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An Investigation Of Evolutionary Computing In Systems Identification For
Preliminary Design

Andrew Harry Watson

ABSTRACT

This research investigates the integration of cvolutionary techniques for symbolic
regression. In particular the genetic programming paradigm is used together with other
evolutionary computational techniques to develop novel approaches to the improvement of
areas of simple preliminary design software using empirical data sets. It is shown that within
this problem domain, conventional genetic programming suffers from several limitations,
which are overcome by the introduction of an improved genetic programming strategy
based on node complexity values, and utilising a steady state algorithm with sub-
populations. A further extension 10 the new technique is introduced which incorporates a
genetic algorithm to aid the search within continuous problem spaces, increasing the
robustness of the new method. The work presented here represents an advance in the field
of genetic programming for symbolic regression with significant improvements over the

conventional genetic programming approach. Such improvement is illustrated by extensive

experimentation utilising both simple test functions and real-world design examples.
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CHAPTER 1

INTRODUCTION

During the last thirty years there has been a growing interest in computer based problem
solving systems based on principles of evolution. This approach, known collectively as
Evolutionary Computation (EC), includes genetic algorithms (GA’s), genetic programming
(GP), evolutionary programming (EP) and evolution strategies (ES). When applied to
practical problem solving, all begin with a population of contending trial solutions to the
task at hand. New solutions are created by randomly altering the existing soiliti.ons. An
objective measure of performance is used to assess the “fitness” or “error” of each trial
solution, and a selection mechanism determines which solutions should be maintained as
“parents” for the subsequent generation. The differences between the procedures are
characterised by the types of alterations that are imposed on s'olutions to create offspring,
the methods employed for selecting new parents, and the data structures that are used to
represent solutions. These techniques are now being used extensively, for instance, in the
fields of design, pattern recognition, engineering, control, scheduling, and systems

identification.

The objective of the research described within this thesis is to develop evolutionary
strategies for the identification of improved mathematical representations relating to areas

of preliminary design software which contain a high degree of approximation.

In general, preliminary engineering design practice involves look-up tables or graphs based
upon empirical data that is not easily represented éomputationa]ly. During preliminary
design, approximate solutions can provide sufficient guidance for the engineer to determine

optimal design directions. By using approximate functions to describe the physical process
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during preliminary design the engineer is able to rapidly investigate many possible design
solutions before progressing to more definitive analysis techniques such as Computational
Fluid Dynamics (CFD) and Finite Element Analysis (FEA). A contributing factor to function
approximation may be the inciusion of empirically derived coefficients (i.e. discharge, drag,

etc.).

The identification, manipulation and optimisation of these approximate functions that
describe the physical process will be investigated using genetic programming and by the

development of complementary evolutionary computation and adaptive search techniques.

1.1 The Engineering Design Process

There is no single universally accepted sequence of steps that leads to a workable design.
Design is a sequential process consisting of many design operations. Examples of the

operations might be:-

o Exploring the alternative systems that could satisfy the specified need.
e Formulating a mathematical model of the best system conceplt.
e Specifying specific parts to construct a component of a sub-system.

e Selecting a material from which to manufacture a part.

Each operation requires information, some of it is provided in general technical and business
information, but some is very specific information that is needed to produce a successful
outcome. Acquisition of information is a vital and often very difficult step in the design

process, but fortunately it is a step that usually becomes easier with time (this process is

called experience).




Once armed with the necessary information, the design engineer (or design team) carries out
the design operation by using the appropriate technical knowledge and computational
and/or experimental tools. The typical design project will break itself down into a number of

time phases which are listed below (Pahl & Beitz, 1988).

Phase 1 - Feasibility Study

The purpose of the feasibility study is to initiate the design and establish the line of thinking.
The goal in this phase is to validate the need, produce a number of possible solutions, and
evaluate the solutions on the basis of physical feasibility, economic viability, and financial

feasibility. This stage sometimes is called conceptual design.

Phase II - Preliminary Design

Starting with a set of useful solutions developed in phase I, the goal of the preliminary
design is to quantify the parameters so as to establish the optimal solution. A preliminary
design usually is concerned only with order-of-magnitude estimates of design performance
and cost. At this stage il may be necessary to construct a mathematical model and conduct a

simulation of the component’s performance on a digital computer.

Phase HI - Detailed Design
The purpose of the detailed-design phase is to develop a complete engineering description
of a tested and producible design. The process involves complex, computationally expensive

models and calculations as well as expensive testing of components.

The phases that follow the first three listed include planning for manufacture, distribution,

use and retirement of the product and do not concern the area of study related to this thesis.



The preliminary design phase often utilises data presented in a graphical form, which is used
to calculate various design specific goals. If optimisation of the design is to be undertaken
by a computer, the data nceds to be either directly inputted (then interpolated), or a
mathematical equation representing the data can be used. The identification of the

mathematical model that best represents the data is the subject for this thesis.

1.2 The Role Of Models In Engineering Design

A model is an idealisation of a real-world situation that supports the analysis of a problem.
A model may be either descriptive or prescriptive. A descriptive model helps 1o understand
a real-world system or phenomenon; an example is a cutaway model of an aircraft gas
turbine. Such a model serves as advice for communicating ideas and information. However,
it does not help to predict the behaviour of the system. A predictive model is used primarily
in engineering design because it helps to both understand and predict the performance of the

system,

Models can be classified as follows:
e Static-dynamic
¢ Deterministic-Probabilistic, and

e Iconic-analogue-symbolic

A static model is one whose properties do not change with time; a model in which time-
varying effects are considered is dynamic. In the deterministic-probabilistic class of models
there is differentiation between models that predict what will happen. A deterministic
model describes the behaviour of a system in which the outcome of an event occurs with
certainty. In many real-world situations the outcome of an event is not known with

certainty, and these must be treated with probabilistic models. An iconic model is one that



represents the physical characteristics of the system being modelled. Examples are a scale
model of an aircraft for wind tunnel test and an enlarged model of a polymer molecule.
Iconic models are used primarily 1o describe the static characteristics of a system, and they
are used to represent entities rather than phenomena. Analogue meodels are those that
behave like the real systems. They are often used to compare something that is unfamiliar
with something that is familiar. Unlike an iconic model, an analogue model need look
nothing like the real system it represents. It must either obey the same physical principles as
the physical system or simulate the behaviour of the system. An ordinary graph is an
analogue model because distances represent the magnitude of the physical quantities plotied
on each axis. Since the graph describes the real functional relation that exists between those
quantities, it can be seen as a model. Symbolic models are abstractions of the important
quantifiable components of a physical system. A mathematical equation expressing the
dependence of the system output parameter on the input parameters is a common symbolic
model. A symbol is a shorthand label for a class of objects, a specific object or a state of
nature, or simply a number. Symbols are useful because they are convenient, add to
simplicity of explanation, and increase the generality of the situation. A symbolic model
probably is the most important class of model because it provides the greatest generality in
attacking a problem. The use of a symbolic model to solve a problem leads to quantitative
results. Further distinction can be made between symbolic models that are theoretical, based
on established and universally accepted laws of nature, and empirical models, which are the

best approximate mathematical representations based on existing experimental data.

The solution of models by the straightforward application of mathematical techniques has
been the classical approach, but only the simplest (and hence usually most unrealistic)
models can be solved with classical analytic methods. The widespread use of the digital
computer has greatly expanded the scope and usefulness of mathematical modelling. The

use of numerical methods for solution and the ease with which iterative and evolutionary
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procedures can test many specific states of the model have established evolutionary

computer modelling as a powerful tool of engineering design.

1.3 Evolutionary Computation History

Genetic algorithms, evolutionary programming and evolutionary strategies were developed
cssentially in parallel, in the 1960’s and 1970’s. Genetic algorithm and evolutionary
programming strategies have been primarily developed in the United States, whereas
evolution strategies originated in Germany. Genetic programming is the most recent
addition to the field of evolutionary computation and was developed in its current form in

the late 1980’s in the United States.

The development of genetic algorithms began in the 1950’s through the use of computers
by biologists to simulate natural genetic systems. One of those doing work most closely
related to the current concepts of genetic algorithms was A.S. Fraser, who began publishing
in the field in the late 1950s (Fraser, 1957). Fraser worked in the arca of epistasis
(suppression of the effect of a gene) and represented each of three parameters of an
epistatic function as five bits in a 15-bit string. Fraser was working with natural systems,
and while his work resembled function optimisation currently being solved by genetic
algorithms, he did not consider the possibility of applying his methodology to artificial

systems (Fraser, 1960, 1962).

John H. Holland of the University of Michigan was also beginning to publish in the early

1960s. Holland, together with his students has probably had more influence on the field of

genetic algorithms than any others.




Holland’s interest in machine intelligence led to the development and application of the
capabilities of genetic algorithms to artificial systems. He taught courses in adaptive systems
in the early 1960s while laying the groundwork for applications to artificial systems with his
publications on adaptive systems theory (Holland, 1962). Holland’s systems were adaptive
because of their robustness in spite of changes and uncertainty in the environment. Further,
they were self-adaptive in that they could make adjustments based on their interaction with

the environment over time.

One of Holland’s many contributions was his use of a population of individuals
(chromosomes) in the search process, rather than the use of only a single individual as was
common at the time. He also derived the schema theorem, which shows that schema
(fundamental building blocks of individual chromosomes) that are more “fit” with respect to
a defined fitness function are more likely 1o reproduce in successive generations of the

population of chromosomes.

Beginning in the 1960s Holland’s students routinely used reproduction, crossover, and
mutation in their applications. Several of Holland's students made significant contributions
to the genetic algorithm field, often starting with their Ph.D. dissertations, including K.A.

De Jong, D.E. Goldberg and J. Koza..

The term “genetic algorithm” was used first by Bagley (Bagley, 1967) in his dissertation,
which utilised genetic algorithms to find parameter sets in evaluation functions for game
playing.

In 1975 Holland published one of the field’s most important books, entitled Adaptation in
Natural and Artificial Systems (Holland, 1975). Also in 1975, K. A. De Jong, one of
Holland’s students, published his Ph.D dissertation entitled, “An analysis of the Behaviour

of a Class of Genetic Adaptive Systems”. As part of his dissertation, De Jong put forward a
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sct of five test functions designed to mecasure the convergence of the algorithm. Two
metrics were devised, one to measure the convergence of the algorithm, the other to
measure the ongoing performance. De Jong examined the effects of varying four parameters
(population size, crossover probability, mutation probability, and generation gap) on the
performance of six main kinds of genetic algorithm paradigms (De Jong, 1975). De Jong's
five-function test bed and two performance metrics still provide some of the most
commonly referenced genetic algorithm performance criteria. David E. Goldberg was
another of Holland’s students. He has concentrated on enginecring applications of genetic
algorithms. He is a former gas pipeline engineer; his Ph.D. dissertation considered a 10-
compressor, 10-pipe, steady-state, serial gas pipeline problem (Goldberg, 1983). The goal
was 1o provide a strategy that minimised the power consumption in the pumping stations,
subject to pressure-related constraints. In 1989, Goldberg published one of the most
important books on genetic algorithms, Genetic Algorithms in Search, Optimisation and

Machine Learning (Goldberg, 1989).

In the United States, Larry J. Fogel and his c-olleagucs developed what they named
Evolutionary programming. Evolutionary programming uses the selection of the fitest,
similar to genetic algorithms, but the only structure-modifying operation allowed is
mutation. Fogel and his colleagues mainly worked with finile state machines and were
interested in machine intelligence. They were able to solve a problem involving significant
epistasis that was quite difficult for genetic algorithms. Fogel (Fogel, 1994) has described
evolutionary programming as taking a fundamentally differcnt approach than genetic
algorithms. Genetic algorithms arc described as a bottom up process of adaptive genctics
but cvolutionary programming acts as a top-down process of adaptive behaviour. Fogel

summarises evolutionary programming as implementing “‘survival of the more skilful” rather

than “survival of the fittest” emphasised by genetic algorithm developers.




[n Germany, at the Technical University of Berlin, I. Rechenberg developed what he called
Evolutionstrategic (evolution stratcgics) during the mid-1960s. He was working on
engincering  optimisation problems that involved airfoil design, including physical
configurations of a series of hinged plates in a wind wunnel. He used cvolution strategies Lo
vary the angle of the plates and of the tube. Rechenberg and his student, H. P. Schwefel,
used the first computer at the university to simulate various versions of the strategy
(Rechenberg, 1965; Schwefel, 1965). In the early 1970s, Rechenberg published a book that

is considered the foundation for this approach (Rechenberg, 1973).

The fourth major area of evolutionary computation is genctic programming. Some of the
carliest related work was completed by Friedberg and other co-workers (Friedberg, 1958:
Friedbérg et al., 1959). They worked with fixed-length computer programs that were coded
by another program designed to optimise the performance of the fixed-length program.
Their programs each comprised a sct of 64 instruction, each instruction being 14 bits long.
The programs were defined such that every arrangement of the 14 bits was a valid
instruction, and each set of 64 instructions was a valid program. Unfortunately, the results
of the cfforts did not live up to expectations. In retrospect, there were probably two main
reasons for this. First, the programs were limited in length to 64 instructions: a "failure” was
returned if the program did not terminate successfully by the end of thc 64th instruction
(even if there was a loop). Second, there was only one program; thus therc was a

population of just one that evolved.

The two limitations just cited were successfully dealt with by John Koza who developed
genetic programming (in its current form) in the late 1980’s. Working at Stanford
University, Koza’s system is designed to evolve computer programs genetically using a
population of tree-shaped chromosomes (Koza, 1992). The origins of GP can be traced

back o carliecr work (Cramer, 1985) who used cvolutionary techniques for program
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induction, and another paper (Bickel & Bickel, 1987) which used genetic methods to if-then
expert systems which incorporated tree structured rules. Various other pcople have been
credited with important carlier papers including the use of genetic operators for program
induction (Fujiki, 1986), the induction of if-then clauses for game sirategics (Fujiki &
Dickinson, 1989) and the application of genetic algorithms to automatic program generation

(Hicklin, 1986).

Many scemingly different problems in artificial intelligence, symbolic processing, and
machine learning can be viewed as a scarch for a computer program that produces some
desired output for particular inputs. A computer program being a collection of instructions
which when executed perform a specific task. When viewed in this way, the process of
solving these problems bccomes equivalent to searching a space of possible computer
programs for the fittest individual computer program. The scarch space is the space of all
possible computer programs composed of functions and tcrminals appropriaic to the

problem domain and genetic programming provides an cffective way to scarch for them.

Onc problem that arises when using computers (o solve problems is that cxisting methods of
machine learning, artificial intelligence, self-improving systems, sclf-organising systems,
ncural nctworks, and induction do not seck solutions in thc form of computer programs.
Instead, existing paradigms involve specialised structures (e.g., weight vectors for neural
networks, formal grammars, coefficients for polynomials, production rules and chromosome
strings in the conventional genetic algorithm). Each of these specialised structures can
facilitate the solution of certain problems, and many of them facilitate mathecmatical analysis
that might not otherwise be possible. If computers are to be used to solve problems without
being explicitly programmed, i.c. not including partial solutions to the problem within the
problem solving technique, then a very good candidate for the structures required are

computer programs.




They offer the flexibility to: -

e Perform operations in a hierarchical way.

e Perform alternative computations conditioned on the outcome of intermediate
calculations.

e Perform iterations and recursions.

e Perform computations on variables of many different types.

e Define intermediate values and subprograms so that they can be subsequently reused.

The size and shape of the structures need not be specified in advance, as is generally the
case in a genetic algorithm. These attributes of the solution should emerge during the
problem-solving process as a result of the demands of the problem. The size, shape, and
structural complexily should be part of the answer produced by the problem solving
technique not part of the question when used to solve symbolic regression problems. An
immediate problem is how to find the desired program in the space of possible programs.
The space of possible computer programs is too vast for a blind random search. Thus there

is a need to search in some adaptive and intelligent way.

1.4 Current Research In Evolutionary Computing

A genetic algorithm operates by repeatedly modifying a population of artificial structures
through the application of genetic operators. GA’s use fitness information exclusively; they
do not require gradient information or other internal knowledge of the problem. A genetic
algorithm’s data structure consists of one or more chromosomes, which may be represented
as a string of bits, so the term string is ofien used. Other possible representations include
real number encoding (Goldberg, 1991 (a)), structured GA's (Dasgupta, 1991, 1992), and

high level computer programs with variable-length strings (Koza, 1992).
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Theoretical research in GA's covers the modelling and analysis of GA’s using Markov
chains and other statistical methods; the search for optimal control-parameter setting; the
design of problem representations and genetic operators; the construction and sotution of
difficult problems; the design of mechanisms for niching and for the maintenance of
population diversity; the parallel implémenlalion of GA'’s; the design of hybrid GA’s (Davis,
1991) that incorporate ideas borrowed from neural networks, simulated annealing, fuzzy
logic, hill-climbing, and tabu search; and the comparison of algorithms. Applied research has
covered problems in classification, combinatorial optimisation, design, function
oplimisation, information retrieval, machine learning, noise-tolerant problem solving,

scheduling, search, simulation, and structural optimisation.

Theoretical work in genetic programming covers schema theory (Koza, 1992), (Poli &
Langdon, 1997; Haynes, 1997). The investigation of the crossover operator (Angeline,
1997), and the effect of non-coded segments or introns (Andre & Teller, 1996; Banzhaf et.
al. 1997). Investigation of various mutation methods has been investigated by Chellapilla
(Chellapilla, 1997) where crossover is not used within the genetic programming paradigm.
The effect of code growth in genetic programming has also been investigated by various
people including Soule (Soule et. al. 1996), and Langdon (Langdon, 1997). Work on reuse
of sub-trees within individuals has been investigated (Koza, 1994) where Automatically
Defined Functions (ADF’s) pursue the general goal of promoting modularity within the

solution to the problem at hand.

1.5 Current Research In Evolutionary Systems Identification

Research concerning systems identification using GA’s includes effects of control

parameters for on-line performance of genetic algorithms for function optimisation

(Schaffer et. al. 1989), (Messa, 1992), (Johnson & Husbands, 1991) and (Goldberg &
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Richardson, 1987), the use of structured genetic algorithms (Dasgupta, 1991) and
structured genetic algorithms for system identification (Iba et. al. 1993), using evolving
polynomial networks (Kargupta & Smith, 1992) and the use of messy GA’s (Goldberg, et.

al. 1991(b)), and (Goldberg, et. al. 1993).

Research using genetic programming for systems identification include combined regression
algorithms with genetic programming (Jiang, 1992 & 1993) and (Jiang & Wright, 1992).
Hitoshi Iba et. al. have published papers on solving system identification (symbolic
regression) problems using genetic programming (Iba, et. al. 1996(a)) and has also

published a paper on random tree generation (Iba, 1996(b)).

1.6 Research Objectives

The objectives of the research can be summarised as follows:-

To identify the utility of evolutionary computation and in particular genetic

programming for systems identification.

To develop appropriate evolutionary strategies for systems identification.

The integration of complementary adaptive search and traditional optimisation

techniques for systems identification..

The improvement of areas of simple engineering software using the developed

strategies.

1.7 Thesis Overview

This chapter has outlined the engineering design process and in particular the role of

approximate mathematical models within preliminary design. A review of current research in
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the field of evolutionary computation suggests that the genetic programming paradigm is
the best-suited evolutionary computation algorithm for use within this field. Existing
methods of regression and systems identification are presented in Chapter 2. This chapter
discusses the possible ways in which an engineer can formulate a mathematical model using
empirical data. This includes the genetic algorithm, neural networks, and genetic
programming for simple systems identification problems and discusses advantages and
disadvantages of these techniques together with the arguments for using the geneltic
programming paradigm. Chapter 3 explains the conventional genetic programming
paradigm (Koza, 1992) in detail and includes recent work on aspects of genetic
programming. Chapter 4 presents a comparison of techniques for solutions to various
problems, which are also used to develop complimentary search techniques, before
attempting to model simple engineering systems. Chapter 5 addresses the problems
encountered with using standard genetic programming and introduces improved genetic
programming methods for systems identification. The new technique is tested on various
problems and includes various run parameter sets which show how the new genetic
programming approach can be used depending on the problem being solved. Chapter 6

applies these new techniques to the simple engineering systems first presented in Chapter 4.

The final chapter, Chapter 7, provides a detailed discussion on the results presented in the

previous chapters and the techniques developed within this thesis. The chapter also presents

the conclusions from the research and possible future research directions.
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CHAPTER 2

REGRESSION TECHNIQUES

The following chapter describes the main regression techniques available 1o the engineer
and also introduces evolutionary techniques as a viable alternative to standard regresston
techniques. The advantages and disadvantages of these methods are discussed and a case

for using the genetic programming paradigm is presented.

The mathematical modelling of any system requires the collection of relevant data. Once the
data has been obtained, usually through empirical experimentation, a search for a
mathematical formula which can best describes the data can commence. This process of

finding a mathematical relationship from the data is termed regression analysis.

Regression is defined as the analysis or measure of the association between a Dependant
Variable and one or more Independent Variables (Borowski & Borwein, 1989). Thus
regression is concerned with the nature of association between variables. If a law exists
connecting the variables, the nature of the association is stated as a mathematical equation.
The equation can then be used 1o predict values of one variable for given values of the other

variables.

Regression is the traditional approach to empirical modelling. The regression problem is
formulated in such a way that the regression of a dependent variable y on an independent
variable x is the computation of the most probable value of y for each value of x based on a
finite number of possibly noisy measurements of x and the associated values of y. The values
of the parameters are chosen to make the best fit to the observed data. In the case of linear
regression, for example, the functional form is:-
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y=ax+b, 2.1
Here the dependent variable y is assumed to be a linear function of independent variable x.

The unknown parameters a and b are the linear coefficients.

Regression models are classified in a number of ways. For example, models are classified
into linear or non-linear regression models according to the complexity of the functional
form. Regression models are also classified in terms of the number of independent variables

i.e. univariate or multivariate.

2.1 Empirical Modelling Methods

Empirical models are constructed based on a set of experimental data or observations of a
process. The problem of developing an empirical model for a process can be viewed as the
problem of approximating an input-output function mapping from a given set of

experimental data.

Historically, relationships were established solely by examining the data - a difficult task if

the relationship is complex, multi-variable, or if a high level of noise exists, due to

experimental error, as often occurs in real-world problems. Moreover, the examination 1is

easily influenced by the individuals desires and expectations. Statistical methods were

among the first tools developed to help a researcher find the relationships between observed

facts. Statistical methods are often based on the following assumptions:

¢ The data is normally distributed.

o The equation relating the data is of a specific form, for example, linear, quadratic, or a
specified polynomial.

e The variables are independent.

e There is sufficient data to perform the statistical analysis.

16



If the problem meets the required assumptions, statistical methods represent a valuable tool

for providing solutions. However real-world problems seldom meet these criteria.

2.2 Parametric and Non-Parametric Regression

The third way of classification of regression models concerns parametric or non-parametric
regression according to the interpretation of the unknown parameters. Parametric
regression model usually refers to the regression model where the form of the functional
relationship is known (e.g., linear regression or a specified polynomial regression). The
functional form contains some (usually small) number of unknown (but well defined)
parameters whose values can be computed from the best fitting of the data. Typically, the
unknown parameters of a parametric model have meaningful interpretation. The simplest
example is the univariate linear regression model in the form:-
y=Box+B; 2.2)

This is one kind of parametric regression because the function form of the dependence of y
on x is specified, even though the value of the parameters By and B, are not. The lincar
regression model makes several assumptions about the data, including linearity of the
function of the explanatory variables, independence of the random errors, and equality of
the variances of the random errors. Parametric regression therefore concerns the
formulation of an equation containing independent variables and related coefficients. This is
commonly formulated as an equation in which the independent variables have parametric

coefficients and is therefore termed parametric regression.

On the other hand, non-parametric regression does not need to specify the form of the
unknown functional relationship. No a priori knowledge about the form of the unknown
function may be available. The function is still modelled using an equation containing

unknown parameters but in a way which allows the class of functions which the model can

represent (o be very broad. Typically the equation, in some functional form, has many
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unknown parameters, and none of the parameters have any physical meaning in relation o
the problem 10 be solved. Neural networks can be used as non-parametric regression

models.

The most commonly used regression method is the method of least squares where the sum
of the squares of the differences between the observed and the theoretical values is
minimised. This form of parametric regression can be lincar, or by increasing the number of
parameters, polynomial regression can be used. While this approach has been widely used,
it suffers from a few drawbacks. Polynomial functions are not very flexible since they have
all orders of derivatives everywhere, a seventh order polynomial function includes powers
of x from seven down to zero and so the functional structure is set and cannot be changed.
Individual observations can also have a huge influence on remote parts of the curve, if that
particular data point is removed then the resulting polynomial equation is significantly
changed. There are several ways (o repair the drawbacks of polynomial fitting. One is to

allow possible discontinuities of derivative curves. This leads to the spline approach.

2.3 Cubic Splines

One of the most popular methods for accurately drawing smooth curves through a series of
points is the cubic spline (Lancaster & Salkauskas, 1986, and Cox, 1990). In theory, given a
series of N points, an equation involving an N-1 degree polynomial can be devised. When
the polynomial function is drawn as a graph, it passes through each of the points. This
produces N linear equations which can be solved. The performance of the technique suffers
with large numbers of test points. Firstly, the Gaussian elimination part of the method slows
down markedly as it is asked to handle more unknowns also the resulting polynomials can
be difficult to compute. For example, a polynomial equation that can thread its way through
100 points will contain a sub-expression x*. Even for small values of x an attempt 10

calculate this will cause an arithmetic overflow. There are alternatives that allow the degrce
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of the polynomials involved to be minimised by dividing the data into smaller data sets. Low
order polynomial curves are then used to fit each data set and a function is used to ensure a
smooth transition between each curve. The resulting interpolation or smoothing function is
called a piecewise polynomial function. The most widely used of these functions is the cubic

spline.

Cubic splines dispense with the one large N-1 degree polynomial that goes through all of
the points, replacing it with a number of simpler cubic polynomials that are individually
responsible for drawing a line only between adjacent pairs of points. The cubic equations
require 4 variables each, these variables, ap, ay, ... , a; are defined within a cubic equation

thus:-

y= aoX’+a; x*+azx+a; (2.3)

If for example 5 data points are to be fitted using cubic splines, 4 cubic equations are
required to join all points, and a total of 16 unknowns are required to represent the data.
Each cubic polynomial must pass through two points, its start and end point. This provides
two equations for each polynomial and 8 equations in all. However 16 equations are
required to solve for the 16 unknowns, therefore extra conditions are required. Firstly the
slope at the end of a segment should be the same as the slope of the next line at its start, this
provides a further three equations, giving 11 equations in total. Further constraint for the
problem is achieved by attempting to make the join between adjacent segments even
smoother, ie. by demanding that the second derivatives are also equal. This provides
another 3 equations, 14 in total, and the final 2 equations are obtained by stating that the

first and last points have a second derivative equal to zero.
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The method is very prone 1o noisc, i.c. inaccuracics in the data will dramatically change the
curve. Any change in the data, possibly by the inclusion of an extra dimension, will requirc
all of the cubic splines to be recalculated. No representative mathematical function is
produced which will describe all of the data in a usable way. The method produces a series
of cubic equations which when joined together, fit the data given. These ‘piecewise’
functions will not produce a single cquation, which best represents the data given and so
cannot be used for systems identification. However it is a popular technique, used mainly in

the ficld of computer aided design and computer graphics.

2.4 Surface Fitting Using Polynomials

Polynomials also play a major rele in surface fitting where additional dimensions
significantly increase complexity. Problems related to existing curve fitling technques

become more acute, and complex mathematical analysis is required 1o produce good results.

The methed must now have to cope with polynomials in fwo variables. The surface under
investigation has to be represcnted as a series of ‘patches’ of the polynomial functions,
normally bi-cubic patches (Lancaster & Salkauskas, 1986), and this leads to the formation
of a large matrix which requires solving at increased computational expense. Again, as with
spline fitting, no uscful information is derived about the system under investigation due (0
the piccewise polynomial functions, or patches, used and so these surface fitting techniqucs

cannot be used for symbolic regression problems.



2.5 Symbolic Regression

Symbolic regression (or function identification) involves finding a mathematical expression,
in symbolic form, that provides a good, best, or perfect fit between a given finite sampling
of values of the independent variables and the associated values of the dependent variables
(Koza, 1992). That is, symbolic regression involves finding a model that fits a given sample
of data. When the variables are real-valued, symbolic regression involves finding both the

functional form and the numeric coefficients for the model.

This approach is also called nonparametric regression, the aim of which is (o relax
assumptions on the form of a regression function, and to let data search for a suitable
function that adequately describes the available data. In the case of noisy data from the real
world, this problem of finding the model from the data 1s often called empirz"cal discovery.
These approaches are powerful in exploring fine structural relationships and provide very

useful diagnostic tools for parametric models.

2.6 Computer Intelligence

Computer intelligence involves computational techniques that exhibit an ability to learn
and/or adapt to new situations. Computational intelligence systems are often designed to
mimic one or more aspects of biological intelligence. These methods can be used to evolve

solutions to regression problems and an overview of current methods is presented.

2.6.1 The Genetic Algorithm

Genetic algorithms mimic some of the processes observed in natural evolution. Biologists
have been intrigued with the mechanics of evolution since the evolutionary theory of
biological change gained acceplance through the work of Darwin in the mid 19th century

(Darwin, 1859). Evolution takes place on chromosomes - organic devices for encoding the
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structure of living beings. A living being is created partly through a process of decoding
chromosomes. The specifics of chromosomal encoding and decoding processes are not fully

understood, but some general, widely accepted features of the theory are:

e Evolution is a process that operates on chromosomes rather than on the living beings
they encode.

e Natural selection is the link between chromosomes and the performance of their
decoded structures. Processes of natural selection cause these chromosomes that encode
successful structures to reproduce more often than those that do not.

e The process of reproduction is the point at which evolution takes place. Mutations may
cause the chromosomes of biological children to be different from those of their
biological parents, and recombination processes may create quite different chromosomes
in the children by combining material from the chromosomes of two parents.

e Biological evolution has no memory. Whatever it knows about producing individuals
that will function well in their environment is contained in the gene pool - the set of
chromosomes carried by the current individuals - and in the structures of the

chromosome decoders.

These features of natural evolution intrigued John Holland in the early 1970’s (Holland,
1975). Holland believed that, appropriately incorporated in a computer algorithm, they
might yield a technique for solving difficult problems in a similar manner to nature i.e.
through evolution. He began investigating algorithms that manipulate strings of binary digits
analogous 0 chromosomes. Holland’s algorithms carried out simulated evolution on
populations of such chromosomes. Like nature, his algorithms solved the problem of finding
good chromosomes by manipulating the material in the chromosomes. Like nature, they
knew nothing about the type of problem they were solving. The only information they were

given was an evaluation of each chromosome they produced, and their only use of that
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evaluation was to bias the selection of chromosomes so that those with the best evaluations

tended to reproduce more often than those with bad evaluations.

These algorithms, using simple encoding and reproduction mechanisms, solved some
extremely difficult problems. Like nature, they did so without knowledge of the decoded
world. They were simple manipulators of simple chromosomes. Yet when the descendants
of those algorithms are used today, it is found that they can evolve better designs, find
better schedules, and produce better solutions to a variety of other important problems that

cannot be solved as well using other techniques.

Before discussing in detail the simple genetic algorithm certain terminology used by
researchers who work with genetic algorithms has to be mastered. Because genetic
algorithms are rooted in both natural genetics and computer science, the terminology used
in the GA literature is a mix of the natural and the artificial. The strings or individuals of
artificial genetic systems are analogous to chromosomes in biological systems. In natural
terminology, chromosomes are composed of genes, which may take on some number of
values called alleles. In its simplest form, the GA consists of five basic steps - initialisation,
evaluation, selection, crossover and mutation. The iterative sequence of selection,
crossover, mutation and evaluation is known as a generation. Figure 2.1 shows the structure
of the simple Genetic Algorithm (Goldberg, 1989), where P, represents the population of
chromosomes at generation r. The number of chromosomes in the population of the GA

remains fixed from generation to generation.
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procedure genetic_algorithm
begin
1:=0;
initialise Py;
evaluate Py;
while (not stopping-condition) do

begin
select Py, from Py;
t=t+1;
crossover Py;
mutate Py;
evaluate Py

end

end
Figure 2.1 - The Structure Of The Simple Genetic Algorithm

The steps within the GA are explained in greater detail:-

Initialisation - The first step of the GA is to generate the initial population of
chromosomes. In general, this involves choosing a random allele for each gene of ecach
chromosome. This is repeated for successive chromosomes until a population of individuals
is produced. The size of the population can determine the quality of convergence and is

problem dependant (Goldberg, et. al. 1992).

Evaluation - The evaluation phase of the GA determines the relative fitness of the
chromosomes within the population (Goldberg & Rudnick, 1991 (c)). In general, this is
equivalent to the object value of the parameter set represented by that chromosome. The
relative fitness of a chromosome determines its survival and possible propagation in
subsequent generations. Once calculated, the fitness is stored alongside the chromosomes

for use by the selection algorithm.

Selection - The selection algorithm determines which of the chromosomes of the current
population are represented in the following population. Typically, the selection process will

ensure that those chromosomes of high fitness prosper at the expense of those
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chromosomes of low fitness. The most commonly used technique is the Roulettc Wheel
Selection algorithm (Goldberg, 1989) which, for each frec spacc in the ncw population,
statistically selects a chromosome from the current population according (o its relative
fitness. This process may be compared with spinning a weighted roulette wheel for each
member of the new population. The proportion of the wheel assigned to cach chromosome
in the current population is determined by that chromosomes contribution to the total fitness
of the population. Other techniques include Tournament selection  (Goldberg, et. al.
1991(c)) which generates the new population by choosing, for each free space in the new
population, the fittest of a randomly sclected subset of the current population. In general,
two competitors arc used giving a binary tournament. Lincar normalisation
(Goldberg, 1989) ranks and assigns a fitness value according to the relative position of the
individual within the population, it sorts them in ascending or descending order. Linear
fitness scaling and power fitness scaling (Davis, 1991) use sorting and then either scale the
fitness using a lincar or a power law to modify the sorted fitness value. Stochastic remainder
selection (Davis, 1991) is a variant of the Roulette Wheel Sclection algorithm, which
guarantees that a chromosome will receive at least the integer part of its cxpected number

of offspring.

Crossover - The crossover operator, generally held to be the principal genetic operator of
the GA (Schaffer & Eshelman, 1991), combines the genetic information of a pair of the
parent individuals {or chromosomes) to produce a pair of offspring chromosomes. These
offspring then take the place of the parent chromosomes in the current population. This
exchange of genetic information is achicved by various methods. Single Point Crossover
randomly chooses a locus and swaps between the parent chromosomes the ‘bits™ or allele
values of cach following gene. Two Point Crossover uses two crossover points and all
genes between the crossover points exchange allele values. Uniform Crossover extends this

notion further allowing cach genc 1o retain or swap allele valucs with equal probability.
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Other crossover operators include Average Crossover and Arithmetic Crossover. The
proportion of the population selected for crossover is known as the crossover rate and 18
generally set at about 60% (Goldberg, 1989). The parent chromosomes are usually sclected

in advance so that no individual chromosome takes part in more than one crossover event.

Other crossover operators have been suggested which include a degree of mutation (Joncs
1995) who demonstrated that a macromutation with the mechanical form of cressover that
substitutes a randomly constructed parent as one of the recombinants, performs as well as
and occasionally better than crossover when clearly defined building blocks are not present.
This macromutation named headless chicken crossover, had the mechanical form of
crossover, i.e. the transfer of genetic material between two parents, but paired each
population member with a randomly generated parent rather than a parent chosen from the
population. Jones shows that on problems where well-defined building blocks do not exist
the macromutation performs better than the GA with crossover. The effectivencss of this
operator calls into question the range of problems for which crossover is well suited and

suggests that macromutations are often sufficient to solve difficult problems.

Mutation - Unlike crossover, the mutation operator acts upon single chromosomes chosen
at random from the population. For each sclected chromosome a random locus is selected,
and the allele value of the gene at that locus is altered. This new chromosome replaces its
parcnt in the population. The proportion of the total number of genes in the population
selected for mutation is known as the mutation rate and is generally inversely proportional
to the population size (Goldberg, 1989). Unlike crossover, it is not usual to pick the target

genes in advance, and it is therefore possible that the same gene may be subject to more

than onc mutation event.




The Stopping Condition - A number of criteria may be used to halt the GA search

process. For example,

o The GA executes for a pre-set number of generations.
o The maximum or average fitness of the population reaches a pre-set target.

o The population converges (all chromosomes within the population are identical).

GA’s vary from practitioner to practitioner, and the GA outlined above can be considered
as a simple genetic algorithm. There are various other techniques that have been used to

enhance the performance of the GA and these are briefly discussed.

Elitism

The best member of a population may fail to produce offspring in the next generation. The
elitist strategy fixes this potential source of loss by copying the best member of each
generation into the succeeding generation. A disadvantage of elitism is that it can increase
the probability of domination of a population by a super individual, however, used

discriminately it does improve GA performance.

Steady-State Reproduction

When a GA reproduces, it replaces a predefined percentage of parent individuals by their
children. This generational replacement technique has some potential drawbacks. One is that
even with an elitist strategy, many of the best individuals found may not reproduce at all,
and their genes may be lost. It is also possible that mutation or crossover may alter the best
chromosomes genes so that good features are destroyed. Neither of these outcomes is
desirable. One solution to this problem is to modify the reproduction technigue so that only
one or two individuals are replaced at a time. This is termed steady-state reproduction

(Syswerda, 1989).
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Representation lssues
Bit string encoding is thc most common encoding technique used by genetic algorithm
researchers. Bit strings have several advantages over other encodings, they arc simple to

create and manipulate, and they are theoretically tractable, which leads 1o schemata theory.

Schemata theory was first described by Holland (Holland, 1975), schemata are similarity
templates for strings. Each schema defines a subset of strings with identical values at
specified string locations, and provides a means by which similarities among the individual

population members can be described and exploited.

In order to define schemata, the ‘alphabet’ of the strings is used to define values at specific
locations, and an additional character, the symbol (#), is used as a ‘wild card’ in locations
where the value does not matter. Schemata can thus generally be thought of as comprising
an alphabet of ag+ | characters, where ap is thc number of characters in thc GA
representation. The GA strings are usually represented in binary, so the schemata compriscs

the characters {0, 1, #}.

As an example, consider the schemata of length 4 that may appear in, say, the leftmost four
positions of an individual within a population. One such schema is #000, which has two
member strings. That is, two strings match the schema, 0000 and 1000. The schema 1##0
has four matching strings, 1000, 1010, 1100, and 1110. For a string of length { and an
alphabet of ap, therc arc (ao + 1)’ total possible schemata. Another uscful measure is the
total possible number of unique schemata in a population. Consider a specific string of
length 8, since each string position can assume the value it has, or the wild card valuce, the
string belongs to 2® = 256 schemata. Any binary string of length 7 thus belongs to 2!

schemata. Populations with a high diversity have more schemata.
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At this point it is uscful 10 reconsider the basic GA operations of reproduction, crossover
and mutation. Schemata that are part of an individual with high fitness will be reproduced
more often than average, thercfore highly fit schemata benefit from reproduction. If
reproduction were the only operator used, though, no new regions of the scarch hyperspace

would ever be explored. Crossover and mutation guide the search into new rcgions.

Crossover, however, is a slightly more complicated matter than reproduction. Consider two
schemata, 1##HEHH0 and #1084, 1f both are part of strings of equal fitness, one point or
two point crossover is more likely to disrupt the first, since it is likely that a crossover point
will occur between the two string endpoints. The second is more compact and is relatively

unlikely to be disrupted by a one or two point crossover operation.

Mutation is not likely to disrupt either schema, since it typically occurs at a very low rate,

and since it is considered on a bit by bit basis, it is just as likely to disrupt one as the other.

While crossover and mutation are potentially disruptive, they facilitate an efficient search.
Furthermore, compact (short) schemata that are part of highly fit individuals will, with high
probability, appear in cver-increasing numbers in future generations. The schemata are the
clements of which future generations are built, Holland (Holland, 1962) named them
‘building blocks.” The schema thcorem provides a quantilative estimation of one aspect of

GA performance.

The Schema Theorem
The schema theorem predicts the number of times a specific schema will appear in the next
generation of a GA, given the fitness of the population members containing the schema, the

average fitness of the population, and other parameters. The GA is effcctively working with
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a large number of schemata simultaneously, ranging from very short schemata to schemata
as long as the individual population member. The schema theorem provides a quantitative

prediction for all schemata, regardless of length. The schema theorem (Goldberg, 1989) is:-

£(8) [ 8(S)]
f(avg)l_l—pc T -olS)p, (2.4)

n,,(8)=n(S)

Where, n is the total number of examples of a particular schema S. The subscript ¢+/ and ¢
refer to time steps, or generations. The parameter f{ § ) is the average fitness of the
individual, while f.,, is the average fitness of the entire population. The probabilities of

crossover and mutation are p. and pn, respectively.

The parameter 8( S ) is called the defining length of the schema, it is the distance between
the first and last specific string positions. For example, for the schema #01#114#, the
defining length is 4. The total length of the string is /, while o( S ) is the order of the
schema, or the number of fixed positions (0’s and 1’s) in the schema. In the preceding
example, the order of the schema is 4. The order of a schema is the number of potential

‘cut’ points within the schema that could be affected by crossover.

Schemata are used to attempt to explain why GAs work, it is based on the idea that GAs
solve problems by hierarchically composing relatively fit, short schemata to form complete
solutions (Building Block Hypothesis). This theory is an approximation and it is not

generally accepted as positive proof of how a GA works.

Another representation method is the use of real number encoding techniques. This replaces
bit strings with real numbers and consequently requires a revised mutation and crossover

operator to manipulate them (Davis, 1991). The main advantages of using real number
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encoding arc that numerical representation is effective on  mathematical problems,
mathematical operators, and numerical operators may greatly improve the performance of

the GA on numerical problems.

Genetic algorithms directly manipulate a coded representation of the problem. The GA
operating on fixed-length representations is capable of solving many problems. For many
cases, this is not the most natural representation for a solution. The size and shape of the
solution is not known in advance, so the program should have the potential of changing its
size and shape. One approach to this problem is to use a Structured Genetic Algorithm
(StGA) (Dasgupta, 1992) where discrete features of the problem are encoded in blocks
which arc either turned on or off depending on the initial block coding. The active
parameters are passed to the evaluation model and this provides a variable length

representation using GAs.

2.6.2 Neural Networks

Neural networks (NNs) excel at recognition and classification types of problems, and can be
applied to the systems identification problem using adaptive algorithms for either parameter
or functional estimation (Tenorio & Lee, 1990). Neural networks (NNs) are information
processing systems. In general, neural networks can be thought of as “black box” devices
that accept inputs and produce outputs. In the simplest terms, neural networks map input

vectors onto output vectors. Some of the operations that neural networks perform include:

e Classification - An input pattern is passed o the network, and the network producces a

represcntative class as output.

e Pattern matching - An input pattern is passed to the nectwork, and the network

produces the corresponding outpul pattern.
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Pattern completion - An incomplete pattern is passed to the network, and the network

produces an output pattern that has the missing pattern portions filled 1n.

Noise removal - A noise-corrupted input pattern is presented (o the network, and the
network removes some (or all) of the noise and produces a cleaner version of the input

pattern as output.

Optimisation - An input pattern representing the initial values for a specific
optimisation problem is presented to the network, and the network produces a set of

variables that represent an acceptably optimised solution 1o the problem.

Control - An input pattern is presented that represents the current state of a controller
and the desired response for the controller, and the network output is the proper

command sequence that will create the desired response.

Simulation - An input pattern is presented that represents the current state vector of a
system or time series. The trained network generates structured sequences or patterns

that simulate behaviour of the system.

Neural networks consist of processing elements and weighted connections.” Figure 2.2

illustrates a typical neural network.
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INPUTS OUTPUTS

Figure 2.2 - A Typical Neural Network

Each layer in a neural network consists of a collection of processing clements (PEs). Each
PE collccts the values from all of its input connections, performs a predefined mathematical
operation (such as a dot-product followed by a threshold), and produces a single output
value (Pandya & Macy, 1995). The neural network in figure 2.2 has three layers: Fy, which
consists of the PEs {x;,x2,x3}; Fy, which is called a hidden layer and consists of the PEs (y,.

y2) and F,, which consists of the PEs {z,,22,23} (from left o right, respectively).

PEs arc joined with weighted conncctions. In figure 2.2 there is a weighted connection from
every F, PE to every F, PE, and therc is a weighted connection from every F, PE 1o cvery
F. PE. Each weighted connection (often referred to as cither a connection or a weight) acts
as both a label and a value. As an example, in figure 2.2 the connection from the F, PE x1 o0
the F, PE y2 is the connection weight W21 (the connection from x1 to y2). In most uses of
NNs connection weights store the information, or knowledge, in a network. The values of
thc connection weights are often determined by a ncural network learning procedure. It is
through the adjustment of the connccting weights that the neural network is able to learn.
By performing the update operations for cach of thc PE’s when an input pattern is

presented, the neural network is able to recall information.
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There arc several important features illustrated by the neural network shown in figure 2.2

that apply to all neural networks (Welstead, 1994):

o Each PE acts independently of all others - each PE’s output relies only on its constantly
available inputs from the abutting connections.

o Each PE relies only on local information - the information that is provided by the
adjoining connections is all a PE needs to process: it does not need to know the state of
any of the other PE’s to which it does not have an explicit connection.

o The large number of connections provides redundancy and facilitates a distributed

representation.

The first two features allow neural networks to operate efficiently in parallel. The last
feature provides neural networks with inherent fault-tolerance and generalisation qualities
that are very difficult to attain with most other computing systems. In addition to those
features, by properly arranging the topology of the networks, introducing a nonlinearity in
the processing elements (i.e., adding a nonlinear threshold function), and by using
appropriate learning rules, neural networks are able to learn arbitrary nonlinear mappings.
This is a powerful attribute. There are three situations where neural networks are

advantageous: -

1. Situations where relatively few decisions are required from a massive amount of data
(e.g. speech and image processing);
2. Situations where nonlinear mappings must be automatically acquired (e.g. loan

evaluations and robotic control); and
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3. Situations where a near-optimal solution to a combinatorial optimisation problem is
required very quickly (e.g., job shop scheduling and telecommunication message

routing).

Neural networks comprise of three principal elements needed to specify the network:

e Topology - how a neural network is organised into layers and how those layers are

connected.

e Learning - how a neural network is configured to store information.

e Recall - how the stored information is retrieved from the network.

Neural networks (Pandya & Macy, 1995) can also be used for curve fitting, surface fitting
and other regression problems. Design of a neural network for pattern classification may be
viewed as a curve-fitting problem in hyperspace, where learning weights amounts to finding

a hyper-surface that provides a ‘best fit’ to a given set of training data.

Radial basis networks

Radial-basis functions (RBF) (Pandya & Macy, 1995, Spect, 1990) provide a technique for
interpolation in a high-dimensional space. RBF’s construct local approximations using
exponentially decaying localised nonlinearities based on a Gaussian function in two

dimensions.
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RBF networks have a static Gaussian function as the nonlinearity for the hidden layer
processing elements. The Gaussian function responds only to a small region of the input
space where the Gaussian is centred. The key to a successful implementation of these
networks is to find suitable centres for the Gaussian functions. This can be done with

supervised learning, but an unsupervised approach usually produces better results.

The simulation starts with the training of an unsupervised layer. Its function is to derive the
Gaussian centres and the widths from the input data. These centres are encoded within the
weights of the unsupervised layer using competitive learning. During the unsupervised
learning, the widths of the Gaussians are computed based on the centres of their neighbours.
The output of this layer is derived from the input data weighted by a Gaussian mixture.
Once the unsupervised layer has completed its training, the supervised segment then sets the
centres of Gaussian functions (based on the weights of the unsupervised layer) and
determines the width (standard deviation) of each Gaussian. Any supervised topology such
as a multilayer perceptron, (MLP), may be used for the classification of the weighted input.

A typical RBF network topology is shown in figure 2.3.
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Figure 2.3 - Radial Basis Function Network Topology

The advantage of the radial basis function network is that it finds the input to output map
using local approximators. Usually the supervised segment is simply a linear combination of
the approximators. Since linear combiners have few weights, these networks train extremely

fast and require fewer training samples (Eberhart, Simpson & Dobbins, 1996).

Some of the advantages and disadvantages of radial basis function networks are listed below
(Welstead, 1994).

Advantages include: -

e The ability to create nonlinear decision boundaries

¢ Verification and validation are possible

e Networks output provides graded membership information and novelty detection
¢ Does not experience local minima problems of back-propogation

e The LVQ learning phase is relatively insensitive to the order of pattern presentation
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Disadvantages include: -

e The training proccss can be somewhat slow
s Several parameters require “‘tuning”
e It is difficult to perform incremental lcarning

e [t is difficult to process missing and weighted features

Radial basis function networks are being used for an increasing number of applications.
They are computationally easy to train, and performance often equals or exceeds that of

other paradigms (Welstead, 1994).

2.7 Systems Identification Using Genetic Algorithms and Neural Networks

Genetic algorithms can be used for systems identification but the main drawback is the
inflexibility of the structure of the answer. To usc a GA for curve fitting we could assume
that the answer is a 5* order polynomial and code the GA 1o represent the cocfficients for
the polynomial. This will produce a solution to the problem, but by stating the structural
form of the final equation, the answer is limited to the initial function chosen. The use of a
structured GA docs allow some flexibility of the structure of the equations, but to allow
enough variation of cqualions_'m the encoding there would be a large amount of redundant
information within the answer which would effect the efficiency of the algorithm. NNs are
very good at finding relationships between sets of data. The major drawback with this
technique is that there is no known way to represent the results of a run as a mathematical

cquation.
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2.8 Summary

A method is required which will not only evolve the variables within the function but also
the functional form of the equations. Standard mathematical techniques require the user to
assume the functional form of the solution before any analysis can start and the spline
approach will not produce a continuous function which describes the data. It is possible to
use a structured genetic algorithm to perform symbolic regression but it would involve large
structures in order to represent the equations, resulting in large amounts of redundancy
within the structures undergoing adaptation. As stated earlier, the size and shape of the
structures should not be specified in advance, they should emerge during the problem-
solving process as a result of the demands of the problem. Neural networks provide a
mathematically proved method for solving any problem, the major drawback being that the
results of the network are virtually impossible to view and represent as a mathematical
function. Genetic programming (GP) can provide interpretable equations and does not
require any prior knowledge of the system as in the case of a GA. The structures that are
produced can dynamically vary in size and shape and so the GP paradigm will be used for

the solution to symbotic regression problems.
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CHAPTER 3

GENETIC PROGRAMMING

This chapter introduces the Genetic Programming paradigm in detail and includes
representation issues, genetic operators and theoretical research attempting to explain the
mechanisms of the method. The recently developed GP paradigm (Koza, 1992 and Koza,
1994) is a method of program induction, which genetically breeds a population of computer

programs to solve problems.

3.1 The Genetic Programming Paradigm

The GP paradigm deals with the problem of representation in GA’s by increasing the
complexity of the structures undergoing adaptation. In particular, the structures in GP are

general, hierarchical computer programs of dynamically varying size and shape.

GP commences with an initial population of randomly generated computer programs

composed of functions and terminals appropriate to the problem domain.

3.2 Outline Of The Standard GP Algorithm

The GP algorithm is similar to the GA algorithm, the only difference being in the
implementation of various aspects of the algorithm such as crossover and mutation, due 10
the structures used to represent the solutions to a given problem. Figure 3.1 shows the
structure of the Genetic Programming paradigm, where P, represents the population of
chromosomes at generation £. The number of chromosomes in the population of the GP
remains fixed from generation to generation. The first step is the initialisation of the

population followed by the evaluation where the population is ranked in order of a specified
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fitness mecasure. The next generation is then selected from the current generation and
crossover and mutation operators arc applicd to the population. The process then repeats

unti} a prespecified stopping criteria has been met.

procedure genetic_programming
begin
1:=0;
initialise Py;
evaluare Py;
while (not stopping-condition) do
begin
select Py, from Py;
t:=t+1;
crossover Py
mutate Py
evaluate Py;
end
end

Figure 3.1 - The GP Algorithm

3.3 The Structures Undergoing Adaptation

In cvery adaptive system or learning system, at least one structure is undergoing adaptation.
For the conventional genetic algorithm and genctic programming, the structures undergoing
adaptation are a population of individual points from the scarch space, rather than a single
point. Genetic methods differ from most other search techniques in that they simultaneously
involve a parallel search involving many points in the search space. The functions used may
be standard arithmetic operations, programming operations, mathematical functions, logical
functions, or domain-specific functions. Depending on the particular problem, the computer
program may be Boolean, integer, real, complex, vector, symbolic, or multiple valued. The
creation of the initial random population is a blind random search of the problem scarch

spacc.
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The set of possible structures in genctic programming is the set of all possible compositions

of functions that can be composed recursively from the set of N, functions from:

F:{flvfza---vfﬂrm} 3.1

and the set of N, terminals from:-
T={a,,az,...,a,\.m} ) (3.2)

Each particular function f; in the function set F takes a specified number z(f-) of

arguments z(f,),z(fz),...,z( fNM) That is, function f;has arity z(f,-). The arity being the

number of arguments taken by the function.

The functions in the function set may include:-

e arithmetic opecrations ( +, -, * ,elc.),

e mathematical functions (sin, cos, cxp, log),

¢ Boolean operations (AND, OR, NOT),

e conditionals operators (If-Then-Else),

¢ functions causing iteration (Do-Until},

» functions causing recursion, and

e any other domain-specific functions that are defined.

The terminal sct T is typically composed of either variable atoms (representing, perhaps, the
inputs, sensors, detectors, or state variables of some system) or constant atoms (such as the

number 3.0 or the Boolean constant NIL}).

3.4 Closure Of The Functional Set And Terminal Set

The closure property requires that cach of the functions in the function set is able to accept,

as its arguments, any value and data type that may possibly be returned by any function in
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the function set and any valuec and data type that may possibly be assumed by any terminal
in the terminal set. That is, cach function in the function set should be well defined and

closed for any combination of arguments that it may encounter.

3.5 Initial Structures

The generation of each individual in the initial population is achieved by randomly
generating a rooted, point-labelled tree with ordered branches. The process begins by
selecting one of the functions from the set F at random to be the label for the root of the
irec. The selection of the label is restricted 10 the set of funcuions because hierarchical
structures are required, not a degenerate structure consisting of a single terminal. Figure
3.2(a) shows the Bcg'mn'mg of the creation of a random program tree. The function + (arity

2) was selected from a function set £ as the label for the root of the tree.

&
SN +Ne
ofiRc

3.2(a) 3.2(b) 3.2(c)

Figure 3.2 - Initial Structure Formation

Whenever a point of the tree is labelled with a function f from F, then z(f) lines, where z(f) is
the number of arguments taken by the function f, are created to radiate out from that point.
Then, for each such radiating line, an element from the combined set C= FUT of functions
and terminals is randomly selected to be the label for the endpoint of that radiating line. If a
function is chosen 1o be the label for any such endpoint the generating process continues
recursively as described above. For example figure 3.2(b) shows the function *

(multiplication, arity 2) from the combined set C=FUT of functionals and terminals
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selected as a label of the internal nonroot point at the end of the first line radiating from the
funcuiion +. Since a function was selected, it will be an internal, non-root point of the tree
that will cventually be created. The function * takes two arguments, therciore figure 3.2(b)
shows two lines radiating out from point 2. If a terminal is chosen to be the label for any
point, that point becomes an endpoint of the trec and the generating process is terminated
for that point. For example figure 3.2(c) shows a terminal A from the terminal set 7 sclected
to be the label of the first line radiating from the point labelled with the function. This
process continues recursively from left to right until a completely labelled trec has been
created. *. In figure 3.2(c) the terminals B and C arc selected to be the labels of the two

other radiating lines.

This gencrative process can be implemented in several different ways resulting in initial
random trces of different sizes and shapes. Two of the basic ways are called the ‘full’
method and the ‘grow’ method (Koza, 1992). The depth of a tree is defined as the length of
the longest non-backtracking path from the root to an endpoint. The ‘full’ method of
generating the initial random population involves creating trees for which the length of
cvery non-backtracking path between an endpoint and the root is equal to the specified
maximum depth. This is accomplished by restricting the selection of the label for points at
depths less than the maximum to the function set F, and then restricting the sclection of the
label for points at the maximum depth to the terminal set 7. A tree with a maximum depth
of 2 will have | clement at layer 1, and 2 clements at layer 2, giving a tree of length 3. A
tree of maximum depth 3 will have 7 elements, and a tree of maximum depth n will have (2°

- 1) elements.

The ‘grow’ mecthod of generating the initial random population involves generaling trees

that arc variably shaped. The length of a path between an endpoint and the root is no




greater than the specified maximum depth. This is accomplished by making the random
selection of the label for points at depths less than the maximum from the combined set
C = FuT consisting of the union of the function set F and the terminal set 7, while
restricting the random selection of the label for points at the maximum depth to the terminal
set T. The ‘ramped half-and-half® generative method (Koza, 1992) is used on all problems
within GP. This is a mix of the ‘full’ and ‘grow’ methods creating trees having a wide
variety of sizes and shapes. When generating the initial population a proportion are
generated using the ‘full’ method and the rest by the ‘grow’ method, the proportion of each

is usually set at 50% (Koza, 1992).

3.6 Primary Operations For Modifying Structures

Two primary operators are used to modify the structures undergoing adaptation in GP, and

are discussed in the next sections. The two main opetators are:

e Darwinian reproduction

e Crossover (sexual recombination).

3.6.1 Reproduction

The reproduction operators that can be used are the same as those used for GA’s, these
include:

¢ Fitness-proportionate reproduction.

e Rank selection.

e Tournament selection.

45



3.6.2 Crossover

The crossover (recombination) operation for GP creates variation in the population by
producing new offspring that consist of parts taken from cach parent (Spears & Anand.
1991). The crossover operation starts with two parental expressions and produces (wo
offspring expressions. The first parent is chosen from the population by the same fitness-

based selection method uscd for the reproduction operator, as is the second parent.

cross site 2

Parent | Parent 2

Standard  ((X*3)+6)/7 Std. notation Y(Y-2X)

RPN Go+6* X317 RPN notation *¥Y-Y+XX
Child | Child 2

(%) (+)
. OO Q)
(+] D ©(©
OOMONO

Child 1 Child2
Standard 5X/7 Standard Y(Y-6)
RPN Yo++XX*X37 RPN *Y-Y6

Figure 3.3 - The GP Crossover Operator

The operation begins by independently sclecting, using a uniform probability distribution,

one random point in cach parent to be the crossover point for that parent. Note that the two
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parents typically are of uncqual size. The first offspring expression is produced by deleting
the crossover fragment of the first parent from the first parent and then inserting the
crossover fragment of the second parent at the crossover point of the first parent. The
sccond offspring is produced in a symmetric manner. For example, consider the two parent
symbolic-expressions shown in figure 3.3. Parent 1 has a terminal, the rcal number 6,
located at the first crossover point and parcnt 2 has a sub tree located at its crossover point
which represents (2X). The two are exchanged to produce two new individuals, Child 1 and
Child 2. If terminals are located at both crossover points, the crossover operator just swaps
these tcrminals from tree to tree. The effect of crossover, in this event, is akin 10 a point
mutation. Thus, occasional point mutation is an inherent part of the crossover operator.
Other types of crossover include context prescrved crossover (D’hacseleer, 1994) which

attempls Lo prescrve the context in which subtree appeared 1n the parent trees.

Recently, a similar conclusion to that of GA crossover (Jones, 1995) has been rcached for
genctic programming using subtree crossover (Angcline, 1997). Angeline demonstrated that
two types of headless chicken crossover dcfined for subtrecs performed equivalently to

standard subtree crossover when compared using three different problems.

3.7 Secondary Operators

In addition (o the two primary genetic operators of reproduction and crossover in GP, there
arc optional secondary operators that can also be used in the optimisation process. The

most important of thesc is mutation.
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3.7.1 Mutation

When using Gas employing a binary representation, mutation is referred to as ‘bit-lipping’,
but in GP a mutation is the manipulation of a structurc and has been described as a random
substitution of a sub-tree with another sub-trce. Branch mutation can be implemented where
a complete sub-treec is replaced with another (similar to the crossover operator).
Alternatively node-mutation can be introduced which applies a ‘random’ change to a single
node, replacing its original by another value. Branch mutation is essentially a form of
crossover and as such is not used, node-mutation 15 used but when implementing node-
mutation it is very important to only mutate terminals with other terminals of the same arity
(number of branches) and functionals into other functionals of the same arity. The two

cannot be mixed as closure will not be achieved and the structures will not be well defined.

Other mutation operators have been used within GP (Chellapilla, 1997) which uses 6 tree
mutation operators with no crossover. Chellapilla’s results indicate that the mutation
operators produced results comparable to thosc of Koza, (Koza, 1992) and in many cases
offered improved cumulative probabilities of success and fewer required cvaluations to

produce an individual of the same quality.

3.8 Computer Representation Of Structures

The Symbolic-cxpressions (S-expressions) representing evolved functions are coded from
the tree structures into Reverse Polish Notation (RPN). This dispenses with the need for

brackets and there is a one-to-one relationship between RPN and standard notation

All work produced by Koza (Koza, 1992, and Koza, 1994) uses the LISP language. The
language uscd for all runs presented here is C++, and as a result a method of structure

represcntation is required. Each individual S-cxpression is stored in an array and a
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maximum limit is set for the length (typically set to 100 elements). The elements within the
individual were initially represented by a non-signed integer giving 65,536 possible valucs.
These are then segmented to represent the sets of terminals and functions. For example the
intcgers 1-10 arc allocated to functions, 11-20 for terminals and 21-65536 for real numbers.
This would allow 65515 possible values for representing real number, and although this
seems adequate, it does present problems. Suppose a GP run is required to optimise a set of
data. The expected range of the real numbers would have to be predefined, say -10.0 10
10.0, this would give a range of 20.0 and so the maximum resolution that can be

represented is £ 0.00030527 (given by 20.0/65515).

For most applications this level of accuracy will be sufficient, but what if the initial range of
values expected is incorrect. If the solution requires a real number greater than 10.0, the
only way to represent this will be by using a sub tree representing the addition of two real
numbers, perhaps ( 9.4 + 5.7 ), which will add complexity to the system under investigation,
The problem is overcome by using an array of unsigned characters 10 represent elements
within the individual S-expression, and another array of the same size for floating point
numbers to represent the set of real numbers. This gives a maximum of 256 valucs for
representing both functionals and terminals. The functionals are allocated values from 1 -
99, and terminals 100-255 (the value 0 is used to represent empty spaces at the end of the
S-expression). The real numbers have to be within the range allocated for terminals (100-
255) and a value of 100 is used to represent a/l real numbers. The actual real number value
is stored in the array of floating point number. As an example supposc the following tree
structure shown in figure 3.4 is produced. Written in standard notation the equation would
be:- ¥ (X + 3.7 ), but in RPN the structure is:- * + X 3.7 Y, this has the immediate
advantage that parenthesis are no longer necessary, and there is a one-to-one

correspondence between the standard notation and RPN of algebraic formula .

49



(&)
(+) O
ONENY

Figure 3.4 - Example of Symbolic-expression Tree

Figure 3.5 shows an individual together with its coded values. When a value of 100 is
received from the character array (a real numbered terminal) the location of the real number
is stored at the same point as the character of value 100 but in the floating number array.

The maximum length of any given individual is limited and is typically set at 100 elements.

Y(X+3.7) standard notation
+ X xR Y RPN coding
3 1 101 100 | 102 chromosome values

[75 T-31 J14a [37 |59 |

functionals  plus=1, minus=2, multiply =3, divide=4

terminals real (R)=100, x=101, y=102

Figure 3.5 - Representation of Structures
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3.9 GP Schemata Theory

The first attempt 1o produce a schema theory for GP was made by Koza (Koza, 1992), who
produced an informal argument showing that Holland’s schema theorem would apply to GP
as well. The argument was based on the idea of defining a schema as the subspace of all
trees which contain, as subtrees, a predefined sct of complete subtrees. According to Koza’s
definition, a schema H is represented as a sct of symbolic expressions, e.g. H={ (+ | x), (*
x y) } represents all the programs including at least one occurrence of (+ | x) and one of

(* xy).

Koza’s work was later formalised and refined into a schema theorem for GP (O’Reilly &
Oppacher, 1995). A schema was defined as an unordered collection (a multiset) of subtrces
and tree fragments. Tree fragments are trees with at least onc leaf that is a ‘don’t care’
symbol (“#7) which can be maiched by any subtree. For example the schema
H={(H#x), (*xy), (*xy)} represents all the programs including at least one occurrence

of the tree fragment (+ # x) and at least nvo occurrences of (* x y).

This definition of schema allowed the introduction of the concept of order and defining
length for GP schemata. The first real attempt at proeducing a viable schema thcory of GP
was produced (Poli & Langdon, 1997) with the thcory being based on a new simpler
definition of the concept of schema for GP which is very close to the original concept of
schema in GA’s. The theory is based around one-point crossover and point mutation, and

results published show that the conjectures are correct.



3.10 Summary Of The GP Paradigm

This chapter outlines the processes involved in the GP paradigm. A wide variety of different
problems from different fields have been solved (Koza, 1992, 1994) and provides
considerable evidence for the generality of the genetic programming paradigm. The fact that
the output of genetic programming is always a computer program in the form of its own
parse trcc means that the result can be immediately executed as a computer program, and
although the output can bc complex, it is generally easy to apply straightforward
simplification and optimisation. Genetic programming also requires little prior knowledge of
the problem, unlike other evolutionary computing techniques. Neural networks requires
numbers of layers, processing units at each layer and connectivity, and genctic algorithms
requirc predefined structures and can only provide limited variauion of string sizes. The
information that is required by genetic programming such as the choice of terminal set and
the set of primitive functions is also required by every other paradigm for machine lcarning.
In conclusion, genetic programming is a robust and efficient paradigm for discovering
computer programs using the expressiveness of symbolic representation. The technique has

solved various problems including scquence induction, planning, symbolic rcgression,

automatic programming, and evolution of emergent behaviour (Koza, 1992, 1994).




CHAPTER 4

COMPARISON OF TECHNIQUES

The GP paradigm along with other techniques will now be used on various test functions,
starting with curve fitting, to assess the viability of these methods for symbolic regression

purposes.

4.1 Curve Fitting
The first example uses one independent, and one dependant variable. This is the simplest form
of symbolic regression, the function to be discovered being of the form: -

y=flx). 4.1
In order to illustrate applications of the various technigues to curve filting a quartic test
[unction is considered: -

y=ax* +b’ +cxt +de+e (4.2)

Where: - x € [—5.0,5.0] ,and, a =0.030, b =0.050,c =-0.700,d = 0.100 and e = 8.600.

Figure 4.1 - Quartic Test Equation
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The test function is shown in figure 4.1. The test data consists of |1 points equally spaced
between the minimum and maximum x-axis values. Genctic programming will be the first

mcthod used to solve this problem and the process can be broken down into three steps.

The first step in using genetic programming is to identify the set of terminals, and the
information, which the mathematical expression must process, is the value of the independent
variable x. The test function also includes real numbers and so the set of real numbers is
included. Thus, the terminal set is

T={x, K} (4.3)

Where R is the set of real numbers.

During the initialisation of the population if a rcal number is chosen as a terminal then a number

is randomly chosen between a predefined range, in this case real numbers are within the range -

10.0 to 10.0.

The second major step in preparing to use genetic programming is to identify the set of
functions that are used to generate the mathematical expressions that attempt to fit the given
finitec sample of data. If knowledge that the answer is ax*+bx>+cx’+dx+e is used, a function set
consisting of only addition and multiplication operations would be sufficicnt for this problem. A
more general choice might be the functional sct consisting of the four ordinary arithmetic
operators of addition, subtraction, multiplication, and the protected division function % (in this

context, protected means the function is protected from division by zero). Initial testing of the

technique using this functional set, i.e.




F={+-,*,%) (4.4)

Produced solutions which were no more than a linear fit to the curve, if a wider varicty of
problems is to be solved, the functional set could also include the sine function SIN, the cosine
function COS, the exponential function EXP, and the protected logarithm function RLOG

(Koza, 1992). The functional set for this problem is thus:

F={ +, -, *, %, SIN, COS, EXP, RLOG} 4.5)

Taking two, two, lwo, two, one, one, one, one arguments respectively.

The third major step in preparing Lo usc genetic programming is to identify the fitness measure.
The raw fitness for this problem is the root mean squared (RMS) of the difference (crror)
between the value in the real-valued range space produced by the expression for a given value
of the independent variable x; and the correct y; in the range space. The closer this sum is to
zcro, the better the computer program. Error-based fitness is the most common measure of

fitness used in this thesis. The RMS fitness is given by: -

f =4 (4.6)

where:-
7 = fitness n = number of samples x,= evolved solution x = exact solution

Note:-As in the GA , this fitness measure is used throughout unless stated otherwise, thercfore

establishing a minimisation problem.
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A population size of 500 is used with a crossover rate of 0.6, a mutation rate of 0.002 and an
initial population generated by using the ‘ramped half-and-half” method described in section
3.5. The maximum number of generations is set at 100 and the maximum chromosome length is
set to 100 elements. The selection method used is roulctte wheel selection and the best
individual is always preserved (elitism=1). The results of 10 runs of genetic programming are

shown in table 4.1.

Run RMS error Individual
no. length
1 0.137129 99

2 0.0852 98

3 0.06549 88

4 0.04432 99

5 0.07655 86

6 0.01834 98

7 0.005441 96

8 0.211774 92

9 0.490605 97

10 0.09462 95
Avg. 0.122947 94.8

Table 4.1 Results Of GP On Quartic Test Function

Although GP evolves solutions 1o this problem which have reasonable fitness, two important
points arc illustrated. The first is that GP has to be run several times before any real analysis of
the results can be performed. Each run produces a unique result and so any effects of

parameters have o be tested by repeated experimentation.

The second point is that the average chromosome length of the 10 runs is 94.8, with the

maximum allowable being 100 elements. This process is known as ‘bloat’ and is a result of the

crossover operator being able to rapidly increasc the size of a chromosome. During




experimentation with the test example, it was found that the structures would incrcase in
defining length to the maximum allowed in the run (typically 100 clements) with no
improvement in fitness. The cvolved equation from run 1 is shown below in reverse polish

notation and shows the very long equations that are evolved using standard GP.

Result Run 1 — Generation =499 RMS fitness = 0.137129 length =99

¢ s - % X (1.538200) + X € ¢ + X (-0.682093) % + + + x (2.689023) +
{(1.538200) * c (7.165287) + ¢ (-6.686818) * c c X + {6.686995) x e c x e % ¢C
X — &2 C X % + + + X (6.444210) s ¢ x e + + {(-1.411281) x + {-0.682093) e ¢ %
X (-1.411281) ¢ % % * + (-6.630032) + (-6.993915) (2.689023) s ¢ % * + + X
{2.166268) + X (2.689023) c c + x x (2.166268) (2.166268) - e c X X
] ] 1 ] Ll i 1 1 T 1
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

Figure 4.2 — Evolved Quartic Equation
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If any one of the terminals within an individual is incorrect the associated fitness of the surface
will be poor, lcading to the loss of possibly good genetic material. It seems logical therefore 10
scarch through the terminal set for cach S-expression to cnsurc that good functional

information is not discarded due to poor terminal sclection.

4.2 Cubic Splines

Due to the nature of cubic splines, the number of test points used can be varicd. Figures 4.3 10

4.7 show the results of cubic spline fits using 3, 6, 10 and 20 points.

I OCINTS BIE evcaral@ P44 {---0 - Testour ve, — Splire >

t t T t 1
-8.0 -1.0 -0 ~2.0 =1.0 [ %] L.c D ac 2 ac

Figure 4.3 — 3 Point Cubic Spline Fit




-850 ~4.0 -3.0 -0 -1.0 ol 1.C 3 2c 4] 8.C

Figure 4.4 — 6 Point Cubic Spline Fit

5.0 ~1.0 -3.0 -2.0 -1.0 [-N] 1.c 1.0 ac 0 L X3

Figure 4.5 - 10 Point Cubic Spline Fit
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Figure 4.6 — 20 Point Cubic Spline Fit

The points used to fit the splines are taken directly from the equation to be fitted so there are
no errors using this method. If however we apply the 11 fitness cases used in the GP algorithm
in scction 4.1, we will get a measure of the fitness of the curve fit. The RMS error is shown in

tablc 4.2 for various numbers of points used for the cubic splinc fit.

Points RMS error
3 8.344109
4 7.763334
5 4.309230
6 2.884481
7 3.165373
8 2.645747
9 2.626185
10 2.646315
11 0.000000
12 0.108452
13 0.071587
14 0.049620
15 0.048401
20 0.086406
30 0.009566
40 0.001190
50 0.000264

Table 4.2 Results Of Cubic Spline Fit On Quartic Test Function Using 11 Test Points
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These results arc plotied in figure 4.7, note that the vertical axis is the log of the RMS error.

The graph shows a decrease in RMS error with an increased number of cubic splines used to fit

the data.
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Figure 4.7 - Cubic Spline Fitting Errors

No representative mathematical function is produced which will describe all of the data in a
usable way and the regression analysis is limited to 1 dependent and 1 independent variable.
The final curve comprises of a series of cubic splines joined together and as such does not
producc a single equation representing the data used. It is a useful technique used mainly in the

field of computer-aided design and computer graphics.

4.3 Neural Networks

Ncural networks are now used on two symbolic regression problems the first is the quartic test
function used for the cubic splines and the second is the two-box problem (Koza,1994). The

two-box problem is tested using a modified version of GP in section 5.7.1.
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4.3.1 Quartic Test function

The neural network will use 11 test points, ecach with one input and onc output. A public
domain shareware package is used for the NN testing (Dannon, 1993). WinNN is a Neural
Networks (NN) package which can implement feed forward multi-layered NN and uses a

modified back-propagation for training.

The stopping condition for the training of the network is when all of the 11 test point are within

a threshold value of 0.001. The fitness of the result is the RMS value over the 11 test points.

The network used to test the curve fitting example consists of 3 layers, an input layer, a hidden
layer with 20 PEs and an output layer. The nciwork uses a simple backprogation algorithm to
adjust the weights, and the neuron function used is the sigmoid funcuion. The learning
parameters are eta=0.9 and alpha=0.9. Eta and alpha relates directly (o the backpropagation
learning algorithm: where the new weights are a function of the derivatives and the previous
weights. Eta is the learning parameter and Alpha is the momentum. The temperature of the

ncuron function is a multiplier of the activation argument, in the sigmoid used here:

f(x,T)=1/(1+exp(-x*T)) 4.7

Changing the temperature somctimes makes the learning process faster, in most cases best

results are obtained with the default value of 1, as used here.

The sigmoid function, 6(x) is defined as: -
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c(x)=1/(1+¢7) (4.8)

The RMS Error 1s 0.0001499 and the neiwork is trained after 64565 iterations.

The result of the run is shown in figure 4.8.
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Figure 4.8 - Result of a trained neural network on the Quartic test function

4.3.2 Twobox problem

The two-box problem concerns the identification of a relationship between six independent
variables (x; , ... , xs ), where this relationship relates to the difference y in the volumes of the
first box whose length, width, and height are x; , x; , x3 and the second box whose length,
width, and height are x, , x5, xs (Koza, 1992).

Thus:-
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y=(x; x2 x3)- (x4 X5 Xe). (4.9)

The goal of this symbolic regression is to derive the above equation as a “complete form™ when
given a sct of N observations. The neural network will use 10 test points with six inputs and
one output. The stopping condition for the training of the network is when all 10 test points are
within a threshold vauc of 0.001. After testing the best network consisted of 4 layers, an input
layer, two hidden layer with 5 PEs in each, and an output layer. The network uses a simple
backprogation algorithm to adjust the weights, and the ncuron function is the sigmoid function.

The learning parameters are c¢ta=0.9 and alpha=0.9.

/. Tagerl

Outs

/ Netl

Figure 4.8 - Result of a trained neural network on the Twobox problem

The RMS Error is 0.000153193 and the network is trained after 3320 iterations. The learning
parameters are eta=0.3 and alpha=0.3. Again the technique can very rapidly produce a solution
o the problem. Published results {Koza, 1992) using standard GP with a population sizc of

4000 individuals required 1,176,000 cvaluations before a correct solution is found. Further
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testing of the twobox problem using DRAM-GP (Watsen & Parmee, 1997) is presented in
section 5.7.1. The neural network outperforms GP by a factor of over 350 times, and would be
a viable method if a mathematical formula could be produced from the NN but unfortunately

this is not the case

4.3.3 The Even 3 Parity Problem

The Even Parity 3 Problem ( Koza, 1992, 1994) is a Boolean concept learner. The even 3
parity function f has 3 inputs producing a possible 2° outputs. The output of the 3 variables

DO, D1, and D2 is shown in table 4.3.

no. | D2 | DI DO | Outputf
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Table 4.3 - Truth Table For Parity 3 Problem

The outpul, f, takes the values | if the 3 input variables DO, D1, and D3 have even parity, 1.c.
an even number of them are 1. The truth table for each functional used produces a total of 4
(2% outputs. The neural nctwork uses 8 input sets of three data and one output. The stopping
condition for the training of the network is when all 8 outputs are within a threshold vauc of
0.00001. Through testing the network used consists of 4 layers, an input layer, two hidden
layer with 5 PEs in each, and an output layer. The network uses a simplc backprogation
algorithm to adjust the weights, and the neuron function is the sigmoid function. The learning

parameters are eta=().5 and alpha=0.5. The result of the run is shown in figure 4.10
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Figure 4.10 - Result Of A Trained Neural Network On The Even 3 Parity Problem

The network successfully solved the problem in 17665 iterations, with all outputs within the
target error of 0.00001, with the RMS error being 0.000002688. This compares with 80,000
evaluations using standard GP with a population size of 4000 (Koza, 1992). Further testing for

this problem is presented in section 5.6.1.

4.3.4 The 6-Multiplexer Problem

The input to the Boolean N-multiplexer function is the Boolean value (0 or 1) of the particular
data bit that is singled out by the & address bits a; and 2" data bits d;, where N=k+2* The
cxperiments presented here have k=2, i.e. the 6-multiplexer. For example, if the two address
bits, a; and ay, are 1 and 0 respectively, the multiplexer singles out data bits > (out of the 4) to
be the output of the multiplexer because 10,=2. For an input of 100100, the output of the

multiplexer is 1; for an input of 101011, the output of the multiplexer is 0. There is a total of 64

66




. table 4.4 shows the address bits, data bits and outputs for

sets of data for this problem, and

the problem.

output

dy

d

d;

dy

ay

a;

outpul

data bits

dg

d;

d;

d,

address bits

g

a

Table 4.4 - The Complete Data Set For The 6 Multiplexer Problem

Figure 4.11 shows the results of the run.
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Figure 4.11 - Result Of A Trained Neural Network On The 6 Multiplexer Problem

The net solved all inputs to within a value of 0.00001 in 12440 iterations with a RMS error of
0.000001764. The nctwork used had 4 layers (with 6,5,5,1 PE’s), and the neuron function used
is a sigmoid, with the lcarning parameters set at cta=0.5 and alpha=0.5. Section 5.6.4 presents

resulls using DRAM-GP and siandard GP solved the problem in 160,000 evaluations using a

population size of 4000.







T={xy.%R}
and the functional set used is:-
F= {+,—-,*,%,sin,cos}

having associated arity 2,2,2,2,2,2 respectively.

4.4.1 The Recursive Hill Functional

4.12)

(4.13)

Using these functionals, limited success is achicved on the test function. Surfaces which

were a flat plane were produced which produced crrors of around 40% when compared (o

the test surface.

A user-defined function describing a Gaussian type hill (or trough) with five associated

arguments is thus included in the functional set. The five arguments being the mean values

in x and y, the deviation in x and y and finally the maximum height of the hill. The new hill

functional is of the form:-

Where a, b, ¢, d, and e are the arguments of the function, and:-
a = a shift in the x-axis of the hill
b = the deviation of the hill along the x-axis
¢ = the hcight of the hill
d = the shift in the y axis

and finally, e = the deviation of the hill along the y-axis.

Figurc 4.13 shows the hill function.
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Polynomials also play a role in surface fitting where additional dimensions significantly
increase complexity. Problems related to existing curve fitting techniques become more
acute, and complex mathematical analysis is requircd Lo produce good results. The surface
under investigation has to be represented as a series of ‘patches’ of the polynomial
functions, normally bi-cubic patches (Lancaster & Salkauskas, 1986) and computational
expense increascs. Again, as with spline fitting, no useful information is derived about the
system under investigation due to the piecewise solution produced and so thesc surface
fitting technigues cannot be used for symbolic rcgression problems. Necural networks
(Pandya, 1995) can also be used for curve fitting (as shown in section 4.3) and surfacc
fitting and other regression problems. Design of a ncural network for pattern classification
may be viewed as a curve-fitting problem in hyperspace, where learning weights amounts to
finding a hypersurface that provides a ‘best fit” to a given set of training data. The examples
presented in section 4.3 show that a NN outperforms all other techniques in terms of
evaluations required. The major drawback with the method is the ‘black-bex’ aspect, where
the hidden layers of the NN prevent the user producing a usable cquation. The GP paradigm
shows the greatest potential for systems identification although some potential problems
have been scen. The most notable is the problem of ‘bloat” where the individuals increase in
sizc up to a maximum allowed by the program. Another problem encountered is that of a
suitable search of terminals for a given tree structure, the hill-climber will increase the
fitness of individuals but at the cost of computational expense. The method does however
produce a single mathematical equation, which represents all of the data being tested. Real-
world problems arc now examined using the GP paradigm in order to identify any further

problems with the technique.
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4.5 Modelling Engineering Systems

The previous sections were devoted to fitting either curves or surfaces to seis of data, the
techniques thus developed will now be used to model ‘real world” phenomenon. There arc a
multitude of enginecring data scts, derived experimentally, which are uscd by the engincer n
the form of graphs, look-up tables and the like. The intention here is to take this data and
produce accurate models, which will describe the systems under investigation, from the data

given.

Two cxamples of cnginecring systems are prescnted, and both are in the field of fluid
dynamics. Due to the unpredictable nature of turbulent flow, many fluid problems are solved
using look-up tables and graphs and so this is an ideal arca in which o use evolutionary
computing to altempt to produce an equation which best describes the data given. The first
example attempts to find a formula for the friction factor in turbulent pipe flow. The second
system involves finding general equations for the velocity vector in laminar two-dimensional
flow of an incompressible fluid past a sudden expansion. This is the first time that GP (or

any evolutionary technique) is to be used to solve these problems.

4.5.1 Explicit Formula For Friction Factor In Turbulent Pipe Flow

For computation of pressure drop in turbulent pipe flow an expression is required for the
friction factor f as a function of Reynolds number RE and the relative roughness K/D
(where K is the equivalent sandroughness of the pipe and D the diameter of the pipe). The

most accurate and accepted universal formula is Colebrook and White’s, where :-

Y =L, K 4.16
JF e ReJT T3D (4.16)

This formula is implicit, that is, f appears in two places in the transcendental equation, i.c.

the equation is solved by iteration, or by finding f from a graph (Moody’s chart), neither of
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which is convenient. Many formulae have been proposed for giving [ directly for the entire
range of K/D and RE. The best yet produced is probably that by S.E.Haaland (Haaland,

1983).

L 36log|— [ K ]m @.17)
77 080 ke TL371D |

It combines reasonable simplicity with acceptable accuracy (within 1.5% of Colebrook and
White’s formula). The aim here is to usc the GP approach to produce a solution to the
Colebrook White formula, which is more accurate than Haaland’s whilst still retaining
Haaland’s explicit nature and simplicity. The data used as the input into the GP run is
calculated directly from the Colebrook White formula using the Newton-Raphson method.
Due to the range of values of the friction factor and Reynolds number it was decided to set
the initial functional in every individual to log;e this reduces the problem to finding the sub-
function y in the following equation:-

f ¥ =alog,y (4.18)
where a=constant  and y= f(RE, K/ D).
From this the functional and terminal sets can be stated.

F={+,-,%,%) (4.19)

and T=/{ Real Re K/D } (4.20)

Fitness calculation

Due to the logarithmic naturc of the Colebrook White formula disproportionate errors
would be introduced if a standard ‘sum of the squares’ fitness measure was used. For this
reason the fitness of the individuals is calculated as the sum of the perceniage errors

squared.

o
o,
[
A
31

.100 (4.21)




where:-

n = number of samples

f = fitness

x,= evolved solution

x.= Colebrook and White’s solution

Table 4.6 summarises the results from a series of runs.

run 1 run 2 run 3 Haaland's formula
population size 1000 500 500 -
chromosome length 50 25 50
PCTOSs 0.6 0.6 0.6
pmutate 0.01 0.01 0.01
tsearch - 20 20 -
test poirnts 759 759 759 759
maxgen 75 1000 1000 -
dcfining length 27 9 49 11
filness 30323 11139 10348 10067

Table 4.6 - Results Of Various Runs For Friction Factor Evolution

Using the measure of fitness mentioned above, and using 759 data points, with RE ranging
from 3,000 to 100,000,000 and K/D ranging between 0 and 0.05, a fitness of 10,067 is
recorded for Haaland’s formula requiring a defining length of 11 (when writien using the
terminals and functionals used in the three runs). Table 4.6, column 2, the run 1 parameters
and results shows the best result from 20 runs, and produced the following expression, 1n

reverse polish notation:-

log10 (-4.119) - (K/D) % (0.6420) % (RE) + * (K/D) - % + - (K/D} - (0.4843) (-0.1314) (-4.2435) (K/1) -

(K/D) (RE) (-10.8099)

(4.22)

With a defining length of 27. This can be simplificd to the following:-
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log10 (-4.119) - * (0.358) (K/D) - % * (0.642) (K/D) (RE) % (10.059) (RE)

(4.23)

With a defining length of 15. This expression was then used as the initial population of a
second run which included the random terminal scarch. The best result to date from this

second run is as follows:-

log10 (-3.8364) + * (0.2097) (K/D) % (11.1001) (RE)

(4.24)

with a fitness of 11,139. The rcsulting formula in standard notation is:-

i 02097K 111001
(4.25)

F =-38364 loglo{ D + RE

This result 1s very close to the results obtained from Haaland’s expression but is presented
in a simpler form with no power functions (a defining length of 9 compared with 11 for
Haalands formula). The accuracy of the evolved solution is within 1.8257% of Colcbrook
and White’s formula. Solutions have been produced which give a better accuracy than the
results presented in run 2 but they have large defining lengths (run 3 has a better fitness,
10348, but a defining length of 49) and thus lose the simplistic naturc required of the

function.

The method used to arrive at the final solution is not fully automated, and the results nced
to be simplified by hand before being injected into the next run. If this can be automated
then runs 1 and 2 could be merged to produce one run which will take the data and finish
with the fittest and shortest model for the system. This result is encouraging, the computer

knows nothing about the field of fluid dynamics, but using adaptive search techniques can
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successfully model a complex fluid dynamics system, using only the data of the sysiem at

work.

4.5.2 Eddy Correlation’s For Laminar Two-Dimensional Sudden

Expansion Flows

The problem here is that of finding a general equation for the velocity vectors in laminar
iwo-dimensional flow of an incompressible fluid in a pipe past a sudden expansion (Badekas
& Knight, 1992). At present the only method that will solve this problem is computational
fluid dynamics (CFD) (Ninomiya & Onishi, 1991), and the data used to determine the
fitness is derived by using CFD. No other models exist which will give the velocity at any
point within the flow regime at a given Reynolds number and this is the first time that any
systems identification technique has becn used on this problem. Figure 4.17 shows the
expansion flow modecl. As the Reynolds number increases the flow develops into an eddy

bchind the expansion which increases in length.

Reynolds number Re={100,200,300,400,500,600,700,800,900,1000)

¥=0.00m >
.'l
— . .
_»’ — parabolic velocity profile
y=-0.05m =
y=-0.08m
x=-0.1lm x=0.0m x=045m

Figure 4.17 - Model for CFD expansion flow
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The carlicr work presented in scction 4.5.1 showed that results from runs used 1o sced
further runs increases the fitness of solutions, so from the results shown, a second senes of
runs using the results of the first run as a population seed are produced. The seeding of the
population is achicved by making 50% of the population equal to the result of the first run,
the remainder is then produced using the ‘ramped half-and-half’ method (Koza, 1992). The
data used in the fitncss function this time is increased and includes 5 data sets (2155 points)
of Re=600,700,800,900,1000. After this run all the data is used (Re=100,200,...,1000) with
the results of run 2 being used to seed the initial population of run 3 in the same way as the
results from run 1 were used to seed run 2. The results of run 3 are presented and show the

equations in standard notation.

Run 3 (Re=100,200,300.400,500,600,700,800,900,1000)
X-velocity Fitness=0.486538 dcfining length (RPN)=25

0.0002759Re +0.000279

(0103594 - 1) (-0009105- y)?
0.18807 10833E -3

-l =
z

-0.0015022Re
(0349662 x)2 (1078300 ) 2
-0.3735242 —04759222

2=

X-velocity=z1+22+0.0001540*Re;

Y-velocity Fitness=0.020050 defining length (RPN)=31

0.0000083Re

(0.1163 = x)2 +(—0.0481-):)2
4.0577E-3  13396E -3

zl =

-0.0000175Re
2=

(02661 — x)2 . (—00407 - y)*
S.GA00E-3 | 16565E-3

Y-velocity=z1+22+0.0007,

B4







The results obtained from run 3 can be used to give the velocity vectors within the model
rcgion and can be used 10 show the approximate fluid flow. A comparison of the errors

between the CFD data and the evolved functions is presented in table 4.7.

X-velocity [ Y-velocity

Re % error % error
100 15.053 15.404
200 12.014 17.778
300 9.497 14.637
400 7.081 11.008
500 5.540 10.431
600 5.534 10.125
700 5.573 10.160
800 4.825 6.293
900 4.865 6.587
1000 | 7.379 8.157

Table 4.7- Error Comparison Of Evolved Data

The errors are due Lo a linear approximation of the positions of the eddy flows of the form
y=mx+c, where a higher order equation could be more appropriate. As Re increases the

eddy’s will diverge from the approximate linear model producing the errors in table 4.7.

Close examination of the evolved flow pattern shows that at the boundaries of the sysitem,
the pipe wall, the fluid passes through the boundary. This is most apparent in the x-velocity
at higher Re numbers. Figure 4.21, the x-velocity surface at Re=1000, shows crrors around

the step where the velocity should be zero.

To minimise the errors due to the boundary conditions of the flow model, a ‘shapc function’
can be used. The evolved x and y velocity functions are mul.liplicd by the shape function
which then automatically defines the boundanes of the flow system, ensuring that at the
boundary the x and y velocitics are both zero. The shape function used for the expansion
model is shown in figure 4.25. It can be seen that the function varies in height from 0.0 o
1.0 with a very stecep gradient, giving the effect of masking out any unwanted errors.
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Figure 4.26 - The Logistic Curve Y =3/(1+Exp (1- 2x))

The logistic curve is frequently used to model growth in biological populations for which

saturation occurs. The function is modified to the form: -

c+ (d ') (4-27)
(I.O+exp E )

Where a,b,c,d and e are the arguments of the step functional, i.e. the new functional called
‘step’ has arity 5. The reason for the slight modification is to allow constants to shift the

lower horizontal asymptote above or below zcro, allowing a greater range of functions.

Using this new functional it is possible to represent complex surfaces with a minimum of
clements within the S-expression. Additional functionals such as sine and cosine functionals
can also be added to increasc the range of surfaces that can be produced. It should be noted
that the arguments for the stcp functional (and the hill functional) arc not restricted to real
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numbers, they can be composed from the set of all functions and terminals and can thus be

defined as sub-trees (for example argument ‘b’ can be expressed as x° + sin (y) ).

Figure 4.27 shows various surfaces that can be produced from the step functional. The
surfaces shown are all ‘level O recursion’ (they are composed of only one step functional,
with no recursion), and are among the simplest surfaces that can be created using the step
function. It is intercsting to note that one of the examples is very similar to the hill
functional used in carlier examples. The step functional can be considered as a primitive for

hill functions, and as shown in figure 4.27, can produce many other surfaccs.

This step functional could be used in addition to the hill functional for surface fitting. In the
same way that the hill function can be ‘recursed’, the step function also has this ability to
recurse and can define very complex surfaces with a minimum amount of variables required
to describe the surface. Figure 4.25, the shape function used for the sudden expansion flow

model, is an example of a level 1 recursive step function.
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The efficiency of a jet engine can be increased by burning fuel at a higher temperature, but
the first stage turbine blade has to be able to withstand this temperature. Accurate
temperature readings of the blade surface arc obtained by using a series of thermal paints
which are designed to change colour at specific temperatures. By painting different blades
with different temperature changing paints a temperaturc plot of the complete blade surface

can be constructed.

Initial runs attempted to fit a surface to the data but only succeeded in producing flat
surfaces which passed through the average temperature of the 270 test points used. The
dimensionality of the problem was then reduced to that of fitting a curve to a section of the

turbine blade.

The terminal set used for the thermal paint test is:-
T ={x,R} (4.28)
and the functional set used is:-
F ={+,—,* %,sin,cos} (4.29)

having associated arity 2,2,2,2,2 2 respectively.
The population size used was 10,000 with 500 generations. 20 test points were used for
each blade section and the crossover rate was set to 0.6. The mutation rate was 0.001, the

top 5 individuals werc elite and the selection method used was roulette wheel selection.

A scries of results for blade profiles is shown in figures 4.30 and 4.31.
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Figure 4.30 - Curve Fitting Using Rolls-Royce Plc. Gas Turbine Data

The results of one of the blade suction curve fits is shown written in reverse polish notation.

Suction side 1

- — + % R{460) x * R(898) R(926) * R(994) - % s * R(391) x x ¢c % R(54)

+ % % R(545) + % R(324) x R({523) x R(523) - + * * R(84) R(54) + R(414) s
R{68) R({553) s * R(852) x

Where R(...) represents a real number from a list of randomly generated numbers.
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Figure 4.31 - Curve Fitting Using Rolls-Royce Plc. Gas Turbine Data

The results of one of the blade pressure curve fits is shown, written in reverse polish
notation.

Pressure |

---+x8*+R(43)R(8 1)x*R(352)*+R(154)R(154)s++*R(79)
XR(7DRO)**R(925)R(I31)+R(154)R(154)*+R(154)R(82)x

The GP technique replaces a subjective ‘hand-fitting” method and gives a measure of the

accuracy of the fit which can be compared with other section plots of the blade.
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4.6 Summary

Genetic programming offers several advantages over other regression techniques, as well as
certain disadvantages. The main advantage of the technique is that it provides a usable
continuous equation which can be validated and used within current engincering practice.
The inputs to GP are usually presented directly in terms of the observed variables of the
problem domain. Therefore, the representation used by genetic programming is the natural
representation of the problem domain. The lack of pre-processing is a major distinction
relative 10 conventional genetic algorithms operating on strings, neural networks, and other

machine learning algorithms.

Although neural networks can solve a wide range of problems, no direct solution is
presented, and so suffers when attempting to validate the network which provides the
solution to the problem under investigation. If any insight is to be gained of the sysiem

under investigation some other method must be used.

The main disadvantages of the genetic programming technique are that the solutions
produced arc lengthy. The equations ‘bloat’ to produce answers which do not provide
insight into the system being looked at. The method also has limitations when solving real
problems of over 2 dimensions. Additional user functionals, such as the hill function, do
achieve better results but at the cost of simplicity of the results. The population sizes
required to solve the problems is also very large, and as shown is of the order of 10,000

individuals.

The previous sections have shown the effectiveness of the GP paradigm for sysiems of

increasing complexity. The progression of the work from curve and surface fitting through
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to finding solutions to engineering problems has shown that the methods adopted have the
potential to improve the accuracy of real world problems. However, the inherent problems
of GP need 10 be addressed, which is the subject of the following chapter. The fluid
dynamics problems are then reinvestigated using a revised GP technique to show the

improvement of the new method.

96



CHAPTER 5

AN IMPROVED GENETIC PROGRAMMING STRATEGY

Through the work presented in chapter 4 it is apparent that GP suffers from scveral
limnations. This chapter introduces an alternative approach to Genctic Programming, which
is based upon a steady state population utilising a novel constrained complexity crossover
operator. This uses node complexity weightings as a basis for dividing the population into
sub-populations or species of individuals. The population is decomposed into smaller sub-
populations, which communicate with each other through the action of crossover. The
effectiveness of this method is demonstrated by successful application to Boolean concept
formation and to symbolic regression problems and the results show that improved
performance is possible with a dramatic reduction in population size and associated

compuler memory requirements.

5.1 Standard Genetic Programming Limitations

Two fundamental limitations of traditional GP have been reported (Iba et al, 1996), these

are ;-

I. Random sub-tree crossover disrupts beneficial sub-trees in tree structures.
2. No evaluation of tree descriptions. Trees can grow exponentially large or so small that

they degrade search efficiency.

Traditional GP blindly combines sub-trees, by applying crossover operations. This can often
disrupt beneficial sub-functions in tree structures. Thus, crossover operations scem

ineffective as a means of constructing higher-order functions. Recombination operators
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(such as swapping sub-trees or nodes) often cause radical changes in the semantics of the
trecs. This semantic disruption (Iba, 1996) is due to the ‘context-sensitive’ represcniation
of GP trees. As a result, uscful sub-trees may not be able to contribute to higher fitness
values of the whole tree, and the accumulation of useful sub-functions may be disturbed. To
avoid this, Koza proposes a strategy called Automatic Defining Functions (ADF’s) for

maintenance of useful sub-trecs (Koza, 1992, 1993, 1994).

The fitness definitions used in traditional GP do not include evaluations of the tree
descriptions. Without the necessary control mechanisms, trecs may grow exponentially
large, increasing the evaluation procedures, or so small that they degrade scarch efficicncy.
Usually the maximum depth of trees is set in order to control trec sizes, but an appropriate
depth is not always known beforehand, Kinnecar proposed using a size component in the
fitness definition; i.e. the size of the tree is multiplied by a size factor, and the result is added
to the raw fitness value (Kinncar, 1993). The use of a minimum description length (MDL)
bascd fitness function for evaluating tree structures has been used together with a local hill-
climber (Iba et. al, 1993, Iba et. al. 1996). This fitness definition involves a trade-off
between certain structural details of the tree and its fitting (or classification) of errors. In
order to produce an efficient guided crossover operator to search the symbolic search space
a symbolic function classification is requircd which can then be used to minimise semantic

disruption.

Other rescarch relating to the manipulation of fixed design hierarchies described by both
discrete and continuous variables has shown that speciation in terms of the discrele variables
and the introduction of restricted crossover regimes can contribute significanty to the
dentification of high performance structures (Parmee 1996). Although addressing a

different problem domain elements of this research have appeared relevant to the semantic
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disruption problems associated with GP representations and have lead to the introduction of
similar concepts described here. A Node Complexity (NC) classification has therefore been
introduced which includes information concerning the complexity and lengths of the
individuals. The objective is to minimisc semantic disruption whilst also controlling trec
length. This classification called Node Complexity includes information of the lengths of the

individuals. Semantic disruption is therefore minimised whilst tree length is controlled.

Using NC separatc species of solutions, classified by complexity can be cstablished which
act as discrete GP sub-populations which communicate with each other via crossover. This
new approach is called DRAM-GP (i.e. Distributed, Rapid, Attenuated Memory, Genetic

Programming).

5.2 Classification Of Sub-Functions

The classification of sub-functions as a guide to symbolic crossover, attempts to kecp
function disruption to a minimum when using symbolic crossover. The aim is to prevent
large changes to the individual when undergoing crossover, producing a guided crossover

operator which will also control the length of individuals.

Some possible classification methods are:-

¢ Dimensional analysis.

e Minimum Descriptive Length (MDL) (Iba et. al 1996). This can bec applied to
dimensionless parameters and is thus an improved guide to symbolic crossover. It is a
trade-off between certain structural details of the tree and its fitting (or classification) of
EITors.

¢ Classification depending on computer evaluation time.
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e Node Compiexity weighting (NC) for each node. The NC rating is then a function of the
nodes below it. The complexity will decrease with trec depth. Crossover is then
constrained by node complexity weighting by ensuring that the child trees have similar

NC values.

5.2.1 Dimensional Analysis

Dimensional analysis (DA) is a technique for the investigation of problems in all branches of
cngineering and particularly in fluid mechanics (Douglas ct. al. 1985). If it is possiblc o
identify the factors involved in a physical situation, dimensional analysis can usually
establish the form of the relationship betwecen them. Any physical situation, whether it
involves a single object or a complete system, can be described in terms of a number of
recognisable properties which the object or system possesses. For cxample, a moving object
could be described in terms of its mass, length, area, volume, velocity and acceleration.
Properties such as density and viscosity of the medium through which it moves would also
be of importance, since they would affect its motion. These mcasurable properties used to

describe the physical state of the body or system are known as its dimensions.

To complete the description of the physical situation, it is also necessary to know the
magnitude of each dimension. It is not usually sufficient to know, for example, that a body
has the dimension of length, the magnitude of this length is also required. For this purpose
agrecd units of measurement are used. A length would be measured in terms of a

standardiscd unit of length, such as the metre.

In analysing any physical situation, it is necessary to decide what factors arc involved and
then to try to determine a quantitative relationship between them. The factors involved can

often be assessed from observation or experiment. In dimensional analysis, the nature of the
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factors involved in the situation is required not the numerical valucs. The notation adopted
to indicate this is to enclose the name or symbol of the quantity in square brackets, thus
[length] mcans the dimension of length and not a particular length with a definite numerical
value. For conciseness length 1s abbreviated to L and the dimensions of length is written [L].
Similarly [M] 1s used for the dimension of mass, and [T) for the dimension of time. An
¢quation describing a physical situation will only be true if all the terms are of the samce kind
and have the same dimensions. The equation is then said 1o be dimensionally homogeneous,
and is valid only in relation to these dimensions. If an equation does not compare like with
like, it will be physically meaningless, even though it may balance numerically. In general
any cquation of the form
a'blel +atbiics +. .= X (5.1

will be physically true if, in addition to being numerically correct, the terms are

dimensionally the same so that

[arop e ] =[arebpc]=..= X (5.2)
where [a,’"‘b,’"c{"] means the dimensions of a™b ¢/ .
DA can be used to cstablish if a created function is dimensionally homogeneous. This

reduces the search space of possible functions that will provide a solution to a given

problem and thus increasing the probability of finding good solutions.

As an cxample suppose a formula for the volume difference between two boxes (Koza,
1994) is used.
L.C.

volume = a*b*c - d*e*fl (5.3)
where a, b & c are the length, width and height of box one, and d,¢ & f are the length, width

and height of box two. The functional and terminal sets are:-
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F={+,-.*,%}, T={a,b,c,d,e, [} (5.4)
The inputs a,b,c,d,e & [ arc known to have dimension:- Mass (M)=(0, Length (L)=I and
Time (T)=0. The solution required 1s a volume (M=0, L=3, T=0). Thus expressions can be
gencrated which have the correct dimensions (M=0, L=3, T=0) and discard all other
solutions. The crossover operator can benefit from the use of DA, once a dimensionally
homogeneous cquation has been identified, crossing sub-trees of the same dimensions will
not affecting the dimension of the complete expression. This technique reduces the search
space of possible solutions and preliminary tests indicated an improvement in the scarch
process. I[ts use, however is limited, primarily because dimensionless numbers arc frequently
used in engineering and so therc are no controlling parameters for crossover within the
scarch for a dimensionless number. This method also produces a high percentage of
individuals which arc not dimensionally correct which have to be discarded and is thus

computational inefficient.

5.2.2 Minimum Descriptive Length

For evaluating tree structures (symbolic classification) Minimum Descriptive Length (MDL)
has been successfully used together with a local hill-climber (Iba et. al. 1996). This can be
applied to dimensionless parameters and is thus an improved guide to symbolic crossover.
The MDL fitness is defined as:-

MDL = ( Tree_Coding_Length ) + ( Exception_Coding_Length ) (5.5)
where:-

Tree_Coding_Length =0.5 k log N

Exception_Coding_Length =0.5 N log S
Where N is the number of input-output data pairs and S is the mean squarc error. Crossover
is controlled by choosing four parents and swapping the two worst MDL sub-trees with the

two best MDL sub-trees.
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5.2.3 Computing Time

Classification depending on computer evaluation time is another method that could be used
to group functions. Every function produced by genetic programming will have 1o be tested
to find the evaluation time required to evaluate the described function. On a 08486 CPU the
number of internal clock cycles required for an addition of two integer numbers 1s 2. The
number of cycles required to perform a floating point addition is between 4 and 7 cycles.
The number of cycles depends upon the operator being used, the processor being used and
the represcntation of the numbers undergoing the operations. This produces a range of
possible values 10 use and is therefore of little use in sclecting appropriate complexity values
for various functions. The only way to do this accurately is to repeat the evaluation many
times and average the time taken to complete the prescribed number of calculations. This
has an immediate computational overhead associated with it and is therefore not considered

a viable method for the classification of functions.

5.2.4 Node Complexity

Node Complexity weighting is a measure of the complexity of a tree and all its nodes. If for
example a terminal set consisting of F = { +, -, * |, % } is weighted (e.g. plus=1.2,
minus=1.2, multiply=1.5, divide=1.5, power=2.0) each NC rating is then a function of the
nodes below it and the weighting of that node. The complexity of the tree will decrease
with tree depth. Crossover is then constrained by only crossing sub-trees with sirmilar NC
values. This then controls the complexity of the child trees and will provide a fitness
measure for the symbolic scarch to aid crossover operators, as well as controlling the trce

lengths.

5.3 A New Approach to Genetic Programming
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The node complexity method is chosen as the bases for a new approach to GP. This method
was first published at the 2nd International Conference On Genetic Programming (Watson
& Parmee, 1997). The main concepts of DRAM-GP involve a steady sitatc GP with
constrained complexity crossover (CCC). Crossover is constrained by node complexity
weighting values. The root node will give a complexity rating of the whole tree, and 1s thus
uscd to speciate the population into smaller sub-populations. These points are discussed in

detail below:-

5.3.1 Steady State GP

In the classical GP model of evolution by generation (Koza, 1992) (the generation model),
each reproductive phase involves the creation of a complete new population of individuals,
by seclecting parcnts from the old population and applying genetic operations. The new
population then replaces the old in one atomic step. Stecady state GP has been investigated
(Kinnear, 1993). The process involves evaluating an individual immediately for fitness, and
then merging it into the population (or in this case a species), in place of the existing lowest
fitness individual. There are no gencrations in sieady state GP, a generation equivalent has
passed when the number of new individuals that have been generated is equal to the
population size. The population size being the fotal number of individuals (i.c. species

population size times the number of specics).

5.3.2 Node Complexity (NC)

NC weighting is a mcasure of the complexity of a tree and all of its nodes. A large tree

should be assigned a high complexity value.



If for example a functional set and terminal sct consisting of :

F={+,-,*%,%}

and T={a,b,c,d,e,f}

(as in the two-box problem (Koza, 1992) )}, the weighting of these functions is set to: -

all terminals=1.0, plus=1.1, minus=1.1, multiply=1.2, divide=1.2.

Each NC value is then a function of the NC values of the nodes below it and the weighting
of that node. The values chosen are heuristic, and were formulated from the following two
picces of information. Firstly, the + and — operators are less complex than the * and %
operators, and as such, should be assigned smaller values. Secondly, the allocated values

should be slightly larger than unity to ensure a slow increase in complexity from the

terminals up to the root node.

An example of the NC weighting is shown in figure 5.1.

+

NC{0]=2.2%1.2+3.84*1.2=7.248

NC|1]=1.0*1.1+1.0*1.1=2.2

NC[4]=2.2*1.2+1.0%1.2=3.84

L

a

\
b

NC[2]=1.0

NC[3]=10 NC[5=1.0%1.1+1.0*1.1=2.2

[\
d

a

NCI6]=1.0 NC[7]=1.0

e

NC|[8]=1.0

Figure 5.1 - Example Of The Node Complexity Of A Tree Structure
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Each node has a specific weighting factor which is applied to the NC values below them.
The NC value is then the sum of these adjusted lower node values. It can be scen that the
complexity of the tree will decrease with tree depth, for example in figure 5.1 NC[0]=7.248

(the root node) and NC[7]=1.0 (a terminal).

Crossover is then constrained by only crossing sub-trees with similar NC valucs (from
initial runs a valuc of #2.0 produced the best results). This then provides a numecrical
complexity measurc which controls crossover and minimises building block disruption by
ensuring some similarity between crossed sub-trees. By only swapping sub-trees of similar
complexity tree lengths are also indirectly controlled. A very small sub-tree 15 ncver
replaced with a very large sub-tree and although the trees can grow in length they do not

grow al the same rate as standard GP.

5.3.3 Constrained Complexity Crossover (CCC)

CCC 1s initiated by randomly choosing parents Pl and P2 {rom the total population. A cross
point CP1 is randomly chosen from P1, which then defines the root node of the sub-tree to
be replaced. The second cross point CP2 from P2 MUST then be within + 2.0 of the NC
value of CPI. The sub-tree with root node CP2 then replaces the sub-tree with root node
CP1 with each allele having a probability of being mutated, C, which is initially set to 0.5.
When mutating, functionals can only be mutated 1o other functionals, and terminals into any

other terminals. This ensures that the functions created exhibit closure.

Once crossed, only one child is produced which is then evaluated and placed into the

population, replacing the worst individual.
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5.3.4 Species Sub-Populations

Each sub-population has a range of complexity (c.g. species type 1 where NC[0]=1.0 10
10.0, species 2 where NC[0]=10.0 to 20.0, species 3 where NC[0]=20.0 to 30.0 etc.). The
two run paramecters that define the species groupings is the minimum and maximum NC
values. The species are then divided equally between these two limits and the population
size of each species remains constant for the run. For specific values refer to the run
parameters table for cach problem tested. Communication between sub-populations is then
achicved through the action of crossover. As a new child individual is produced it is
possible that its complexity changes, and so it is placed into the correct species and

evaluated.

5.3.5 Injection Mutation (I)

This mutation occurs after a sct number of crossover operations (initially set (o
I=Population Size) and changes only one allele within each individual with a set probability
of mutation CMUTATE. The top 5 individuals arc elite and are never mutated, but are

allowed to participatc in crossover.

5.4 Performance Calculations

Before embarking on a series of tests of this process, the amount of processing required o
produce a solution has to be considered. One way to measure the amount of computational
resources required by genetic programming (or the conventional genetic algorithm) is to
determine the number of independant runs needed to yield a success with a certian
probability (usually 99% afier Koza 1992,1994). Once the likely number of independent
runs required is determined, it can then be multiplied by the amount of processing required
for cach run to get the total amount of processing required.
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The amount of processing required for each run depends primarily on the product of:-

¢ the number of individuals M in the population

e the number of generations exccuted in that run, and

e the amount of processing required to measure the fitness of an individual over all the

applicable fitncss cases.

The process of measuring the amount of processing required is started by experimentally
obtaining an estimate for the probability y( M, i) that a particular run with a population of
sizc M yields, for the first time, on a specified generation I, an individual satisfying the
success predicate for the problem. The experimental mecasurement of y( M, 1) usually
requires a substantial number of runs. Once the tnstantaneous probability y( M, I) for cach
generation 1 is known, the cumulative probability of success P( M, I) for all the generations
between generation O and generation I is calculated.
The probability of satisfying the success predicatc by generation I at least once in R runs is
then

1-[1-P(M, D] (5.8)
If we want to satisfy the success predicate with a probability of, say

z=1-¢& =99% (5.9
then it must be that

z=1-[1-P(M, D} (5.10)
The numbér R(z) of independent runs required Lo satisfy the success predicicd by generation
[ with a probability of, say

z=1-& =99% (5.11)

depends on both z and P( M, I). Afier taking logarithms,
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R{z) =log (1-2) / log(1-P( M, I)) (5.12)

R{(z) =log e/ log(1-P( M, I})) (5.13)
where €= |-z =0.01 and where the square brackelts indicate that R(z) is rounded up to the
ncxt highest integer. Note that P(M,1) depends on the population size M and the generation

number 1.
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Figure 5.2 - Number Of Independent Runs R(Z) Required As A Function Of The

Cumulative Probability Of Success P(M,I) For Z=99%

Figure 5.2 shows a graph of the number of independent runs R(z) required to yield a
success with probability z=99% as a function of the cumulative probability of success
P(M.1). For example, if the cumulative probability of success P(M,i) is only 0.09, then 48
independent runs are required o yield a success with a 99% probability. If P(M,1) is 0.68,
only four independent runs are required, if P(M,i) is 0.90 only 2 independent runs arc

required and if P(M,i) is 0.99, only one run is required.
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5.4.1 The Effect Of The Number Of Generations

The population size M and the maximum number G of generations Lo be run on any one run
are¢ the primary control parameters for genetic programming (as well as the conventional
genetic algorithm). For a fixed population size M, the cumulative probability P(M,i) of
satisfying the success predicate of a problem increases if a particular run is continued for
additional generations. In principle, any point in the space of possible outcomes can
cventually be reached by any genetic method if mutation is available and the run continues
for a sufficiently large number of generations. However, there is a point after which the cost
of extending a given run exceeds the benefit obtained from the increase in the cumulative

probability of success P(M,1).

Figure 5.3 shows, for thc 6-multiplexer problem (presencted in detail in section 5.6.4), a
graph betwecn gencrations 0 and 200 of the cumulative probability of success P(M,i) that at
least one individual in the population yields a success (i,¢, the correct Boolean output for all
64 fitness cases). The graph is based on 100 runs of the problem with a population size of
20x4 (a total of 80 individuals consisting of 4 sub-populations of 20 in each) and CMI.0,

IM=80.

Out of the total of 100 runs 98 were successful in finding the 100% correct solution within

the 200 generations.
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Figure 5.3 - Cumulative probability of success P(M,i) for the 6-Multiplexer problem
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Figure 5.4 - Performance Curves For The 6-Multiplexer Problem

Figure 5.4 shows the cvaluations required reach a minimum at generation 72 with a total of
11,520 individuals needing to be processed to achieve a probability of success of 99%. This

is indicated by the vertical line at 72 generations.

This performancc measure rcqguires many runs using the same parameters to achicve
accurate results. All results presented within this thesis are produced from 100 runs on the

problem.

5.5 Testing The New Paradigm

Boolean concept learning (or Boolean induction) is an important part of machine learning,
and can be regarded as a type of pattern recognition, in which the input (independent) and
output (dependent) variables are binary. The effectiveness of DRAM-GP is initially

demonstrated through 4 experiments.



5.6.1 The Even Parity 3 Problem

To test the effectiveness of the new genctic programming strategy as a Boolean concept
lcarner, a simple experiment called “parity 3” ( Koza, 1992, 1994) will be tested. The even 3
parity function f has 3 inputs producing a possible 2 outputs. The output, f, takes the
values | if the 3 input variables DO , DI , and D3 have even parity, i.e. an even number of

them are 1.

The Functional Set
The Functional set used for this problem is:- F = {and, or, nand, nor} with arguments
{2,2,2,2} respectivly. This function set is computationally complete and is sufficient to solve

any problem of symbolic regression involving Boolean functions.

The truth table for each functional used produces a total of 4 29 outputs the number of
truc outputs is listed in table 5.1, and these results are used to decide on the node

complexity of each functional.

function no. of Node

true outputs | Complexity
AND 1 1.3
OR 2 1.2
NAND 3 1.1
NOR 2 1.2

Table 5.1 - True Outputs And Node Complexity Values For All Functionals

The Node Complexity weightings for the functionals were chosen based upon the number of
output values that are TRUE for each functional. The less the number of TRUE outputs the
more complex the function. The NAND function will produce 3 TRUE outputs of the
possible 4 and has node complexity of 1.1, the OR and NOR functions each have 2 true

outputs and arc assigned a value of 1.2, whilst the AND functional has a NC value of 1.3
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due to only having 1 of a possible 4 true values. The terminal set consists of the inputs D0,

D1 and D3 which are all assigned node complexity values of 1.0.

The maximum and minimum root node complexitics of each individual now need to be
considered. The selection of the first label is restricted to the set of functions because a
hicrarchical structure is required, not a degenerate structure consisting of a single tcrminal.
With this in mind the simplest individual created will have NC[0] = 2.2. This is illustrated in
figure 5.5. The individual has a chromosome length of 3, consisting of the functional NAND
and two terminals. Since all terminals have the same node complexity it is not necessary (0

specify which terminal is used for the purpose of calculating possible complexity ranges.

NAND function (NC=1.1}
NC[0)=(1.0*1.1D+1.0*1.1)=2.2

o / AN

Terminal Terminal
T T NC[1]=1.0 NCJ2]=1.0

5.5 (a) 5.5(b)

Figure 5.5 - The Simplest Individual That Can Be Created Of Length 3

The individual is shown in figure 5.5(a) and consists of 1 internal node (a function F) and
two external nodes (terminals T). Table 5.2 shows the NC[0] values for all of the possible

individuals of length 3.

Function (RPN) NC[0]
AND T | T |26
OR T | T |24
NAND T |T |22
NOR T | T |24

Table 5.2 - The Root Node Complexities For All Individuals Of Length 3
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No individuals of length 4 can be created due 10 all the funcuionals having 2 arguments.
Individuals of length 5 can have two possible structures, where F is a functional and T is a

terminal, these are shown in figure 5.6.

Figure 5.6 - The Two Possible Structures For An Individual Of Length 5

The number of internal nodes is now 2 with 3 external nodes. Using the available
functionals, 32 possible NC[O] values can be created. The two structures will produce the
same root node complexity if the internal nodes appear in the reverse polish notation in the
same order. The 16 NC[0] complexities that can be created are listed in table 5.3. For
example, if the first row of table 5.3 is examined , a program structure is shown composed
of:-
AND AND TERMINAL TERMINAL TERMINAL

This is shown in reverse polish notation and the associated tree structure is shown in figure

5.7.
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Function (RPN) NC|[0]

AND AND T |T [T j(3x2)x1.3+1.3=4.68
AND OR TITIT |j(12x2)x1.3+1.3=4.42
AND NAND T{T|T|1x2)x1.3+1.3=4.16
AND NOR T |T|T|(1.2x2)x1.3+1.3=4.42
OR AND TIT]T |A3x2)x 1.2+1.2=4.32
OR OR T |T|T | {12x2)x1.2+1.2=4.08
OR NAND TI|T|T | (Ix2)x1.2+1.2=3.84
OR NOR T |T|T |(1.2x2)x1.2+1.2=4.08
NAND AND TI|ITIT1{d3x2)x1.1+41.1=3.96
NAND OR T|T|T|{d2x2)x1.1+1.1=374
NAND NAND TI|IT|T | {d1x2)x1.1+1.1=3.52
NAND NOR TIT T | {(2x2)x1.1+1.1=3.74
NOR AND T I T|T |[({13x2)x1.2+1.2=4.32
NOR OR TIT|T |(12x2)x1.2+12=408
NOR NAND T IT|T |1.1x2)x1.2+1.2=3.84
NOR NOR TITI]IT |2x2)x1.2+1.2=4.08

Table 5.3 - All Possible Root Node Values For Individuals Of Length 5§

AND

AND TERMINAL

|TERM1NAL| |TERMINALI

Figure 5.7 - Initial Structure Shown In Table 5.3

This produces 9 unique values from the lowest of 3.52 up to the highest of 4.68, with a

range of 1.16, these are listed in table 5.4 together with their frequencies.

NC[0] value | frequency
4.68
4.42
4.32
4.16
4.08
3.96
3.84
34
3.52

[N PR NG [N O i Y P [

Table 5.4 - All Unique Values Produced And Frequency Of Occurance
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The run parameters are shown in table 5.5.

NC Max. 130.0

NC Min. 0.0

Elite 5

CCC + 2.0 of NC value
Maximum Chromosome length 100

Max. generations 200

Table 5.5 - Run Parameters For The Parity 3 Problem

Fitness Calculation
The standardised fitness of an individual is the sum, over the 2° fitness cases, of the error
between the value returned by the individual and the correct value of the particular Boolean
function. Standardised fitness ranges beiween 0 and 2°. The fitness calculation used
(Koza 92, 94) involves the following calculation, where the fitness of cach individual is the
number of outputs of the problem, subtracted by the number of correct outputs of the
individual being examined, i.e.

Fitness = Test points - hits.
This will rcturn integer values for the fitness of the individual ranging from O to 8. This can
lead to individuals with the same fitness values but vastly differing complexities. For
example a solution with a fitness of 4.0 and a root node value of 8.88 should be ranked
above another individual with the same fitness but a higher complexity. It was for this
reason that the fitness measure was adjusted to:-

Fitness = (Test Points - Hits ) + 0.001 x NC[O0].
This then allows individuals of the same fitness but less complexity to be ranked above ones
with higher complexity values. Due to the upper limit on the complexity of the individuals
that can be produced, the root node complexity NC[0] will never exceed 1000.0 and so the
additional fitness function term will never cxceed 1.0 thus not affecting the hits criterion but

allowing the population to be ranked with the least complex first.
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Initial tests were performed and table 5.6 shows the preliminary results for the parity 3

problem. The computational effort for cach run using DRAM-GP is based on 100 runs.

Method Population size M M CM Effort E
(popsize x species)
Koza,1992(STD) 4,000 (4,000x1) n/a n/a 80,000
Ko0za,1994(STD) | 16,000 (16,000x1) n/a n/a 96,000
Koza,1994(ADF) | 16,000 (16,000x1) n/a n/a 64,000
DRAM-GP 10 (10x1) 80 0.5 14,060
DRAM-GP 30 (30x1) 80 0.5 15,840
DRAM-GP 50 (50x1) 80 0.5 15,750
DRAM-GP 50 (10x5) 80 0.5 13,600
DRAM-GP 100 (10x10) 80 0.5 12,900
DRAM-GP 100 (20x5) 80 0.5 8,400
DRAM-GP 150 (10x15) 80 0.5 9,900
DRAM-GP 200 (10x20) 80 0.5 11,600
DRAM-GP 200 (20x10) 80 0.5 10,000
DRAM-GP 300 (20x15) 80 Q0.5 8,400
DRAM-GP 400 (20x20) 80 0.5 7,600

Table 5.6 - Initial Parity 3 Results

The initial results show an improvement over the conventional GP paradigm, however the
results do not show which clements of the DRAM-GP algorithm are important for solving
this problem. Further experiments arc now undertaken to determinc the effects of the

injcction mutation rate, the crossover mutation rate and the population size.

The first serics of iests use a single population size of 10 individuals with crossover
mutation rates of 0.0, 0.5 and 1.0. The injection mutation ratc (see section 5.3.5) is initially
turned off (I=0), and then set to 10, 30 and finally 50. This requircs 12 sets of runs to cover
all combinations of parameters. The results of these runs is shown in tables 5.7 1o 5.10.
Each row within the tables is calculated from 100 independent runs and this is repeated 10
times for each parameter set to produce an average value for the computational effort. A
total of 1000 independent runs arc produced for each parameter sct, and the rcsults

averaged.

118



C=0.0 1=0 P=10x1

C=0.5 1=0 P=10x1

C=1.0 1=0 P=10x1

% runs Effort E % runs Effort E % runs Effort E
4% 18360 4% 45900 4% 112480
4% 22800 2% 50490 2% 119340
2% 27540 3% 59670 2% 146880
6% 30400 2% 59670 4% 160650
7% 34200 3% 123930 3% 264480
29 34200 3% 129960 1% 422280
4% 41040 3% 252450 2% 453720
1% 146880 1% 270810 1% 633420
3% 161880 0% - 1% 665550
1% 203450 0% - 0% -
3.3% 72,075 21% 124,110* 2.0% 330,978*

Table 5.7 - Even 3 Parity Problem, Population Size 10, 1=0
(* average of available result)

C=0.0 I=10 P=10x1

C=0.51=10 P=10x1

C=1.01=10 P=10x1

% runs Effort E % runs Effort E % runs Effort E
5% 28,800 4% 27,540 3% 18,360
6% 38,760 5% 45,200 1% 43,320
5% 42,560 3% 47,880 7% 45,900
5% 44,100 4% 50,160 % 47,250
5% 50,400 2% 50,490 2% 50,490
4% 52,440 3% 82,620 2% 105,570
6% 71,190 4% 84,360 3% 132,240
3% 87,210 4% 120,080 2% 133,110
6% 106,400 3% 136,800 1% 197,370
4% 136,730 4% 203,400 2% 312,360
4.9% 65,859 3.6% 84,853 3.2% 108,597

Table §.8 - Even 3 Parity Problem, Population Size 10, 1=10

C=0.0 1=30 P=10x1

C=0.51=30 P=10x1

C=1.0 1=30 P=10x1

% runs Effort E % runs Effort E % runs Effort E
5% 11400 3% 32120 1% 22950
4% 22950 4% 59280 2% 32130
8% 31360 5% 85120 7% 36480
3% 41310 2% 169830 5% 50490
6% 50160 2% 180120 5% 53110
4% 59280 2% 192780 4% 89680
5% 59280 2% 197370 4% 95760
3% 105570 3% 206550 2% 215730
1% 119340 2% 243270 1% 238680
2% 145920 1% 247860 2% 419520
4.1% 64,657 2.6% 161,430 35% 125,453

Table 5.9 - Even 3 Parity Problem, Population Size 10, 1=30
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C=0.0 1=50 P=10x1 C=0.5 1=50 P=10x1 C=1.0 [=50 P=10x1
% runs Effort E % runs Effort E % runs Effort E

4% 31,640 3% 18360 1% 13770

6% 36,000 5% 41310 2% 41310

6% 41,040 4% 57630 7% 51680

4% 45,600 1% 68850 4% 66120

5% 48,640 49 73440 2% 78030

1% 79,040 3% 91800 3% 96390

4% 101,700 2% 109440 2% 100980

2% 123,930 3% 110160 1% 183600

3% 171,760 2% 152760 1% 449820

1% 348,840 1% 330480 0% -

3.8% 102,819 2.8% 105,423 2.5% 120,188*

Table 5.10 - Even 3 Parity Problem, Population Size 10, I=50

Even with a very small population size of only 10 individuals solutions to the problem arc
found. It must also be remembered that the top 5 individuals within each population are
elite. The best results for this parameter set are obtained when the crossover mutation rate
(scc section 5.3.3), C, is set to 0.0 and the injection mutation rate set to 10 (the population
size) with 65,859 individuais nceding to be processed to produce a result with 99%
certainty.  Turming off the injection mutation operator has the effect of slightly increasing
the computational effort to 72,075 individuals. An increase in the injection mutation

operator further reduces performance. The results are used to produce the graph shown in

figurc 5.8.
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The injection mutation rate will now be set to the population size based on these resulis.

The population size is now increased to 20 individuals again all within one species group.

The results are presented in table 5.11.

C=0.0 1=20 P=20x1 C=0.5 1=20 P=20x1 C=1.0 1=20 P=20x1
% runs Effort E % TuUns Effort E % runs Effort E

15% 15,000 10% 36,480 4% 68,400

15% 17,600 11% 45,000 8% 69,920

18% 24,200 8% 45,600 6% 73,440

15% 25,200 9% 48,640 8% 74,580

15% 27,360 9% 54,000 6% 76,000

14% 33,320 8% 75,580 10% 79,200

13% 36,480 6% 90,400 6% 95,400

12% 37,120 8% 97,180 9% 124,200

12% 40,500 6% 113,000 5% 164,160

14% 43,200 4% 155,040 3% 275,400

14.3% 29,998 7.9% 76,092 6.5% 110,070

Table 5.11 - Even 3 Parity Problem With A Population Size Of 20x1
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Again it can be seen that the best results are achieved with no crossover mutation and
rcquires only 29,998 individuals to be processed.
The next serics of runs increases the population size 1o 30 individuals, onc set of runs using

only one specics group (P=30x1), and another seriecs of runs using 3 specics of 10

individuals.
C=0.0 1=30 P=30x1 C=0.5 1=30 P=30x1 C=1.0 1=30 P=30x1
% runs Effort E % runs Effort E % runs Effort E
23% 17,640 12% 30,870 14% 34,200
23% 18,000 16% 32,400 12% 41,310
28% 19,530 11% 32,640 14% 51,450
32% 19,950 19% 35,640 13% 55,080
27% 21,420 12% 38,280 12% 67,800
24% 21,420 17% 46,200 6% 68,400
20% 23,100 18% 56,250 10% 88,140
22% 24,180 9% 60,750 11% 118,650
22% 24,300 9% 61,020 7% 124,200
13% 27,120 5% 123,120 7% 165,240
23.4% 21,666 12.8% 51,717 10.6% 81,447

Table 5.12 - Even 3 Parity Problem With A Population Size Of 30x1

C=0.0 1=30 P=10x3 C=0.5 1=30 P=10x3 C=1.0 =30 P=10x3

% runs Effort E % runs Effort E % runs Effort E
59% 13,680 45% 9120 39% 27,000
61% 14,490 35% 13,500 44% 27,360
53% 15,840 49% 20,520 51% 29,640
62% 17,160 59% 21,420 51% 29,700
53% 17,640 54% 23,400 45% 32,130
55% 18,000 58% 23,700 38% 32,340
63% 18,870 49% 23,850 42% 33,600
5%% 21,600 46% 29,580 42% 34,800
53% 24,480 47% 31,860 44% 41,520
51% 27,720 0% 37,440 40% 49,980
56.9% 18,948 48.2% 23,439 43.6% 33,807

Table 5.13 - Even 3 Parity Problem With A Population Size Of 10x3

Table 5.12 shows the best results for a single population run are achieved with no crossover
mutation requiring 21,666 individuals to be processed. By splitting the population into sub-
populations or species, shown in table 5.13, the number of individuals required to solve the
problem is reduced to 18,948, again with no crossover mutation. Further results were

obtained using larger population sizes, and arc presented in tables 5.14 to0 5.19.
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C=0.0 I1=40 P=40x1

C=0.5 1=40 P=40x1

C=1.0 1=40 P=40x1

% Tuns Effort E | % runs Effort E % runs Effort E
40% 23760 25% 33600 7% 36,720
32% 26040 23% 34720 18% 60,760
32% 27200 18% 40960 14% 61,200
29% 28160 17% 47360 18% 66,640
33% 28800 18% 58080 11% 67,800
28% 29000 14% 60000 6% 79,040
29% 30160 18% 64000 8% 100,800
30% 34680 19% 72480 13% 101,920
16% 38000 13% 134750 11% 135,000
16% 84000 13% 148800 13% 180,800

28.5% 34,980 17.8% 69,475 11.9% 89,068

Table 5.14 - Even 3 Parity Problem With A Population Size Of 40x1

C=0.0 1=40 P=20x2

C=0.5 1=40 P=20x2

C=1.0 1=40 P=20x2

78% 9,600 71% 16,120 66% | 20,640
72% | 11,880 64% 16,640 48% | 21,280
72% | 11,880 67% 19,200 9% | 23,520
72% | 12,960 60% 19,360 56% | 25,200
79% | 13,400 59% 22,680 52% | 25,800
77% | 13,920 59% 22,680 60% | 26,800
74% | 14,400 67% 23,400 2% | 27,360
72% | 14,880 67% 24,000 48% | 30,240
70% | 15,600 7% 24,000 51% | 31,200
7% | 17,480 61% 24,360 43% | 32,240
73.7% | 13,600 | 64.6% 21,244 |  53.5% 26,428

Table 5.15 - Even 3 Parity Problem With A Population Size Of 20x2

C=0.0 1=40 P=10x4

=0.5 1=40 P=10x4

C=1.0 1=40 P=10x4

% runs Effort E % runs Effort E % runs Effort E
14% 15,360 69% 23400 64% 23,520
719% 16,120 63% 24480 50% 30,720
74% 16,560 62% 24600 55% 30,800
12% 16,640 68% 25760 54% 31,920
72% 18,240 61% 26400 54% 31,920
66% 20,400 60% 26600 418% 32,640
74% 20,440 62% 28160 58% 33,280
75% 20,800 58% 28800 62% 34,320
66% 22,080 52% 31000 53% 34,320
66% 25,920 58% 32000 56% 34,560

71.8% 19,256 61.3% 27120 55.4% 31,800

Table 5.16 - Even 3 Parity Problem With A Population Size Of 10x4




Figure 5.9 shows the results of using only single populations for solving the Even 3 Parity

problem.

C=0.0 1=50 P=50x1

C=0.5 1=50 P=50x1

C=1.0 I1=50 P=50x1

% runs Effort E % runs Effort E % runs Effort E
47% 17150 25% 34000 19% 35750
3% 20250 22% 37200 11% 58500
42% 20400 27% 37400 17% 61600
4% 21850 26% 43400 14% 70400
44% 25650 16% 44000 19% 72000
42% 26250 21% 48000 15% 73500
38% 27500 18% 48000 14% 91000
315% 29400 18% 66000 13% 107350
37% 29700 17% 77000 15% 120000
41% 33600 15% 77000 8% 330000

40.3% 25,175 20.5% 51,200 14.5% 102,010

Table 5.17 - Even 3 Parity Problem With A Population Size Of 50x1

C=0.0 1=80 P=20x4

C=0.5 1=80 P=20x4

C=1.0 I=80 P=20x4

% runs | Effort E % runs Effort E % runs Effor1 E
94% 11,200 90% 15,040 86% 16,000
92% 11,200 88% 16,000 85% 18,720
95% 12,160 88% 16,240 0% 18,800
92% 14,080 86% 16,800 83% 20,640
97% 14,400 90% 17,280 84% 20,800
94% 14,400 87% 17,280 81% 21,120
92% 14,560 86% 18,560 82% 21,760
93% 14,720 87% 19,200 90% 22,320
95% 15,360 90% 19,520 83% 24,000
94% 15,680 89% 20,800 7% 24,960

93.8% 13,776 88.1% 17,672 84.1% 20,912

Table 5.18 - Even 3 Parity Problem With A Population Size Of 20x4

C=0.0 1=200 P=50x4

C=0.5 1=200 P=50x4

C=1.0 1=200 P=50x4

% runs | Effort E % runs Effort E % runs Effort E
100% 11400 87% 32000 93% 21,600
100% 12000 17% 32000 99% 22,200
100% 12000 78% 32200 100% 23,200

98% 12000 81% 32400 99% 23,400
100% 12600 85% 32400 95% 24,600
100% 13200 84% 33600 97% 25,000
100% 13600 76% 35200 97% 25,200

99% 13600 84% 36400 99% 26,400
100% 13800 82% 43200 97% 26,400

99% 14000 79% 44600 91% 27,000

99.6 % 12,820 81.3% 35,400 96.7 % 24,500
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Figure 5.9- Single Population Even 3 Parity Results

Figure 5.9 clearly shows that the crossover mutation rate has a direct bearing on the
computational cxpense required to solve the problem. The better results for each population
size arc achicved with no crossover mutation. The best overall result is produced using a
population size of 30, and required 21,666 individuals to be processed. The worst results
occur with a crossover mutation rate of 1.0. This seems to confirm the idea that fit sub-trees
are being crossed, improving the fitness of successive individtlals by not disrupting the
swapped sub-trees. If the best results were obtained using a crossover mutation rate of 1.0
then the disruption to the sub-tree would be too large and the idea of useful sub-trecs

contributing to higher fitness individuals would be invalid.

Figure 5.10 shows the effect of the crossover mutation rate on the multi-population runs.
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Figure 5.10- Multi-Population Even 3 Parity Results

As with the previous results the best results for the multi-populations are achieved with no
crossover mutation but the number of individuals that need to be processed is reduced, the
lowest being 12,820 using 4 species each consisting of 50 individuals. The results of the
20x2 and 20x4 populations are also low, both being below 15,000 evaluations. So with a
population size 200 times smaller than the results published in (Koza, 1992) a result is

produced using 6.24 times less evaluations.

5.6.2 The Even 4 Parity Problem

This problem is as parity 3 but using 4 input vanables ( Koza, 92, 94). The goal function of

the even 4 parity function f of 4 variables D0, D1, D2 and D3 is shown in table 5.20.
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Table 5.20 - Truth Table For Even 4 Parity Problem

The run parameters arc the same as the panty 3 parameters except the terminal sct is
incrcased to T={d0,d1,d2,d3}, the maximum chromosome length is 256, test points=16,
maximum node complxity=320, and minimum nodc complexity=200. The crossover
mutation rate was sct to 0.5 for all runs. Table 5.21 shows a companson of standard GP

and DRAM-GP.

Method Population size M Effort E
{popsize x species)
Koza,1992(STD) 4000 (4000x1) 1,276,000
Koza, 1994(STD) | 16000 (16000x1) 384,000
Koza, 1992(ADF) 4000 (4000x1) 88,000
Koza, 1994(ADF) [ 16000 (16000x1) 176,000
DRAM-GP 30 (30x1) 198,450
DRAM-GP 50 (50x1) 215,600
DRAM-GP 50 _(10x5) 195,300
DRAM-GP 80 (80x1) 169,520
DRAM-GP 100 (100x1) 144,000
DRAM-GP 100 (10x10) 267,900
DRAM-GP 100 (20x5) 102,600
DRAM-GP 120 (120x1) 192,000
DRAM-GP 150 (10x15) 145,800
DRAM-GP 150 (30x5) 111,600
DRAM-GP 200 (10x20) 145,200
DRAM-GP 200 (20x10) 104,400
DRAM-GP 200 (40x5) 95,400
DRAM-GP 250 (50x5) 87,000
DRAM-GP 300 (20x15) 47,700
DRAM-GP 300 (30x10) 83,400
DRAM-GP 400 (40x10) 56,400
DRAM-GP 500 (50x10) 78,500

Table 5.21 - Even 4 Parity Results
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Table 5.21 shows that using a population size of 300, consisting of 10 species of 30
individuals, a total of 47,700 individuals need to be processed to provide a solution with a
99% probability of success. As with the 3 parity results the population size required o solve

this problem is greatly reduced with an increcase in performance.

5.6.3 The Even 5 Parity Problem

This problem has 5 input variables (Koza, 92, 94). Run paramciers are as parity 3 except
that the terminal set is increased to T={d0,d1,d2,d3,d4}, the maximum chromosome length
1s 600, number of test points=32, maximum node complexity=600, and minimum nodc

complexity=430. Table 5.22 shows a comparison of standard GP with DRAM-GP.

Method Population size M Effort E
(popsize x species)

Koza, 1992 (§TD) 16,000 (16,000x1) 6,528,000
Koza, 1994 (ADF) 4,000 (4,000x1) 152,000
Koza, 1994 (ADF) 16,000 (16,000x1) 464,000
DRAM-GP 80 (80x1) 2,119,680
DRAM-GP 250 (25x10) 5,128,250
DRAM-GP 250 (50x5) 5,137,000
DRAM-GP 500 _(500x1) 2,048,500
DRAM-GP 500 (100x5) 1,260,000
DRAM-GP 500 (50x10) 3,870,000

Table 5.22 - Even 5 Parity Results

The results presented in table 5.22 show an improvement over standard GP but perform less
well against automatically defined functions (ADF’s) (Koza, 1994). The computational
effort required to solve the problem is about ten times greater than GP using ADF’s but the
population size is eight times smaller. ADF’s are well suited to the parity class of problems,
if a sub-function is produced which solves the even 3 parity problem then 25% of the
fitness cases are correct. The solution for the even 5 parity problem can be described using
the even 3 parity sub-trec (Koza, 19924) which again confirms the suitability of this

problem when using ADF’s.
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5.6.4 The 6-Multiplexer Problem

The input to the Boolean N-multiplexer funciion is the Boolean value (0 or 1) of the
particular data bit that is singled out by the &k address bits @; and 2* data bits d;, wherc
N=k+2". The experiments presented here have k=2, i.e. the 6-multiplexer. The DRAM-GP

paramecters arc shown in table 5.23.

Functional set

F ={and ,or ,not ,il }

Arguments

FA=[ 2, 2, ], 3}

NC Functionals

Np=(1.2,1.2,1.1,1.3 }

Terminal set

T={a0,al,d0,d1,d2,d3}

NC Terminals

Ne={1,1,1,1,1,1}

Crossover Mutation Rate

0.5

Imutation (IM)

every 80 evaluations

Test points (TP)

64

Fitness {TP-Hits)+0.001NC[0]
Max. NC 60.0

Min. NC 5.0

Elite 5

CCC + 2.0 of NC value
Chromosome length 100

Max. generations 200

Table 5.23 - Run Parameters For 6-Multiplexer Problem

In order to maintain the high level of mutation using DRAM-GP sub-tree repair is required.
If a NOT function (arity 1) is mutated into a OR/AND (arity 2) function, an cxtra argument
is required and so a terminal is randomly chosen from the sct T 1o ensure a correct function,
this process is repeated if a NOT is mutated into an IF function. End sub-trees arc deleted
when mutating from IF to AND/OR, IF to NOT, and AND/OR (0o NOT. This process
ensurcs that the mutation can be unbiased in selecting new functionals, and also ensures that
all mutated individuals are closed and valid trec structures. Afier initial runs the best
performance was achicved using the node complexity values presented in table 5.23. The
values are similar in magnitude to the values used for the even parily problems presented

carlier. Any change in node complexity values disrupted the CCC mechanism and so values



for the node complexity are set 1o unity for terminals and slightly larger than unity for

functionals.

Table 5.24 shows a comparison of GP with DRAM-GP for the 6-multiplexer.

Method Population size Effort E
Koza, 94 500 245,000
Koza, 94 1000 343,000
Koza, 94 2000 200,000
Koza, 94 4000 160,000
Koza, 94 greedy over selection 1000 33,000
Koza, 94 greedy over selection 2000 18,000
Koza, 94 greedy over sclection 4000 24,000
Koza, 94 tournament selection 1000 123,000
DRAM-GP 10 (10x1) 491,130
DRAM-GP 20 {(10x2) 15,600
DRAM-GP 30 (30x1) 300,960
DRAM-GP 40 (20x2) 13,320
DRAM-GP 50 (50x1) 109,950
DRAM-GP 50 (10x5) 14,250
DRAM-GP 80 (80x1) 65,520
DRAM-GP 100 (100x1) 90,000
DRAM-GP 100 (10x10) 16,500
DRAM-GP 100 (20x5) 14,100

Table 5.24 - Initial 6-Multiplexer Results

As with the parity problems, further runs were produced to determine the effect of the
various paramcters and are presented in tables 5.25 (0 5.33. The parameters changed are the
crossover mutation rate, C, and the population size and number of species. The injection
mutation rate is usually set to the total population size. All results for computational effort
(Koza,1992) arc calculated by producing 100 runs and repeating this 10 times, the average

of the 10 runs is then calculated, producing 1000 runs for each paramcter set.



C=0.0 I=10 P=10x1 | C=0.51=10 P=10x1 C=1.0 1=10 P=10x1

%o Tuns Effort E | % runs | Effort E % runs Effort E
2% 111720 7% 70200 2% 64,260
5% 104880 2% 173280 5% 85,120
5% 82620 4% 66880 1% 91,800
8% 59280 8% 36720 4% 95,760
5% 105570 4% 170630 4% 103,360
5% 45900 2% 201960 5% 120,840
2% 87210 9% 71440 3% 133,110
8% 70680 3% 284240 1% 137,700
2% 169830 7% 75240 3% 279,680
6% 62100 2% 119340 1% 362,610
4.8% 89,979 4.8% 126,993 3.2% 147,424

Table 5.25 - 6-Multiplexer Problem With A Population Size Of 10

C=0.0 1=20 P=10x2 | C=0.5 1=20 P=10x2 C=1.0 1=20 P=10x2

% runs Effort E | % runs | Effort E % runs Effort E
49% 18,960 54% 15,840 56% 15,600
59% 18,180 51% 13,600 65% 15,860
50% 20,400 51% 16,580 57% 16,320
54% 16,380 57% 12,960 59% 17,280
47% 14,960 53% 15,840 52% 17,400
56% 16,800 56% 16,800 49% 17,760
47% 19,400 41% 24,240 48% 18,360
53% 14,760 52% 14,400 53% 18,720
47% 19,880 55% 12,400 53% 20.400
46% 19,500 50% 19,740 41% 25,840

50.8% 17,922 | 52.0% 16,540 53.3% 18,354

Table 5.26 - 6-Multiplexer Problem With A Population Size Of 20 (10x2)

C=0.0 1=20 P=20x1 | C=0.5 1=20 P=20x1 C=1.0 1=20 P=20x1

% runs Effort E | % runs | Effort E % runs Effon E
14% 83,080 26% 48,000 24% 31,960
22% 61,600 25% 63,580 24% 39,680
17% 74,500 18% 87,840 15% 46,640
18% 75,000 16% 82,080 20% 47,040
22% 50,800 18% 87,500 18% 50,160
27% 55,500 19% 77,880 16% 53,700
14% 114,700 17% 93,500 16% 54,560
16% 106,920 15% 104,400 17% 54,880
23% 69,160 18% 90,000 16% 56,840
17% 40,500 21% 78,540 11% 67,100

19.0% 73,176 | 19.3% 81,332 17.7% 50,256
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C=1.0 [=30 P=30x1 C=0.0 I=30 P=10x3 C=0.5 1=30 P=10x3 C=1.0 1=30
P=10x3

9% runs Effort E % runs | Effort E % runs Effort E % runs | Effort E
46% 24,480 60% 35,280 60% 35,460 70% 18,000
36% 29,070 54% 34,020 61% 33,660 71% 20,100
36% 31,050 65% 26,700 62% 29,850 64% 21,360
33% 34,020 67% 27,600 59% 35,460 67% 21,840
33% 316,400 56% 32,040 63% 27,750 65% 23,400
29% 37,200 59% 32,220 59% 34,020 63% 24,030
32% 318,940 58% 35,100 60% 34,740 63% 24,600
26% 41,820 58% 33,120 68% 30,000 59% 24,960
23% 42,750 55% 35,280 66% 30,000 63% 27,720
25% 62,160 58% 34,200 68% 26,250 52% 28,080

31.9% 37,789 | 59.0% 32,556 62.6% 31,719 63.7% 23,409

Table 5.28 - 6-Multiplexer Problem With A Population Size Of 30

Table 5.29 - 6-Multiplexer Problem With

C=1.0 1=40 | C=1.0 1=40

P=40x1 P=10x4

% runs | Effort E % runs Effort E
50% 26,800 83% 15,800
50% 30,240 83% 16,320
45% 32,400 84% 16,560
48% 32,640 78% 16,640
45% 32,640 30% 17,200
44% 35,840 78% 18,400
43% 13,440 82% 18,600
43% 36,480 75% 18,960
439, 36,480 83% 19,360
44% 36,720 79% | 21,200

45.5% 33,368 80.5% 17,904

C=1.0 1=50 | C=1.0 1=50

P=50x1 P=10x5

% runs | Effort E % runs Effort E
65% 22,400 90% 11,700
66% 25,200 92% 13,000
62% 25,300 89% 15,600
61% 26,000 88% 15,600
55% 28,000 89% 16,250
59% 30,000 93% 16,950
61% 31,500 91% 17,500
52% 34,450 89% 17,600
48% 35,000 90% 17,600
51% 43,200 91% 18,500

58.0% 30,105 90.2 % 16,030

A Population Size Of 40

Table 5.30 - 6-Multiplexer Problem With A Population Size Of 50
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C=1.0 1=80 P=80x1 | C=0.0 I=80 P=20x4 C=1.0 1=80 ’=20x4

% runs Effort E { % runs | Effort E % runs Effort E
80% 21,600 98% 12,720 99% 10,240
78% 23,040 98% 13,200 100% 10,880
75% 24,960 97% 10,240 96% 11,200
77% 25,760 92% 16,800 98% 11,520
76% 25,760 97% 14,880 98% 13,200
70% 25,920 99% 10,080 96% 13,000
75% 27,360 99% 13,200 99% 13,120
71% 30,080 7% 13,120 100% 13,600
70% 30,720 98% 16,320 99% 14,400
72% 36,480 96% 13,600 95% 16,320
74.4% 27,168 | 97.1% 13,416 98.0 % 12,748

Table 5.31 - 6-Multiplexer problem with a population size of 80

C=1.0 1=0 P=20x4

% runs | Effort E
97% 16,320
87% 19,200
91% 20,480
96% 20,880
94% 21,120

93.0% 19,600

Table 5.32 - 6-Multiplexer With A Population Size Of 80 And No Injection Mutation

C=1.0 1=100 P=100x1

% runs | Effort E
85% 20,500
85% 24,000
86% 24,400
30% 26,800
83% 28,200
81% 28,200
82% 28,800
84% 30,000
16% 30,100
76% 37,800

81.8% 27,880

Table 5.33 - 6-Multiplexer problem with a population size of 100
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Figure 5.11 shows the results from tables 5.25 to 5.33. The results clearly show that in
cvery casc the multi-populations performed better than the single population runs. The best
result is achieved using a population size of 80 (4 specics of 20 individuals) requiring a total
of 12,748 cvaluation to obtain a solution with a probability of success of 99%. It is also
interesting to note that there is only a small improvement in the performance when the

population size is increased above 40 individuals. The variation of performance produced by
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Figure 5.11- 6-Multiplexer Results

Hc=0.0
®c=0.5
ac=10

the crossover mutation rate for this problem shows little effect except for the very small

population sizes. The results are comparable with GP using ADF’s (Koza, 1994) but

requiring only 80 individuals compared with 2000 with ADF’s.
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5.7 Symbolic Regression
It has been shown that the new method produces very good results for Boolean induction
problems as shown in section 5.6. Systems identification problems, tested carlicr in the

thesis, will now be tested using the improved GP paradigm.

5.7.1 The Two-Box Problem

The two-box problem concerns the identification of a relationship between six independent
variables (x; , ... , X6 ), where this relationship relates Lo the difference y in the volumes of
the first box whose length, width, and height are x; , x2 , x3 and the second box whose
length, width, and height are x4 , x5 , x¢. Thus:- y=(x; x2 x3)-(Xxa x5 x¢). The goal
of this symbolic regression is to derive the above equation as a “‘complete form’ when given

a set of N observations.

In this problem, where the raw fitness is a floating point number rather than an integer, there
1s no need to include the NC[0] weighting in the fitness calculation. The fitness is calculated

using the mean squared error (MSE) of all of the test points.

The multiptication and divide functions are considered more complex than the plus and
minus functions and thus have higher Ny values. Using 10 sets of 6 data points ranging from
0.0-10.0, and a functional set of: F ={(+, -, *, %},

with Ng values of: Ne= (1.1, 1.1, 1.2, 1.2} respectively.

The terminai set is: T ={ al, a2, a3, a4, a5, a6 }

where al,a2 and a3 are the length, width and height of box 1 and a4,a5 and a6 arc the

length, width and height of box 2.
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Using various tree generation methods, and various tree sizes, random trees can be

produced o attempt 10 solve the two-box problem. The results of these are prescnted in

table 5.34.
creation individuals max max min avg best fit worst fil average fit
method produced layer length length length (MSE) (MSE) (MSE)
grow 1,000,000 1 7 3 4.6015 3722.356 | 2.1213E7 5.3622 E4
grow 1,000,000 2 15 3 5.8725 2018921 | 8.0341 E13 1.237t E7
—_grow 1,000,000 3 3l 3 6.9075 2018921 | 5.7103 Els 2.7581 El1
grow 1,000,000 4 49 3 17212 2573.798 | 3.6681 E20 3.7083 E14
grow 1,600,000 5 65 3 8.3705 2269.796 | 7.5757 E20 7.8406 E14
srow 1,000,000 6 83 3 8.8938 2556.219 | 1.7160 E22 2.8181 EI6
full 1,000,000 1 3 3 3.0000 | 38526410 | 5.2948 E4 4.1558 E4
full 1,000,000 2 7 7 7.0000 3722357 | 2.1214 E7 9.8201 E4
full 1,000,000 3 15 15 15.0000 1846.201 | 1.0518 E14 1.6482 E9
full 1,000,000 4 31 31 31.0000 1976.505 | 1.7782 E21 2.4647 E15
full 1,000,000 5 63 63 53.0000 1469.860 | 1.8023 E30 1.8324 E24
full 1.000,000 6 127 127 127.0000 2447.048 s o
Table 5.34 - Average Fitnes Of Various Tree Representations For The Two-Box
Problem

Table 5.34 shows that even after 12,000,000 random individuals have becn processed, no

solutions are found.

The DRAM-GP paramecters used for the two-box problem are shown in table 5.35.

Functional set F={+,-,*% %}
Arguments Fa={2 2,2 2}
NC Functionals Ne={1.1,1.1,1.2,1.2}
Terminal set T={x1,x2,x3,x4,x5,x6}
NC Terminals Ny={1,1,1,1,1,1}

Test points (TP) 10

Fitness MSE

Elite 5

CCC + 2.0 of NC value unless stated
Max. Chromosome length 50

Max. generations 200

Table 5.35 - Run Parameters For The Two-Box Problem

Table 5.36 shows published results (Koza, 1992, 994). The important point to note is the
population size required to solve the problem, at 4000 individuals, the memory required Lo
initiate a run is cxcessive and the high population size is reflected in the amount of

processing required Lo produce a solution.
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Population size M Effort E

Koza, 1992 (STD) | 4000 1,176,000
Koza, 1994 (ADF} | 4000 2,220,000
Table 5.36 - Standard GP Twobox Problem Results

As with previous tests, the population size and the crossover muiation rales are sct at

various valucs to assess the affects on the amount of processing required.

C=0.0 i=10 P=10x1 C=0.51=10 P=10x1 C=1.0 I1=10 P=10x1
% runs | Effort E % runs | Effort E % runs Effort E
4% 134,470 22% 31,820 13% 40,670
5% 141,300 17% 32,550 12% 42,800
5% 147,600 13% 34,300 12% 43,200
4% 150,480 13% 36,750 13% 45,900
5% 155,700 14% 41,440 10% 48,400
1% 200,010 9% 52,480 9% 48,950
3% 250,800 12% 55,550 9% 63,750
1% 255,360 9% 58,850 7% 67,500
1% 259,930 9% 79,010 7% 69,300
1% 304,000 9% 95,760 7% 76,500
3.9% 199965 | 12.7% 51,851 9.9% 54,697
Table 5.37 - Two-Box Problem With A Population Size of 10
C=0.0 1=20 P=10x1 C=0.5 1=20 P=10x1 C=1.0 I=20 P=10x1
% runs | Effort E % runs | Effort E % runs Effort E
3% 221,920 13% 41,800 12% 38,280
1% 472,770 11% 51,750 13% 44,000
1% 633,420 10% 53,100 12% 50,160
1% 711,450 12% 54,450 11% 54,400
1% 729,810 7% 58,760 8% 56,320
0% oa 10% 59,840 7% 67,800
0% oo 6% 63,900 6% 21,200
0% oo 8% 72,960 4% 120,840
0% oo 8% 73,150 6% 122,250
0% oo 8% 91,300 5% 127,800
0.7 % 276,937 9.3% 62,101 8.4% 77,305

(* indicates average of available results)
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I1=10 P=10x1 CCC=5.0

C % runs | Effort E
0.0 5% 201,140
0.0 2% 355,680
0.5 5% 91,800
0.5 5% 146,900
0.5 5% 167,400
1.0 10% 48,950
1.0 9% 62,720

Table 5.38 - Two-Box Problem With A Population Size of 10 and Constrained
Complexity Crossover Of * 5.0

C= 0.5 P=10x1

| % runs Effort E

30 11% 65,600
40 6% 87.300
50 10% 79,100
60 13% 43,600
70 7% 48,590
80 6% 68,400
90 8% 88,920
100 14% 58,000

Table 5.39 - Two-Box Problem With A Population Size Of 10 And Various Injection
Mutation Values

C=0.0 1=20 P=10x2 | C=0.51=20 P=10x2 C=1.0 1=20 P=10x2 C=1.0 1=30
P=20x1

% runs Effort E % runs | Effort E Po TUNS Effort E % runs | Effort E
10% 103,360 17% 53,040 17% 52,780 12% 80,360
8% 133,200 15% 71,540 16% 69,520 11% 82,500
6% 153,000 12% 81,340 12% 70,400 12% 92,400
5% 156,060 12% 88,200 11% 78,320 10% 94,600
8% 181,800 14% 96,720 12% 90,200 9% 97,180
5% 191,520 11% 99,000 9% 121,600 9% 128,380
5% 221,480 11% 100,100 10% 124,200 8% 140,400
5% 257,400 8% 112,500 10% 128,000 9% 149,600
5% 270,560 8% 136,960 8% 132,000 8% 169,500
5% 288,800 7% 183,040 5% | 243,200 6% 328,320
6.2% 195,718 | 11.5% 102,244 11.0% 111,022 9.4% 136,324

Table 5.40 - Two-Box Problem With A Population Size Of 20
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C=0.0 1=30 P=30x1 | C=0.5 I1=30 P=30x1 C=1.0 1=30 P=30x1

% runs EffortE | % runs | Effort E % runs Effort E
32% 41,400 43% 32,340 41% 31,620
29% 46,170 3% 38,760 40% 34,200
33% 46,410 34% 39,330 30% 40,500
33% 48,960 38% 42,750 33% 42,300
34% 49,140 13% 43,200 36% 42,840
27% 56,070 35% 45,000 35% 43,680
28% 63,000 2% 46,620 36% 45,000
27% 66,660 3% 48,840 31% 50,430
24% 69,600 36% 51,300 33% 56,760
24% 73,530 22% 87,120 29% 59,220

34.4% 56,094 | 33.7% 47,526 34.4% 44,655

Table 5.41 - Two-Box Problem With A Population Size Of 30x1

C=0.0 1=30 I’=10x3 | C=0.5 =30 P=10x3 C=1.0 1=30 P=10x3

% runs Effort E | % runs | Effort E % runs Effort E
12% 117,600 14% 73,260 20% 74,370
11% 120,960 17% 80,190 17% 76,440
15% 122,400 19% 81,030 18% 88,740
8% 136,320 14% 86,700 15% 91,200
8% 144,000 18% 93,930 16% 98,790
9% 201,390 19% 98,010 12% 108,780
10% 203,520 7% 117,000 16% 115,200
8% 220,800 16% 120,930 15% 115,200
7% 303,750 14% 120,990 8% 140,400
6% 384,750 11% 145,200 11% 169,950
9.4% 195,549 | 14.9% 101,724 14.8% 107,907

Table 5.42 - Two-Box Problem With A Population Size Of 10x3

C=0.0 I=40 P=10x4 | C=0.5 I=40 P=10x4 C=1.0 1=40 P=10x4

% runs Effort E | % runs | Effort E % runs Effort E
22% 72,080 38% 41,600 I1% 63,240
20% 96,120 27% 62,560 28% 69,120
15% 113,600 25% 64,960 25% 71,000
15% 114,400 24% 80,000 26% 83,160
14% 138,240 24% 85,560 24% 84,000
14% 153,120 26% 87,000 22% 84,000
13% 153,680 19% 100,440 22% 93,240
14% 166,400 19% 103,880 17% 94,720
13% 174,000 20% 118,320 22% 98,280
14% 202,240 19% 124,000 20% 107,800

15.4% 138,388 | 24.1% 86,832 23.7% 84,856

Table 5.43 - Two-Box Problem With A Population Size Of 10x4
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C=0.0 1=40 P=20x2 | C=0.5 1=40 P=20x2 C=1.0 I=40 I’=20x2

% runs Effort E | % runs | Effort E % runs Effort E
25% 72,800 38% 46,200 33% 47,120
22% 99,960 29% 58,320 32% 53,280
19% 103,000 28% 64,800 28% 57,240
21% 104,720 23% 68,000 24% 62,640
21% 109,040 27% 72,000 26% 63,840
18% 119,560 26% 79,360 31% 64,200
15% 121,600 24% 80,000 31% 67,320
19% 125,280 26% 81,600 28% 68,800
13% 143,360 26% 81,600 28% 68,800
14% 215,040 20% 90,280 20% 84,680

18.7% 121,436 | 26.7% 72,216 28.1% 63,792

Table 5.44 - Two-Box Problem With A Population Size Of 20x2

C=0.0 [=50 P=50x1 C=0.5 [=50 P=50x1 C=1.0 I=50 P=50x1

% runs Effort E | % runs | Effort E % runs Effort E
45% 52,500 48% 42,000 54% 37,600
37% 63,700 52% 43,500 54% 19,600
38% 65,000 44% 46,800 53% 40,500
40% 65,650 43% 48,000 52% 44,000
36% 67,150 45% 50,500 52% 45,500
31% 69,750 41% 51,000 52% 45,500
36% 76,500 43% 55,250 47% 46,350
30% 80,100 41% 60,600 50% 46,800
33% 86,700 43% 62,700 44% 47,500
29% 88,000 37% 68,250 40% 58,500

35.5% 71,505 | 43.7% 52,860 49.8% 45,185

Table 5.45 - Two-Box Problem With A Population Size Of 50x1

C=1.0 1=50 | C=1.0 I=50

P=25x2 P=10x5

% runs | Effort E % runs Effort E
39% 46,800 28% | 62,350
35% 53,550 32% | 66,000
37% 57,950 31% | 71,400
36% 60,000 30% | 78,850
31% 60,300 25% | 87,000
37% 60,350 27% | 87,500
33% 61,000 29% | 93,600
38% 62,050 28% | 97,500
37% 63,000 26% | 98,600
28% 87,500 25% | 107,300

35.1% 61,250 | 28.1% | 85,010
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C=1.0 1=80 P=80x1 C=1.0 1=80 P=40x2 C=1.0 1=80 P=20x4 C=1.0 1=80
P=10x8

% runs Effort E % runs | Effort E % runs Effort E % runs | Effonn E
67% 45,360 55% 49,280 62% 43,670 32% 81,600
65% 48,800 50% 50,400 51% 47,520 35% 85.680
57% 49,280 47% 60,480 499, 50,400 33% 94,800
59% 53,760 41% 61,360 50% 58,080 37% 96.000
52% 53.760 45% 68,640 45% 63,200 33% 100,320
57% 54,400 48% 69,600 43% 70,080 32% 100,640
57% 57,600 45% 70,560 42% 72,800 36% 102,000
60% 58,800 42% 72,080 40% 73,200 32% 104,960
58% 61,600 34% 88,400 38% 71,280 34% 116,160
53% 68,400 31% 106,400 49% 82,160 28% 124,000

58.5% 55,176 | 43.8% 69,720 46.9 % 63,839 | 33.2% 100,616

Table 5.47 - Two-Box Problem With A Population Size Of 80

Tables 5.37 1o 5.47 are used to produce the graph shown in figure 5.12.
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Figure 5.12 indicates that the best results are achicved when the crossover mutation rate 1s
sct to 1.0. The minimum amount of computational effort required is produced with a
population size of 50x1 with 45,185 individuals nceding to be proccssed. This compares
with 3320 iterations using NN’s and 1,176,000 evaluations using standard GP with a

population size of 4000.

5.7.2 Complex Multiplication

The previous example of symbolic regression involved one or more independent variables,
but only one dependent variable. The problem described here is that of multiple regression.
This problem attempts to find the unknown relationships between two independent
variables, y, and y,, and four dependent variables, x; .v; vz, and x4 given 50 six-tuples of
data. Where the target function is vector multiplication, t.e.:-

¥i=x X3-x2X and  ya =22 X3 - X X

The DRAM-GP parameters for this problem are shown in table 5.48.

Functional set ={+. -. * %, LIST2}
Arguments ={ 2 2,2}
NC Functionals =[ l. 12,12}
Terminal set ={ xl x3, x4}
NC Terminals N1 { 1.0, IO 1.0, 1.0}
Test points (TP) 50

Finess MSE

Max. NC 50.0

Min. NC 0.0

Elite 5

Crossover mutation rate 1.0

CCC + 2.0 of NC value

Max. Chromosome length 100

Max. generations 200

Table 5.48 - Run Parameters For Complex-Multiplication Problem
The functional LIST2 performs no function other than linking two sub-trees. It is used only
once at the top of cach tree and allows the whole tree to evolve the two independent

variables. The results of various runs are presented in table 5.49.



Pop. sizec M Effort E

{pop.x.specics)
Koza, 1992 (§TD) 500 609,500
DRAM-GP 10 (10x1) 729,810
DRAM-GP 20 (10x2) 229,500
DRAM-GP 30 (30x1) 90,720
DRAM-GP 50 (50x1) 97,000
DRAM-GP 100 (20x5) 100,100
DRAM-GP 150 (30x5) 155,700
DRAM-GP 200 (40x3) 142,800
DRAM-GP 250 (50x5) 155,000

Table 5.49 - Complex-Multiplication Results

5.7.3 Simple Symbolic Regression Problem

Suppose a sampling of the numerical values from a target curve over 20 points in somc
domain is given, such as the real interval [-1.0,+1.0]. That is, a sample of data in the form of
20} pairs (x;, yi) is given, where x; is the value of the independent variable in the interval
[-1.0,+1.0] and y; is the associated value of the dependent variable. The 20 values of x; arc
chosen at random in the interval [-1.0,+1.0]. The target function here is the polynomial
expression:
y = X' +x7+x74+x
(5.14)
The goal 1s to find a function, in symbolic form, that is a good or a perfect fit to the 20 pairs

of numerical data points.

The terminal set is

T={x}. (5.15)
The next step is to identify the set of functions that are used to gencrate the mathematical
cxpressions that attempt o fit the given finite sample of data. If knowledge that the answer
is x'+x’+x’+x is used, a function set consisting of only addition and multiplication
operations would be sufficient for this problem. A more general choice might be the

functional set consisting of the four ordinary arithmetic operators of addition, subtraction,
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multiplication, and the protected division function %. If a wider varicty of problems are to
be solved, the sine function SIN, the cosine function COS, the exponential function EXP,
and the protected logarithm function RLOG are included. The functional sct for this

problem is thus:

F={ +, -, *, %. SIN, COS, EXP, RLOG} (5.16)

Taking two,lwe,two,lwo,0ne,0ne,0ne,0ne arguments respectively.

The raw fitness for this problem is the sum, taken over the 20 fitness cascs, of the absolute
value of the difference (error) between the value in the rcal-valued range space produced by
the expression for a given value of the independent variable x; and the correct y; in the range
space. The closer this sum s to zero, the better the computer program. Error-based fitness

is the most common measure of fitness used.

The hits measure for this problem counts the number of fitness cases for which the
numerical value returned by the expression comes within a small tolerance called the hits

criterion of the correct value. For this cxample, the hits criterion is 0.01 (Koza, 1992).

Published computational effort result (Koza, 1992) using a population size M of 500 and a
maximum number of generations of 50, is 162,500 cvaluations. The results arc based on

113 runs. The paramcters for the DRAM-GP run are shown in table 5.5(.



Functional set F={+ - * %, SIN, COS. EXP, RLOG }
Argumcnis Fa={2,2,2 22 2 2 2

NC Functionals Ne={l.1,1.1, 1.2, 1.2,1.3,1.3,1.4,1.4 }
Terminal set T={x}

NC Terminals Nr={ 1.0 }

Tesl points (TP) 20

Fitness MSE

Max. NC 50.0

Min. NC 0.0

Elite 5

CCC + 2.0 of NC valuc

Chromosome length | 100

Max. generations 200

Table 5.50 - DRAM-GP Parameters For The Simple Symbolic Regression Problem

The results for the simple symbolic regression problem are shown in tables 5.51 and 5.52.

The computational effort is based on 100 runs for each table.

C=1.0 1=100 P=20x4
% runs | Effor1 E
90% 6,080

Table 5.51 - Simple Symbolic Regression Problem With A Population Size Of 80

C=1.40 1=1000 P=50x10
% runs | Effort E
90% 15,000

Table 5.52 - Simple Symbolic Regression Problem With A Population Size Of 200

The results show that with a population size of 80 individuals only 6,080 evaluations arc
required to produce a correct solution, this compares with 162,500 cvaluations using

standard GP and a population size of 500 (Koza, 1992).

5.8 Continuous Symbolic Regression Problems
The previous cxample of symbolic regression contained no numerical constants within the
target curves or within the terminal set, nor was there any explicit facility for creating them.

The search space of possible solutions was discrete, although large, but with the inclusion of

rcal numbers the scarch space is infinite.




5.8.1 Symbolic Regression Using Real Numbers

Real numbers are now included in the continuous cquation. The test function here is:-

y=05x

The functional set is F = { +, -, *, % }with arguments { 2, 2, 2, 2 } respectivly. The
terminal set has to include x and the set of real numbers R. When a program trec is being
crcated and a terminal 1s sclected there is a 50% chance that a real number will be chosen. A
range is set for these real numbers which for this problem is between -5.0 and 5.0 and the
number used 1s randomly chosen between these limits. If a rcal number is chosen for

mutation 1t is replaced by another randomly sclected number. The parameters for the

DRAM-GP run are shown in table 5.53.

Functional set F={+ - *%)}
Arguments Fa={2,2 2 2}
NC Functionals Ne={1.1.1.1,1.2,1.2
Terminal sct T={x.R}

NC Tcrminals Ny={ 1.0 }

Test points {TP) 20

Fitness MSE

Max. NC 20.0

Min. NC 0.0

Elite 5

CcCC + 2.0 of NC value
Max. Chromosome length 100

Max. generations 200

Table 5.53 - DRAM-GP Parameters For The Symbolic Regression Problem 0.5x’

Tables 5.54 and 5.55 show the results of 100 runs for cach parameter sct.

Table 5.54 - 0.5x* Symbolic Regression Problem With A Population Size Of 80

Table 5.55 - (.5x* Symbolic Regression Problem With A Population Size Of 200

C=1.0 I=100 P=20x4

% runs

Effort E

71

19410

C=1.0 1=100 P=50x4

% runs

Effort E

100

13,000
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The results of Koza (Koza, 1992) state that using a population size of 200, 19,800
evaluations are required 1o solve the problem with a probability of success of 99%, based on

190 runs.

One evolved solution to this problem included no real numbers, but did include the sub tree
x/(x+x) which reduces to the real number 0.5. This shows that ¢ven if real numbers are not
explicitly included within the GP process, real numbers can, and arc produced. Duc to the
nature of the test function the generation of the required real number is relatively easy to
produce, so, to further examine if the revised GP method can be used with real numbers a

more complex symbolic regression problem is used.

5.8.2 Increased Complexity Symbolic Regression

The test problem is y = 2.718 x* + 3.1416 x and 20 equally spaced test points are produced
between the range of -1.0 < x < 1.0. It would be much more difficult for the numbers Pi and
¢ to be generated without the use of real numbers. The range of any created (or mutated)
rcal numbers is again between -5.00 and 5.0. The fitness is calculated using ‘hit poimts’
(Koza, 1992) a hit being scored if the y value of the evolved solution is within 0.01 of the

test value. The parameters for the DRAM-GP run are shown in table 5.56.

Functional set F={(+ - *%}
Arguments Fa={2,2, 2. 2)
NC Functionals Ne={I1.1,1.1,1.2, 1.2 }
Terminal set T={x,R)}

NC Terminals N={1.0 }

Test points (TP) 20

Max. NC 4.0

Min. NC 0.0

Elite 5

CCC + 2.0 of NC valuc
Max. Chromosome length 705

Max. generations 50

Table 5.56 - DRAM-GP Parameters For The Complex Symbolic Regression Problem
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Tables 5.57 10 5.60 show the results of 10 runs for cach parameter sct.

C=1.0 1=160 P=20x8
% runs | Effort E
10 225,280

Table 5.57 - Complex Symbolic Regression Problem With A Population Size Of 160

C=1.0 1=250 P=50x5
% runs | Effort E
30 85,800

Table 5.58 - Complex Symbolic Regression Problem With A Population Size Of 250

C=1.0 1=300 P=50x6
% runs | Effort E
80 29,700

Table 5.59 - Complex Symbolic Regression Problem With A Population Size Of 300

C=1.0 =500 P=50x10
% runs | Effort E
80 38.400

Table 5.60 - Complex Symbolic Regression Problem With A Population Size Of 500

The results compare with 3(35,500 evaluations using a population size of 500, based on 100

runs (Koza, 1992).

5.9 Summary

The results show that performance improvements similar to that obtained using ADF's
(Koza, 1992,1994) is possible using DRAM-GP, but the population size and thus the
memory required 1o initiate a run is greatly reduced. ADF’s look for sub-trees which can be
repealed within the tree structure and so will perform well on problems which have
solutions which can be constructed from these fit sub-trees. This is shown in the 5 parity
problem where ADF’s outperformed DRAM-GP. Future research could explore the use of

DRAM-GP with ADF’s for the Boolcan induction class of problems.
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Although all performance calculations assume that the computational effort required to
evaluate a single generation is the same for conventional GP, GP using ADF’s, and RAM-
GP, it is cvident that this is not the case with DRAM-GP. The crossover operator requires
extra administration to find sub-trecs with NC values within the required range. However
this cxtra administration cost is considercd small when compared with the fitness function

computational effort and thercfore of little consequence.

The distribution of NC values throughout the individuals will be biased towards lower
values (1.e. lower NC values will have a higher frequency than higher ones), and so because
the sub-tree selection is random for CCC, there is a higher probability that the sub-tree to be
replaced will have a low NC value. The smaller sub-trees will also have less chance of being
disrupted by the mutation operator within the CCC operator. Individuals are created and
are then slowly reduced or cxpanded in size through the action of the CCC operator. Once
onc species finds a solution which i1s fitter than any other individual within the total
population, it very quickly propagates this information to other species, accelerating the

evolution towards fitter solutions.

If a run 1s continucd after an exact solution is found, the evolutionary process will continue

to evolve solutions that have lower NC values and thus less complex solutions.

The injection mutation, IM, is important for the DRAM-GP paradigm in that it naturally
disrupts the fitness of the individuals within each species (apart from the elite 3) and then
cvolves solutions using the clite and disrupted individuals. This prevents the population

from prematurely converging and can be considercd as keeping the population in a state of

entropy, from which new fitter individuals are created. When the injection mutation is




turned off the species quickly converge, and the performance of the adaptive program is

greatly reduced.
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CHAPTER 6

APPLICATIONS TO PRELIMINARY DESIGN SOFTWARE

Chapter five has shown that DRAM-GP outperforms conventional GP in terms of both
performance and population size. For problems involving discrete search spaces, GP is the
most effective search method for systems identification of all the evolutionary computation
tcchniques. However the GP paradigm has no efficient method for searching continuous
search space as are encountered when real numbers are included within the problems under
investigation. GP produces real numbers by initially randomly creating them within the
initial population and then through the action of crossover the real numbers are manipulated
to produce more real numbers, a process that is random and also one which adds a

computational overhead to the problem solving process.

The new GP technique presented is thus extended to incorporate borh continuous and
discrele search spaces as is found within the domain of preliminary design. The reviscd
tecchnique 1s called HDRAM-GP (Watson & Parmee, 1997(b)) i.e. Hybrid Distribuicd,
Rapid, Attenuated Memory, Genetic Programming. HDRAM-GP incorporates a real
numbered genctic algorithm 10 aid search in the continuous space. lts application is
demonstrated on engineering fluid dynamics systems which were initially investigated in

scction 4.5.1.

6.1 A Hybrid Extension To DRAM-GP

For mixed discrete and continuous search spaces, an algorithm which will efficiently explorc
through both spaces 1s required. In order to achieve this HDRAM-GP uses two alicrnating

crossover operators. The GP operator searches the discrete functional structure whilst the
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GA scarches the continuous coefficient space. The GP crossover operator can sclect parents
from any specics and 1s thus called an inter-species crossover operator, while the GA
crossover operator is limited to selecting parents from the same species and is thus intra-
species. This crossover regime is possible due to the adopted computer representation of
the individuals 1.c. an array of characters for the functional description and an array of
floating point numbers for the real number coefficients. GP crossover then operates within
the character array to evolve the functional structures of the system, whilst GA crossover
concurrently operates only within the real number array to evolve the coefficients of the

structures.

The GA crossover operator is restricted to individuals within the same species and only
manipulates the rcal numbers stored in the floating point array within the individual
structures. Two parcnts, Pl and P2 are randomly selected from the same species and a
single crossover point, CP1, is sclected. AS in standard GP crossover this defines a sub-tree
which is 1o be crossed. Only the real numbers of P1 and P2 are swapped with all functionals

remaining unchanged. The resulting child individual is then evaluated.

The GA crossover thus produces only one new individual and so is performed twice for
every GP crossover, thus ensuring both operators produce the same amount of children.
The HDRAM-GP algorithm performs one standard GP crossover, dircctly followed by two
GA style crossovers, this cycle is repeated until the correct number of crossover opcrations

has taken place.

Every equivalent generation mutation occurs and changes only one allele within cach

individual with a probability of mutation of 0.5 The top 5 individuals are clite and are never

mutated, but are allowed to participate in crossover.




6.2 Explicit Formula For Friction Factor In Turbulent Pipe Flow

This problem was first investigated in scction 4.5.1 and a brief summary of the results
produced is shown. The initial functional in every individual was set 1o log)o this reduced
the problem to finding the sub-function y in the following equation:-
f P =alog,y
(6.1)

where a=constant  and y= f(RE,KID).
Using the following {unctional and terminal sets.

F={+.-,*.%} (6.2)
and T ={ Real .Re .K/D '} (6.3)
The best evolved formula using standard GP with a local hill climber.presented in section

4.5.1,

1S: -

1 02097K 1L1001
— = -3.83641 4
7 opo 22K L0 (64)

The average error being within 0.27% of Colebrook and White's formula. This required a
total of 1,000,000 evaluations to solve the problem. The inclusion of the hill chimber
increases computational expense, requiring a total of 3 runs, seeding successive runs with a

simplified equation of the best result from the previous run.

Using HDRAM, with a population size of 40 consisting of 4 species of 10 individuals, and

1000 generations, the best evolved equation from 5 independent runs is:-

1 —54353

—— =3792210g,04—150169 — 6.5
7 "f’“’[ {(57.3353/(717.8244+Rc))+A’/Dﬂ( )




with an average crror of (.79%. Although the result i1s less accurate than the standard
GP/hill climber technique, HDRAM requires only onc run to provide a satisfactory solution
and computational expense is reduced duc to the much smaller population size and the

exclusion of the local hill climber.

A sccond series of runs assumed a functional form for the resulting equation of :-

o=y (6.6)
where y= f(Re.K/D)
This increascs the complexity of the problem by including the log ;0  operator in the
functional set. Using the standard GP/hill climber technique with a population size of 1000,

and 1000 generations, performance is poor with runs producing average errors in the range

of 20% to 30%.

The best result of 5 independent runs using HDRAM-GP with a population size of 10

individuals in 4 spccies, is:-

L 350391008, 3.2917Re (6.7)
Jr 18.7046 + K / D (0.41644 - Re)

The average error being within 1.82% of Colebrook and White’s formula. The reduced
accuracy of the result is duc to the increcased complexity of the problem domain but
HDRAM-GP shows a significant improvement over standard GP/hill climber techniques for

this incrcascd complexity problem.

Run parameters arc shown in table 6.1.




Number of specics 4
Species population size 50
Maximum NC value 40
Minimum NC valuc 0
Crossover mutation rate 0.5
Maximum chromosome tcngth 750
Rcal number minimum valug -5.0
Real number maximum value 5.0
Maximum generations 1000
Elite 5

Table 6.1 - Run Parameters For Friction Factor Problem

The results of S independent runs are shown in table 6.2.

Run no. Worst crror (%)
1 5.73
2 6.81
3 2.12
4 2.94
5 2.52

Table 6.2 - Results For Friction Factor Problem

It can be scen that HDRAM-GP not only produces acceplable results using fewer function

cvaluations, bui can also derive equations without a prespecified functional form.

6.3 Laminar Two-Dimensional Sudden Expansion Flow Problem

Precvious work on sudden expansion flow in scction 4.5.2 showed that although the standard
GP paradigm can model this system te some extent, it requires multiple runs to achicve a
satisfactory solution. The results were obtained by reducing the dimensions of the problem
for an initial run i.e. only using the data at Re=1000, and seeding a second run with the best

result of the first run, but using the whole range of test data for Re= 100,200,..., 1000.

Using HDRAM-GP, equations are cvolved which describe the X and Y velocities using
only one run of the algorithm and all the data i.e Re=100,200....,1000. The resulting
equation can produce velocity vectors for Re in the range 0—1000. Figures 6.1 and 6.2

show the X and Y velocity components at Re=1000.
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Figure 6.2 - Y-Velocity Test Surface

HDRAM is used with a population size of 400, consisting of 10 species of 40 individuals
within each species, and 1000 generations. Equations are evolved which describe the X and
Y velocities using only one run of the algorithm and all of the test data ie.
Re=100,200,...,1000. This again shows that HDRAM-GP can solve more complex

problems than standard GP.

Figures 6.3 and 6.4 show the evolved X and Y velocity at Re=1000 of the best of 5
independent runs. The average error is 15.5% and again the improved technique has a

reduced computational expense, and produces acceptable solutions using only one run of

the algorithm.
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Figure 6.4 - Evolved Y-Velocity Surface

HDRAM-GP outperforms DRAM-GP in several ways. The population size required to
solve the problem is reduced from 10,000 individuals to 400 using HDRAM-GP. HDRAM-
GP had 10 initially solve the problem at a fixed Reynolds number (a reduced dimension) and
then required further runs using the results from the initial run as a population sced 10

produce equations which represented the flow over the range of Reynolds numbers given in

the test data.

6.4 Thermal Paint Jet Turbine Blade Data

The final problem under investigation is the modelling of the surface temperature of a

turbine blade under set operating conditions, first investigated in section 4.5.3. Figure 6.5

shows a typical surface of a turbine blade used for this test.
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Figure 6.5 - Thermal Paint Test Surface

This problem was investigated using standard GP in section 4.5.3 and acceplable results
have been produced for one-dimensional curves. The best result for the modelling of the
whole surface (i.c. surface fitting) using the standard GP/hill climber approach has an

average crror of 13.4% using a population sizc of 1000 and a 1otal of 10,000 generations.

The functional set and terminal set are
Figure 6.6 shows the best evolved surface from 5 independent runs using HDRAM using a
population size of 400 individuals consisting of 40 specics of 10 individuals and 1000

generations.

The evolved surface has an average crror of 7.5% over the 290 tcst points used. This again
shows that the technique outperforms the standard GP/hill climber method with a greatly
rcduced population size and smaller number of generations and thus fewer fitness

evaluations.
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6.5 Summary

The results presented here show that HDRAM-GP can be applied to model approximatc
equations Lo engineering systems with betier or at lcast comparable accuracy to that of
carlicr standard GP/hill climber methods. Advantages of this technique compared with a

standard GP/hill climber approach arc:-

* A rcduction of overall population size and required generations.

e Reduced CPU running time.

¢ A reduction in computer memory required to run the evolutionary program.

¢ The ability 1o scarch discrete structures and continuous coefficients concurrently.
e A control mechanism for the lengths of individual tree structures.

e Ability 10 search higher dimensional problems.

¢ An efficient method for scarching for numerical values.
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The GP crossover mechanism is responsible for the transfer of information from species to
species, and fit solutions are rapidly transferred to other species, including those of a lower
NC grouping species, thus producing less complex solutions. The node complexity measure,
which controls the GP crossover, minimises disruption by ensuring some similarity between
crossed sub-trees and also controls tree length growth. The injection mutation disrupts the
fitness of the individuals within each species (apart from an elite 5 individuals within each
species) and then evolves solutions using the clite and disrupted individuals. The method
can also model systems which are oo complex for conventional genetic programming and

the hybrid GP/hill climber technique.

160



CHAPTER 7

DISCUSSION

Al the beginning of this thesis the objectives of the research were stated as follows:-

1) To identify the utility of evolutionary computation and in particular genetic programming
for systems identification.

2) To devclop appropriate evolutionary strategies for systems idcntification.

3) The integration of complementary adaptive search and traditional optimisation
techniques for systems identification..

4) The improvement of areas of simple cngincering software using the developed strategies.

The first objective was dealt with in chapters 2 and 3 with a comparison of various
techniques presented in chapter 4. From the investigation into the utility of different
methods of evolutionary computation it has been shown that genetic programming provides
the best method in terms of representation. The inputs to GP arc usually presented dircetly
in terms of the observed variables of the problem domain. Therefore, the representation
uscd by genetic programming is the natural representation of the problem domain. The lack
of pre-processing is a major distinction rclative to conventional genctic algorithms operating
on strings, neural networks, and other machine learning algorithms. Neural neiworks
provide a mathematically proved method for solving any problem, the major drawback
being that the results of the network are virtually impossible to view and rcpresent as a
mathematical function. Genetic programming can provide interpretable equations and does

not require any prior knowledge of the system as in the case of a GA.
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The second objective was achieved only after conventional GP was used on various
problems. The results of these initial runs showed that GP produces solutions that are very
long and the lack of any mecchanism for the evolution of numerical values required the
inclusion of a local hill-climber to search for the correct numerical values. These drawbacks
to conventional GP were then addressed by the use of a new GP algorithm called DRAM-
GP. and thc success of this technique has been clearly demonstrated. The problem of
numcrical constant manipulation still existed with DRAM-GP and so to solve problems in
both the discrete and continuous search spaces a hybrid technique has been produced called
HDRAM-GP thus achieving objective three. This technique has been shown, through
experimentation, to be better then conventional GP for solving systems identification
problems. Finally chapter six uscd HDRAM-GP 1o cvolve models for use within the

cngincering design domain.

For HDRAM-GP the crossover mechanism is responsible for the transfer of information
from species to specics, and fit solutions are rapidly transferred to other specices, including
thosc of a lower NC grouping specics, thus producing less complex solutions. The node
complexity measure, which controls the GP crossover, minimises disruption by ensuring
some similarity between crossed sub-trees and also controls tree length growth. The
injection mutation disrupts the fitness of the individuals within cach species preventing the
population from prematurely con\;crging. When the injection mutation is turned off the

specics quickly converge, and the effectiveness of the technique is greatly reduced.

The concurrent utilisation of the GA reduces the amount of processing required 1o obtain
acceptable results by further reducing semantic disruption. The method can also model

systems which arc to complex for conventional GP and the hybrid GP/hill climber

technique.




7.1 Conclusions

The results presented here show that HDRAM-GP can be applied to model approximate
equations to engineering systems with better accuracy to that of carlier conventional GP and

GP/hill climber methods. Advantages are:-

* A reduction of overall population size and required generations.

e Reduced CPU running time.

e A rcduction in computer memory required o run the evolutionary program.

e The ability Lo search discrete structures and continuous cocfficicnts concurrently.

¢ A control mechanism for the lengths of individual tree structures.

The rescarch has shown that HDRAM offers a better potential for the modelling of sclected
engineering sysiems producing improved cahbrations when compared to standard GP/hill

climber methods.

The initial testing of conventional GP on engineering systems also showed that GP does not
scale up to higher dimension problems very well. This was shown with the turbine blade
data in which only 2-dimensional curves could be fitted with any degree of accuracy, and
also with the pipe friction factor problem where a functional form had to be initially set o
cnable the GP algorithm to solve the problem, thus reducing the search space to a level that
could be readily be solved by the application of conventional GP. With HDRAM-GP these

problems were overcome but although the new method can solve problems up 10 4

dimensions, it is the author’s view that GP does not scale up past 4 dimensions.




There is also a continuing debate about the action of the crossover operator within GP.
Some researchers belicve that crossover is a macro-mutation operator (Angeline, 1997),
and it is the author’s view that this is true, but only for certain problem domains, systems
identification being one of these. If crossover is responsible for the transmission of ‘good’
genctic material then the use of the crossover mutation rate within HDRAM-GP should be
sct to zero. This was the case with Boolean induction problems, but when problems which
contain continuous scarch spaces arc encounicred the best reported results occur when the
crossover mutation rate is set to 0.5 or 1.0}, This suggests that the crossover operator used

on continuous problems is indeed actually a mutation operator.

7.2 Future Research Directions

The research reported in this thesis has shown the ability of GP to solve simple systcms
identification problems, but the research also opens other arcas relating 1o GP and systems

identification, possible future rescarch is outlined here.

Onc arca that requires further work is that of addressing the problem of scalability of GP. It
has been shown that by modifying the conventional genetic programming algorithm, higher
dimensional problems can be solved, but the new technique extends the problem solving by
only a few dimensions. There seems (o be no method for solving systems identification
problems which include real numbers with more than 5 dimensions. Further rescarch could
explorc the utility of HDRAM-GP together with a local hill-climber and also the inclusion of
ADF’s. It has been shown that the hill-climber can improve the fitness of individuals and
also ensure that fit functional structures arc not lost due o poor terminal sclection. The

inclusion of ADF’s could increasc the performance of HDRAM-GP but the choice of

problem would have to accommodate repeated sub-trees.




Other theoretical work on schemata theory for GP has been attempted but the work makes
assumptions about the crossover operator and mutation method, a more general GP
schemata theory would help researchers understand the mechanisms that make GP work

effectively.
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