Skip to main content

Genetic Programming with Aggregate Channel Features for Flower Localization Using Limited Training Data

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14635))

  • 114 Accesses

Abstract

Flower localization is a crucial image pre-processing step for subsequent classification/recognition that confronts challenges with diverse flower species, varying imaging conditions, and limited data. Existing flower localization methods face limitations, including reliance on color information, low model interpretability, and a large demand for training data. This paper proposes a new genetic programming (GP) approach called ACFGP with a novel representation to automated flower localization with limited training data. The novel GP representation enables ACFGP to evolve effective programs for generating aggregate channel features and achieving flower localization in diverse scenarios. Comparative evaluations against the baseline benchmark algorithm and YOLOv8 demonstrate ACFGP’s superior performance. Further analysis highlights the effectiveness of the aggregate channel features generated by ACFGP programs, demonstrating the superiority of ACFGP in addressing challenging flower localization tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bi, Y., Xue, B., Mesejo, P., Cagnoni, S., Zhang, M.: A survey on evolutionary computation for computer vision and image analysis: past, present, and future trends. IEEE Trans. Evol. Comput. 27(1), 5–25 (2023). https://doi.org/10.1109/TEVC.2022.3220747

    Article  Google Scholar 

  2. Bi, Y., Xue, B., Zhang, M.: An effective feature learning approach using genetic programming with image descriptors for image classification [research frontier]. IEEE Comput. Intell. Mag. 15(2), 65–77 (2020)

    Article  Google Scholar 

  3. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features (2009)

    Google Scholar 

  4. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(Jul), 2171–2175 (2012)

    Google Scholar 

  5. Guru, D.S., Sharath, Y.D.H., Manjunath, S.: Texture features and KNN in classification of flower images. Int. J. Comput. Appl. 1, 21–29 (2010)

    Google Scholar 

  6. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of YOLO algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)

    Article  Google Scholar 

  7. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO, January 2023. https://github.com/ultralytics/ultralytics

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  9. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part V 13, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  10. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

    Article  Google Scholar 

  11. Nilsback, M.E., Zisserman, A.: Delving into the whorl of flower segmentation. In: BMVC, vol. 2007, pp. 1–10 (2007)

    Google Scholar 

  12. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  13. Ostu, N.: A threshold selection method from gray-histogram. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  14. Pardee, W., Yusungnern, P., Sripian, P.: Flower identification system by image processing. In: 3rd International Conference on Creative Technology CRETECH, vol. 1, pp. 1–4 (2015)

    Google Scholar 

  15. Patel, I., Patel, S.: An optimized deep learning model for flower classification using NAS-FPN and faster R-CNN. Int. J. Sci. Technol. Res. 9(03), 5308–5318 (2020)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  17. Rother, C., Kolmogorov, V., Blake, A.: “ GrabCut’’ interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  18. Siraj, F., Salahuddin, M.A., Yusof, S.A.M.: Digital image classification for Malaysian blooming flower. In: 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, pp. 33–38. IEEE (2010)

    Google Scholar 

  19. Sun, Q., Yang, S., Sun, C., Yang, W.: Exploiting aggregate channel features for urine sediment detection. Multimedia Tools Appl. 78, 23883–23895 (2019)

    Article  Google Scholar 

  20. Wu, D., Lv, S., Jiang, M., Song, H.: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electron. Agric. 178, 105742 (2020)

    Article  Google Scholar 

  21. Yan, Z., Bi, Y., Xue, B., Zhang, M.: Automatically extracting features using genetic programming for low-quality fish image classification. In: Proceedings of 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 2015–2022. IEEE (2021)

    Google Scholar 

  22. Yang, B., Yan, J., Lei, Z., Li, S.Z.: Aggregate channel features for multi-view face detection. In: IEEE International Joint Conference on Biometrics, pp. 1–8. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Bi, Y., Xue, B., Zhang, M. (2024). Genetic Programming with Aggregate Channel Features for Flower Localization Using Limited Training Data. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14635. Springer, Cham. https://doi.org/10.1007/978-3-031-56855-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56855-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56854-1

  • Online ISBN: 978-3-031-56855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics