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ABSTRACT

Genetic Programming (GP) has proved its applicability for
time series forecasting in a number of studies. The Dynamic
Forecasting Genetic Program (DyFor GP) model builds on
the GP technique by adding features that are tailored for the
forecasting of time series whose underlying data-generating
processes are non-static. Such time series often appear for
real-world forecasting concerns in which environmental con-
ditions are constantly changing. In a previous study the Dy-
For GP model was shown to improve upon the performance
of GP and other benchmark models for a set of simulated
and real time series. The distinctive feature of DyFor GP is
its adaptive data window adjustment. This feedback-driven
window adjustment is designed to automatically hone in on
the currently active process in an environment where the
generating process varies over time. This study further in-
vestigates this adaptive windowing technique and provides
an analysis of its dynamics for constructed time series with
non-static data-generating processes. Results show that Dy-
For GP is able to capture the moving processes more accu-
rately than standard GP and offer insight for further im-
provements to DyFor GP.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.6.5 [Simulation

and Modeling]: Model Development

General Terms

Algorithms
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1. INTRODUCTION
Forecasting is an integral part of everyday life. Businesses,

governments, and people alike make, use, and depend on
forecasts for a wide variety of concerns. Current methods
of time series forecasting require some element of human
judgment and are subject to error. When the information
to be forecasted is well-understood, the error may be within
acceptable levels. However, often the forecasting concern is
not well-understood and, thus, methods that require little
or no human judgment are desired. Additionally, many fore-
casting situations are set in environments with continuously
shifting conditions. These situations call for methods that
can adjust and adapt to the changing conditions.

The Dynamic Forecasting Genetic Program (DyFor GP)
model is built on the Genetic Programming (GP) technique
and uses an adaptive data windowing technique that is de-
signed to automatically adjust to underlying data-generating
processes that vary over time. In a previous study, DyFor
GP was introduced and tested on a set of simulated and
real time series [18]. Results show that DyFor GP improved
upon the performance of GP and other benchmark models.

The aim of this study is to further investigate the adaptive
windowing technique of DyFor GP and provide an analysis
of its dynamics. Time series whose data-generating pro-
cesses vary over time are constructed and the DyFor GP
model is compared to a standard GP model for a number of
forecasting experiments.

The rest of this paper is organized as follows: section 2 is
a brief review of existing time series forecasting methods in-
cluding GP and DyFor GP, section 3 describes the construc-
tion of time series with varying underlying processes, section
4 details experiments involving these constructed time series
and provides an analysis of DyFor GP’s windowing dynam-
ics, and section 5 concludes.
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2. REVIEW OF EXISTING TIME SERIES

FORECASTING METHODS
Existing time series forecasting methods generally fall into

two groups: classical methods which are based on statistical
concepts, and modern heuristic methods which are based
on algorithms from the field of artificial intelligence. The
following gives a review of these forecasting methods and is
taken in part from a survey of forecasting methods found in
[18].

Classical time series forecasting methods can be subdi-
vided into the following categories: (1) exponential smooth-
ing methods, (2) regression methods, (3) autoregressive in-
tegrated moving average (ARIMA) methods, (4) threshold
methods, and (5) generalized autoregressive conditionally
heteroskedastic (GARCH) methods. The first three cate-
gories listed above can be considered as linear methods, that
is methods that employ a linear functional form for time se-
ries modelling, and the last two as non-linear methods. See
Makridakis et al. [10] for a discussion of these statistical
methods.

Most modern heuristic methods for time series forecast-
ing fall into two major categories: methods based on neural
networks and methods based on evolutionary computation.
We can refine the latter category by dividing it further into
methods based on genetic algorithms, evolutionary program-
ming, and genetic programming (GP).

For methods based on evolutionary computation, the pro-
cess of biological evolution is mimicked. A population of
candidate solutions is created. Each solution is then ranked
and new populations of solutions are generated by selecting
fitter solutions and applying a crossover or mutation oper-
ation. In GP solutions are represented as tree structures.
Internal nodes of solution trees represent appropriate oper-
ators and leaf nodes represent input variables or constants.
For forecasting applications a GP solution represents a fore-
casting model with operators that are mathematical func-
tions and inputs that are lagged time series values and/or
explanatory variables. Figure 1 gives an example solution
tree for time series forecasting. Variables xt1 and xt2 rep-
resent time series values one and two periods in the past,
respectively. GP forecasting solutions are ranked based on

+

xt1 sin

×

5.31 xt2

Figure 1: GP representation of forecasting solution

xt1 + sin(5.31xt2)

their prediction error over a set of training data. Crossover
in GP is performed by (randomly) selecting a single subtree
from each of two parent trees and then swapping them to
produce two offspring trees. Mutation is performed by (ran-
domly) selecting a single subtree from a single parent tree
and replacing it with a randomly generated tree.

GP was developed by Koza [8] as a problem-solving tool

with applications in many areas. He was the first to use GP
to search for model specifications that can replicate patterns
of observed time series.1 Numerous studies have applied
GP to time series forecasting with favorable results. Some
examples of these include [3, 7, 6, 5, 4, 13, 18].

The heuristic methods listed above are non-linear and,
thus, they are able to capture many aspects displayed by ac-
tual data. NN, GP, and EP have the added advantage that
the forecasting model need not be prescribed, allowing for
automatic discovery of a befitting functional form. However,
like the classical methods discussed above, these methods
assume a static environment. If the underlying data gen-
erating process shifts, the methods must be reevaluated in
order to accomodate the new process. Additionally, these
methods require that the number of historical time series
data used for analysis be designated a priori. This presents
a problem in non-static environments because different seg-
ments of the time series may have different underlying data
generating processes. For example, a time series represent-
ing the daily stock value of a major U.S. airline is likely
to have a different underlying process before September 11,
2001 than it does afterwards. If analyzed time series data
span more than one underlying process, forecasts based on
that analysis may be skewed.

Consider the subset of time series data shown in figure
2. Suppose this represents the most recent historical data

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Figure 2: Time series containing segments with dif-

fering underlying processes.

and has been chosen for analysis. Suppose further that the
subset consists of two segments each with a different un-
derlying process. The second segment’s underlying process
represents the current environment and is valid for forecast-
ing future data. The first segment’s process represents an
older environment that no longer exists. Because both seg-
ments are analyzed, the forecasting model is distorted un-
less human judgment is brought to bear. Some degree of
human judgment is necessary to assign the number of his-
torical data to be used for analysis. If the time series is not
well-understood, then the assignment may contain segments
with disparate underlying processes.

The DyFor GP model is built using GP with added fea-
tures specifically designed for non-static environments. Dy-
For GP uses an adaptive windowing technique to automat-
ically determine the appropriate analysis window (i.e., the
number of recent historical data whose underlying data gen-
erating process corresponds to current environment). Also,
DyFor GP adapts to changing conditions “on-the-fly” (i.e.,
without the need for halting and restarting). The following
sections describe the features of DyFor GP.

2.1 Natural Adaptation: A Sliding Window of
Time

In biological evolution organisms evolve to suit the occur-
rent conditions of their environment. When conditions shift,
successful organisms adapt to the new surroundings. Over

1In [8] Koza refers to this as “symbolic regression.”
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many generations and several environmental shifts, endur-
ing organisms represent highly adaptive solutions that can
survive and thrive in a variety of settings. A time series
arising from real-world circumstances can be viewed in a
similar light. Different segments of the time series may be
produced by different underlying data generating processes.
Each segment can be thought of as one set of environmental
conditions. A successful forecasting model might be seen as
an adaptive organism that has evolved through pre-existing
environments and gained valuable strengths along the way.

To model this natural adaptation through many environ-
mental settings, a sliding window of time is used. For the
DyFor GP model, analysis starts at the beginning of the
available historical data. Some initial windowsize (number
of data observations to analyze) is set and several genera-
tions of DyFor GP are run to evolve a population of solu-
tions. Then the data window slides to include the next time
series observation. Several generations are run with the new
data window and then the window slides again. This pro-
cess is repeated until all available data have been analyzed
up to and including the most recent historical data. Fig-
ure 3 illustrates this process. In the figure, | marks the end

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

window−1

, 23, 26, 29, 30, 28, 29, 32, 30, 31| . . .
|{z}

future

22, 33, 30, 27, 24, 20, 21, 20, 20, 23
| {z }

window−2

, 26, 29, 30, 28, 29, 32, 30, 31| . . .
|{z}

future

•
•
•

22, 33, 30, 27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

window−i

| . . .
|{z}

future

Figure 3: A sliding data analysis window.

of available historical data. The set of several generations
run on a single analysis window is referred to as a “dynamic
generation.” Thus, a single run of the DyFor GP includes
several dynamic generations (one for each window slide) on
several different consecutive analysis windows.

This sliding window feature allows the DyFor GP to an-
alyze all existing data and take advantage of previously ob-
served patterns. As the window slides through past data,
solutions glean useful knowledge making it easier for them
to adapt to and predict the current environment.

2.2 Adapting the Analysis Window
As mentioned previously, designating the correct size for

the analysis window is critical to the success of any forecast-
ing model. Automatic discovery of this windowsize is indis-
pensable when the forecasting concern is not well-understood.
With each slide of the window, the DyFor GP adjusts its
windowsize dynamically. This is accomplished in the follow-
ing way.

1. Select two initial windowsizes, one of size n and one of
size n + i where n and i are positive integers.

2. Run dynamic generations at the beginning of the his-
torical data with windowsizes n and n+ i, use the best
solution for each of these two independent runs to pre-
dict a number of future data points, and measure their
predictive accuracy.

3. Select another two windowsizes based on which win-
dowsize had better accuracy. For example if the smaller
of the 2 windowsizes (size n) predicted more accu-
rately, then choose 2 new windowsizes, one of size n

and one of size n − i. If the larger of the 2 window-
sizes (size n+i) predicted more accurately, then choose
windowsizes n + i and n + 2i.

4. Slide the analysis window to include the next time se-
ries observation. Use the two selected windowsizes to
run another two dynamic generations, predict future
data, and measure their prediction accuracy.

5. Repeat the previous two steps until the analysis win-
dow reaches the end of historical data.

Thus, at each slide of the analysis window, predictive accu-
racy is used to determine the direction in which to adjust
the windowsize.

Consider the following example. Suppose the time series
given in figure 4 is to be analyzed and forecast. As depicted
in the figure, this time series consists of two segments each
with a different underlying data generating process. The sec-

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Figure 4: Time series containing segments with dif-

fering underlying processes.

ond segment’s underlying process represents the current en-
vironment and is valid for forecasting future data. The first
segment’s process represents an older environment that no
longer exists but may contain patterns that can be learned
and exploited when forecasting the current environment. If
there is no knowledge available concerning these segments,
automatic techniques are required to discover the correct
windowsize needed to forecast the current setting. The Dy-
For GP starts by selecting two initial windowsizes, one larger
than the other. Then, two separate dynamic generations are
run at the beginning of the historical data, each with its own
windowsize. After each dynamic generation, the best solu-
tion is used to predict some number of future data and the
accuracy of this prediction is measured. Figure 5 illustrates
these steps. In the figure win1 and win2 represent data
analysis windows of size 3 and 4, respectively, and pred

represents the future data predicted.

win2
z }| {

22,

win1
z }| {

33, 30, 27,

pred
z }| {

24, 20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Figure 5: Initial steps of window adaptation.

The data predicted in these initial steps lies inside the
first segment’s process and, because the dynamic generation
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involving analysis window win2 makes use of a greater num-
ber of appropriate data than that of win1, it is likely that
win2’s prediction accuracy is better. If this is true, two new
windowsizes for win1 and win2 are selected with sizes of
4 and 5, respectively. The analysis window then slides to
include the next time series value, two new dynamic gener-
ations are run, and the best solutions for each are used to
predict future data. Figure 6 depicts these steps. In the fig-
ure, data analysis windows win1 and win2 now include the
next time series value, 24, and pred has shifted one value
to the right.

win2
z }| {

22,

win1
z }| {

33, 30, 27, 24,

pred
z }| {

20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Figure 6: Window adaptation after the first win-

dow slide. Note: win1 and win2 have size 4 and 5,

respectively.

This process of selecting two new windowsizes, sliding the
analysis window, running two new dynamic generations, and
predicting future data is repeated until the analysis window
reaches the end of historical data. It may be noted that
while the prediction data, pred, lies entirely inside the first
segment, the data analysis windows, win1 and win2, are
likely to expand to encompass a greater number of appro-
priate data. However, after several window slides, when the
data analysis window spans data from both the first and
second segments, it is likely that the window adjustment re-
verses direction. Figures 7 and 8 show this phenomenon.

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

,

9 > > > > = > > > > ;

win1

9 > > > > > > > = > > > > > > > ;

win2

23, 26,

pred
z }| {

29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Figure 7: Window adaptation when analysis spans

both segments. Note: the smaller analysis window,

win1, is likely to have better prediction accuracy

because it includes less inappropriate data.

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

,

win1
z }| {

23

9 > > > > > = > > > > > ;

win2

, 26, 29,

pred
z }| {

30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Figure 8: Window adaptation when analysis spans

both segments. Note: win1 and win2 have con-

tracted to include less inappropriate data.

In figure 7 win1 and win2 have sizes of 4 and 5, respec-
tively. As the prediction data, pred, lies inside the second
segment, it is likely that the dynamic generation involving
analysis window win1 has better prediction accuracy than
that involving win2 because win1 includes less data pro-
duced by a process that is no longer in effect. If this is so,
the two new windowsizes selected for win1 and win2 are
sizes 3 and 4, respectively. Thus, as the analysis window

slides to incorporate the next time series value, it also con-
tracts to include a smaller number of inappropriate data. In
figure 8 this contraction is shown.

As illustrated in the above example, the DyFor GP uses
predictive accuracy to adapt the size of its analysis window
automatically. When the underlying process is stable (i.e.,
the analysis window is contained inside a single segment),
the windowsize is likely to expand. When the underlying
process shifts (i.e., the analysis window spans more than one
segment), the windowsize is likely to contract. The following
section describes the time series data used for experimenta-
tion.

3. TIME SERIES DATA
The goal of this study is to further investigate DyFor

GP’s adaptive windowing technique. DyFor GP was de-
signed for forecasting concerns in which the underlying data-
generating process varies over time. Time series are con-
structed that contain segments with differing underlying pro-
cesses. The segments are generated by known processes
found in the literature. The following presents these pro-
cesses.

1. Ozaki’s simple linear function [15] (referred to below
as OZ) has low structural complexity and is given by

Yt+1 = 1.8708Yt − Yt−1, (1)

where Yt+1 is the time series value corresponding to
one time period in the future and Yt and Yt−1 are the
time series values of the current time period and one
time period in the past, respectively.

2. May introduced a difference equation known as the
logistic map [11] (referred to below as LG). It is a low-
dimensional first-order nonlinear chaotic system. Its
structural complexity is also low but higher than that
of OZ and is given by

Yt+1 = 4Yt(1 − Yt). (2)

3. Henon introduced a low-dimensional second-order non-
linear chaotic difference equation that is known as the
Henon map [2] (referred to below as HEN). It may have
slightly higher structural complexity than LG and is
given by

Yt+1 = 0.3Yt−1 + 1 − 1.4Yt

2
. (3)

4. The Mackey-Glass equation is known to have the high-
est structural complexity among frequently-studied chaotic
ordinary differential equations [9]. A discretized differ-
ence equivalent of the Mackey-Glass differential equa-
tion used by Koza [8] and Oakley [14] is employed (re-
ferred to below as MG) and is given by

Yt+1 = Yt +
0.2Yt−30

1 + Yt−30
10

− 0.1Yt, (4)

where Yt−30 is the time series value corresponding to
30 time periods in the past.

A single time series is constructed by connecting distinct
segments each generated by one of the above listed processes.
The time series constructed for this study contain three seg-
ments. The first segment (segment1) is generated by one
process; the second segment (segment2) is generated by a
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different process; and the third segment (segment3) is gen-
erated by the same process that was used to generate seg-
ment1. The following presents the constructed time series.
Each time series listed below consists of 400 values (data
points). The first 100 values of each series are generated by
segment1’s process and are intended for initial training.

1. LG-OZ-LG—this is a time series constructed from the
LG and OZ processes. Segment1 is generated by LG
(data points 1-200), segment2 is generated by OZ (data
points 201-296), and segment3 is generated by LG (data
points 297-400). Note that segments 2 and 3 use lagged
values from the previous segment to calculate their ini-
tial data points. This is the case for the remaining
constructed time series as well. Segment1 uses a sin-
gle lagged value of 0.9000 to calculate its initial data
point.

2. MG-HEN-MG—this is a time series constructed from
the MG and HEN processes. Segment1 is generated
by MG (data points 1-200), segment2 is generated by
HEN (data points 201-300), and segment3 is gener-
ated by MG (data points 301-400). Segment1’s data
points were produced by seeding the MG process with
a pseudorandom sequence (31 lagged values), generat-
ing the MG series, and then discarding the first 1000
data points. This procedure for generating the MG
series was used by Oakley [14].

Figures 9 and 10 give a graphical depiction of the con-
structed time series. The following section details experi-
ments involving these time series.

0 100 200 300 400

−2

−1

0

1

2

Figure 9: LG-OZ-LG constructed series.

0 100 200 300 400

−1

−0.5

0

0.5

1

Figure 10: MG-HEN-MG constructed series.

4. EXPERIMENTS
The aim of this study is to compare DyFor GP to standard

GP for the forecasting of time series whose data-generating
processes vary over time. As discussed in section 2, GP,
when used for forecasting, assumes a static environment.
A forecaster uses his or her own judgment to select some
historical data for GP to train on, GP trains on that data
and produces a forecasting model, and then that model is
used to forecast future data. In a real-world setting the
forecasting environment is unlikely to remain static indefi-
nitely. Thus, practitioners are required to repeat the above
procedure from time to time in order to keep their GP fore-
casting model up to date with current conditions. With this
in mind, two versions of standard GP are included in our ex-
periments. In one version GP is run once on some training
data and then used to forecast all future data without any
updating. In a second version the GP forecasting model is
periodically updated (i.e. retrained). The following sections
describe the experimental setup and observed results.

4.1 Experimental Setup
Three forecasting models are compared: DyFor GP, stan-

dard GP without periodic update, and standard GP with
periodic update. Each of the models is run on the con-
structed time series described in section 3. The first 100
data points are used for initial training of the models and
the remaining 300 points are used for testing.

For DyFor GP, forecasts are generated in a “real-time”
fashion in the following way. After initial training on the
first 100 data points, the first forecast is produced and the
analysis window is then slid to incorporate the actual data
for that time period. Analysis (training) resumes, and then
the second forecast is produced. This procedure is repeated
for each forecast until all (300) forecasts have been gener-
ated. It should be emphasized that forecasts are generated
using an out-of-sample methodology where no data beyond
the point of forecast is utilized for analysis or model con-
struction. For the standard GP model without periodic up-
date, GP is run on the initial training data (first 100 data
points) and then the resultant model is used to forecast the
remaining 300 data points without any subsequent retrain-
ing.

For the standard GP model with periodic update, GP runs
on the initial training data, forecasts some number of future
data, and then, after some specified number of time periods,
the GP model is retrained using more recent data. The ques-
tion is: how often should this GP model be retrained? In
a real setting a forecaster would use his or her judgment to
determine when or how often to retrain the GP model. For
example, a forecaster might decide to retrain the GP model
every 50 time periods. This would mean that after initial
training, the resultant model is used to produce forecasts
for the next 50 time periods and then the data correspond-
ing to those 50 time periods is incorporated as training data
and the model is retrained. This procedure is then repeated
every 50 time periods until all required forecasts are gen-
erated. For these experiments, the retraining is executed
after each time period representing the maximum possible
frequency. This is done in order to give standard GP the
best chance of performing efficiently in an environment of
changing conditions.

GP (and DyFor GP) employ the elements of a terminal
set and a function set as building blocks from which to con-
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struct forecasting models.2 For experiments executed on the
LG-OZ-LG series, the terminal set includes two lags of the
autoregressive variable as two lags are all that are necessary
to specify either the LG or OZ process. For experiments ex-
ecuted on the MG-HEN-MG series, the terminal set includes
30 lags of the autoregressive variable as they are necessary
to specify the MG process (the HEN process requires only
two lags). The function set for both experiments consists of
operators +, −, ×, ÷, sin, cos, square root, exp, and ln.3

DyFor GP requires that a number of parameters be spec-
ified before a run. Some of these are general GP parameters
commonly found in any GP application. Some of these are
special parameters only used by DyFor GP. Tables 1 and
2 give general GP parameter values and specific DyFor GP
parameter values, respectively. All parameter values listed

Table 1: General GP parameter settings.

Parameter Value

crossover rate 0.9
reproduction rate 0.0

mutation rate 0.1
max. no. of generations 41

termination max. gens. reached
elitism used? yes

fitness measure mean squared error
population size 70000 total nodes

in table 1 match those used in [18] with the exception of
population size (which is increased here due to greater com-
putational resources).4 5

Table 2: Specific DyFor GP parameter settings.

Parameter Value

max windowsize 200
min windowsize 20
start windowsize 80
window difference 20

The “max windowsize” and “min windowsize” parameters
in table 2 specify the maximum and minimum analysis win-
dowsizes, respectively. As described in section 2.2, DyFor
GP’s adaptive windowing calls for using two data windows
of differing sizes. Parameter “start windowsize” refers to the
initial windowsize setting of the smaller of the two windows
and parameter “window difference” refers to the size differ-
ence between the larger and the smaller window.

The GP algorithm is essentially a fitness-driven random
search. When GP is applied to forecasting, the search space
2See Koza [8] for more information on the terminal and func-
tion sets.
3Operators ÷, square root, exp, and ln are protected from
undefined or unbounded behavior as is done in experiments
conducted by Koza [8].
4For these experiments population size is specified as a max-
imum number of solution tree nodes over the entire popula-
tion instead of a limit on the number of solution trees. For
more information on this practice, please see [17] and [18].
5These experiments were conducted using 8-12 nodes of an
IBM eServer 1350 Linux cluster. Please see [16] for more
information.

is the set of all possible mathematical expressions that can
be constructed using specified operands (inputs) and stan-
dard mathematical operators with no restrictions concern-
ing the functional form of the expressions created. Thus the
space effectively includes any conceivable expression (either
linear or non-linear) and is, in general, intractable for con-
ventional deterministic algorithms. The size of the search
space coupled with the stochastic nature of the evolutionary
process cause the results of a GP-based forecasting exper-
iment to vary from run to run. Thus, a common practice
is to execute a set of GP runs (usually 20 to 100—see, for
example, [7] and [6]). For experiments of this study, a set
of 20 runs is executed for each model. The following section
describes observed results.

4.2 Results
As mentioned in the previous section, a set of runs is ex-

ecuted (setsize = 20) for each competing model. For a sin-
gle run, forecasting performance is measured by calculating
the mean squared error (MSE) of all forecasts. For a set
of runs, forecasting performance is measured by calculating
the mean and standard deviation of MSE values over all
(20) runs. Tables 3 and 4 give the observed results for the
constructed series.6

Table 3: LG-OZ-LG series forecasting results.

Model mean MSE std. dev.

standard GP (without update) 0.9979 6.5540
standard GP (with update) 0.3047 0.0334

DyFor GP 0.2344 0.0567

Table 4: MG-HEN-MG series forecasting results.

Model mean MSE std. dev.

standard GP (without update) 0.6039 0.4216
standard GP (with update) 0.1960 0.0830

DyFor GP 0.1880 0.0278

The tables reveal some interesting results. The first obser-
vation is that standard GP without periodic update is the
worst performing model of the three. It gives the worst per-
formance for both the LG-OZ-LG and MG-HEN-MG series.
This is expected since the other models have opportunity to
train on data from all segments while this model trains only
on data from the first segment of each series and is never
updated (retrained).

Comparing standard GP with update and DyFor GP shows
that the latter model gives superior performance for both se-
ries tested. This is a compelling result for a few reasons.

1. This version of standard GP is updated with maximal
frequency and represents the limit of standard GP’s
ability to deal with changing processes.

2. The essential difference between the two models is Dy-
For GP’s adaptive windowing technique.

6In these tables outliers are excluded before the mean MSE
is calculated. An outlier is defined to be a MSE value that
differs from the overall mean MSE by more than two stan-
dard deviations.

1662



3. Giving superior performance for both series provides
empirical evidence that DyFor GP’s adaptive window
is better able to hone in on the currently active process
in a non-static environment.

4. Additionally, DyFor GP was able to able to adapt to
the changing processes automatically, that is without
the need for rerunning as was required by standard
GP.

In the following section the behavior of DyFor GP’s adaptive
window is examined.

4.3 An Analysis of Window Dynamics
As described in the previous section, DyFor GP gives the

best performance for both series tested. This performance
edge can only be due to the adaptive windowing technique
as this is the essential difference between DyFor GP and
standard GP. Here, the window behavior of DyFor GP is
examined. Figures 11 and 12 give the average windowsize
(over all 20 runs) of the DyFor GP model at each time period
for each series, respectively. In the figures vertical gridlines
labeled “SEG2”and“SEG3”mark the beginning of segments
2 and 3 in each series, respectively.
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Figure 11: Average DyFor GP windowsize for LG-

OZ-LG series.
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Figure 12: Average DyFor GP windowsize for MG-

HEN-MG series.

The figures reveal some interesting window behavior. For
both series similar dynamics are seen. The following gives
these dynamics.

1. During segment1 expansion occurs.

2. At the beginning of segment2 there is a delay period
during which, presumably, DyFor GP notices the pro-
cess shift and then contraction begins.

3. Towards the end of segment2, the contraction abates.

4. After another delay at the beginning of segment3, con-
traction picks up again.

These dynamics are consistent with expected DyFor GP win-
dow behavior (described in section 2.2). Data window ex-
pansion inside segment1 follows as this allows the model to
train on a greater number of appropriate data. When the un-
derlying data-generating process shifts to produce segment2,
data window contraction allows the model to train on less
data from the old (no longer active) process, which in turn
gives more weight to newer data produced by the currently
active process. Toward the end of segment2 and at the be-
ginning of segment3, contraction abates (but is not reversed)
because the data window has now entirely passed out of seg-
ment1 but has not had enough time for significant expansion
(inside segment2) before segment3 begins. After some delay,
DyFor GP notices the process shift that produces segment3
and contraction picks up again.

The window behavior seen for these experiments provide
empirical evidence for the efficacy of DyFor GP’s adaptive
windowing technique. DyFor GP was able to automati-
cally adjust its windowsize to accomodate process move-
ments in a non-static environment. While these experiments
show DyFor GP to be a viable model for non-static envi-
ronments, they also give insight into the shortcomings of
the current windowing technique and point to further en-
hancements that could be made. One shortcoming made
apparent by these experiments is that once the model no-
tices that a process shift has occurred, it takes a long time
(i.e., many successive contractions over many slides of the
data window) to correctly adjust to the new process. If, after
a relatively short period, the process shifts again as in these
experiments, DyFor GP is now in “catch up” mode where
its window adjustment is always lagging behind the actual
process movements. This is because the current windowing
technique compares only two different windowsizes and can
only adjust itself by small increments at each dynamic gener-
ation (slide of the data window). The windowing technique
could be improved by comparing more windowsizes at each
dynamic generation or by allowing for greater adjustment
increments when conditions call for them. If computational
resources were not an issue, the DyFor GP model could eas-
ily be improved by comparing several different windowsizes
(rather than just two) at each dynamic generation. This
would give a more accurate estimate of the optimal win-
dowsize and would allow the model to “jump” to a good
windowsize without having to go through several small ad-
justments.

While the improvement to DyFor GP’s windowing tech-
nique suggested above may not be feasible for computational
resources available today, the following describes another en-
hancement along this line of inquiry that might be. Instead
of running a single dynamic generation for each compared
windowsize as is currently done, the windowsize itself could
be included in the GP chromosome and evolved along with
the functional form of the forecasting model. This means
that each individual in the GP population would contain
two parts: a solution tree (representing the functional form
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of the forecasting model) and a corresponding windowsize for
that forecasting model to train on. In this way a large num-
ber of windowsizes (one for each individual) are compared
during only one dynamic generation and DyFor GP could,
potentially, find the optimal (or near-optimal) windowsize
with much less computation. For example, when a process
shift is first noticed, the model could potentially find the
correct (smaller) windowsize after only one slide of the data
window because many windowsizes are compared. Thus, it
would spend less time adjusting to the latest process move-
ment and more time training on the currently active pro-
cess. The suggested improvement to DyFor GP’s windowing
technique is termed “self-adaptive” rather than “adaptive”
because rather than using feedback from the GP search pro-
cess to make adjustments, the windowsize is evolved as part
of an individual’s chromosome [1].

4.4 Some Comments on Adaptability and Com-
putational Overhead

For the experiments of this study, DyFor GP exhibits
adaptive behavior as it automatically adjusts its data win-
dow in the presence of changing conditions. This adapt-
ability is achieved through constant retraining and, thus,
a computational expense is incurred that is not present for
standard (static) GP. This computational overhead may well
be a necessary price of any intelligent software system as
without retraining a system cannot hope to adapt to envi-
ronmental changes.

5. CONCLUSION
In this study the DyFor GP model is tested on constructed

time series in which the underlying data-generating process
varies over time. The idea is to further investigate DyFor
GP’s adaptive windowing technique and provide an analysis
of its window behavior in the presence of continually shift-
ing conditions. DyFor GP is compared to two versions of
standard GP, one of which represents the limit of standard
GP’s ability to deal with changing processes.

Observed results show that DyFor GP’s adaptive window
is better able to hone in on the currently active process
than standard GP and that this is the reason for DyFor
GP’s superior forecasting performance. The experiments of
this study also provide insight into further enhancement of
DyFor GP’s windowing technique and a new “self-adaptive”
windowing technique is described that could significantly in-
crease the speed of window adjustment.

The experiments presented here highlight DyFor GP’s po-
tential as an adaptive model for real-world forecasting ap-
plications which are often characterized by continually shift-
ing conditions. DyFor GP can be considered an example of
Adaptive Business Intelligence [12] as it contains features
that optimize to current conditions, predict the future, and
adapt to environmental changes.
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