic algorithm, a genetic programming and learning
classifier systems for inferring CFG based parser. The experiments were conducted on the real set of natural language sentences.
The gained results confirm the feasibility of applying evolutionary algorithms for context-free grammatical inference.

Key-words: Grammatical inference, context–free grammars, natural language processing, evolutionary computation

1 Introduction
The large amount of verbal data from common
knowledge-elicitation methods suggests using
knowledge acquisition by means of natural language
processing systems (NLP systems). Additionally,
knowledge acquisition via natural language much
resembles man-man communication. To make possible
wide use of NLP systems, we have to first equip the
NLP system with the “smart” parser, which can be
designed while working.
 The problem of designing parsers (i.e. a correct
grammars or equivalent automata) from actual sentences
of the language is known as grammatical inference [7].
Grammatical inference is the gradual construction of a
parser based on a finite set of sample expressions. In
general, the training set may contain both positive and
negative examples from the language under study. If
only positive examples are available, no language class
other than the finite cardinality languages is
learnable [7].
 It has been proved that deterministic finite automata
are the largest class that can be efficiently learned by
provable converging algorithms. There is no context-free
grammatical inference theory which provable converges,
if language defined by a grammar is infinite [32].
Building algorithms that learn context–free grammars is
one of the open and crucial problems in the grammatical
inference [9].
 Many researchers have attacked the problem of
evolving of (stochastic) CFG or equivalent pushdown
automata [39, 38, 13, 5, 24, 21, 23, 14, 30, 16, 17], but
very often for artificial languages (brackets,
palindromes). The survey of the non-evolutionary
approaches for context-free grammatical inference one
can find in [22]. Here, we concentrate on applying three
different evolutionary methods, i.e. a genetic algorithm,
a genetic programming and learning classifier systems,

for context-free grammatical inference of natural
language sentences.
 Section 2 discusses the evolutionary programming
paradigms; section 3 states the motivation behind using
evolutionary methods for context – free grammatical
inference; the approach based on a genetic algorithm has
been given in section 4; section 5 is on the genetic
programming approach; section 6 describes the use of
learning classifier systems in induction of context-free
grammar, section 7 concludes the paper.

2 Evolutionary programming paradigms
Evolutionary algorithms are distinguished by the fact
that they act on a population of potential solutions; they
adapt an entire population of candidate solutions to the
problem. These methods are based on biological
populations and include selection operators which
increase the number of better solutions in the population
and decrease the number of the poorer ones, and other
operators which generate new solutions. These methods
differ in the standard representation of the problems and
in the form and relative importance of the operations
which introduce new solutions.
 Genetic Algorithms (GA) were first proposed by
Holland [10]. It is well known that the elements of
genetic algorithms are initial population, crossover
(emphasised by Holland), mutation, selection,
reproduction and number of generations [8, 26]. In
Evolutionary Programming (EP) Fogel [6] used selection
and mutation to search over finite-state automata as
solutions to a range of problems. Rechenberg [27] and
Schwefel [29] developed a method called Evolutionary
Strategies (ES) in which solutions to a problem were
represented as real numbers. Koza [19] introduced
Genetic Programming (GP), in which genetic algorithms
are used to search parse trees of s-expressions. Learning

Classifier Systems (LCS) are a machine learning
paradigm developed by Holland [11]. CLS use a GA to
generate condition/action rules or classifiers which are
evaluated during interaction with the problem
environment.
 These are the five so-called evolutionary
programming paradigms.

3 Evolutionary context-free grammatical
inference
Context–free grammar is a formal language grammar G
= (VN, VP, P, S) where the production rules are of the
form: A α where A ∈VN and α ∈ (VT∪VN)*. Most work
in inference of CFGs has focused on learning the
standardized Chomsky Normal Form of CFG in which
the rules are of the form A BC or A a where A, B, C
∈VN and a ∈ VT. Given a CFG G and a string α ∈ VT*
we are interested in determining whether or not α is
generated by the rules of G and if so, how is derived.
 It is known, that there are very strong negative results
for the learnability of CFGs. The main theorem is that it
is impossible to identify context-free language in the
limit if the data consists only of strings in the language
being inferred [7]. Stochastic grammar induction tries to
use distributional information to substitute for negative
examples. Unfortunately, the “zero-frequency” problem
entails assigning a small probability to all possible word
patterns, thus ungrammatical n-grams become as
probable as unseen grammatical ones. Due to their
population-based approach, evolutionary methods are
ideally suited for implementation in searching the right
grammar, i.e. architecture of natural language parser
(NLPa). Use of evolutionary methods can also bring to
the grammar induction the ability to balance exploration
and exploitation. The encouraging performance of
evolutionary algorithms and their properties stimulated
the present research.

4 NLPa inference by GA
Genetic algorithms are the search and optimisation
techniques based on the “survival of the fittest” principle
of natural evolution. Genetic algorithms – the
probabilistic search technique – are powerful tools for
exploring the multidimensional large search space with
multimodality, discontinuity and noise.
 The basic construction is to consider a population of
individuals (the chromosomes) that each represents a
potential solution to the given problem. The relative
success of each individual on this problem is considered
its fitness, and used to selectively reproduce fitter
individual to produce similar but not identical offspring

for the next generation. A set of genetic operators is
applied to these offspring to make their genetic
information different from their parents. By iterating this
process, the population efficiently samples the spaces of
potential individuals and eventually converges on the
most fit.
 A context-free grammar form was limited to Greibach
normal form. This kind of representation of grammar is
encoded as a three-dimensional matrix-chromosome.
The left-hand symbols are represented by the first
dimension. The options of the right-hand side of the rule
are represented by the second dimension. The third
dimension delimits the maximum length of the rules.
The genetic operators were modified in the hope of
better performance and adjusted to the grammar
representation. The evaluation function evaluates the
fitness value for each production rule proportionally to
how often the rule was used, and which examples the
rule let analyse.
 The modified mutation factor for each rule is
calculated on the bases of the classical mutation factor
and the fitness value. The proposed selection operator is
based on a roulette-wheel algorithm. Three main
experiments for the natural languages: Polish, English
and German were carried out. About 110 legal and 38
illegal examples of sentences (ratio about of three to
one) were used for each language. The examples of
sentences were taken from language-course-books for
first grade foreign students. All the main experiments
were carried out with the same values of genetic
algorithm parameters. The probability of crossover and
probability of mutation were linearly changed from the
initial value until the final value throughout the
experiment. Values of genetic algorithm parameters used
in experiments: number of nonterminal symbols 14,
number of terminal symbols 14, number of rules in each
nonterminal 7, maximal length of rule 5 symbols, the
size of population 200, generations 8000, the probability
of crossover at the beginning of the experiment 0.4, the
probability of crossover at the end of the experiment 0.6,
the probability of mutation at the beginning of
experiment 0.5, the probability of mutation at the end of
experiment 0.001.
 Figure 1 demonstrates the maximal fitness of a
population in selected experiment with natural language
sentences. After the fitness reached the level of 0.008 it
kept this value for rest of the process for Polish and
English language. Apparently the GA was driven to a
local optimum from which it could not escape. Only the
grammar derived from German sentences is able to find
new niche.

0

0.002

0.004

0.006

0.008

0.01

0.012

1

49
2

98
3

14
74

19
65

24
56

29
47

34
38

39
29

44
20

49
11

54
02

58
93

63
84

68
75

73
66

78
57

Polish

German

English

Fig. 1. The maximal fitness in the experiment with
natural language sentences

5 NLPa inference by GP
A context-free grammar can be represented by a
pushdown automaton [15]. The automaton serves both as
an acceptor for the language (that is, it can decide
whether or not any arbitrary sentence is in the language)
and as a generator for the language (that is, it can
generate any finite sentence in the language in finite
time). The recent application of finite-state approach in
natural language processing shows the usefulness of
automata in this area of AI [18, 28].
 Unold [33, 34, 35] proposed a pushdown automaton-
based parser of natural language texts, so called PDAMS
(nondeterministic PushDown Automaton with
associative Memory accesS), and in [36] presented
theoretical bases for the use of two classes of
evolutionary computation, that is evolutionary
programming and genetic programming, that support
inference of automaton-driven parser of natural
language.
 Genetic programming [19] breeds a population of
rooted, point-labelled trees with ordered branches. From
here also, to be able to use this class of evolutionary
computation in evaluating the architecture of parser, one
should first find a suitable method of mapping the
transition graph of PDAMS onto a tree structure. There
are two encoding techniques that we can apply i.e.
cellular encoding and edge encoding. Both methods rely
in fact on operating on indirect structures, the so-called
grammar-trees, which are subject to genetic
programming process. Every structure represents a
graph. The grammar-tree is a genotype and the PDMAS
constructed in accordance with the tree's instruction is a
phenotype.

 Experimental assessment for the proposed approach
has been done for several grammars, including formal
and English grammar. Figure 2 demonstrates the average
and maximal fitness of a population in selected
experiment with an English adverbial group. The
crossover probability of 0.4, mutation probability of 0.9,
population size of 30.

0

0.2

0.4

0.6

0.8

1 11 21 31 41 51 61

Maximal

Average

Fig. 2. The average and maximal fitness of a population
with an English adverbial group

6 NLPa inference by LCS
Learning Classifier Systems (LCS) exploit evolutionary
computation and reinforcement learning to develop a set
of condition-rules (the classifiers) which represent a
target task that the system has learned from experience.
LCS learns by interacting with an environment from
which it receives feedback in the form of numerical
reward. Learning is achieved by trying to maximize the
amount of reward received. There are many models of
LCSs and therefore classifier systems (for example
Wilson’s XCS [37], Stolzmann’s ACS [31] or Holmes’s
EpiCS [12]). All LCSs models comprise four main
components: a finite population of condition-action rules
(the classifiers); the performance component, which
governs the interaction with the environment (the rule
and message system); the reinforcement component (the
credit assignment component), which distributes the
reward received from the environment to the classifiers
accountable for the rewards obtained; the discovery
component, which is responsible for discovering better
rules and improving existing ones through a genetic
algorithm.
 In the system mentioned, the population of grammars
plays the role of system classifiers. Every classifier is of
a form: grammar_production: message, where
grammar_production is one of productions of the given

grammar, and message is a message sent to the list if the
respective classifier reacts. Execution of a rule takes
place when a production can parse a part of a sentence or
a whole sentence that is currently being analysed.
 Every classifier has an assigned strength, whose task
is to determine the respective classifier’s / production’s
usability for the given grammar. In the beginning all
classifiers have the same strength, but in the analysis
process they receive positive or negative reward, which
is the result of the actions they undertake.
 Every sentence of the given natural language is
analysed in turns by the whole population. The initial
form of the grammars used by the system is randomly
generated. The LCS has two aims. The first is checking
the adjustment level of the grammars, that is the
correctness of analyses of the given sentences in a
natural language. The second is paying to the classifiers,
or reducing the strength assigned to the classifiers,
context-free grammar productions taking part in the
analysis. The list of messages is the system memory
storing the results of every classifier’s action. The first
item in the list is always a sentence sent by the system
environment. The messages in the list are acted on by the
classifiers in turns. These classifiers which are able to
match the production to the particular sentence get the
right to place their own message in the list. The list is
compiled until none of the classifiers can execute its
action, that is none of the production matches the
sentence part being currently analysed. Every classifier
placing its message in the list has to pay a conventional
fee, being a part of its strength. The fee is then
transferred to a classifier (or distributed among a greater
number of classifiers) that placed in the message
reinforcing the execution of the current rule. The
classifier finishing a sentence analysis receives reward
from the system environment. Moreover, all classifiers
taking part in the full or partial analysis of a given
sentence can be additionally paid a conventional number
of strength points. The algorithm described concerns
correct sentences. The only modification of the
algorithm concerning incorrect sentences is the negative
value of the reward.
 Genetic algorithm takes the particular grammars as
chromosomes, and the grammar productions as genes.
Crossing and selection are carried out upon all the
grammars (treated as production vectors), whereas
mutation modifies (adds, deletes, replaces) singular
symbols of the particular productions.
 About a hundred of correct and thirty incorrect
sentences were used in the experiments. The average
adjustment strength for all grammar classifiers /
productions, and the difference of the number of the
analysed correct and incorrect sentences were taken as
the fitness function.

 Figure 3 illustrates the results of one of the numerous
experiments conducted upon English sentences. Figure
shows values of the analysed features averaged for all
grammars in the given population. Graph A denotes the
number of full parse paths performed in a single analysis
cycle. Graph B denotes the number of correct sentences
fully analysed by the grammars in a single analysis
cycle. The number of sentences analysed correctly by the
evolved grammars reaches 90%. The values of certain
parameters were as follows: 5000 generations, 14
terminals, 8 nonterminals, maximally 16 rules for one
nonterminal, 8 symbols in a rule, fitness function of the
type ‘number of correct sentences analysed by the
grammar minus number of incorrect sentences analysed’,
size of the population 30, 3-point crossing, crossing
probability 90%, mutation probability 1%, genetic
algorithm operation every 10 cycles, reward for a full
analysis of a correct sentence 40 points, reward for a
partial analysis 25 points, negative reward for full
analysis of an incorrect sentence 20 points, negative
reward for partial analysis 10 points, 102 correct and 30
incorrect sentences in the learning set.

Fig. 3. The averaged values of parameters for evolved
grammars

7 Conclusions
The goal of presented research is to build “smart” natural
language parser based on CFG. This kind of parser
acquires a language as a child – on the basis of the
sentences that it encounters during the learning. This
paper investigates the use of evolutionary methods: a
genetic algorithm, a genetic programming and learning
classifier systems for inferring CFG based parser. It is
worth noticing, that the experiments were conducted on
the real set of natural language sentences.
 The first approach, in which a genetic algorithm was
applied simply, is not very effective. Grammatical
inference is a difficult problem for GA, due to the lack
of natural building blocks in matrix-encoded grammars.
Moreover, the adapted crossover operators shift the rule
productions between the nonterminals. Crossover would
take care of improving a grammar, but remember that a

A

B

grammar is a complex structure, and the particular parts
of grammar (the rule productions) are only good in
relation to other parts.
 The best results were obtained in LCS approach. First
of all, we have restricted the movement of the rule
production during the crossover. Next, the generalization
of LCS was exploited with success. Better results can be
obtained by employing a greater population of
grammars, than by increasing sizes of individuals, that is
by increasing excessively the number of productions and
their lengths.
 The genetic programming approach based on the
pushdown automaton shows great promise, although it
still has few weak points. Proper inferring of the
PDMAS parser relays in fact mainly on the proper
definition of the edge encoding operators. For the
simpler languages, as regular ones, the method and
representation has been proven to be effective.
 In summary, the results obtained confirm the
feasibility of applying evolutionary algorithms for
context–free grammatical inference, where CFG
represents the natural language grammar.

References:

[1] D. Andre, F.H. Bennet III, J. Koza, M. Keane, On
the Theory of Designing Circuits using Genetic
Programming and a Minimum of Domain Knowl-
edge, Proc. of the 1998 IEEE Congress on Com-
putional Intelligence WCCI'98, Anchorge, Alaska,
1998, pp. 130-135.

[2] M. Chrobak, O. Unold, Natural Language
Grammar Inference by Genetic Search, [in:] J.A.
Meech at al. (eds.) Proceedings of the Third
International Conference on Intelligent Processing
and Manufacturing of Materials. IPMM - 2001,
Canada, 2001, July 29 - August 3.

[3] G. Dąbrowski, Use of Classifier Systems in
Natural Language Processing, M.Sc. - thesis,
Wroclaw University of Technology, 2001 (in
Polish).

[4] G. Dulewicz, O.Unold, Evolving Natural
Language Parser with Genetic Programming, [in:]
A. Abraham, M. Koppen (eds.) Advances in Soft
Computing. Hybrid Information Systems,
Physica-Verlag, Springer-Verlag Company, Ger-
many, 2002, pp. 361-377.

[5] P. Dupont, Regular Grammatical Inference from
Positive and Negative Samples by Genetic Search,
Grammatical Inference and Application, Second
International Colloquium ICG-94, Berlin,
Springer, 1994, pp. 236-245.

[6] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial
Intelligence through Simulated Evolution. John
Wiley, New York, 1966.

[7] E. Gold, Language Identification in the Limit,
Information Control, 10, 1967, pp. 447-474.

[8] D.E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Reading, Massachusetts, 1989.

[9] C. de la Higuera. Current Trends in Grammatical
Inference, [in:] F. J. Ferri et al. (eds.) Advances in
Pattern Recognition, Joint IAPR International
Workshops SSPR+SPR'2000, volume 1876 of
LNCS, Springer, 2000, pp.28-31.

[10] J. Holland, Adaptation in Natural and Artificial
Systems, MIT Press, 1975.

[11] J. Holland. Escaping brittleness: The Possibili-
ties of General-Purpose Learning Algorithms
Applied to Parallel Rule-Based Systems, [in:] R.
S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.)
Machine Learning Vol.II, chapter 20, Morgan
Kaufmann Publishers, Inc., 1986, pp. 593--623.

[12] J.H. Holmes, Evolution-Assisted Discovery of
Sentinel Features in Epidemiologic Surveillance,
Ph.D. – thesis, Drexel University, 1996.

[13] W. Huijsen, Genetic Grammatical Inference:
Induction of Pushdown Automata and Context-
Free Grammars from Examples Using Genetic
Algorithms. M.Sc.- thesis, Dept. of Computer
Science, University of Twente, Enschede, The
Netherlands, 1993.

[14] T.E. Kammeyer, R.K. Belew, Stochastic
Context-Free Grammar Induction with a Genetic
Algorithm Using Local Search. Technical Report
CS96-476, Cognitive Computer Science Rsearch
Group, Computer Science and Engineering De-
partment, University of California at San Diego,
1996.

[15] A. Kandel, S.C. Lee, Fuzzy Switching and
Automata: Theory and Applications, Crane Rus-
sak, New York, 1979.

[16] B. Keller, R. Lutz, Learning Stochastic Context-
Free Grammars from Corpora Using a Genetic
Algorithm, Proceedings International Conference
on Artificial Neural Networks and Genetic Algo-
rithms (ICANNGA-97), 1997.

[17] E.E. Korkmaz, G. Ucoluk, Genetic Program-
ming for Grammar Induction, Proc. Of the Genetic
and Evolutionary Conference GECCO-2001, San
Francisco Ca, Morgan Kaufmann Publishers,
2001, pp. 180.

[18] A. Kornai (ed), Extended Finite State Models of
Language, Cambridge University Press, Cam-
bridge, 1999.

[19] J. Koza, Genetic Programming, MIT Press,
Cambridge, MA, 1992.

[20] M.M. Lankhorst, Grammatical Inference with a
Genetic Algorithm, [in:] Dekke L., Smit W.,
Zuidervaart J.C. (eds.) Proc. of the 1994

EUROSIM Conf. on Massively Parallel Procesing
Applications and Development, Elsevier, Amster-
dam, 1994, pp. 423-430.

[21] M.M. Lankhorst, A Genetic Algorithm for the
Induction of Nondeterministic Pushdown Auto-
mata. Computing Science Reports CS-R 9502,
Department of Computing Science, University of
Groningen, 1995.

[22] L. Lee, Learning of Context-Free Languages: A
Survey of the Literature, Harvard University
Technical Report TR-12-96, 1996.

[23] R.M. Losee, Learning Syntactic Rules and Tags
with Genetic Algorithms for Information Retrieval
and Filtering: An Empirical Basis for Grammatical
Rules, in Information Processing & Management,
1995.

[24] S. Lucas, Context-Free Grammar Evolution,
[in:] First International Conference on Evolution-
ary Computing, 1994, pp. 130-135.

[25] S. Luke, L. Spector, Evolving Graphs and
Networks with Edge Encoding: Preliminary
Report, [in:] Koza J (ed.) Late-Breaking Papers of
Genetic Programming 96, Stanford Bookstore,
1996, pp. 117-124.

[26] K.E. Man, K.S. Tang, S. Kwong, Genetic
Algorithms: Concept and Design, Springer, 1999.

[27] I. Rechenberg, Evolutionsstrategie: Optimierung
Technischer System nach Prinzipien der
biologischen Evolution, Fromman-Holzboog,
Stuttgart, 1973.

[28] E. Roche, Y. Schabes, Finite-State Language
Processing, A Bradford Book, The MIT Press,
Cambridge, Massachusetts, 1997.

[29] H. Schwefel, Numerische Optimierung von
Computer-Modellen mittels der Evolutionsstrate-
gie, [in:] Interdisciplinary Systems Research
vol. 26, Birkhauser, Basel, 1997, pp. 319-354.

[30] T.C. Smith, I.H. Witten, Learning Language
Using Genetic Algorithms, [in:] S. Wermter,
E.Rilo, G. Scheler (eds.) Connectionist, Statistical,
and Symbolic Approaches to Learning for Natural
Language Processing, volume 1040 of LNAI,
1996.

[31] W. Stolzmann, An Introduction to Anticipatory
Classifier Systems, [in:] Lanzi et al (eds.) Learn-
ing Classifier Systems: From Foundation to
Application, Vol. 1813 of LNAI, Springer-Verlag,
Berlin, 2000, pp. 175-194

[32] E. Tanaka, Theoretical Aspects of Syntactic
Pattern Recognition. Pattern Recognition, 28(7),
pp. 1053-1061, 1995.

[33] O. Unold, Automatic Analysis of Natural
Language Texts in Man-Machine Communication
[in:] Wojtkowski G. at al (eds.), Systems Devel-

opment Methods for the Next Century, Plenum
Publishing Corp., New York, 1997, pp. 185-193.

[34] O. Unold, A Fuzzy Automaton Approach to
Dialog Systems, Proc. of the IASTED Interna-
tional Conference-ASC'98, Cancun, Mexico, May
1998, pp. 215-218.

[35] O. Unold, Toward Fuzziness in Natural
Language Processing, [in:] Roy R at al [eds.]
Advances in Soft Computing – Engineering
Design and Manufacturing, Springer Verlag,
London, 1999, pp. 554-567.

[36] O. Unold, An Evolutionary Approach for the
Design of Natural Language Parser, [in:] Suzuki Y
at al [eds.] Soft Computing in Industrial Applica-
tions, Springer Verlag, London, 2000, pp. 293-
297.

[37] S.W. Wilson, Classifier Systems and the Animat
Problem, Machine Learning 2, 1987, pp.199-228.

[38] P. Wyard, Context Free Grammar Induction
Using Genetic Algorithms, [in:] R.K. Belew, and
L.B. Booker (eds.) Proceedings of the Fourth
International Conference on Genetic Algorithms,
San Diego, CA. Morgan Kaufmann, 1991,
pp. 514—518.

[39] H. Zhou, J. J. Grefenstette, Induction of Finite
Automata by Genetic Algorithms, Proceedings of
the 1986 International Conference on Systems,
Man and Cybernetics, 1986, pp. 170-174.

