
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1999

AN INVESTIGATION OF

EVOLUTIONARY COMPUTING IN

SYSTEMS IDENTIFICATION FOR

PRELIMINARY DESIGN

WATSON, ANDREW HARRY

http://hdl.handle.net/10026.1/1669

http://dx.doi.org/10.24382/1403

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



An Investigation Of Evolutionary Computing 
In Systems Identification For Preliminary 

Design 

Ph.D. Thesis submitted by A.H.Watson 

1999 



AN I N V E S T I G A T I O N O F E V O L U T I O N A R Y COMPUTING IN 
S Y S T E M S I D E N T I F I C A T I O N F O R P R E L I M I N A R Y DESIGN 

by 

ANDREW H A R R Y WATSON 

A thesis submitted to the University of Plymouth 
in partial fulfillment for the degree of 

D O C T O R O F PHILOSOPHY 

School of Computing 
Facuky of Technology 

In collaboration with 
Rolls Royce Pic. 

March 1999 



90 0401366 3 

Item No. 

Date 

Class No. 
Contl.No. 

9 c » 4 0 1 3 6 6 3 

2 ' I Si? 1999 

LIBRARV §gRVIQis 

I REF REFERENCE ONLY 



Copyright Statement 

This copy of the thesis has been supplied on condition that anyone who consults 

it is understood to recognise that its copyright rests with its author and that no 

quotation from the thesis and no information derived from it may be published 

without the author*s prior written consent. 

Signed 

(ANDREW HARRY WATSON) 

Date....?.?/?/.?.?. 



An Investigation Of Evolutionary Computing In Systems Identification For 
Preliminary Design 

Andrew Harry Watson 

A B S T R A C T 

This research investigates the integration of evolutionary techniques for symbolic 

regression. In particular the genetic programming paradigm is used together with other 

evolutionary computational techniques to develop novel approaches to the improvement of 

areas of simple preliminary design software using empirical data sets. I t is shown that within 

this problem domain, conventional genetic programming suffers from several limitations, 

which are overcome by the introduction of an improved genetic programming strategy 

based on node complexity values, and utilising a steady state algorithm with sub-

populations. A further extension to the new technique is introduced which incorporates a 

genetic algorithm to aid the search within continuous problem spaces, increasing the 

robustness of the new method. The work presented here represents an advance in the Geld 

of genetic programming for symbolic regression with significant improvements over the 

conventional genetic programming approach. Such improvement is illustrated by extensive 

experimentation utilising both simple test functions and real-world design examples. 
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CHAPTER 1 

INTRODUCTION 

During the last thirty years there has been a growing interest in computer based problem 

solving systems based on principles of evolution. This approach, known collectively as 

Evolutionary Computation (EC), includes genetic algorithms (GA's). genetic programming 

(GP), evolutionary programming (EP) and evolution strategies (ES). When applied to 

practical problem solving, all begin with a population of contending trial solutions to the 

task at hand. New solutions are created by randomly altering the existing solutions. An 

objective measure of performance is used to assess the "fitness" or "error" of each trial 

solution, and a selection mechanism determines which solutions should be maintained as 

"parents" for the subsequent generation. The differences between the procedures are 

characterised by the types of alterations that are imposed on solutions to create offspring, 

the methods employed for selecting new parents, and the data structures that are used to 

represent solutions. These techniques are now being used extensively, for instance, in the 

fields of design, pattern recognition, engineering, control, scheduling, and systems 

identification. 

The objective of the research described within this thesis is to develop evolutionary 

strategies for the identification of improved mathematical representations relating to areas 

of preliminary design software which contain a high degree of approximation. 

In general, preliminary engineering design practice involves look-up tables or graphs based 

upon empirical data that is not easily represented computationally. During preliminary 

design, approximate solutions can provide sufficient guidance for the engineer to determine 

optimal design directions. By using approximate functions to describe the physical process 



during preUminary design the engineer is able to rapidly investigate many possible design 

solutions before progressing to more definitive analysis techniques such as Computational 

Fluid Dynamics (CFD) and Finite Element Analysis (FEA). A contributing factor to function 

approximation may be the inclusion of empiricaUy derived coefficients (i.e. discharge, drag, 

etc.)-

The identification, manipulation and optimisation of these approximate functions that 

describe the physical process wiU be investigated using genetic programming and by the 

development of complementary evolutionary compulation and adaptive search techniques. 

1.1 The Engineering Design Process 

There is no single universally accepted sequence of steps that leads to a workable design. 

Design is a sequential process consisting of many design operations. Examples of the 

operations might be:-

• Exploring the alternative systems that could satisfy the specified need. 

• Formulating a mathematical model of the best system concept. 

• Specifying specific parts to construct a component of a sub-system. 

• Selecting a material from which to manufacture a part. 

Each operation requires information, some of it is provided in general technical and business 

information, but some is very specific information that is needed to produce a successful 

outcome. Acquisition of information is a vital and often very difficult step in the design 

process, but fortunately it is a step that usually becomes easier with time (this process is 

called experience). 



Once armed with the necessary information, the design engineer (or design team) carries out 

the design operation by using the appropriate technical knowledge and computational 

and/or experimental tools. The typical design project will break itself down into a number of 

lime phases which are listed below (Pahl & Beiiz, 1988). 

Phase I - Feasibility Study 

The purpose of the feasibility study is to initiate the design and establish the line of thinking. 

The goal in this phase is to validate the need, produce a number of possible solutions, and 

evaluate the solutions on the basis of physical feasibility, economic viability, and financial 

feasibility. This stage sometimes is called conceptual design. 

Phase n - Preliminary Design 

Starting with a set of useful solutions developed in phase I , the goal of the preliminary 

design is to quantify the parameters so as to establish the optimal solution. A preliminary 

design usually is concerned only with order-of-magnitude estimates o f design performtince 

and cost. At this stage it may be necessary to construct a mathematical model and conduct a 

simulation of the component's performance on a digital computer. 

Phase m - Detailed Design 

The purpose of the detailed-design phase is to develop a complete engineering description 

of a tested and producible design. The process involves complex, computationally expensive 

models and calculations as well as expensive testing of components. 

The phases that follow the first three listed include planning for manufacture, distribution, 

use and retirement of the product and do not concern the area of study related to this thesis. 



The preliminary design phase often utilises data presented in a graphical form, which is used 

to calculate various design specific goals. I f optimisation of the design is to be undertaken 

by a computer, the data needs to be either directly inputted (then interpolated), or a 

mathematical equation representing the data can be used. The identification of the 

mathematical model that best represents the data is the subject for this thesis. 

1.2 The Role Of Models In Engineering Design 

A model is an idealisation of a real-world situation that supports the analysis of a problem. 

A model may be either descriptive or prescriptive. A descriptive model helps to understand 

a real-world system or phenomenon; an example is a cutaway model of an aircraft gas 

turbine. Such a model serves as advice for communicating ideas and information. However, 

it does not help to predict the behaviour of the system. A predictive model is used primarily 

in engineering design because it helps to both understand and predict the performance of the 

system. 

Models can be classified as follows: 

• Static-dynamic 

• Deterministic-Probabilistic, and 

• Iconic-analogue-symbolic 

A static model is one whose properties do not change with time; a model in which time-

varying effects are considered is dynamic. In the deterministic-probabilistic class of models 

there is differentiation between models that predict what will happen. A deterministic 

model describes the behaviour of a system in which the outcome of an event occurs with 

certainty. In many real-world situations the outcome of an event is not known with 

certainty, and these must be treated with probabilistic models. An iconic model is one that 



represents the physical characteristics of the system being modelled. Examples are a scale 

model of an aircraft for wind tunnel test and an enlarged model of a polymer molecule. 

Iconic models are used primarily to describe the static characteristics of a system, and they 

are used to represent entities rather than phenomena. Analogue models are those that 

behave like the real systems. They are often used to compare something that is unfamiliar 

with something that is familiar. Unlike an iconic model, an analogue model need look 

nothing like the real system it represents. It must either obey the same physical principles as 

the physical system or simulate the behaviour of the system. An ordinary graph is an 

analogue model because distances represent the magnitude of the physical quantities plotted 

on each axis. Since the graph describes the real functional relation that exists between those 

quantities, it can be seen as a model. Symbolic models are abstractions of the important 

quantifiable components of a physical system. A mathematical equation expressing the 

dependence of the system output parameter on the input parameters is a common symbolic 

model. A symbol is a shorthand label for a class of objects, a specific object or a state of 

nature, or simply a number. Symbols are useful because they are convenient, add to 

simplicity of explanation, and increase the generality of the situation. A symbolic model 

probably is the most important class of model because it provides the greatest generality in 

attacking a problem. The use of a symbolic model to solve a problem leads to quantitative 

results. Further distinction can be made between symbolic models that are theoretical, based 

on established and universally accepted laws of nature, and empirical models, which are the 

best approximate mathematical representations based on existing experimental data. 

The solution of models by the straightforward application of mathematical techniques has 

been the classical approach, but only the simplest (and hence usually most unrealistic) 

models can be solved with classical analytic methods. The widespread use of the digital 

computer has greatly expanded the scope and usefulness of mathematical modelling. The 

use of numerical methods for solution and the ease with which iterative and evolutionary 



procedures can test many specific states of the model have established evolutionary 

computer modelling as a powerful tool of engineering design. 

1.3 Evolutionary Computation History 

Genetic algorithms, evolutionary programming and evolutionary strategies were developed 

essentially in parallel, in the 1960's and 1970's. Genetic algorithm and evolutionary 

programming strategies have been primarily developed in the United States, whereas 

evolution strategies originated in Germany. Genetic programming is the most recent 

addition to the field of evolutionary computation and was developed in its current form in 

the late 1980's in the United States. 

The development of genetic algorithms began in the 1950's through the use of computers 

by biologists to simulate natural genetic systems. One of those doing work most closely 

related to the current concepts of genetic algorithms was A.S. Eraser, who began publishing 

in the field in the late 1950s (Fraser, 1957). Eraser worked in the area of epistasis 

(suppression of the effect of a gene) and represented each of three parameters of an 

epistatic function as five bits in a 15-bit string. Fraser was working with natural systems, 

and while his work resembled function optimisation currently being solved by genetic 

algorithms, he did not consider the possibility of applying his methodology to artificial 

systems (Fraser, 1960, 1962). 

John H. Holland of the University of Michigan was also beginning to publish in the early 

1960s. Holland, together with his students has probably had more influence on the field of 

genetic algorithms than any others. 



Holland's interest in machine intelligence led to the development and application of the 

capabilities of genetic algorithms to artificial systems. He taught courses in adaptive systems 

in the early 1960s while laying the groundwork for apphcations to artificial systems with his 

publications on adaptive systems theory (Holland, 1962), Holland's systems were adaptive 

because of their robustness in spite of changes and uncertainty in the environment. Further, 

they were self-adaptive in that they could make adjustments based on their interaction with 

the environment over time. 

One of Holland's many contributions was his use of a population of individuals 

(chromosomes) in the search process, rather than the use of only a single individual as was 

common at the time. He also derived the schema theorem, which shows that schema 

(ftindamental building blocks of individual chromosomes) that are more "f i t " with respect to 

a defined fitness ftinction are more likely to reproduce in successive generations of the 

population of chromosomes. 

Beginning in the 1960s Holland's students routinely used reproduction, crossover, and 

mutation in their applications. Several of Holland's students made significant contributions 

to the genetic algorithm field, often starting with their Ph.D. dissertations, including K.A. 

De Jong, D.E. Goldberg and J. Koza.. 

The terra "genetic algorithm" was used first by Bagley (Bagley, 1967) in his dissertation, 

which utilised genetic algorithms to fmd parameter sets in evaluation ftinctions for game 

playing. 

In 1975 Holland published one of the field's most important books, entitled Adaptation in 

Natural and Artificial Systems (Holland, 1975). Also in 1975, K. A. De Jong, one of 

Holland's students, published his Ph.D dissertation entitled, "An analysis of the Behaviour 

of a Class of Genetic Adaptive Systems". As part of his dissertation, De Jong put forward a 

7 



set of five lest functions designed to measure ihe convergence of the algorithm. Two 

metrics were devised, one to measure ihc convergence of the algorithm, the other to 

measure the ongoing performance. Dc Jong examined the effects of varying four parameters 

(population size, crossover probability, mutation probability, and generation gap) on the 

performance of six main kinds of genetic algorithm paradigms (De Jong, 1975). De Jong's 

five-function test bed and two performance metrics still provide some of the most 

commonly referenced genetic algorithm performance criteria. David E . Goldberg was 

another of Holland's students. He has concentrated on engineering applications of genetic 

algorithms. He is a former gas pipeline engineer; his Ph.D. dissertation considered a 10-

comprcssor, 10-pipe, steady-state, serial gas pipeUne problem (Goldberg, 1983). The goal 

was to provide a strategy that minimised the power consumption in the pumping stations, 

subject to pressure-related constraints. In 1989, Goldberg published one of the most 

important books on genetic algorithms. Genetic Algorithms in Search, Optimisation and 

Machine Learning (Goldberg, 1989). 

In the United States, Larry J. Fogel and his colleagues developed what they named 

Evolutionary programming. Evolutionary programming uses the selection of the fittest, 

similar to genetic algorithms, but the only structure-modifying operation allowed is 

mutation. Fogel and his colleagues mainly worked with finite state machines and were 

interested in machine intelligence. They were able to solve a problem involving significant 

cpistasis that was quite difficult for genetic algorithms. Fogel (Fogel, 1994) has described 

evolutionary programming as taking a fundamentally different approach than genetic 

algorithms. Genetic algorithms are described as a bottom up process of adaptive genetics 

but evolutionary programming acts as a top-down process of adaptive behaviour. Fogcl 

summarises evolutionary programming as implementing "survival of the more skilful" rather 

than ''survival of the fittest" emphasised by genetic algorithm developers. 



In Germany, al the Technical University of Berlin, 1. Rechcnbcrg developed what he called 

Evolutionstraiegic (evolution strategies) during the mid-1960s. He was working on 

engineering optimisation problems that involved airfoil design, including physical 

configurations of a series of hinged plates in a wind tunnel. He used evolution strategies to 

vary the angle of the plates and of the tube. Rcchenberg and his student, H. P. Schwefel, 

used the first computer al the university to simulate various versions of the strategy 

(Rechenberg, 1965; Schwefel, 1965). In the early 1970s, Rechcnbcrg published a book that 

is considered the foundation for this approach (Rechenberg, 1973). 

The fourth major area of evolutionary computation is genetic programming. Some of the 

earliest related work was completed by Friedberg and other co-workers (Friedbcrg, 1958: 

Friedberg et al., 1959). They worked with fixed-length computer programs that were coded 

by another program designed to optimise the performance of the fixed-length program. 

Their programs each comprised a set of 64 instruction, each instruction being 14 bits long. 

The programs were defined such that every arrangement of the 14 bits was a valid 

instruction, and each set of 64 instructions was a valid program. Unfortunately, the results 

of the efforts did not hve up to expectations. In retrospect, there were probably two main 

reasons for this. First, the programs were limited in length to 64 instructions: a 'Tailure" was 

returned if the program did not terminate successfully by the end of the 64th instruction 

(even if there was a loop). Second, there was only one program; thus there was a 

population of just one that evolved. 

The two Umitations just cited were successfully dealt with by John Koza who developed 

genetic programming (in its current form) in the late 1980's. Working at Stanford 

University, Koza's system is designed to evolve computer programs genetically using a 

population of tree-shaped chromosomes (Koza, 1992). The origins of G P can be traced 

back to earlier work (Cramer, 1985) who used evolutionary techniques for program 



induction, and another paper (Bickcl & Bickel, 1987) which used genetic methods to if-then 

expert systems which incorporated tree structured rules. Various other people have been 

credited with important earlier papers including the use of genetic operators for program 

induction (Fujiki, 1986), the induction of if-then clauses for game strategies (Fujiki & 

Dickinson, 1989) and the application of genetic algorithms to automatic program generation 

(Hicklin, 1986). 

Many seemingly different problems in artificial intelligence, symbolic processing, and 

machine learning can be viewed as a search for a computer program that produces some 

desired output for particular inputs. A computer program being a collection of instructions 

which when executed perform a specific task. When viewed in this way, the process of 

solving these problems becomes equivalent to searching a space of possible computer 

programs for the fittest individual computer program. The search space is the space of all 

possible computer programs composed of functions and terminals appropriate to the 

problem domain and genetic programming provides an effective way to search for them. 

One problem thai arises when using computers lo solve problems is that existing methods of 

machine learning, artificial intelligence, self-improving systems, self-organising systems, 

neural networks, and induction do not seek solutions in the form of computer programs. 

Instead, existing paradigms involve specialised structures (e.g., weight vectors for neural 

networks, formal grammars, coefficients for polynomials, production rules and chromosome 

strings in the conventional genetic algorithm). Each of these specialised structures can 

facilitate the solution of certain problems, and many of them facilitate mathematical analysis 

that might not otherwise be possible. If computers are to be used to solve problems without 

being explicitly programmed, i.e. not including partial solutions to the problem within the 

problem solving technique, then a very good candidate for the structures required arc 

computer progratns. 
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They offer the flexibility to: -

• Perform operations in a hierarchical way. 

• Perform alternative computations conditioned on the outcome of intermediate 

calculations. 

• Perform iterations and recursions. 

• Perform computations on variables of many different types. 

• Define intermediate values and subprograms so that they can be subsequently reused. 

The size and shape of the structures need not be specified in advance, as is generally the 

case in a genetic algorithm. These attributes of the solution should emerge during the 

problem-solving process as a result of the demands of the problem. The size, shape, and 

structural complexity should be part of the answer produced by the problem solving 

technique not part of the question when used to solve symbolic regression problems. An 

immediate problem is how to find the desired program in the space of possible programs. 

The space of possible computer programs is too vast for a blind random search. Thus there 

is a need to search in some adaptive and intelligent way. 

1.4 Current Research In Evolutionary Computing 

A genetic algorithm operates by repeatedly modifying a population of artificial structures 

through the apphcation of genetic operators. GA's use fitness information exclusively; they 

do not require gradient information or other internal knowledge of the problem. A genetic 

algorithm's data structure consists of one or more chromosomes, which may be represented 

as a string of bits, so the term string is often used. Other possible representations include 

real number encoding (Goldberg, 1991 (a)), structured GA's (Dasgupta, 1991, 1992), and 

high level computer programs with variable-length strings (Koza, 1992). 
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Theoretical research in GA*s covers the modelling and analysis of OA's using Markov 

chains and other statistical methods; the search for optimal control-parameter setting; the 

design of problem representations and genetic operators; the construction and solution of 

difficult problems; the design of mechanisms for niching and for the maintenance of 

population diversity; the parallel implementation of GA's; the design of hybrid GA's (Davis, 

1991) that incorporate ideas borrowed from neural networks, simulated annealing, fuzzy 

logic, hill-climbing, and tabu search; and the comparison of algorithms. AppUed research has 

covered problems in classification, combinatorial optimisation, design, function 

optimisation, information retrieval, machine learning, noise-tolerant problem solving, 

scheduling, search, simulation, and structural optimisation. 

Theoretical work in genetic programming covers schema theory (Koza, 1992), (Poli & 

Langdon, 1997; Haynes, 1997). The investigation of the crossover operator (Angeline, 

1997), and the effect of non-coded segments or introns (Andre & Teller, 1996; Banzhaf et. 

al. 1997). Investigation of various mutation methods has been investigated by Chellapilla 

(Chellapilla. 1997) where crossover is not used within the genetic programming paradigm. 

The effect of code growth in genetic programming has also been investigated by various 

people including Soule (Soule et. al. 1996). and Langdon (Langdon, 1997). Work on reuse 

of sub-trees within individuals has been investigated (Koza, 1994) where Automatically 

Defined Functions (ADF's) pursue the general goal of promoting modularity within the 

solution to the problem at hand. 

1.5 Current Research In Evolutionary Systems Identification 

Research concerning systems identification using GA*s includes effects of control 

parameters for on-line performance of genetic algorithms for function optimisation 

(Schaffer et. al. 1989). (Messa, 1992), (Johnson & Husbands, 1991) and (Goldberg & 
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Richardson, !987), the use of structured genetic algorithms (Dasgupta, 1991) and 

structured genetic algorithms for system identification (Iba et. al. 1993), using evolving 

polynomial networks (Kargupta & Smith, 1992) and the use of messy GA's (Goldberg, el, 

al. 1991(b)), and (Goldberg, et. al. 1993). 

Research using genetic programming for systems identification include combined regression 

algorithms with genetic programming (Jiang, 1992 & 1993) and (Jiang & Wright, 1992). 

Hitoshi Iba el. al. have published papers on solving system identification (symbolic 

regression) problems using genetic programming (Iba, et. al. 1996(a)) and has also 

published a paper on random tree generation (Iba, 1996(b)). 

1.6 Research Objectives 

The objectives of the research can be summarised as foUows:-

• To identify the utility of evolutionary computation and in particular genetic 

programming for systems identification. 

• To develop appropriate evolutionary strategies for systems identification. 

• The integration of complementary adaptive search and traditional optimisation 

techniques for systems identification.. 

• The improvement of areas of simple engineering software using the developed 

strategies. 

1.7 Thesis Overview 

This chapter has outlined the engineering design process and in particular the role of 

approximate mathematical models within preliminary design. A review of current research in 
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the field of evolutionary computation suggests that the genetic programming paradigm is 

the best-suited evolutionary computation algorithm for use within this field. Existing 

methods of regression and systems identification are presented in Chapter 2. This chapter 

discusses the possible ways in which an engineer can formulate a mathematical model using 

empirical data. This includes the genetic algorithm, neural networks, and genetic 

programming for simple systems identification problems and discusses advantages and 

disadvantages of these techniques together with the arguments for using the genetic 

programming paradigm. Chapter 3 explains the conventional genetic programming 

paradigm (Koza, 1992) in detail and includes recent work on aspects of genetic 

programming. Chapter 4 presents a comparison of techniques for solutions to various 

problems, which are also used to develop complimentary search techniques, before 

attempting to model simple engineering systems. Chapter 5 addresses the problems 

encountered with using standard genetic programming and introduces improved genetic 

programming methods for systems identification. The new technique is tested on various 

problems and includes various run parameter sets which show how the new genetic 

programming approach can be used depending on the problem being solved. Chapter 6 

applies these new techniques to the simple engineering systems first presented in Chapter 4. 

The final chapter. Chapter 7, provides a detailed discussion on the results presented in the 

previous chapters and the techniques developed within this thesis. The chapter also presents 

the conclusions from the research and possible future research directions. 
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CHAPTER 2 

REGRESSION TECHNIQUES 

The following chapter describes the main regression techniques available to the engineer 

and also introduces evolutionary techniques as a viable alternative to standard regression 

techniques. The advantages and disadvantages of these methods are discussed and a case 

for using the genetic programming paradigm is presented. 

The mathematical modelling of any system requires the collection of relevant data. Once the 

data has been obtained, usually through empirical experimentation, a search for a 

mathematical formula which can best describes the data can commence. This process of 

finding a mathematical relationship from the data is termed regression analysis. 

Regression is defined as the analysis or measure of the association between a Dependant 

Variable and one or more Independent Variables (Borowski & Borwein, 1989). Thus 

regression is concerned with the nature of association between variables. I f a law exists 

connecting the variables, the nature of the association is stated as a mathematical equation. 

The equation can then be used to predict values of one variable for given values of the other 

variables. 

Regression is the traditional approach to empirical modelling. The regression problem is 

formulated in such a way that the regression of a dependent variable >» on an independent 

variable JC is the computation of the most probable value of y for each value of JC based on a 

finite number of possibly noisy measurements of x and the associated values of y. The values 

of the parameters are chosen to make the best fit to the observed data. In the case of linear 

regression, for example, the functional form is:-
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y = ax-\-b. (2.1) 

Here the dependent variable y is assumed to be a linear function of independent variable x. 

The unknown parameters a and b are the linear coefficients. 

Regression models are classified in a number of ways. For example, models are classified 

into linear or non-linear regression models according to the complexity of the functional 

form. Regression models are also classified in terms of the number of independent variables 

i.e. univariate or multivariate. 

2.1 Empirical Modelling Methods 

Empirical models are constructed based on a set of experimental data or observations of a 

process. The problem of developing an empirical model for a process can be viewed as the 

problem of approximating an input-output function mapping from a given set of 

experimental data. 

Historically, relationships were established solely by examining the data - a difficult task if 

the relationship is complex, multi-variable, or if a high level of noise exists, due to 

experimental error, as often occurs in real-world problems. Moreover, the examination is 

easily influenced by the individuals desires and expectations. Statistical methods were 

among the first tools developed to help a researcher fmd the relationships between observed 

facts. Statistical methods are often based on the following assumptions: 

• The data is normally distributed. 

• The equation relating the data is of a specific form, for example, linear, quadratic, or a 

specified polynomial. 

• The variables are independent. 

• There is sufficient data to perform the statistical analysis. 
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If the problem meets the required assumptions, statistical methods represent a valuable tool 

for providing solutions. However real-world problems seldom meet these criteria. 

2.2 Parametric and Non-Parametric Regression 

The third way of classification of regression models concerns parametric or non-parametric 

regression according to the interpretation of the unknown parameters. Parametric 

regression model usually refers to the regression model where the form of the functional 

relationship is known (e.g., linear regression or a specified polynomial regression). The 

functional form contains some (usually small) number of unknown (but well defined) 

parameters whose values can be computed from the best Gtting of the data. Typically, the 

unknown parameters of a parametric model have meaningful interpretation. The simplest 

example is the univariate linear regression model in the form:-

y = BoJC + Bi (2.2) 

This is one kind of parametric regression because the function form of the dependence of y 

on jc is specified, even though the value of the parameters Bo and Bi are not. The linear 

regression model makes several assumptions about the data, including linearity of the 

function of the explanatory variables, independence of the random errors, and equality of 

the variances of the random errors. Parametric regression therefore concerns the 

formulation of an equation containing independent variables and related coefficients. This is 

commonly formulated as an equation in which the independent variables have parametric 

coefGcients and is therefore termed parametric regression. 

On the other hand, non-parametric regression does not need to specify the form of the 

unknown functional relationship. No a priori knowledge about the form of the unknown 

function may be available. The function is still modelled using an equation containing 

unknown parameters but in a way which allows the class of functions which the model can 

represent to be very broad. Typically the equation, in some functional form, has many 
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unknown parameters, and none of the parameters have any physical meaning in relation to 

the problem to be solved. Neural networks can be used as non-parametric regression 

models. 

The most commonly used regression method is the method of least squares where the sum 

of the squares of the differences between the observed and the theoretical values is 

mixiimised. This form of parametric regression can be linear, or by increasing the number of 

parameters, polynomial regression can be used. While this approach has been widely used, 

it suffers from a few drawbacks. Polynomial functions are not very flexible since they have 

all orders of derivatives everywhere, a seventh order polynomial function includes powers 

of X from seven down to zero and so the functional structure is set and cannot be changed. 

Individual observations can also have a huge influence on remote parts of the curve, if that 

particular data point is removed then the resulting polynomial equation is significantly 

changed. There are several ways to repair the drawbacks of polynomial fitting. One is to 

allow possible discontinuities of derivative curves. This leads to the spline approach, 

2.3 Cubic Splines 

One of the most popular methods for accurately drawing smooth curves through a series of 

points is the cubic spline (Lancaster & Salkauskas, 1986, and Cox, 1990). In theory, given a 

series of N points, an equation involving an N-1 degree polynomial can be devised. When 

the polynomial fijnction is drawn as a graph, it passes through each of the points. This 

produces N linear equations which can be solved. The performance of the technique suffers 

with large numbers of test points. Firstly, the Gaussian elimination part of the method slows 

down markedly as it is asked to handle more unknowns also the resulting polynomials can 

be difficult to compute. For example, a polynomial equation that can thread its way through 

100 points will contain a sub-expression x^^. Even for small values of x an attempt to 

calculate this will cause an arithmetic overflow. There are alternatives that allow the degree 
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of the polynomials involved to be minimised by dividing the data into smaller data sets. Low 

order polynomial curves are then used to fit each data set and a function is used to ensure a 

smooth transition between each curve. The resulting interpolation or smoothing function is 

called a piecewise polynomial function. The most widely used of these functions is the cubic 

spline. 

Cubic splines dispense with the one large N - l degree polynomial that goes through all of 

the points, replacing it with a number of simpler cubic polynomials that are individually 

responsible for drawing a line only between adjacent pairs of points. The cubic equations 

require 4 variables each, these variables, ao, oj, ... , as, are defmed within a cubic equation 

thus:-

y = aox^-\-aix^+a2X-\-a3 (2.3) 

If for example 5 data points are to be fitted using cubic splines, 4 cubic equations are 

required to join all points, and a total of 16 unknowns are required to represent the data. 

Each cubic polynomial must pass through two points, its start and end point. This provides 

two equations for each polynomial and 8 equations in all. However 16 equations are 

required to solve for the 16 unknowns, therefore extra conditions are required. Firstly the 

slope at the end of a segment should be the same as the slope of the next line at its start, this 

provides a further three equations, giving 11 equations in total. Further constraint for the 

problem is achieved by attempting to make the join between adjacent segments even 

smoother, i.e. by demanding that the second derivatives are also equal. This provides 

another 3 equations. 14 in total, and the final 2 equations are obtained by staling that the 

first and last points have a second derivative equal to zero. 
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The method is very prone to noise, i.e. inaccuracies in the data will dramatically change ihc 

curve. Any change in the data, possibly by the inclusion of an extra dimension, will require 

all of the cubic splines to be recalculated. No representative mathematical function is 

produced which will describe all of the data in a usable way. The method produces a series 

of cubic equations which when joined together, fit the data given. These *piecewise' 

functions will not produce a single equation, which best represents the data given and so 

cannot be used for systems identification. However it is a popular technique, used mainly in 

the field of computer aided design and computer graphics. 

2.4 Surface Fitting Using Polynomials 

Polynomials also play a major role in surface fitting where additional dimensions 

significantly increase complexity. Problems related to existing curve fitting techniques 

become more acute, and complex mathematical analysis is required to produce good results. 

The method must now have to cope with polynomials in nvo variables. The surface under 

investigation has to be represented as a series of 'patches' of the polynomial functions, 

normally bi-cubic patches (Lancaster & Salkauskas, 1986), and this leads to the formation 

of a large matrix which requires solving at increased computational expense. Again, as with 

sphne fitting, no useful information is derived about the system under investigation due to 

the picccwise polynomial functions, or patches, used and so these surface fitting techniques 

cannot be used for symbolic regression problems. 
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2.5 Symbolic Regression 

Symbolic regression (or function identification) involves fmding a mathematical expression, 

in symbolic form, that provides a good, best, or perfect fit between a given fuiite sampling 

of values of the independent variables and the associated values of the dependent variables 

(Koza, 1992). That is, symbolic regression involves finding a model that fits a given sample 

of data. When the variables are real-valued, symbolic regression involves fmding both the 

functional form and the numeric coefficients for the model. 

This approach is also called nonparametric regression, the aim of which is to relax 

assumptions on the form of a regression function, and to let data search for a suitable 

function that adequately describes the available data. In the case of noisy data from the real 

world, this problem of finding the model from the data is often called empirical discovery. 

These approaches are powerful in exploring fine structural relationships and provide very 

useful diagnostic tools for parametric models. 

2.6 Computer Intelligence 

Computer intelligence involves computational techniques that exhibit an ability to leam 

and/or adapt to new situations. Computational intelligence systems are often designed to 

mimic one or more aspects of biological intelligence. These methods can be used to evolve 

solutions to regression problems and an overview of current methods is presented. 

2.6.1 The Genetic Algorithm 

Genetic algorithms mimic some of the processes observed in natural evolution. Biologists 

have been intrigued with the mechanics of evolution since the evolutionary theory of 

biological change gained acceptance through the work of Darwin in the mid 19th century 

(Darwin, 1859). Evolution takes place on chromosomes - organic devices for encoding the 
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structure of living beings. A living being is created partly through a process of decoding 

chromosomes. The specifics of chromosomal encoding and decoding processes are not fully 

understood, but some general, widely accepted features of the theory are: 

• Evolution is a process that operates on chromosomes rather than on the living beings 

they encode. 

• Natural selection is the link between chromosomes and the performance of their 

decoded structures. Processes of natural selection cause these chromosomes that encode 

successful structures to reproduce more often than those that do not. 

• The process of reproduction is the point at which evolution takes place. Mutations may 

cause the chromosomes of biological children to be different from those of their 

biological parents, and recombination processes may create quite different chromosomes 

in the children by combining material from the chromosomes of two parents. 

• Biological evolution has no memory. Whatever it knows about producing individuals 

that will function well in their environment is contained in the gene pool - the set of 

chromosomes carried by the current individuals - and in the structures of the 

chromosome decoders. 

These features of natural evolution intrigued John Holland in the early 1970's (Holland, 

1975). Holland believed that, appropriately incorporated in a computer algorithm, they 

might yield a technique for solving difficult problems in a similar manner to nature i.e. 

through evolution. He began investigating algorithms that manipulate strings of binary digits 

analogous to chromosomes. Holland's algorithms carried out simulated evolution on 

populations of such chromosomes. Like nature, his algorithms solved the problem of finding 

good chromosomes by manipulating the material in the chromosomes. Like nature, they 

knew nothing about the type of problem they were solving. The only information they were 

given was an evaluation of each chromosome they produced, and their only use of that 
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evaluation was to bias the selection of chromosomes so that those with the best evaluations 

tended to reproduce more often than those with bad evaluations. 

These algorithms, using simple encoding and reproduction mechanisms, solved some 

extremely difficult problems. Like nature, they did so without knowledge of the decoded 

world. They were simple manipulators of simple chromosomes. Yet when the descendants 

of those algorithms are used today, it is found that they can evolve better designs, find 

better schedules, and produce better solutions to a variety of other important problems that 

cannot be solved as well using other techniques. 

Before discussing in detail the simple genetic algorithm certain terminology used by 

researchers who work with genetic algorithms has to be mastered. Because genetic 

algorithms are rooted in both natural genetics and computer science, the terminology used 

in the GA literature is a mix of the natural and the artificial. The strings or individuals of 

artificial genetic systems are analogous to chrotnosomes in biological systems. In natural 

terminology, chromosomes are composed of genes, which may take on some number of 

values called alleles. In its simplest form, the GA consists of five basic steps - initialisation, 

evaluation, selection, crossover and mutation. The iterative sequence of selection, 

crossover, mutation and evaluation is known as a generation. Figure 2.1 shows the structure 

of the simple Genetic Algorithm (Goldberg. 1989), where P, represents the population of 

chromosomes at generation /. The number of chromosomes in the population of the GA 

remains fixed from generation to generation. 
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procedure genetic_algorithm 
begin 

t:=0; 
initialise Pr, 
evaluate Pu 
while (not stopping-condition) do 
begin 

select Pt+i from Pi*, 
t := t+l ; 
crossover Pt\ 
tmitate Pt*, 
evaluate Pt; 

end 
end 

Figure 2.1 - The Structure Of The Simple Genetic Algorithm 

The steps within the GA are explained in greater detail:-

Initialisation - The fu-st step of the GA is to generate the initial population of 

chromosomes. In general, this involves choosing a random allele for each gene of each 

chromosome. This is repeated for successive chromosomes until a population of individuals 

is produced. The size of the population can determine the quality of convergence and is 

problem dependant (Goldberg, et. al. 1992). 

Evaluation - The evaluation phase of the GA determines the relative fitness of the 

chromosomes within the population (Goldberg & Rudnick, 1991 (c)). In general, this is 

equivalent to the object value of the parameter set represented by that chromosome. The 

relative fitness of a chromosome determines its survival and possible propagation in 

subsequent generations. Once calculated, the fitness is stored alongside the chromosomes 

for use by the selection algorithm. 

Selection - The selection algorithm determines which of the chromosomes of the current 

population are represented in the following population. Typically, the selection process will 

ensure that those chromosomes of high fitness prosper at the expense of those 
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chromosomes of low fitness. The most commonly used technique is the Roulette Wheel 

Selection algorithm (Goldberg, 1989) which, for each free space in the new population, 

statistically selects a chromosome from the current population according to its relative 

fitness. This process may be compared with spinning a weighted roulette wheel for each 

member of the new population. The proportion of the wheel assigned to each chromosome 

in the current population is determined by that chromosomes contribution to the total fitness 

of the population. Other techniques include Tournament selection (Goldberg, et. al. 

1991(c)) which generates the new population by choosing, for each free space in the new 

population, the fittest of a randomly selected subset of the current population. In general, 

two competitors are used giving a binary tournament. Linear normalisation 

(Goldberg, 1989) ranks and assigns a fitness value according to the relative position of the 

individual within the population, it sorts them in ascending or descending order. Linear 

fitness scaling and power fitness scaling (Davis, 1991) use sorting and then either scale the 

fitness using a linear or a power law to modify the sorted fitness value. Stochastic remainder 

selection (Davis, 1991) is a variant of the Roulette Wheel Selection algorithm, which 

guarantees that a chromosome will receive at least the integer part of its expected number 

of offspring. 

Crossover - The crossover operator, generally held to be the principal genetic operator of 

the GA (Schaffer & Eshelman, 1991), combines the genetic information of a pair of the 

parent individuals (or chromosomes) to produce a pair of offspring chromosomes. These 

offspring then take the place of the parent chromosomes in the current population. This 

exchange of genetic information is achieved by various methods. Single Point Crossover 

randomly chooses a locus and swaps between the parent chromosomes the 'bits' or allele 

values of each following gene. Two Point Crossover uses two crossover points and all 

genes between the crossover points exchange allele values. Uniform Crossover extends this 

notion further allowing each gene to retain or swap allele values with equal probability. 



Other crossover operators include Average Crossover and Arithmetic Crossover. The 

proportion of ihe population selected for crossover is known as the crossover rate and is 

generally set at about 60% (Goldberg, 1989). The parent chromosomes are usually sclccicd 

in advance so that no individual chromosome takes part in more than one crossover event. 

Other crossover operators have been suggested which include a degree of mutation (Jones 

1995) who demonstrated that a macromulation with the mechanical form of crossover that 

substitutes a randomly constructed parent as one of the recombinants, performs as well as 

and occasionally better than crossover when clearly defined building blocks are not present. 

This macromutation named headless chicken crossover, had the mechanical form of 

crossover, i.e. the transfer of genetic material between two parents, but paired each 

population member with a randomly generated parent rather than a parent chosen from the 

population. Jones shows that on problems where well-defined building blocks do not exist 

the macromutation performs better than the GA with crossover. The effectiveness of this 

operator calls into question the range of problems for which crossover is well suited and 

suggests that macromutations are often sufficient to solve difficult problems. 

Mutation - Unlike crossover, the mutation operator acts upon single chromosomes chosen 

at random from the population. For each selected chromosome a random locus is selected, 

and the allele value of the gene at that locus is altered. This new chromosome replaces its 

parent in the population. The proportion of the total number of genes in the population 

selected for mutation is known as the mutation rate and is generally inversely proportional 

to the population size (Goldberg, 1989). Unlike crossover, it is not usual to pick the target 

genes in advance, and it is therefore possible that the same gene may be subject to more 

than one mutation event. 
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The Stopping Condition - A number of criteria may be used to hall the GA search 

process. For example, 

o The GA executes for a pre-set number of generations. 

o The maximum or average fitness of the population reaches a pre-set target. 

o The population converges (all chromosomes within the population are identical). 

GA*s vary from practitioner to practitioner, and the GA outlined above can be considered 

as a simple genetic algorithm. There are various other techniques that have been used to 

enhance the performance of the GA and these are briefly discussed. 

EUtism 

The best member of a population may fail to produce offspring in the next generation. The 

elitist strategy fixes this potential source of loss by copying the best member of each 

generation into the succeeding generation. A disadvantage of elitism is that it can increase 

the probability of domination of a population by a super individual, however, used 

discriminately it does improve GA performance. 

Steady-State Reproduction 

When a GA reproduces, it replaces a predefined percentage of parent individuals by their 

children. This generational replacement technique has some potential drawbacks. One is that 

even with an elitist strategy, many of the best individuals found may not reproduce at all, 

and their genes may be lost. It is also possible that mutation or crossover may alter the best 

chromosomes genes so that good features are destroyed. Neither of these outcomes is 

desirable. One solution to this problem is to modify the reproduction technique so that only 

one or two individuals are replaced at a time. This is termed steady-state reproduction 

(Syswerda, 1989), 
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Representation Issues 

Bit siring encoding is the most common encoding technique used by genetic algorithm 

researchers. Bit strings have several advantages over other encodings, they arc simple to 

create and manipulate, and they arc theoretically tractable, which leads to schemata theory. 

Schemata theory was first described by Holland (Holland, 1975), schemata arc similarity 

templates for strings. Each schema defines a subset of strings with identical values at 

specified siring locations, and provides a means by which similarities among the individual 

population members can be described and exploited. 

In order to defme schemata, the ^alphabet' of the strings is used to defmc values at specific 

locations, and an additional character, the symbol (#), is used as a *wild card' in locations 

where the value does not matter. Schemata can thus generally be thought of as comprising 

an alphabet of ao+ 1 characters, where ao is the number of characters in the GA 

representation. The GA strings are usually represented in binary, so the schemata comprises 

the characters {0,1, #}. 

As an example, consider the schemata of length 4 thai may appear in, say, the leftmost four 

positions of an individual within a population. One such schema is #000, which has two 

member strings. That is, two strings match the schema, 0000 and 1000. The schema 1##0 

has four matching strings, 1000, 1010, 1100, and 1110. For a string of length / and an 

alphabet of ao, there arc (a© + 1)' total possible schemata. Another useful measure is the 

total possible number of unique schemata in a population. Consider a specific siring of 

length 8, since each siring position can assume the value it has, or the wild card value, the 

siring belongs to 2̂  = 256 schemata. Any binary siring of length / thus belongs to 2' 

schemata. Populations with a high diversity have more schemata. 



Al this point it is useful lo reconsider the basic GA operations of reproduction, crossover 

and mutation. Schemata that arc part of an individual with high fitness will be reproduced 

more often than average, therefore highly fit schemata benefit from reproduction. If 

reproduction were the only operator used, though, no new regions of the search hyperspace 

would ever be explored. Crossover and mutation guide the search into new regions. 

Crossover, however, is a slightly more complicated matter than reproduction. Consider two 

schemata. 1######0 and ###10###. If both are pan of strings of equal fitness, one point or 

two point crossover is more hkely to disrupt the first, since it is likely that a crossover point 

will occur between the two string endpoints. The second is more compact and is relatively 

unlikely to be disrupted by a one or two point crossover operation. 

Mutation is not likely to disrupt either schema, since it typically occurs at a very low rale, 

and since it is considered on a bit by bit basis, it is just as likely to disrupt one as the other. 

While crossover and mutation are potentially disruptive, they facilitate an efficient search. 

Furthermore, compact (short) schemata that are part of highly fit individuals will, with high 

probability, appear in ever-increasing numbers in future generations. The schemata are the 

elements of which future generations are built, Holland (Holland, 1962) named them 

'building blocks.' The schema theorem provides a quantitative estimation of one aspect of 

GA performance. 

The Schema Theorem 

The schema theorem predicts the number of limes a specific schema will appear in the next 

generation of a GA, given the fitness of the population members containing the schema, the 

average fitness of the population, and other parameters. The GA is effectively working with 



a large number of schemata simultaneously, ranging from very short schemata to schemata 

05 long as the individuaJ population member. The schema theorem provides a quantitative 

prediction for all schemata, regardless o f length. The schema theorem (Goldberg, 1989) is:-

n,JS)>n,{S) ^^^^ 
• 5(5) 

- o { S ) p ^ (2.4) 

Where, n is the total number of examples o f a particular schema 5. The subscript t+J and t 

refer to time steps, or generations. The parameter / ( 5 ) is the average fitness o f the 

individual, while favg is the average fitness o f the entire population. The probabilities o f 

crossover and mutation are pc and pm respectively. 

The parameter 6( 5 ) is called the defining length o f the schema, it is the distance between 

the first and last specific string positions. For example, for the schema # O l # l l # , the 

defining length is 4. The total length o f the string is /, while c?( 5 ) is the order o f the 

schema, or the number o f fixed positions (O's and Ts) in the schema. In the preceding 

example, the order o f the schema is 4. The order o f a schema is the number of potential 

*cut' points within the schema that could be affected by crossover. 

Schemata are used to attempt to explain why GAs work, it is based on the idea that GAs 

solve problems by hierarchically composing relatively fit, short schemata to form complete 

solutions (Building Block Hypothesis). This theory is an approximation and it is not 

generally accepted as positive proof o f how a G A works. 

Another representation method is the use o f real number encoding techniques. This replaces 

bit strings with real numbers and consequently requires a revised mutation and crossover 

operator to manipulate them (Davis, 1991). The main advantages o f using real number 



encoding arc thai numerical rcprcscniaiion Ls effective on mathematical problems, 

mathematical operators, and numerical operators may greatly improve the performance of 

the G A on numerical problems. 

Genetic algorithms directly manipulate a coded representation o f the problem. The G A 

operating on fixed-length representations is capable o f solving many problems. For many 

cases, this is not the most natural representation for a solution. The size and shape of the 

solution is not known in advance, so the program should have the potential o f changing its 

size and shape. One approach to this problem Ls to use a Structured Genetic Algorithm 

(StGA) (Dasgupta, 1992) where discrete features o f the problem are encoded in blocks 

which are either turned on or o f f depending on the initial block coding. The active 

parameters are passed to the evaluation model and this provides a variable length 

representation using GAs. 

2.6.2 Neural Networks 

Neural networks (NNs) excel at recognition and classification types of problems, and can be 

applied to the systems identification problem using adaptive algorithms for either parameter 

or functional estimation (Tenorio & Lee, 1990). Neural networks (NNs) are information 

processing systems. In general, neural networks can be thought o f as "black box" devices 

that accept inputs and produce outputs. In the simplest terms, neural networks map input 

vectors onto output vectors. Some of the operations that neural networks perform include: 

• Classification - An input pattern is passed to the network, and the network produces a 

representative class as output. 

• Pattern matching - An input pattern is passed to the network, and the network 

produces the corresponding output pattern. 



• Pattern completion - An incomplete pattern is passed to the network, and the network 

produces an output pattern that has the missing pattern portions filled in. 

• Noise re/noval - A noise-corrupted input pattern is presented to the network, and the 

network removes some (or aU) o f the noise and produces a cleaner version o f the input 

pattern as output. 

• Optimisation - A n input pattern representing the initial values for a specific 

optimisation problem is presented to the network, and the network produces a set o f 

variables that represent an acceptably optimised solution to the problem. 

• Control - A n input pattern is presented that represents the current slate o f a controller 

and the desired response for the controller, and the network output is the proper 

command sequence that w i l l create the desired response. 

• Simulation - A n input pattern is presented that represents the current state vector o f a 

system or time series. The trained network generates structured sequences or patterns 

that simulate behaviour o f the system. 

Neural networks consist o f processing elements and weighted connections. Figure 2.2 

illustrates a typical neural network. 
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OUTPUTS INPUTS 

Figure 2.2 - A Typica l Neural Ne twork 

Each layer in a neural network consists of a collection o f processing elements (PEs). Each 

PE collects the values from alJ of its input connections, performs a predefined mathematical 

operation (such as a dot-produci followed by a threshold), and produces a single output 

value (Pandya & Macy, 1995). The neural network in figure 2.2 has three layers: Fx, which 

consists o f the PEs { x i , X 2 , X 3 } ; Fy, which is calJed a hidden layer and consists of the PEs ( y i , 

y2) and F^., which consists of the PEs {z i ,Z2 ,Z3} ( f rom left to right, respectively). 

PEs arc joined with weighted connections. In figure 2.2 there is a weighted connection from 

every F^ PE to every Fy PE, and there is a weighted connection from every Fy PE to every 

Fz PE. Each weighted connection (often referred to as either a connection or a weight) acts 

as both a label and a value. As an example, in figure 2.2 the connection f rom the F^ PE x\ to 

the Fy PE y2 is the connection weight W21 (the connection from x\ to y2). In most uses of 

NNs connection weights store the information, or knowledge, in a network. The values of 

the connection weights are often determined by a neural network learning procedure. It is 

through the adjustment of the connecting weights that the neural network is able to learn. 

By performing the update operations for each of the PE's when an input pattern is 

presented, the neural network is able to recall information. 



There arc several important features illustrated by the neural network shown in figure 2.2 

that apply to all neural networks (Welsiead, 1994): 

o Each PE acts independently o f all others - each PE's output relies only on its constantly 

available inputs f rom the abutting connections, 

o Each PE relies only on local information - the information that is provided by the 

adjoining connections is all a PE needs to process: it does not need to know the slate o f 

any o f the other PE's to which i t does not have an explicit connection, 

o The large number of connections provides redundancy and facilitates a distributed 

representation. 

The first two features allow neural networks to operate efficiently in parallel. The last 

feature provides neural networks with inherent fault-tolerance and generalisation qualities 

that are very diff icul t to attain with most other computing systems. I n addition to those 

features, by properly arranging the topology of the networks, introducing a nonlinearity in 

the processing elements (Le., adding a nonlinear threshold fiinction), and by using 

appropriate learning rules, neural networks are able to learn arbitrary nonlinear mappings. 

This is a powerful attribute. There are three situations where neural networks are 

advantageous: -

1. Situations where relatively few decisions are required f rom a massive amount o f data 

(e.g. speech and image processing); 

2. Situations where nonlinear mappings must be automatically acquired (e.g. loan 

evaluations and robotic control); and 
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3. Situations where a near-optimal solution to a combinatorial optimisation problem is 

required very quickJy (e.g., job shop scheduling and telecommunication message 

routing). 

Neural networks comprise o f three principal elements needed to specify the network: 

• Topology - how a neural network is organised into layers and how those layers are 

connected. 

• Learning - how a neural network is configured to store information. 

• Recall - how the stored information is retrieved f rom the network. 

Neural networks (Pandya & Macy, 1995) can also be used for curve fitting, surface fitting 

and other regression problems. Design o f a neural network for pattern classification may be 

viewed as a curve-fitting problem in hyperspace, where learning weights amounts to fmding 

a hyper-surface that provides a 'best fit' to a given set o f training data. 

Radial basis networks 

Radial-basis ftinctions (RBF) (Pandya & Macy, 1995, Spect, 1990) provide a technique for 

interpolation in a high-dimensional space. RBF's construct local approximations using 

exponentially decaying localised nonlinearities based on a Gaussian function in two 

dimensions. 



RBF networks have a sialic Gaussian function as the nonlinearity for ihe hidden layer 

processing elements. The Gaussian function responds only to a small region of ihe input 

space where ihe Gaussian is centred. The key lo a successful iraplementaiion of these 

networks is to fmd suitable centres for the Gaussian ftinctions. This can be done with 

supervised learning, but an unsupervised approach usually produces better results. 

The simulation starts with the training o f an unsupervised layer. Its function is to derive the 

Gaussian centres and the widths f rom the input data. These centres are encoded within the 

weights o f the unsupervised layer using competitive learning. During the unsupervised 

learning, the widths o f the Gaussians are computed based on the centres o f their neighbours. 

The output o f this layer is derived f rom the input data weighted by a Gaussian mixture. 

Once the unsupervised layer has completed its training, the supervised segment then sets the 

centres o f Gaussian functions (based on the weights o f the unsupervised layer) and 

determines the width (standard deviation) of each Gaussian. Any supervised topology such 

as a multilayer perceptron, ( M L P ) , may be used for the classification o f the weighted input. 

A typical RBF network topology is shown in figure 2.3. 
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Figure 2.3 - Radial Basis Function Network Topology 

The advantage o f the radial basis function network is that it finds the input to output map 

using local approximators. Usually the supervised segment is simply a linear combination of 

the approximators. Since linear combiners have few weights, these networks train extremely 

fast and require fewer training samples (Eberhart, Simpson & Dobbins, 1996). 

Some of the advantages and disadvantages o f radial basis function networks are listed below 

(Welstead, 1994). 

Advantages include: -

• The ability to create nonlinear decision boundaries 

• Verification and validation are possible 

• Networks output provides graded membership information and novelty detection 

• Does not experience local minima problems of back-propogation 

• The L V Q learning phase is relatively insensitive to the order o f pattern presentation 



Disadvantages include: -

• The training process can be somewhat slow 

• Several parameters require **tuning" 

• It is difficult to perform incremental learning 

• It is difficult to process missing and weighted features 

Radial basis function networks are being used for an increasing number of applications. 

They are computationally easy to train, and performance often equals or exceeds that o f 

other paradigms (Welstead, 1994). 

2.7 Systems Identification Using Genetic Algorithms and Neural Networks 

Genetic algorithms can be used for systems identification but the main drawback is the 

inflexibility of the structure of the answer. To use a G A for curve fi t t ing we could assume 

that the answer is a 5^ order polynomial and code the G A lo represent the coefficients for 

the polynomial. This wi l l produce a solution to the problem, but by stating the structural 

form of the final equation, the answer is limited to the initial function chosen. The use of a 

structured G A docs allow some flexibility o f the structure o f the equations, but to allow 

enough variation of equations in the encoding there would be a large amount of redundant 

information within the answer which would effect the efficiency o f the algorithm. NNs arc 

very good at finding relationships between sets o f data. The major drawback with this 

technique is that there is no known way to represent the results o f a run as a mathematical 

equation. 



2.8 Summary 

A method is required which wi l l not only evolve the variables within the function but also 

the functional form of the equations. Standard mathematical techniques require the user to 

assume the functional form of the solution before any analysis can start and the spline 

approach w i l l not produce a continuous function which describes the data, f t is possible to 

use a structured genetic algorithm to perform symbolic regression but it would involve large 

structures in order to represent the equations, resulting in large amounts o f redundancy 

within the structures undergoing adaptation. As stated earlier, the size and shape of the 

structures should not be specified in advance, they should emerge during the problem-

solving process as a result o f the demands o f the problem. Neural networks provide a 

mathematically proved method for solving any problem, the major drawback being that the 

results o f the network are virtually impossible to view and represent as a mathematical 

function. Genetic programming (GP) can provide interpretable equations and does not 

require any prior knowledge o f the system as in the case o f a G A . The structures that are 

produced can dynamically vary in size and shape and so the GP paradigm wi l l be used for 

the solution to symbolic regression problems. 



CHAPTER 3 

GENETIC PROGRAMMING 

This chapter introduces the Genetic Programming paradigm in detail and includes 

representation issues, genetic operators and theoretical research attempting to explain the 

mechanisms of the method. The recently developed GP paradigm (Koza, 1992 and Koza, 

1994) is a method of program induction, which genetically breeds a population of computer 

programs to solve problems. 

3.1 The Genetic Programming Paradigm 

The GP paradigm deals with the problem of representation in GA*s by increasing the 

complexity o f the structures undergoing adaptation. In particular, the structures in GP are 

general, hierarchical computer programs of dynamically varying size and shape. 

GP commences wi th an initial population o f randomly generated computer programs 

composed o f functions and terminals appropriate to the problem domain. 

3.2 Outline Of The Standard GP Algorithm 

The GP algorithm is similar to the G A algorithm, the only difference being in the 

implementation o f various aspects o f the algorithm such as crossover and mutation, due to 

the structures used to represent the solutions to a given problem. Figure 3.1 shows the 

structure of the Genetic Programming paradigm, where Pt represents the population of 

chromosomes at generation The number o f chromosomes in the population o f the GP 

remains fixed f rom generation to generation. The first step is the initialisation o f the 

population followed by the evaluation where the population is ranked in order of a specified 
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fiincss measure. The next generation is then selected f rom the current generation and 

crossover and mutation operators arc applied to the population. The process then repeats 

until a prespccified stopping criteria has been met. 

procedure genetic_progranuning 
begin 

t:=0; 
initialise Pt\ 
evaluate P,; 
while (not stopping-condition) do 
begin 

select Pi+i f rom P,; 
t : = t + l ; 
crossover P,; 
mutate Pt; 
evaluate P,; 

end 
end 

Figure 3.1 - The C P Algorithm 

3.3 The Structures Undergoing Adaptation 

In every adaptive system or learning system, at least one structure is undergoing adaptation. 

For the conventional genetic algorithm and genetic programming, the structures undergoing 

adaptation are a population of individual points f rom the search space, rather than a single 

point. Genetic methods differ from most other search techniques in that they simultaneously 

involve a parallel search involving many points in the search space. The functions used may 

be standard arithmetic operations, programming operations, mathematical functions, logical 

functions, or do main-specific functions. Depending on the particular problem, the computer 

program may be Boolean, integer, real, complex, vector, symbolic, or multiple valued. The 

creation o f the initial random population is a blind random search of the problem search 

space. 
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The set of possible structures in genetic programming is the set o f all possible compositions 

of functions that can be composed recursively f rom the set of A^̂ ^̂ ^ functions from: 

f'={A^f2^-- ' f . , j (3.1) 

and the set o f A^,^^ terminals from:-

T = {a,,a^....,a^,^J . (3.2) 

Each particular function / . in the function set F takes a specified number z ( / . ) of 

arguments z ( / , ) , 2 ( / 2 ) . - - >z(A^^) That is, function /-has arity The ariiy being the 

number of arguments laken by the function. 

The functions in the function set may include:-

• arithmetic operations ( + , - , * ,cic.), 

• mathematical functions (sin, cos, cxp, log), 

• Boolean operations ( A N D , OR, NOT) , 

• conditionals operators (If-Then-Elsc), 

• functions causing iteration (Do-Unti l ) , 

• functions causing recursion, and 

• any other do main-specific functions that are defined. 

The terminal set T is typically composed of either variable atoms (representing, perhaps, the 

inputs, sensors, detectors, or state variables o f some system) or constant atoms (such as the 

number 3.0 or the Boolean constant N I L ) . 

3.4 Closure Of The Functional Set And Terminal Set 

The closure property requires that each of the functions in the function set is able to accept, 

as its arguments, any value and data type that may possibly be returned by any function in 
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the function set and any value and data type that may possibly be assumed by any terminal 

in the terminal set. That is, each function in the function set should be well defined and 

closed for any combination of arguments that it may encounter. 

3.5 Initial Structures 

The generation o f each individual in the initial population is achieved by randomly 

generating a rooted, point-labelled tree with ordered branches. The process begins by 

selecting one of the functions f rom the set F at random to be the label for the root o f the 

tree. The selection of the label is restricted to the set o f functions because hierarchical 

structures are required, not a degenerate structure consisting of a single terminal. Figure 

3.2(a) shows the beginning o f the creation of a random program tree. The function + (arity 

2) was selected f rom a function set F as the label for the root of the tree. 

3.2(a) 3.2(b) 3.2(c) 

Figure 3.2 - Initial Structure Formation 

Whenever a point of the tree is labelled with a function / f rom F, then z ( f ) Unes, where z ( f ) is 

the number o f arguments taken by the function / , are created to radiate out f rom that point. 

Then, for each such radiating line, an element f rom the combined set C = F u T of functions 

and terminals is randomly selected to be the label for the endpoint o f that radiating line. I f a 

function is chosen to be the label for any such endpoint the generating process continues 

recursively as described above. For example figure 3.2(b) shows the function * 

(multiplication, arity 2) from the combined set C=FKJT of functionals and terminals 
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selected as a label of the internal nonroot point at the end of the first line radiating from the 

function +. Since a function was selected, it wi l l be an internal, non-root point of the tree 

thai wi l l eventually be created. The function * takes two arguments, therefore figure 3.2(b) 

shows two hnes radiating out f rom point 2. I f a terminal is chosen to be the label for any 

point, that point becomes an endpoini o f the tree and the generating process is terminated 

for that point. For example figure 3.2(c) shows a terminal A from the terminal set T selected 

to be the label of the first line radiating f rom the point labelled with the function. This 

process continues recursively f rom left to right until a completely labelled tree has been 

created. *. In figure 3.2(c) the terminals B and C are selected to be the labels of the two 

other radiating Unes. 

This generative process can be implemented in several different ways resulting in initial 

random trees o f different sizes and shapes. T w o of the basic ways are called the ' f u l l ' 

method and the 'grow' method (Koza, 1992). The depth of a tree is defined as the length of 

the longest non-backtracking path f rom the root to an endpoini. The ' f u l l ' method of 

generating the initial random population involves creating trees for which the length of 

every non-backtracking path between an endpoini and the root is equal to the specified 

maximum depth. This is accomplished by restricting the selection o f the label for points at 

depths less than the maximum to the function set F, and then restricting the selection of the 

label for points at the maximum depth to the terminal set T. A tree wi th a maximum depth 

of 2 wi l l have 1 element at layer 1, and 2 elements at layer 2, giving a tree o f length 3. A 

tree of maximum depth 3 wi l l have 7 elements, and a tree of maximum depth n wi l l have (2" 

- 1) elements. 

The 'grow' method of generating the initial random population involves generating trees 

that are variably shaped. The length o f a path between an endpoint and the root is no 
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greater than the specified maximum depth. This is accomplished by making the random 

selection o f the label for points at depths less than the maximum f r o m the combined set 

C = F u r consisting o f the union o f the function set F and the terminal set 7, while 

restricting the random selection o f the label for points at the maximum depth to the terminal 

set T. The 'ramped half-and-half generative method (Koza, 1992) is used on all problems 

within GP. This is a mix o f the ' f u l l ' and *grow* methods creating trees having a wide 

variety o f si/xs and shapes. When generating the initial population a proportion are 

generated using the ' f u l l ' method and the rest by the *grow' method, the proportion o f each 

is usually set at 50% (Koza, 1992). 

3.6 Primary Operations For Modifying Structures 

T w o primary operators are used to modify the structures undergoing adaptation in GP, and 

are discussed in the next sections. The two main opeiators are: 

• Darwinian reproduction 

• Crossover (sexual recombination). 

3.6.1 Reproduction 

The reproduction operators that can be used are the same as those used for GA's , these 

include: 

• Fitness-proportionate reproduction. 

• Rank selection. 

• Tournament selection. 
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3.6-2 Crossover 

The crossover (recombination) operation for GP creates variation in the population by 

producing new offspring that consist of parts taken from each parent (Spears & Anand. 

1991). The crossover operation starts with two parental expressions and produces two 

offspring expressions. The fu-st parent is chosen from the population by the same fitness-

based selection method used for the reproduction operator, as is the second parent. 

cross site 1 cross site 2 

Parent 2 Parent 1 

Parent 1 
Standard ((X*3)+6)/7 
RPN %+6*X31 

Child 1 

Parent 2 
Std.noiaiion Y{y-2X) 
RPN notation ^ K - K + X A : 

Child 2 

QiUd 1 
Standard 5X/7 
RPN %++XX*X31 

Child2 
Standard nY-6) 
RPN * 

Figure 3.3 - The GP Crossover Operator 

The operation begins by independently selecting, using a uniform probability distribution, 

one random point in each parent to be the crossover point for that parent. Note that the two 
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parents typically arc of unequal size. The first offspring expression is produced by deleting 

the crossover fragment of the first parent from the first parent and then inserting the 

crossover fragment of the second parent at the crossover point of the first parent. The 

second offspring is produced in a symmetric manner. For example, consider the two parent 

symbolic-expressions shown in figure 3.3. Parent 1 has a terminal, the real number 6, 

located at the first crossover point and parent 2 has a sub tree located ai its crossover point 

which represents (2X). The two arc exchanged to produce two new individuals, Child 1 and 

Child 2. If terminals arc located al both crossover points, the crossover operator just swaps 

these terminals from tree to tree. The effect of crossover, in this event, is akin to a point 

mutation. Thus, occasional point mutation is an inherent part of the crossover operator. 

Other types of crossover include context preserved crossover (D'haeseleer, 1994) which 

attempts to preserve the context in which subtree appeared in the parent trees. 

Recently, a similar conclusion to that of GA crossover (Jones, 1995) has been reached for 

genetic programming using subtree crossover (Angeline, 1997). Angeline demonstrated that 

two types of headless chicken crossover defined for subtrees performed equivalcntly to 

standard subtree crossover when compared using three different problems. 

3.7 Secondary Operators 

In addition to the two primary genetic operators of reproduction and crossover in GP, there 

are optional secondary operators that can also be used in the optimisation process. The 

most important of these is mutation. 

47 



3.7.1 Mutation 

When using Gas employing a binary representation, mutation is referred lo as 'bit-flipping', 

but in GP a mutation is the manipulation of a structure and has been described as a random 

substitution of a sub-tree with another sub-tree. Branch mutation can be implemented where 

a complete sub-tree is replaced with another (similar to the crossover operator). 

Allernaiivcly node-mutation can be introduced which applies a 'random' change to a single 

node, replacing its original by another value. Branch mutation is essentially a form of 

crossover and as such is not used, node-mutation is used but when implementing node-

mutation it is very important to only mutate terminals with other terminals of the same arity 

(number of branches) and functionals into other functional of the same arity. The two 

cannot be mixed as closure will not be achieved and the structures will not be well defined. 

Other mutation operators have been used within GP (Chellapilla, 1997) which uses 6 tree 

mutation operators with no crossover. Chellapilla's results indicate thai the mutation 

operators produced results comparable to those of Koza, (Koza, 1992) and in many cases 

offered improved cumulative probabilities of success and fewer required evaluations to 

produce an individual of the same quality. 

3.8 Computer Representation Of Structures 

The Symbolic-expressions (S-expressions) representing evolved functions are coded from 

the tree structures into Reverse Polish Notation (RPN). This dispenses with the need for 

brackets and there is a one-to-one relationship between RPN and standard notation 

All work produced by Koza (Koza, 1992, and Koza, 1994) uses the LISP language. The 

language used for all runs presented here is C+-(-, and as a result a method of structure 

representation is required. Each individual S-expression is stored in an array and a 
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maximum limii is set for the length (typically set to 100 elements). The elements within the 

individual were initially represented by a non-signed integer giving 65,536 possible values. 

These are then segmented to represent the sets of terminals and functions. For example the 

integers 1-10 arc allocated to functions, 1 1-20 for terminals and 21-65536 for real numbers. 

This would allow 65515 possible values for representing real number, and although this 

seems adequate, it does present problems. Suppose a GP run is required to optimise a set of 

data. The expected range of the real numbers would have to be predefined, say -10.0 to 

10.0, this would give a range of 20.0 and so the maximum resolution that can be 

represented is ±0.00030527 (given by 20.0/65515). 

For most applications this level of accuracy will be sufficient, but what if the initial range of 

values expected Is incorrect. If the solution requires a real number greater than 10.0, the 

only way to represent this will be by using a sub tree representing the addition of two real 

numbers, perhaps ( 9.4 + 5.7 ), which will add complexity to the system under investigation. 

The problem is overcome by using an array of unsigned characters to represent elements 

within the individual S-expression, and another array of the same size for fioating point 

numbers lo represent the set of real numbers. This gives a maximum of 256 values for 

representing both functionals and terminals. The functionals are allocated values from 1 -

99, and terminals 100-255 (the value 0 is used to represent empty spaces at the end of the 

S-expression). The real numbers have to be within the range allocated for terminals (100-

255) and a value of 100 is used to represent all real numbers. The actual real number value 

is stored in the array of fioating point number. As an example suppose ihe following tree 

structure shown in figure 3.4 is produced. Written in standard notation the equation would 

be:- K ( X -I- 3.7 ), but in RPN the structure is:- * + X 3.7 Y, this has the immediate 

advantage that parenthesis are no longer necessary, and there is a one-lo-one 

correspondence between the standard notation and RPN of algebraic formula . 
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Figure 3.4 - Example of Symbolic-expression Tree 

Figure 3.5 shows an individual together with its coded values. When a value of 100 is 

received from the character array (a real numbered terminal) the location of the real number 

is stored at the same point as the character of value 100 but in the floating number array. 

The maximum length of any given individual is limited and is typically set at 100 elements. 

Y{X + 3J ) standard notation 

* + X 91 Y 
3 1 101 10 0 102 

7.5 -3.1 1.4 3.7 5.9 

RPN coding 
chromosome values 

functionals plus=l, minus=2, multiply =3, divide=4 

terminals real W=100 , x=101, y=102 

Figure 3.5 - Representation of Structures 
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3.9 GP Schemata Theory 

The first attempt to produce a schema theory for GP was made by Ko/a (Koza, 1992), who 

produced an informal argument showing that Holland's schema theorem would apply to GP 

as well. The argument was based on the idea of defining a schema as the subspace of all 

trees which contain, as subtrees, a predefined set of complete subtrees. According to Koza's 

definition, a schema H is represented as a set of symbolic expressions, e.g. / / = ( ( + ! A ) , ( * 

.V }') } represents all the programs including at least one occurrence of (+ 1 x) and one of 

Koza's work was later formalised and refined into a schema theorem for GP (O'Reilly & 

Oppacher, 1995). A schema was defined as an unordered collection (a multiset) of subtrees 

and tree fragments. Tree fragments are trees with at least one leaf that is a 'don't care' 

symbol (*'#") which can be matched by any subtree. For example the schema 

/y = { (+ # A), (* xy), (* xy) ) represents all the programs including at least one occurrence 

of the tree fragment (+ # .v) and at least two occurrences of (* x y). 

This definition of schema allowed the introduction of the concept of order and defining 

length for GP schemata. The first real attempt at producing a viable schema theory of GP 

was produced (Poli & Langdon, 1997) with the theory being based on a new simpler 

definition of the concept of schema for GP which is very close to the original concept of 

schema in GA's. The theory is based around one-point crossover and point mutation, and 

results published show that the conjectures are correct. 

51 



3.10 Summary Of The GP Paradigm 

This chapter outlines the processes involved in the GP paradigm. A wide variety of different 

problems from different fields have been solved (Koza, 1992, 1994) and provides 

considerable evidence for the generality of the genetic programming paradigm. The fact that 

the output of genetic programming is always a computer program in the form of its own 

parse tree means that the result can be immediately executed as a computer program, and 

although the output can be complex, it is generally easy to apply straightforward 

simplification and optimisation. Genetic programming also requires little prior knowledge of 

the problem, unlike other evolutionary computing techniques. Neural networks requires 

numbers of layers, processing units at each layer and connectivity, and genetic algorithms 

require predefined structures and can only provide limited variation o f string sizes. The 

information that is required by genetic programming such as the choice of terminal set and 

the set of primitive functions is also required by every other paradigm for machine learning. 

In conclusion, genetic programming Ls a robust and efficient paradigm for discovering 

computer programs using the expressiveness of symbolic representation. The technique has 

solved various problems including sequence induction, planning, symbolic regression, 

automatic programming, and evolution of emergent behaviour (Koza, 1992, 1994). 
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CHAPTER 4 

COMPARISON OF TECHNIQUES 

The GP paradigm along with other techniques will now be used on various test functions, 

starting with curve fitting, to assess the viability of these methods for symbolic regression 

purposes. 

4.1 Curve Fitting 

The first example uses one independent, and one dependant variable. This is the simplest form 

of symbolic regression, the function to be discovered being of the form: -

y = f ( x ) . (4.1) 

In order to illustrate applications of the various techniques to curve fitting a quartic test 

function is considered: -

y = cvc^ + hx^ + c,v̂  -\-(Lx-\-e (4.2) 

Where: - x e [-5.0^.0], and, a = 0.030, b = 0.050, c = - 0.700, d = 0.100 and e = 8.600. 

- « . 3 -4 .0 -1 .0 -1 .0 H . 3 a C 1.0 2.Z * . » *.0 9 . 0 

Figure 4.1 - Quartic Test Equation 
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The test function is shown in figure 4.1. The test data consists of 1 1 points equally spaced 

between the minimum and maximum x-axis values. Genetic programming will be the first 

method used to solve this problem and the process can be broken down into three steps. 

The first step in using genetic programming is to identify the set of terminals^ and the 

information, which the mathematical expression must process, is the value of the independent 

variable x. The test function also includes real numbers and so the set of real numbers is 

included. Thus, the terminal set is 

T = ( x,9^ }. (4.3) 

Where 91 is the set of real numbers. 

During the initialisation of the population if a real number is chosen as a terminal then a number 

is randomly chosen between a predefined range, in this case real numbers are within the range -

10.0 to 10.0. 

The second major step in preparing to use genetic programming is lo identify the set of 

functions that are used to generate the mathematical expressions that attempt to fit the given 

finite sample of data, i f knowledge that the answer is ax^-^-bx^+cx^+dx+e is used, a function set 

consisting of only addition and multiplication operations would be sufficient for this problem. A 

more general choice might be the functional set consisting of the four ordinary arithmetic 

operators of addition, subtraction, multipbcaiion, and the protected division function % (in this 

context, protected means the function is protected from division by zero). Initial testing of the 

technique using this functional set, i.e. 
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F = { + , - . * , % } (4.4) 

Produced solutions which were no more than a linear fit to the curve, i f a wider variety of 

problems is to be solved, the functional set could also include the sine function SIN, the cosine 

function COS, the exponential function EXP, and the protected logarithm function RLOG 

(Koza, 1992). The functional set for this problem is thus: 

F={ +, *, %, SIN, COS, EXP, RLOG) (4.5) 

Taking two, two, two, two, one, one, one, one arguments respectively. 

The third major step in preparing to use genetic programming is to identify the fitness measure. 

The raw fitness for this problem is the root mean squared (RMS) of the difference (error) 

between the value in the real-valued range space produced by the expression for a given value 

of the independent variable x; and the correct yj in the range space. The closer this sum is to 

zero, the better the computer program. Error-based fitness is the most common measure of 

fitness used in this thesis. The RMS fitness is given by: -

I = u 

f = (4.6) 

where:-

/ = fitness n = number of samples .v,= evolved solution = exact solution 

Note:-As in the GA , this fitness measure is used throughout unless stated otherwise, therefore 

establishing a minimisation problem. 
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A population size of 500 is used with a crossover rate of 0.6, a mutation rate of 0.002 and an 

initial population generated by using the Yamped half-and-half method described in section 

3.5. The maximum number of generations is set at 100 and the maximum chromosome length is 

set to 100 elements. The selection method used is roulette wheel selection and the best 

individual is always preserved (elitism=l). The results of 10 runs of genetic programming are 

shown in table 4.1. 

Run RMS error Individual 
no. length 
1 0.137129 99 
2 0.0852 98 
3 0.06549 88 
4 0.04432 99 
5 0.07655 86 
6 0.01834 98 
7 0.005441 96 
8 0.211774 92 
9 0.490605 97 
10 0.09462 95 
Avg. 0.122947 94.8 

Table 4.1 Results Of GP On Quartic Test Function 

Although GP evolves solutions to this problem which have reasonable fitness, two important 

points are illustrated. The first is that GP has to be run several times before any real analysis of 

the results can be performed. Each run produces a unique result and so any effects of 

parameters have to be tested by repeated experimentation. 

The second point is that the average chromosome length of the 10 runs is 94.8, with the 

maximum allowable being 100 elements. This process is known as 'bloat' and is a result of the 

crossover operator being able to rapidly increase the siyx of a chromosome. During 
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experimentation with the test example, it was found that the structures would increase in 

defining length to the maximum allowed in the run (typically 100 elements) with no 

improvement in fitness. The evolved equation from run I is shown below in reverse polish 

notation and shows the very long equations that are evolved using standard GP. 

Result Run 1 - Generation = 499 RMS fitness = 0.137129 length = 99 

c s - % X (1 .538200) + X c c + X ( - 0 . 6 8 2 0 9 3 ) % + + + x (2 .689023) + 
(1 .538200) * c (7 .165287) + c ( - 6 . 6 8 6 8 1 8 ) * c c x + ( 6 . 6 8 6 9 9 5 ) x e c x e % c 

x - G C X % + + + x (6 .444210) s c x e + + ( - 1 . 4 1 1 2 8 1 ) x + ( - 0 . 6 8 2 0 9 3 ) e c % 
X ( - 1 . 4 1 1 2 8 1 ) c % % * + ( - 6 . 6 3 0 0 3 2 ) + ( - 6 . 9 9 3 9 1 5 ) ( 2 . 6 8 9 0 2 3 ) s c % * + + x 
(2 .166268) + X (2 .689023) c c + x x (2 .166268) (2 .166268) - e c x x 

< .̂w...v.v.... Test curve, Evolved Curve ) 

i i 20.0 

i i 18.0 

i i 
16.0 

i M.O 

j i 12.0 

10.0 

8.0 

6.0 

;_\ 

i i i i i 

•f.O 

2.0 

i i 1 1 
-5.0 •4.0 -3.0 -2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0 

Figure 4.2 - Evolved Quartic Equation 
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If any one of the terminals within an individual is incorrect the associated fitness of the surface 

will be poor, leading to the loss of possibly good genetic material. It seems logical therefore to 

search through the terminal set for each S-expression lo ensure that good functional 

information is not discarded due to poor terminal selection. 

4.2 Cubic Splines 

Due to the nature of cubic splines, the number of test points used can be varied. Figures 4.3 to 

4.7 show the results of cubic spline fits using 3, 6, 10 and 20 points. 

IO.D 

i « . a \ '. \ \ J'. 
M.O : • .-/ • 

i l - D ' • • ! '• 

10.3 '. • 1 . 
t ^ " " ^ ' - " ' . ; ; : y ' / y • 
C O ^ s " • / • 

• 

: : 

r 

J . / • ; • 2-0 ; 

r 1 1 1 1 
- 8 . 0 - i . O - 3 . 0 - l O - I . O 0 . 3 l .C 2.0 X C 4 .3 «.C 

Figure 4.3 - 3 Point Cubic Spline Fit 
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• • 0 • - : ; / 

• • r / • 
4.0 

\ \ 

1 1 1 1 1 

2.0 

- 8 . 0 - * . 0 - 1 0 - 3 . 0 - 1 . 0 0 .3 1.3 I C 

Figure 4.4 - 6 Point Cubic Spline Fit 

13 P O I N T S 9 1 £ • r r o r - 2 . « * 4 < T M « C » » « , S p U n * 1 

Figure 4.5 - 10 Point Cubic Spline Fit 
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30 POIHTS ant a r r a r ^ O M < > i t c v M i l i n * > 

- « . 0 - * . 0 - X O - 3 . 0 - 1 . 0 

Figure 4.6 - 20 Point Cubic Spline Fit 

The points used to fit the splines are taken directly from the equation to be fitted so there are 

no errors using this method. If however we apply the 11 fitness cases used in the GP algorithm 

in section 4.1, we will get a measure of the fitness of the curve fit. The RMS error is shown in 

table 4.2 for various numbers of points used for the cubic spline fit. 

Points R M S error 
3 8.344109 
4 7.763334 
5 4.309230 
6 2.884481 
7 3.165373 
8 2.645747 
9 2.626185 
10 2.646315 
11 0.000000 
12 0.108452 
13 0.071587 
14 0.049620 
15 0.048401 
20 0.086406 
30 0.009566 
40 0.001190 
50 0.000264 

Table 4.2 Results Of Cubic Spline Fit On Quartic Test Function Using 11 Test Points 
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These results are plotted in figure 4.7, note that the vertical axis is the log of the RMS error. 

The graph shows a decrease in RMS error with an increased number of cubic splines used to fit 

the data. 

10 1 
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o t 
Ui 0.1 • 
(A 
S 
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o - J 

0.001 

0.0001 

++ 
"-H-+++ 

10 20 30 40 50 

Points 

Figure 4.7 - Cubic Spline Fitting Errors 

No representative mathematical function is produced which will describe all of the data in a 

usable way and the regression analysis is hmited to 1 dependent and 1 independent variable. 

The final cur\'e comprises of a series of cubic splines joined together and as such does not 

produce a single equation representing the data used. It is a useful technique used mainly in the 

field of computer-aided design and computer graphics. 

4.3 Neural Networks 

Neural networks are now used on two symbolic regression problems the first is the quartic test 

function used for the cubic splines and the second is the two-box problem (Koza, 1994). The 

two-box problem is tested using a modified version of GP in section 5.7.1. 
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4.3.1 Quartic Test function 

The neural neiwork wi l l use 11 lest points, each with one input and one output. A pubhc 

domain shareware package is used for the N N testing (Dannon. 1993). WinNN is a Neural 

Networks (NN) package which can implement feed forward multi-layered NN and uses a 

modified back-propagation for training. 

The stopping condition for the training o f the network is when all o f the 11 test point arc within 

a threshold value of 0.001. The fitness o f the result is the RMS value over the 11 test points. 

The neiwork used to test the curve fitting example consists of 3 layers, an input layer, a hidden 

layer with 20 PEs and an output layer. The neiwork uses a simple backprogation algorithm to 

adjust the weights, and the neuron function used is the sigmoid function. The learning 

parameicrs are eta=0.9 and alpha=0.9. Eta and alpha relates directly to the backpropagation 

learning algorithm; where the new weights are a function of the derivatives and the previous 

weights. Eta is the learning parameter and Alpha is the momentum. The temperature of the 

neuron function is a multiplier o f the activation argument, in the sigmoid used here: 

f(x,T)=l/( l -Hexp(-x*T)) (4.7) 

Changing the temperature sometimes makes the learning process faster, in most cases best 

results are obtained with the default value of 1, as used here. 

The sigmoid function, a(x) is defined as: -
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a(x) = 1 / ( 1 + e") (4.8) 

The RMS Error is 0.0001499 and the network is trained after 64565 iieraiions. 

The result of the run is shown in figure 4.8. 

Cfjts 

! — i 

/ ' TdigcH 

/ Nei-I 

1 1 i 
Pit Index 

Figure 4.8 - Result of a trained neural network on the Quartic test function 

4.3.2 Twobox problem 

The two-box problem concerns the identification of a relationship between six independent 

variables (x\ , ... . X(,), where this relationship relates to the difference y in the volumes of the 

first box whose length, width, and height are xi , JC2 , x^ and the second box whose length, 

width, and height arejC4 , A'S , j:6(Koza, 1992). 

Thus:-
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V = ( .V2 A - 3 ) - ( . V 4 .V5 Xo). (4-9) 

The goal o f this symbolic regression is 1 0 derive the above equation as a "complete fo rm" when 

given a set o f A' observations. The neural network w i l l use 10 test points with six inputs and 

one output. The stopping condition for the training of the network is when all 10 test points are 

within a threshold vaue of 0.001. After testing the best network consisted of 4 layers, an input 

layer, iwo hidden layer with 5 PEs in each, and an output layer. The network uses a simple 

backprogation algorithm to adjust the weights, and the neuron function is the sigmoid function. 

The learning parameters are eta=0.9 and alpha=0.9. 

Outs 

/ Tdigevl 

/ NeM 

Pal Index 

Figure 4.8 - Result of a trained neural network on the Twobox problem 

The RMS Error is 0.000153193 and the network is trained after 3320 iterations. The learning 

parameters are eia=0.3 and alpha=0.3. Again the technique can very rapidly produce a solution 

to the problem. Published results (Koza, 1992) using standard GP with a population size of 

4000 individuals required 1,176,000 evaluations before a correct solution Ls found. Further 
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testing of the twobox problem using D R A M - G P (Watson & Parmee, 1997) is presented in 

section 5.7.1. The neural network outperforms GP by a factor o f over 350 limes, and would be 

a viable method i f a mathematical formula could be produced from the N N but unfortunately 

this is not the case 

4.3,3 The Even 3 Parity Problem 

The Even Parity 3 Problem ( Koza, 1992, 1994) is a Boolean concept learner. The even 3 

parity function / has 3 inputs producing a possible 2^ outputs. The output of the 3 variables 

DO, D 1 , and D2 is shown in table 4.3. 

no. D2 Dl DO Output f 
0 0 0 0 I 
1 0 0 1 0 
2 0 I 0 0 
3 0 1 1 \ 
4 1 0 0 0 
5 1 0 I 1 
6 1 1 0 I 
7 1 I 1 0 

Table 4.3 • Truth Table For Parity 3 Problem 

The output , / , takes the values 1 i f the 3 input variables DO , D l , and D3 have even parity, i.e. 

an even number of them are 1. The truth table for each functional used produces a total of 4 

(2^) outputs. The neural network uses 8 input sets o f three data and one output. The stopping 

condition for the training o f the network is when all 8 outputs are within a threshold vaue of 

0.00001. Through testing the network used consists of 4 layers, an input layer, two hidden 

layer with 5 PEs in each, and an output layer. The network uses a simple backprogation 

algorithm to adjust the weights, and the neuron function is the sigmoid function. The learning 

parameters are eta=0.5 and alpha=0.5. The result of the run is shown in figure 4.10 

65 



Outi 

/ TdigaH 

/ Net-1 

?t\. Indaic 

Figure 4.10 - Result Of A Trained Neural Network O n The Even 3 Parity Problem 

The network successfully solved ihe problem in 17665 iterations, with all outputs within the 

target error o f 0.00001, with the RMS error being 0.000002688. This compares with 80,000 

evaluations using standard GP with a population size of 4000 (Koza, 1992). Further testing for 

this problem is presented in section 5.6.1. 

4.3.4 The 6-Multiplexer Problem 

The input to the Boolean A^-multiplexer function is the Boolean value (0 or 1) of the particular 

data bit that is singled out by the k address bits a-, and 2* data bits J „ where A^=/:+2* The 

experiments presented here have A-2, i.e. the 6-mulliplexer. For example, i f the two address 

bits, ai and A O , are 1 and 0 respectively, the multiplexer singles out data bits d2 (out of the 4) to 

be the output o f the multiplexer because 102=2. For an input o f 100100, the output of the 

multiplexer is 1; for an input of 101011, the output o f the multiplexer is 0. There is a total o f 64 
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sets of data for this problem, and . table 4.4 shows the address bits, data bits and outputs for 

the problem. 

address bits data biVi 
a, df output 
0 0 0 0 0 0 0 
0 1 0 0 0 0 0 
I 0 0 0 0 0 0 
1 1 0 0 0 0 0 
0 0 0 0 0 1 1 
0 1 0 0 0 1 0 
1 0 0 0 0 1 0 
1 I 0 0 0 1 0 
0 0 0 0 1 0 0 
0 1 0 0 1 0 1 
I 0 0 0 1 0 0 
1 1 0 0 1 0 0 
0 0 0 0 1 1 1 
0 1 0 0 1 1 1 
1 0 0 0 1 1 0 
1 1 0 0 1 1 0 
0 0 0 I 0 0 0 
0 1 0 1 0 0 0 
1 0 0 1 0 0 1 
1 1 0 1 0 0 0 
0 0 0 1 0 1 1 
0 1 0 1 0 1 0 
1 0 0 I 0 1 1 
1 I 0 1 0 1 0 
0 0 0 1 1 0 0 
0 1 0 1 I 0 1 
1 0 0 1 1 0 1 
1 1 0 1 1 0 0 
0 0 0 I 1 1 1 
0 1 0 1 1 1 1 
1 0 0 1 1 1 1 
I 1 0 I 1 1 0 

ai fltf dl di df output 
0 0 1 0 0 0 0 
0 1 1 0 0 0 0 
] 0 1 0 0 0 0 
1 1 1 0 0 0 1 
0 0 1 0 0 ] 1 
0 1 1 0 0 1 0 
1 0 1 0 0 1 0 
1 1 1 0 0 1 1 
0 0 1 0 1 0 0 
0 1 1 0 1 0 I 
1 0 1 0 1 0 0 
1 1 1 0 1 0 1 
0 0 1 0 1 1 1 
0 1 1 0 1 1 1 
1 0 1 0 1 1 0 
1 1 1 0 1 1 1 
0 0 1 1 0 0 0 
0 1 1 1 0 0 0 
1 0 I 1 0 0 1 
] 1 1 1 0 0 1 
0 0 1 1 0 1 1 
0 1 1 1 0 1 0 
1 0 1 1 0 1 1 
1 1 1 1 0 1 I 
0 0 1 1 1 0 0 
0 1 1 1 1 0 1 
1 0 1 1 1 0 1 
1 1 1 1 1 0 1 
0 0 1 1 1 1 I 
0 1 I 1 1 1 1 
1 0 1 1 1 1 1 
1 1 1 1 1 1 1 

Table 4.4 - The Complete Data Set For The 6 Multiplexer Problem 

Figure 4.11 shows the results of the run. 
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Figure 4.11 - Result O f A Trained Neural Network O n The 6 Multiplexer Problem 

The net solved all inputs to within a value o f 0.00001 in 12440 iterations with a RMS error of 

0.000001764. The network used had 4 layers (with 6,5,5,1 PE's), and the neuron function used 

is a sigmoid, with the learning parameters set at eia=0.5 and alpha=0.5. Section 5.6.4 presents 

results using DRAM-GP and standard GP solved the problem in 160,000 evaluations using a 

population size of 4000. 
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4.4 Surface Fitting 

To illustrate applications to surface fitting using GP, the fol lowing test function (Lancaster. 

Salkauskas, 1986) shown in figure 4.12 is used to test the effectiveness of the GP 

paradigm. 

2 = 1 , 
r = 2 ( y - x ) . 

i f y-x>05 
i f 0<y- j :<0-* i 

= 0 . 5 | c o ^ 4 ; r [ { x - 3 / 2 ) ' + ( v - l / 2 ) ' f ' | , i f [ ( . v - 3 / 2 ) ' + ( 3 ; - l / 2 ) < 1 / I 6 (4.10) 

otherwise z = 0 

0.80 

0.60 

0.20 

0.00 
a 00 

1.00 

0.00 

Figure 4.12 - Surface fitting test function 

Surface fitting can be considered as having one dependent variable and two independent 

variables i.e.:- Z = f { x , y ) 

(4.11) 

The terminal set and functional set required for GP now has to be formulated. The terminal 

set used for the test function is:-
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r = {.v,>',^^} (4.12) 

and the functional set used is:-

F = {+, -* ,%,s in ,cos} (4.13) 

having associated arity 2,2,2,2,2,2 respectively. 

4.4.1 The Recursive Hill Functional 

Using these func t iona l , hmited success is achieved on the test funciion. Surfaces which 

were a fiat plane were produced which produced errors of around 40% when compared to 

the test surface. 

A user-defined function describing a Gaussian type hill (or trough) wi th five associated 

arguments is thus included in the functional set. The five arguments being the mean values 

in X and y, the deviation in x and y and finally the maximum height of the hill. The new hilJ 

functional is o f the form:-

( a - x ) ' { d - y Y ^ 

V J 

Where a, b, c, d, and e arc the arguments o f the function, and: 

a = a shift in the x-axis o f the hill 

b = the deviation o f the hill along the x-axis 

c = the height of the hill 

d = the shift in the y axis 

and finally, e = the deviation o f the hill along the y-axis. 

Figure 4.13 shows the hill function. 

(4.14) 

70 



STep Function 
a= 3.0 
b- 2.0 
c - 1.0 
d= 5.0 
* - 1.5 
z l - c - - « l AOiti)>"< a-•x>m<a-x>*(l^^m^>•>m^<3'^>»<.a-^^>*•l> 

Q.80 -\ 

0.60 -\ 

0.40 i 

0.20 i 

10.00 

f. CO 10.00 10. 00 

Figure 4.13 - The hill function 

The reason for this additional user-defined function is to be able to compress the 

information required to describe the function, in much the same way that the sine and cosine 

funct ional have been used in the curve fitting examples. 

The functional set used for the test function, therefore is increased to:-

F = {-i-,-,*,%,sin,cos,/i/7/} 

(4.15) 

having associated arity 2,2,2,2,2,2,5 respectively. 

It was expected that the hill functions would fit the surface under investigation by being 

additive 

i.e. z = hill 1 + hill 2 

an example o f such a surface is shown in figure 4.14. 
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Figure 4.14 - The additive hill function 

The GF started to create Recursive Hi l l Functions (RHF's), as shown in figure 4.15. The 

variety o f surfaces that can be produced by these RHF's Ls much greater than initially 

thought, allowing an increase in complexity o f the functions that can be evolved within the 

set length o f the symbolic expression. 

From initial runs using the test function it was found that the structures had an increased 

amount o f terminals due to the inclusion of hill functions. I f any one of the terminals within 

an individual is incorrect the associated fitness of the surface w i l l be poor, leading to the 

loss o f possibly good genetic material. I t seems logical therefore to search through the 

terminal set for each S-expression to ensure that good functional information is not 

discarded. I f a secondary search through possible values o f the terminals is instigated, the 

chances of the fit functional form surviving is increased. This is a very computationally 

expensive technique i f all individuals within the population are searched. The decision of 

how many individuals to be searched depends upon the computational expense associated 
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with the fitness function. Acceptable results have been achieved by searching the best 20 

individuals within a population o f 500 (the top 4%) , wi th a maximum limit o f UK) 

evaluations for each individual. 

The terminal search Ls a simple hill-climbing algorithm, which loops through all terminal 

values and increases and decreases the value of each one in turn. The modified terminal thai 

produces the largest improvement in fitness is then saved and the process is continued. 

Initially the terminals are adjusted by 10% of their original value, but i f no improvement in 

fitness is achieved, the percentage adjustment is lowered by a factor o f 2.0. Conversely, i f 

the fitness improves and the adjustment percentage is less than 10^ then it is doubled. The 

process continues until the adjustment percentage falls below a threshold value o f 0.(KK)l 

with no improvement in fitness, or 100 evaluations are performed. 
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Figure 4.15 - A Recursive Hill Function ( R H F ) 
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The terminal search technique has been used to produce a surface using the test function. 

Table 4.5 shows the results of 2 runs without the terminal search and one run (run 3) wi th 

the terminal search. 

run 1 run 2 run 3 

population size 100 500 500 
chromosome length 100 100 100 

pcross 0.6 0.6 0.6 

pmutate 0.01 0.01 0.01 

terminal search - - 20 

lest points 860 860 860 
max. generations 500 500 500 

defminp lengtli 29 37 50 

fimcss 11.834 8.445 6.885 
evaluations 50,000 250,00 

0 
1,000.000 

Table 4.5 - Results O f Surface Fitting Using G P 

The table shows the effectiveness o f the terminal search for finding fit solutions although 

this is as the cost o f complexity o f the structures (The dcfming length o f the S-expression 

f rom run 3 is 50 elements). The improvement in fitness o f the surface by using the h i l l -

climber is achieved with a four-fold increase in evaluations required. The fmal surface f rom 

run 3 is shown in figure 4.16. 

•.40 

• . Z O 

0. DO 

Figure 4.16 - The Evolved Test Surface Using G P 
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Polynomials also play a role in surface fitting where additional dimensions significantly 

increase complexity. Problems related to existing curve fitting techniques become more 

acute, and complex mathematical analysis is required to produce good results. The surface 

under investigation has to be represented as a series of ^patches' o f the polynomial 

functions, normally bi-cubic patches (Lancaster & Saikauskas, 1986) and computational 

expense increases. Again, as with spline filling, no useful information is derived about the 

system under investigation due to the piecewise solution produced and so these surface 

filling techniques cannot be used for symbolic regression problems. Neural networks 

(Pandya, 1995) can also be used for curve fitting (as shown in section 4.3) and surface 

fitting and other regression problems. Design of a neural network for pattern classification 

may be viewed as a curve-fitting problem in hyperspace, where learning weights amounts to 

finding a hypersurface that provides a 'best fit' to a given set o f training data. The examples 

presented in section 4.3 show that a N N outperforms all other techniques in terms o f 

evaluations required. The major drawback with the method is the 'black-box' aspect, where 

the hidden layers of the NN prevent the user producing a usable equation. The GP paradigm 

shows the greatest potential for systems identification although some potential problems 

have been seen. The most notable is the problem of 'bloat' where the individuals increase in 

size up to a maximum allowed by the program. Another problem encountered is that of a 

suitable search o f terminals for a given tree structure, the hiJJ-climber wi l l increase the 

fitness o f individuals but at the cost o f computational expense. The method docs however 

produce a single mathematical equation, which represents all of the data being tested. Real-

world problems are now examined using the GP paradigm in order to identify any further 

problems with the technique. 
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4.5 Modelling Engineering Systems 

The previous sections were devoted lo fitting either curves or surfaces to sets of data, the 

techniques thus developed wi l l now be used to model *real wor ld ' phenomenon. There are a 

multitude o f engineering data sets, derived experimentally, which are used by the engineer in 

the form o f graphs, look-up tables and the like. The intention here is lo take this data and 

produce accurate models, which wi l l describe the systems under investigation, f rom the data 

given. 

Two examples o f engineering systems are presented, and both are in the field of fiuid 

dynamics. Due to the unpredictable nature o f turbulent fiow, many fluid problems are solved 

using look-up tables and graphs and so this is an ideal area in which to use evolutionary 

computing to attempt to produce an equation which best describes the data given. The first 

example attempts to find a formula for the frict ion factor in turbulent pipe flow. The second 

system involves finding general equations for the velocity vector in laminar two-dimensional 

f low of an incompressible fluid past a sudden expansion. This is the first lime that GP (or 

any evolutionary technique) is to be used to solve these problems. 

4.5,1 Explicit Formula For Friction Factor In Turbulent Pipe Flow 

For compulation of pressure drop in turbulent pipe flow an expression is required for the 

friction factor / as a function o f Reynolds number RE and the relative roughness K/D 

(where K is the equivalent sandroughness o f ihe pipe and D the diameter of the pipe). The 

most accurate and accepted universal formula is Colebrook and White's, where :-

1 \ 25\ K 

This formula is implicit, that is,/appears in two places in the transcendental equation, i.e. 

the equation is solved by iteration, or by finding/from a graph (Moody 's chart), neither of 
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which is convenient. Many formulae have been proposed for giving f directly for the entire 

range of K/D and RE. The best yet produced Ls probably that by S.E.Haaland (Haaland, 

1983). 

K 1 6.9 
^ = - 3 . 6 1 o g , o | — ^ 

3.7 I D . 
(4.17) 

It combines reasonable simplicity with acceptable accuracy (within 1.5% of Colebrook and 

White's formula). The aim here is to use the GP approach to produce a solution to the 

Colebrook White formula, which is more accurate than Haaland's whilst still retaining 

Haaland's explicit nature and simplicity. The data used as the input into the GP run is 

calculated directly from the Colebrook White formula using the Newion-Raphson method. 

Due to the range of values of the friction factor and Reynolds number it was decided to set 

the initial functional in every individual to logio this reduces the problem to finding the sub-

function y in the following equation:-

/ - ^ ^ = « . l o g , o . y (4.18) 

where rt=constanl and y = f{RE,KID). 

From this the functional and terminal sets can be stated. 

F = ( } (4.19) 

and T = { Real .Re ,K/D ] (4.20) 

Fitness calculation 

Due to the logarithmic nature o f the Colebrook White formula disproportionate errors 

would be introduced i f a standard *sum of the squares' fitness measure was used. For this 

reason the fitness of the individuals is calculated as the sum of the percentage errors 

squared. 

2 

I.e. 
0 

( * ^ 
/ = 0 X - X 

z e e . 100 
n X 

K ^ ) 

(4.21) 
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where: / = fitness 

n = number of samples 

.v^= evolved solution 

.v'= Colebrook and White's solution 

Table 4.6 summarises the results from a series of runs. 

run 1 run 2 run 3 Haaland's formula 

population size 1000 500 500 -

chromosome length 50 25 50 -

pcross 0.6 0.6 0.6 -

pmuiaie 0.01 0.01 0.01 -

tsearch . 20 20 -

test poinis 759 759 759 759 
maxgcn 75 1000 1000 -

defining Icngtli 27 9 49 11 

fitness 30323 11139 10348 10067 

Table 4.6 - Results Of Various Runs For Friction Factor Evolution 

Using the measure of fitness mentioned above, and using 759 data poinis, with RE ranging 

from 3,000 lo 100.000,000 and K/D ranging between 0 and 0.05, a fitness of 10,067 is 

recorded for Haaland's formula requiring a defining length of 11 (when written using the 

terminals and funclionals used in the three runs). Table 4.6, column 2. the run 1 parameters 

and results shows the best result from 20 runs, and produced the following expression, in 

reverse polish notation:-

loglO (-4.119) - (K/D) % (0.6420) % (RE) + * (K/D) -% + - (K/D) - (0.4843) (-0.1314) (-4.2435) {K/D) -

(K/D) (/?/i) (-10.8099) 

(4.22) 

With a defining length of 27. This can be simplified to the following:-
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log 10 (-4.119) - * (0.358) {K/D) - % * (0.642) {K/D) {RE) % (10.059) {RI:r, 

(4.23) 

With a defining length of 15. This expression was then used as ihe initial population of a 

second run which included the random terminal search. The best result to date from this 

second run is as foUows:-

loglO (-3.8364) + * (0.2097) (K/D) % (11.1001) {Rl^ 

(4.24) 

with a fitness of 11,139. The resulting formula in standard notation is:-

1 i02091K U.lOOll 
; ^ = - 3 . 8 3 6 4 . o g 4 ^ . ^ | (4.25) 

This result is very close to the results obtained from Haaland's expression but is presented 

in a simpler form with no power functions (a defining length of 9 compared with 11 for 

Haalands formula). The accuracy of the evolved solution is within 1.8257% of Colebrook 

and White's formula. Solutions have been produced which give a better accuracy than the 

results presented in run 2 but they have large defining lengths (run 3 has a belter fitness, 

10348, but a defining length of 49) and thus lose the simplistic nature required of the 

function. 

The method used to arrive at the final solution is not fully automated, and the results need 

to be simplified by hand before being injected into the next run. If this can be automated 

then runs I and 2 could be merged to produce one run which will take the data and finish 

with the fittest and shortest model for the system. This result is encouraging, the computer 

knows nothing about the field of fluid dynamics, but using adaptive search techniques can 
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successfully model a complex fluid dynamics system, using only ihc data of the system at 

work. 

4.5.2 Eddy Correlation's For Laminar Two-Dimensional Sudden 

Expansion Flows 

The problem here is that of finding a general equation for the velocity vectors in laminai" 

two-dimensional flow of an incompressible fluid in a pipe past a sudden expansion (Badckas 

& Knight, 1992). At present the only method that will solve this problem is computational 

fluid dynamics (CFD) (Ninomiya & Onishi, 1991), and the data used to determine the 

fitness is derived by using CFD. No other models exist which will give the velocity at any 

point within the flow regime at a given Reynolds number and this is the first time thai any 

systems identification technique has been used on this problem. Figure 4.17 shows the 

expansion flow model. As the Reynolds number increases the flow develops into an eddy 

behind the expansion which increases in length. 

Reynolds number Rc={ 100,200,300,400,500,600.700,800,900,1000 

y=0.00ni 

y=-0.05m 

y=-0.08m 

parabolic velocity profile 

x=-0.11 m j[=O.Om x=0.45m 

Figure 4.17 - Model for C F D expansion flow 
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Figure 4.18 shows ihe streamlines at various Reynolds numbers produced from the CFD 

runs which clearly show the development of the eddies. 

Re=10 

Re=100 

Re=250 

Re=300 

Re=350 

Re=750 

Figure 4.18 - C F D Expansion Flow Streamline Results 

The CFD results produce a velocity vector and if this is divided into its x and y components 

the velocities can be represented as surfaces as shown in figures 4.19 and 4.20 (for 

Rc=1000). The problem of finding a general formula for the velocity within a sudden 
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expansion can be produced by the fitting of these two surfaces. This decomposes the 

problem into simpler sub-problems (or programs) which can then be evolved. 

0.2000 
0.1600 
0.1200 
0.0800 
0,0400 
Q.OOOO 

0.000 
-0.020 
040 

X-velocity 

y-axis 
0 394 

0 450 
•̂ 0 

Figure 4.19 - The X-Component Of The Velocity 

h 0.O000 

h -0.0050 y-velocity 

•0.01 OD 
0.000 

020 

y-axis 
0,394 -0.080 

0.450 

Figure 4.20 - The Y-Component Of The Velocity 

The geometry of the system is set (inlet diameter and outlet diameter) and ten sets of data 

are produced with varying fluid velocity from Re=l(K) to Rc=l(XK) in increments of 1(X), 

producing 4310 data points. Using all data points to evolve an equation for the system, with 

a total population size of 10,000 produced results that converged onto a flat plane through 

the mean of all the data points. This problem was found to be too hard for standard GP and 
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so initially one data set (431 poinis), with Rc=l(K)0» was used lo find the two equations (or 

surfaces) for Ihe flow of the fluid. This reduces the dimensionality of the problem. 

Previous work in section 4.4 produced a sel of funclionals which were well suited to surface 

fitting, thus ihe terminal and functional scls for ihe problem are: -

r = {A:,>'.Re,9?} , f = {+-,*,%.sin,cos,/»7/} . (4.26) 

The population size was set al 10,000 individuals. The evolved surfaces for Re=1000 are 

shown in figures 4.21 and 4.22. Table 4.7 lists the errors for Re=100, 200, 1000. 

a .12 

Q.000 

a 00 

-0. n o 

Figure 4.21 - Evolved X-Component Velocity 

• . o o o o - * 

- a 054 

0.068 

0. 170 
0.000 a 226 

-ao20 
.040 

- C 0 6 0 
- a o e o 

Figure 4.22 - Evolved Y-Component Velocity 
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The earlier work presented in section 4.5.1 showed that results from runs used to seed 

further runs increases the fitness of solutions, so from the results shown, a second series of 

runs using the results of the first run as a population seed are produced. The seeding of the 

population is achieved by making 50% of the population equal to the result of the first run, 

the remainder is then produced using the *ramped half-and-half method (Koza, 1992). The 

data used in the fitness function this time is increased and includes 5 data sets (2155 points) 

of Re=600,700,800,900,1000. After this run aU the data is used (Re= 100,200,..., 1000) with 

the results of run 2 being used to seed the initial population of run 3 in the same way as ihc 

results from run 1 were used to seed run 2. The results of run 3 are presented and show the 

equations in standard notation. 

Run 3 (Re= 100,200,300,400,500,600,700,800,900,1000) 

X-velocity Fitness=0.486538 defining length (RPN)=25 

0.0002759Re+0.000279 

z2 

(-0.103594-.y)^ (-0.009105 - y) ̂  ^ ^ 
0.18807 1.0833£-3 * 

-Q.0015022Re 

(-0349662 - a ) 2 (-1.078300 - y) ^ 
9 + 9 

-0.373524^ -0.475922^ 

X-velocity=z 1 +z2-i-0.0001540*Re; 

Y-velocity Fitness=O.02005O defining length (RPN)=31 

0.0000083Re 

z2 

(0.1163-:c)^ (-0.0481-y)^ 
4.0577E-3 1.3396£:-3 

-0.0000175Re 

(0.2661-x)2 ^ (-0.0407 - y )^ 

5.6400E-3 1.6565E-3 

Y-velocity=z I +z2-H).0007; 
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The results obtained from run 3 can be used to give the velocity vectors within the model 

region and can be used to show the approximate fluid flow. The evolved x and y velocity 

vectors are shown in figures 4.23 and 4.24 for the range Re=100 to 1000. 

Figure 4.23 - Evolved X-Component Velocities 

Figure 4.24 - Evolved Y-Component Velocities 
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The results obtained from run 3 can be used to give the velocity vectors within the model 

region and can be used to show the approximate fluid flow. A comparison of the errors 

between the CFD data and the evolved functions is presented in table 4.7. 

X-velocity Y-velocity 
Re % error % error 
100 15.053 15.404 
200 12.014 17.778 
300 9.497 14.637 
400 7.081 11.008 
500 5.540 10.431 
600 5.534 10.125 
700 5.573 10.166 
800 4.825 6.293 
900 4.865 6.587 
1000 7.379 8.157 

Table 4.7- Error Comparison Of Evolved Data 

The errors are due to a linear approximation of the positions of the eddy flows of the form 

y=mx-K:, where a higher order equation could be more appropriate. As Re increases the 

eddy's will diverge from the approximate linear model producing the errors in table 4.7. 

Close examination of the evolved flow pattern shows that at the boundaries of the system, 

the pipe wall, the fluid passes through the boundary. This is most apparent in the x-velocity 

at higher Re numbers. Figure 4.21, the x-vclocity surface at Re=1000, shows errors around 

the step where the velocity should be zero. 

To minimise the errors due to the boundary conditions of the flow model, a *shapc function' 

can be used. The evolved x and y velocity functions are multiplied by the shape function 

which then automatically defines the boundaries of the flow system, ensuring that at the 

boundary the x and y velocities are both zero. The shape function used for the expansion 

model is shown in figure 4.25. It can be seen that the function varies in height from 0.0 to 

1.0 with a very steep gradient, giving the effect of masking out any unwanted errors. 
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Adding this function to the evolved function produced no significant change in fitness but it 

does prevent the flow ^moving' through the walls of the bounded system. 

The shape function used to model the boundary conditions is as follows:-

a= 55.0, b= 0.0005, c=0.05, d=-3.0, e=x, 

/ I =c+a/( 1.0+exp(d-e*( 1/b))); 

a=1.0, b=0.0(K)5, c=().0, d=-45.0-zl, e=y+0.025, 

z2=c+a/( 1.0+exp(d-e*( 1/b))) 

thus the shape function z = z2 

a so 
0.6O 

0.20 

0,00 

Figure 4.25 - The Shape Function Used For Fluid Boundary Conditions 

Note that this shape function is a 'level 1 recursive step function'. 

This ftinction Ls based on the logistic curve:- y = ^^^i^^ . This has a horizontal asymptote 

y = k at infmity which Ls approached from below, and has one intermediate inflection point; 

3 
for example, figure 4.26 shows the graph of y = 

( l + exp"-^^») • 
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1 

Figure 4.26 - The Logistic Curve Y = 3 / ( 1 + Exp ( 1 - 2x ) ) 

The logistic curve is frequently used to model growth in biological populations for which 

saturation occurs. The function is modified to the form: -

c + 
l.O + exp*̂  

(4.27) 

Where a,b,c,d and e are the arguments of the step functional, i.e. the new functional called 

'step' has arity 5. The reason for the slight modification is lo allow constants to shift the 

lower horizontal asymptote above or below zero, allowing a greater range of functions. 

Using this new functional it is possible to represent complex surfaces with a minimum of 

elements within the S-expression. Additional functionals such as sine and cosine functional 

can also be added to increase the range of surfaces that can be produced. It should be noted 

that the arguments for the step functional (and the hill functional) arc not restricted to real 
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numbers, they can be composed from the set of all functions and terminals and can thus be 

defined as sub-trees (for example argument 'b' can be expressed as x^ + sin (y)) . 

Figure 4.27 shows various surfaces that can be produced from the step functional. The 

surfaces shown are all 'level 0 recursion' (they are composed of only one step functional, 

with no recursion), and are among the simplest surfaces that can be created using the step 

function. It is interesting to note that one of the examples is very similar to the hill 

functional used in earUer examples. The step functional can be considered as a primitive for 

hill functions, and as shown in figure 4.27, can produce many other surfaces. 

This step functional could be used in addition to the hill functional for surface fitting. In the 

same way that the hill function can be 'recursed', the step function also has this ability to 

recurse and can define very complex surfaces with a minimum amount of variables required 

to describe the surface. Figure 4.25, the shape function used for the sudden expansion flow 

model, is an example of a level 1 recursive step function. 
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Figure 4.27 - Some Possible Surfaces Using The Step Function 

Figure 4.28 shows an example of the complexity of the surface that can be produced with a 

minimum element length. The length of the expression required to represent the surface in 

RPN is 33. 
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Figure 4.28 - A Complex Surface Produced Using The Step Function 

4.5.3 Thermal Paint Jet Turbine Blade Data 

Using the knowledge gained from ihe cubic test function in section 4.1, it is possible lo fit 

empirical data of temperature cross-sections of a Rolls-Royce gas turbine blade. The 

turbine blade is cooled by air through cooling holes. Figure 4.29 shows a turbine blade 

together with a cross section showing the cooling hole geometry. 

Figure 4.29 - Rolls-Royce Pic. Gas Turbine Blade 
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The efficiency of a jet engine can be increased by burning fuel at a higher temperature, but 

the first stage turbine blade has to be able to withstand this temperature. Accurate 

temperature readings of the blade surface are obtained by using a scries of thermal paints 

which are designed to change colour at specific temperatures. By painting different blades 

with different temperature changing paints a temperature plot of the complete blade surface 

can be constructed. 

Initial runs attempted to fit a surface to the data but only succeeded in producing flat 

surfaces which passed through the average temperature of the 270 test points used. The 

dimensionality of the problem was then reduced to that of fitting a curve to a section of the 

turbine blade. 

The terminal set used for the thermal paint test is:-

7' = {x,9^} (4.28) 

and the functional set used is:-

= {+-»*.%,sin,cos} (4.29) 

having associated arity 2,2,2,2,2,2 respectively. 

The population size used was 10,000 with 500 generations. 20 test points were used for 

each blade section and the crossover rate was set to 0.6. The mutation rate was 0.001, the 

top 5 individuals were elite and the selection method used was roulette wheel selection. 

A series of results for blade profiles is shown in figures 4.30 and 4.31. 
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Figure 4.30 - Curve Fitting Using Rolls-Royce Pic. Gas Turbine Data 

The results of one of the blade suction curve fits is shown written in reverse polish notation. 

Suction side 1 
- - + % R ( 4 6 0 ) X * R ( 8 9 8 ) R ( 9 2 6 ) * R ( 9 9 4 ) 
+ % % R ( 5 4 5 ) + % R ( 3 2 4 ) x R ( 5 2 3 ) x R ( 5 2 3 ) 
R ( 6 8 ) R ( 5 5 3 ) s * R { 8 5 2 ) x 

% s * R ( 3 9 1 ) X x c % R ( 5 4 ) 
+ * * R ( 8 4 ) R ( 5 4 ) + R ( 4 1 4 ) s 

Where R(...) represents a real number from a hst of randomly generated numbers. 
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10 15 

Figure 4.31 - Curve Fitting Using Rolls-Royce Pic. Gas Turbine Data 

The resulls of one of the blade pressure curve fits is shown, written in reverse polish 

notation. 

Pressure 1 
—+xs*+R(43)R(81 )x*R(352)*+R( 154)R( 154)s++*R(79) 
xR(79)R(9)**R(925)R(931 )+R( 154)R( 154)*+R( 154)R(82)x 

The GP technique replaces a subjective *hand-fitting' method and gives a measure of the 

accuracy of the fit which can be compared with other section plots of the blade. 
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4.6 Summary 

Genetic programming offers several advantages over other regression techniques, as well as 

certain disadvantages. The main advantage of the technique is that it provides a usable 

continuous equation which can be validated and used within current engineering practice. 

The inputs to GP are usually presented directly in terms of the observed variables of the 

problem domain. Therefore, the representation used by genetic programming is the natural 

representation of the problem domain. The lack of pre-processing is a major distinction 

relative to conventional genetic algorithms operating on strings, neural networks, and other 

machine learning algorithms. 

Although neural networks can solve a wide range of problems, no direct solution is 

presented, and so suffers when attempting to validate the network which provides the 

solution to the problem under investigation. If any insight is to be gained of the system 

under investigation some other method must be used. 

The main disadvantages of the genetic programming technique are that the solutions 

produced are lengthy. The equations *bloat' to produce answers which do not provide 

insight into the system being looked at. The method also has Umitations when solving real 

problems of over 2 dimensions. Additional user functional, such as the hill function, do 

achieve better results but at the cost of simplicity of the results. The population sizes 

required to solve the problems is also very large, and as shown is of the order of 10,000 

individuals. 

The previous sections have shown the effectiveness of the GP paradigm for systems of 

increasing complexity. The progression of the work from curve and surface fitting through 
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to finding solutions to engineering problems has shown that the methods adopted have the 

potential to improve the accuracy of real world problems. However, the inherent problems 

of GP need to be addressed, which is the subject of the following chapter. The fluid 

dynamics problems are then reinvestigated using a revised GP technique to show the 

improvement of the new method. 
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C H A P T E R 5 

AN IMPROVED G E N E T I C PROGRAMMING S T R A T E G Y 

Through the work presented in chapter 4 it i5 apparent that GP suffers from several 

limitations. This chapter introduces an alternative approach to Genetic Programming, which 

is based upon a steady state population utihsing a novel constrained complexity crossover 

operator. This uses node complexity weightings as a basis for dividing the population into 

sub-populations or species of individuals. The population is decomposed into smaUer sub-

populations, which communicate with each other through the action of crossover. The 

effectiveness of this method is demonstrated by successful application to Boolean concept 

formation and to symbolic regression problems and the results show thai improved 

performance is possible with a dramatic reduction in population size and associated 

computer memory requirements. 

5.1 Standard Genetic Programming Limitations 

Two fundamental limitations of traditional GP have been reported (Iba et al, 1996), these 

are :-

1. Random sub-tree crossover disrupts beneficial sub-trees in tree structures. 

2. No evaluation of tree descriptions. Trees can grow exponentially large or so small that 

they degrade search efficiency. 

Traditional GP blindly combines sub-trees, by applying crossover operations. This can often 

disrupt beneficial sub-functions in tree structures. Thus, crossover operations seem 

ineffective as a means of constructing higher-order functions. Recombination operators 
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(such as swapping sub-trees or nodes) often cause radical changes in the semantics of the 

trees. This semantic disruption (Iba, 1996) is due to the 'coniexi-sensitivc' reprcseniation 

of GP trees. As a result, useful sub-trees may not be able to contribute to higher fitness 

values of the whole tree, and the accumulation of useful sub-functions may be disturbed. To 

avoid this, Koza proposes a strategy called Automatic Defining Functions (ADF's) for 

maintenance of useful sub-trees (Koza, 1992, 1993, 1994). 

The fitness definitions used in traditional GP do not include evaluations of the tree 

descriptions. Without the necessary control mechanisms, trees may grow exponentially 

large, increasing the evaluation procedures, or so small that they degrade search efficiency. 

Usually the maximum depth of trees is set in order to control tree sizes, but an appropriate 

depth is not always known beforehand, Kinnear proposed using a size component in the 

fitness definition; i.e. the size of the tree is multiplied by a size factor, and the result is added 

to the raw fitness value (Kinncar, 1993). The use of a minimum description length (MDL) 

based fitness function for evaluating tree structures has been used together with a local hill-

climber (Iba et. al.,1993, Iba ei. al. 1996). This fitness defmiiion involves a trade-off 

between certain structural details of the tree and its fitting (or classification) of errors. In 

order to produce an efficient guided crossover operator to search the symbolic search space 

a symbolic function classification is required which can then be used to minimise semantic 

disruption. 

Other research relating to the manipulation of fixed design hierarchies described by both 

discrete and continuous variables has shown that speciation in terms of the discrete variables 

and the introduction of restricted crossover regimes can contribute significantly to the 

identification of high performance structures (Parmee 1996). Although addressing a 

different problem domain elements of this research have appeared relevant to the semantic 
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disruption problems associated with GP representations and have lead to the introduction of 

similar concepts described here. A Node Complexity (NC) classification has therefore been 

introduced which includes information concerning the complexity and lengths of the 

individuals. The objective is to minimise semantic disruption whilst also controlling tree 

length. This classification called Node Complexity includes information of the lengths of the 

individuals. Semantic disruption is therefore minimised whilst tree length is controlled. 

Using NC separate species of solutions, classified by complexity can be established which 

act as discrete GP sub-populations which communicate with each other via crossover. This 

new approach is called DRAM-GP (i.e. Distributed, Rapid. Attenuated Memory, Genetic 

Programming). 

5.2 Classification Of Sub-Functions 

The classification of sub-functions as a guide to symbolic crossover, attempts to keep 

function disruption to a minimum when using symbolic crossover. The aim is to prevent 

large changes to the individual when undergoing crossover, producing a guided crossover 

operator which will also control the length of individuals. 

Some possible classification methods are:-

• Dimensional analysis. 

• Minimum Descriptive Length (MDL) (Iba ct. al 1996). This can be applied to 

dimensionless parameters and is thus an improved guide lo symbolic crossover. It is a 

trade-off between certain structural details of the tree and its fitting (or classification) of 

errors. 

• Classification depending on computer evaluation time. 
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• Node Complexity weighting (NC) for each node. The NC rating is then a function of the 

nodes below it. The complexity will decrease with tree depth. Crossover is then 

constrained by node complexity weighting by ensuring that the child trees have similar 

NC values. 

5.2.1 Dimensional Analysis 

Dimensional analysis (DA) is a technique for the investigation of problems in all branches of 

engineering and particularly in fluid mechanics (Douglas et. al. 1985). If it is possible to 

identify the factors involved in a physical situation, dimensional analysis can usually 

establish the form of the relationship between them. Any physical situation, whether ii 

involves a single object or a complete system, can be described in terms of a number of 

recognisable properties which the object or system possesses. For example, a moving object 

could be described in terms of its mass, length, area, volume, velocity and acceleration. 

Properties such as density and viscosity of the medium through which it moves would also 

be of importance, since they would affect its motion. These measurable properties used to 

describe the physical state of the body or system are known as its dimensions. 

To complete the description of the physical situation, it is also necessary to know the 

magnitude of each dimension. It is not usually sufficient to know, for example, that a body 

has the dimension of length, the magnitude of this length is also required. For this purpose 

agreed units of measurement are used. A length would be measured in terms of a 

standardised unit of length, such as the metre. 

In analysing any physical situation, it is necessary to decide what factors are involved and 

then to try to determine a quantitative relationship between them. The factors involved can 

often be assessed from observation or experiment. In dimensional analysis, the nature of the 
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factors involved in the situation is required not the numerical values. The notation adopted 

to indicate this is to enclose the name or symbol of the quantity in square brackets, thus 

(length] means the dimension of length and not a particular length with a definite numerical 

value. For conciseness length is abbreviated to L and the dimensions of length is written (L| . 

Similarly [M] is used for the dimension of mass, and | T | for the dimension of time. An 

equation describing a physical situation will only be true if all the terms are of the same kind 

and have the same dimensions. The equation is then said to be dimensionally homogeneous, 

and is valid only in relation to these dimensions. If an equation does not compare like with 

like, it will be physically meaningless, even though it may balance numerically. In general 

any equation of the form 

^/p/;,'"^' +fl2"'=i72"^cf+.. = X (5.1) 

will be physically true if, in addition to being numerically correct, the terms are 

dimensionally the same so that 

flpZ;f'q'''] = [fl,̂ =Z?2"^cf ] = . .= X (5.2) 

where a'^'b"'c^' means the dimensions of a'^'b"'c^'. 

DA can be used to establish if a created function is dimensionally homogeneous. This 

reduces the search space of possible functions that will provide a solution to a given 

problem and thus increasing the probability of finding good solutions. 

As an example suppose a formula for the volume difference between two boxes (Koza, 

1994) is used. 

i.e. 

volume = a*b*c-d*e*f (5.3) 

where a, b & c are the length, width and height of box one, and d,e & fare the length, width 

and height of box two. The functional and terminal sets are:-
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F={ + , - , + , % ), T=( a, b ,c ,d,e , f ). (5.4) 

The inputs a,b,c,d,e & f arc known to have dimension:- Mass (M)=0, Length (L)=l and 

Time (T)=0. The solution required is a volume (M=0, L=3, T=0). Thus expressions can be 

generated which have the correct dimensions (M=0, L=3, T=0) and discard all other 

solutions. The crossover operator can benefit from the use of DA, once a dimensionally 

homogeneous equation has been identified, crossing sub-trees of the same dimensions will 

not affecting the dimension of the complete expression. This technique reduces the search 

space of possible solutions and preliminary tests indicated an improvement in the search 

process. Its use, however is limited, primarily because dimensionless numbers arc frequently 

used in engineering and so there are no controlling parameters for crossover within the 

search for a dimensionless number. This method also produces a high percentage of 

individuals which arc not dimensionally correct which have to be discarded and is thus 

computational inefficient. 

5.2.2 Minimum Descriptive Length 

For evaluating tree structures (symbolic classification) Minimum Descriptive Length (MDL) 

has been successfully used together with a local hill-climber (Iba et. al. 1996). This can be 

applied to dimensionlcss parameters and is thus an improved guide to symbolic crossover. 

The M D L fitness is defined as:-

MDL = ( Tree_Coding_Length ) + ( Exception_Coding_Length ) (5.5) 

where:-

Tree_Coding_Length = 0.5 k log N 

Exception_Coding_Length = 0.5 log S 

Where N is the number of input-output data pairs and S is the mean square error. Crossover 

is controlled by choosing four parents and swapping the two worst M D L sub-trees with the 

two best MDL sub-trees. 
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5.2.3 Computing Time 

Classification depending on computer evaluation time is another method that could be used 

to group functions. Every function produced by genetic programming will have to be tested 

to find the evaluation lime required to evaluate the described function. On a 08486 CPU the 

number of internal clock cycles required for an addition of two integer numbers is 2. The 

number of cycles required to perform a floating point addition is between 4 and 7 cycles. 

The number of cycles depends upon the operator being used, the processor being used and 

the representation of the numbers undergoing the operations. This produces a range of 

possible values to use and is therefore of little use in selecting appropriate complexity values 

for various functions. The only way to do this accurately is to repeal the evaluation many 

times and average the lime taken to complete the prescribed number of calculations. This 

has an immediate computational overhead associated with it and is therefore not considered 

a viable method for the classification of functions. 

5.2.4 Node Complexity 

Node Complexity weighting is a measure of the complexity of a tree and all its nodes. If for 

example a terminal set consisting o f F = { + , - , * , % } i s weighted (e.g. plus=1.2, 

minus=1.2, muhiply=1.5, divide=1.5, powcr=2.0) each NC rating is then a function of the 

nodes below it and the weighting of that node. The complexity of the tree will decrease 

with tree depth. Crossover is then constrained by only crossing sub-trees with similar NC 

values. This then controls the complexity of the child trees and will provide a fitness 

measure for the symbolic search to aid crossover operators, as well as controHing the tree 

lengths. 

5.3 A New Approach to Genetic Programming 
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The node complexity method is chosen as the bases for a new approach to GP. This method 

was first published at the 2nd International Conference On Genetic Programming (Watson 

& Parmee, 1997). The main concepts of DRAM-GP involve a steady state GP with 

constrained complexity crossover (CCC). Crossover is constrained by node complexity 

weighting values. The root node will give a complexity rating of the whole tree, and is thus 

used to speciate the population into smaller sub-populations. These points are discussed in 

detail below:-

5.3.1 Steady State GP 

In the classical GP model of evolution by generation (Koza, 1992) (the generation model), 

each reproductive phase involves the creation of a complete new population of individuals, 

by selecting parents from the old population and applying genetic operations. The new 

population then replaces the old in one atomic step. Steady state GP has been investigated 

(Kinnear, 1993). The process involves evaluating an individual immediately for fitness, and 

then merging it into the population (or in this case a species), in place of the existing lowest 

fitness individual. There are no generations in steady state GP, a generation equivalent has 

passed when the number of new individuals that have been generated is equal to the 

population size. The population size being the total number of individuals (i.e. species 

population size times the number of species). 

5.3.2 Node Complexity (NC) 

NC weighting is a measure of the complexity of a tree and all of its nodes. A large tree 

should be assigned a high complexity value. 
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If for example a functional set and terminal set consisting of 

F = { + , - , * , % } 

and T = { a , b , c , d , e , f } 

(5-6) 

(5.7) 

(as in the two-box problem (Koza, 1992) ), the weighting of these functions is set to: -

all ierminals=1.0, plus=l.l , minus=l.l, multiply=1.2, divide=1.2. 

Each NC value is then a function of the NC values of the nodes below it and the weighting 

of that node. The values chosen are heuristic, and were formulated from the following two 

pieces of information. Firstly, the + and - operators are less complex than the * and % 

operators, and as such, should be assigned smaller values. Secondly, the allocated values 

should be slightly larger than unity to ensure a slow increase in complexity from the 

terminals up to the root node. 

An example of the NC weighting is shown in figure 5.1 

NC(01=2.2* 1.2+3.84* 1.2=7.248 

Nqil=1.0+1.1+1.0*1.1=2.2 

Nq2i=i.o NC[3]=1.0 

NCI41=2.2* 1.2+1.0* 1.2=3.84 

NC[51=1.0*1.1 + 1.0*1.1=2.2 

\6 h 
NC|8]=1.0 

NC|61=1.0 NC[7]=1.0 

Figure 5.1 - Example Of The Node Complexity Of A Tree Structure 
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Each node has a specific weighting factor which is apphed to the NC values below them. 

The NC value is then the sum of these adjusted lower node values. It can be seen that the 

complexity of the tree will decrease with tree depth, for example in figure 5.1 NC|0|=7.248 

(the rooi node) and NC[7]=1.0 (a terminal). 

Crossover is then constrained by only crossing sub-trees with similar NC values (from 

initial runs a value of ±2.0 produced the best results). This then provides a numerical 

complexity measure which controls crossover and minimises building block disruption by 

ensuring some similarity between crossed sub-trees. By only swapping sub-trees of similar 

complexity tree lengths are also indirectly controlled. A very small sub-tree is never 

replaced with a very large sub-tree and although the trees can grow in length they do not 

grow at the same rate as standard GP. 

5.3.3 Constrained Complexity Crossover ( C C C ) 

CCC is initiated by randomly choosing parents PI and P2 from the total population. A cross 

point CP I is randomly chosen from PI , which then defmes the root node of the sub-tree to 

be replaced. The second cross point CP2 from P2 MUST then be within ±2.0 of the NC 

value of CP I . The sub-tree with root node CP2 then replaces the sub-tree with root node 

CPl with each allele having a probability of being mutated, C, which is initially set to 0.5. 

When mutating, functionals can only be mutated to other functionals, and terminals into any 

other terminals. This ensures that the functions created exhibit closure. 

Once crossed, only one child is produced which is then evaluated and placed into the 

population, replacing the worst individual. 

1 
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5.3.4 Species Sub-PopuJations 

Each sub-population has a range of complexity (e.g. species type 1 where NC|01=1.0 to 

10.0, species 2 where NC[0]=10.0 to 20.0, species 3 where NC|0J=20.0 to 30.0 etc.). The 

two run parameters that define the species groupings is the minimum and maximum NC 

values. The species are then divided equally between these two limits and the population 

size of each species remains constant for the run. For specific values refer to the run 

parameters table for each problem tested. Communication between sub-populations is then 

achieved through the action of crossover. As a new child individual is produced it is 

possible that its complexity changes, and so it is placed into the correct species and 

evaluated. 

5.3.5 Injection Mutation (I) 

This mutation occurs after a set number of crossover operations (initially set to 

l=Population Size) and changes only one allele within each individual with a set probability 

of mutation CMUTATE. The top 5 individuals are elite and are never mutated, but are 

allowed to participate in crossover. 

5.4 Performance Calculations 

Before embarking on a series of tests of this process, the amount of processing required to 

produce a solution has to be considered. One way to measure the amount of computational 

resources required by genetic programming (or the conventional genetic algorithm) is to 

determine the number of independant runs needed to yield a success with a certian 

probability (usually 99% after Koz^ 1992,1994). Once the likely number of independent 

runs required is determined, it can then be multiplied by the amount of processing required 

for each run to get the total amount of processing required. 
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The amount of processing required for each run depends primarily on the product of:-

• the number of individuals M in the population 

• the number of generations executed in that run, and 

• the amount of processing required to measure the fitness of an individual over all the 

apphcable fitness cases. 

The process of measuring the amount of processing required is started by experimentally 

obtaining an estimate for the probability y{ M , i) that a particular run with a population of 

size M yields, for the first time, on a specified generation I , an individual satisfying the 

success predicate for the problem. The experimental measurement of Y ( M , i) usually 

requires a substantial number of runs. Once the instantaneous probabihty Y ( M , I ) for each 

generation I is known, the cumulative probability of success P( M, I) for all the generations 

between generation 0 and generation I is calculated. 

The probability of satisfying the success predicate by generation I at least once in R runs is 

then 

l - [ l - P ( M , i ) f (5.8) 

If we want to satisfy the success predicate with a probability of, say 

z=\ - t =99% (5.9) 

then it must be that 

/ .= ! - [ 1 - P ( M , i ) f (5.10) 

The number R(z) of independent runs required to satisfy the success predicted by generation 

1 with a probability of, say 

z = 1 - £ =99% (5.11) 

depends on both z and P( M, I). After taking logarithms, 
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R(z) = l o g ( l - z ) / l o g ( l - P ( M , I)) 

R(z) = loge/ log( l -P( M, I)) 

(5.12) 

(5.13) 

where e= 1-z =0.01 and where the square brackets indicate that R(z) is rounded up to the 

next highest integer. Note that P(M,i) depends on the population size M and the generation 

number i . 

^ isao 

29.0 

Figure 5.2 - Number Of Independent Runs R(Z) Required As A Function Of The 

Cumulative Probability Of Success P(M,I) For Z=99% 

Figure 5.2 shows a graph of the number of independent runs R(z) required to yield a 

success with probability z=99% as a function of the cumulative probability of success 

P(M,i). For example, if the cumulative probability of success P(M,i) is only 0.09, then 48 

independent runs are required to yield a success with a 99% probability. I f P(M,i) is 0.68, 

only four independent runs are required, if P(M,i) is 0.90 only 2 independent runs arc 

required and if P(M,i) is 0.99, only one run is required. 
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5.4.1 The Effect Of The Number Of Generations 

The population size M and the maximum number G of generations lo be run on any one run 

are the primary control parameters for genetic programming (as well as the conventional 

genetic algorithm). For a fixed population size M , the cumulative probability P(M,i) of 

satisfying the success predicate of a problem increases if a particular run is continued for 

additional generations. In principle, any point in the space of possible outcomes can 

eventualJy be reached by any genetic method if mutation is available and the run continues 

for a sufficiently large number of generations. However, there is a point after which the cost 

of extending a given run exceeds the benefit obtained from the increase in the cumulative 

probability of success P(M,i). 

Figure 5.3 shows, for the 6-multiplexer problem (preseneted in detail in section 5.6.4), a 

graph between generations 0 and 200 of the cumulative probability of success P(M,i) thai al 

least one individual in the population yields a success (i,e, the correct Boolean output for ail 

64 fitness cases). The graph is based on 100 runs of the problem with a population size of 

20x4 (a total of 80 individuals consisting of 4 sub-populations of 20 in each) and CM 1.0, 

IM=80. 

Out of the total of 100 runs 98 were successful in finding the 100% correct solution within 

the 200 generations. 
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Figure 5.3 - Cumulative probability of success P(M,i) for the 6-Multiplexer problem 
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Figure 5.4 - Performance Curves For The 6-Multiplexer Problem 

Figure 5.4 shows ihc evaluations required reach a minimum at generation 72 with a total of 

11,520 individuals needing to be processed to achieve a probabihty of success of 99%. This 

is indicated by the vertical Une at 72 generations. 

This performance measure requires many runs using the same parameters to achieve 

accurate results. All results presented within this thesis are produced from 100 runs on the 

problem. 

5.5 Testing The New Paradigm 

Boolean concept learning (or Boolean induction) is an important part of machine learning, 

and can be regarded as a type of pattern recognition, in which the input (independent) and 

output (dependent) variables are binary. The effectiveness of DRAM-GP is initially 

demonstrated through 4 experiments. 
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5.6.1 The Even Parity 3 Problem 

To lest the effectiveness of the new genetic programming strategy as a Boolean concept 

learner, a simple experiment called "parity 3" ( Koza, 1992, 1994) wilJ be tested. The even 3 

parity function / has 3 inputs producing a possible 2̂  outputs. The output, / , takes the 

values 1 if the 3 input variables DO , D l , and D3 have even parity, i.e. an even number of 

them are 1. 

The Functional Set 

The Functional set used for this problem is:- F = {and, or, nand, nor} with arguments 

{2,2,2,2} respectivly. This function set is computationally complete and is sufficient to solve 

any problem of symbolic regression involving Boolean functions. 

The truth table for each functional used produces a total of 4 (2^) outputs the number of 

true outputs is listed in table 5.1, and these results are used to decide on the node 

complexity of each functional. 

function no. of Node 
true outputs Complexity 

AND 1 1.3 
OR 2 1.2 
NAND 3 I . l 
NOR 2 1.2 

Table 5.1 - True Outputs And Node Complexity Values For All Functionals 

The Node Complexity weightings for the funciionals were chosen based upon the number of 

output values that are TRUE for each functional. The less the number of TRUE outputs the 

more complex the function. The NAND function will produce 3 TRUE outputs of the 

possible 4 and has node complexity of 1.1, the OR and NOR functions each have 2 true 

outputs and arc assigned a value of 1.2, whilst the AND functional has a NC value of 1.3 
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due to only having 1 of a possible 4 true values. The terminal set consists of the inputs DO, 

Dl and D3 which are all assigned node complexity values of 1.0. 

The maximum and minimum root node complexities of each individual now need to be 

considered. The selection of the first label is restricted to the set of functions because a 

hierarchical structure is required, not a degenerate structure consisting of a single terminal. 

With this in mind the simplest individual created will have NC|0] = 2.2. This is illustrated in 

figure 5.5. The individual has a chromosome length of 3, consisting of the functional NAND 

and two terminals. Since all terminals have the same node complexity it is not necessary to 

specify which terminal is used for the purpose of calculating possible complexity ranges. 

NAND function (NC=1.1) 
NC[OI=( 1.0* 1. ])+(1.0* 1.1 )=2.2 

NAND ] 

m CT 
Terminal 
NC[11=1.0 

Terminal 
NC|2]=1.0 

5.5 (a) 5.5(b) 

Figure 5.5 - The Simplest Individual That Can Be Created Of Length 3 

The individual is shown in figure 5.5(a) and consists of 1 internal node (a function F) and 

two external nodes (terminals T). Table 5.2 shows the NC |0] values for all of the possible 

individuals of length 3. 

Funcuon (RPN) NCIOj 
AND T T 2.6 
OR T T 2.4 
NAND T T 2.2 
NOR T T 2.4 

Table 5.2 - The Root Node Complexities For All Individuals Of Length 3 
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No individuals of length 4 can be created due to all the functionals having 2 arguments. 

Individuals of length 5 can have two possible structures, where F is a functional and T is a 

terminal, these are shown in figure 5.6. 

F 

RPN = FFI'IT RPN = FTFTT 

Figure 5.6 - The Two Possible Structures For An Individual Of Length 5 

The number of internal nodes is now 2 with 3 external nodes. Using the available 

functionals, 32 possible NCfOl values can be created. The two structures will produce the 

same root node complexity if the internal nodes appear in the reverse polish notation in the 

same order. The 16 NC[0] complexities that can be created are hsied in table 5.3. For 

example, if the first row of table 5.3 is examined , a program structure is shown composed 

of:-

AND AND TERMINAL TERMINAL TERMINAL 

This is shown in reverse polish notation and the associated tree structure is shown in figure 

5.7. 
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Function (RPN) NCIOl 
AND AND T T T (1.3x2) X 1.3+1.3=4.68 
AND OR T T T (1.2x2) X 1.3+1.3 = 4.42 
AND NAND T T T ( l . lx2)x 1.3+1.3 = 4.16 
AND NOR T T T (1.2x2) X 1.3+1.3 = 4.42 
OR AND T T T (1.3x2) X 1.2+1.2 = 4.32 
OR OR T T T (1.2x2) X 1.2+1.2 = 4.08 
OR NAND T T T ( l . lx2)x 1.2+1.2 = 3.84 
OR NOR T T T (1.2x2) X 1.2+1.2 = 4.08 
NAND AND T T T (1.3x2) x 1.1 +1.1 =3.96 
NAND OR T T T (1.2x2) X I . l +1.1 =3.74 
NAND NAND T T T ( l . lx2)x I . l +1.1 =3.52 
NAND NOR T T T (1.2x2) X I . l + I . I =3.74 
NOR AND T T T (1.3x2) X 1.2+1.2 = 4.32 
NOR OR T T T (1.2x2) X 1.2+1.2 = 4.08 
NOR NAND T T T ( l . Ix2)x 1.2+1.2 = 3.84 
NOR NOR T T T (1.2x2) X 1.2+1.2 = 4.08 

Table 5.3 - All Possible Root Node Values For Individuals Of Length 5 

AND 

AND TERMINAL 

TERMINAL LTERMINAL 

Figure 5.7 - Initial Structure Shown In Table 5.3 

This produces 9 unique values from the lowest of 3.52 up to the highest of 4.68, with a 

range of 1.16, these are listed in table 5.4 together with their frequencies. 

NCIOI value frequency 
4.68 1 
4.42 2 
4.32 1 
4.16 1 
4.08 4 
3.96 1 
3.84 2 
3.74 2 
3.52 1 

Table 5.4 - All Unique Values Produced And Frequency Of Occurance 
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The run parameters are shown in table 5.5, 

NC Max. 130.0 
NC Min. 0.0 
Elite 5 
CCC ± 2.0 of NC value 
Maximum Chromosome lenpih 100 
Max. generations 200 

Table 5.5 - Run Parameters For The Parity 3 Problem 

Fitness Calculation 

The standardised fitness of an individual is the sum, over the 2̂  fitness cases, of the error 

between the value returned by the individual and the correct value of the particular Boolean 

function. Standardised fitness ranges between 0 and 2^. The fitness calculation used 

(Koza92, 94) involves the following calculation, where the fitness of each individual is the 

number of outputs of the problem, subtracted by the number of correct outputs of the 

individual being examined, i.e. 

Fitness = Test points - hits. 

This will return integer values for the fitness of the individual ranging from 0 to 8. This can 

lead to individuals with the same fitness values but vastly differing complexities. For 

example a solution with a fitness of 4.0 and a root node value of 8.88 should be ranked 

above another individual with the same fitness but a higher complexity. It was for this 

reason that the fitness measure was adjusted to:-

Fitness = (Test Points - Hits ) + 0.001 x NC |0] . 

This then allows individuals of the same fitness but less complexity to be ranked above ones 

with higher complexity values. Due to the upper limit on the complexity of the individuals 

that can be produced, the root node complexity NC |0] will never exceed 1000.0 and so the 

additional fitness function term will never exceed 1.0 thus not affecting the hits criterion but 

allowing the population to be ranked with the least complex first. 
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Initial tests were performed and table 5.6 shows the preUminary results for the parity 3 

problem. The computational effort for each run using DRAM-GP is based on 100 runs. 

Method Population size M 
(popsize X species) 

IM CM Effort E 

Koza,1992(STD) 4,000 (4,000x1) n/a n/a 80.000 
Koza,1994(STD) 16.000 (16.000x1) n/a n/a 96,000 
Koza,1994(ADF) 16,000 (16,000x1) n/a n/a 64,000 
DRAM-GP 10 (10x1) 80 0.5 14,060 
DRAM-GP 30 (30x1) 80 0.5 15.840 
DRAM-GP 50 (50x1) 80 0.5 15.750 
DRAM-GP 50 (10x5) 80 0.5 13,600 
DRAM-GP 100 (10x10) 80 0.5 12,900 
DRAM-GP 100 (20x5) 80 0.5 8,400 
DRAM-GP 150 (10x15) 80 0.5 9,900 
DRAM-GP 200 (10x20) 80 0.5 11.600 
DRAM-GP 200 (20x10) 80 0.5 10,000 
DRAM-GP 300 (20x15) 80 0.5 8,400 
DRAM-GP 400 (20x20) 80 0.5 7.600 

Table 5.6 - Initial Parity 3 Results 

The initial results show an improvement over the conventional GP paradigm, however the 

results do not show which elements of the DRAM-GP algorithm are important for solving 

this problem. Further experiments are now undertaken to determine the effects of the 

injection mutation rate, the crossover mutation rate and the population size. 

The first scries of tests use a single population size of 10 individuals with crossover 

mutation rates of 0.0, 0.5 and 1.0. The injection mutation rate (see section 5.3.5) is initially 

turned off (1=0), and then set to 10, 30 and finally 50. This requires 12 sets of runs to cover 

all combinations of parameters. The results of these runs is shown in tables 5.7 to 5.10. 

Each row within the tables is calculated from 100 independent runs and this is repeated 10 

times for each parameter set to produce an average value for the computational effort. A 

total of 1000 independent runs arc produced for each parameter set, and the results 

averaged. 
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C=0.0 1=0 P=10xl C=0.5 1=0 P=10xl C=1.0 1=0 P=10xl 
% runs Effort E % runs Effort E % runs Effort E 

4% 18360 4% 45900 4% 112480 
4% 22800 2% 50490 2% 119340 
2% 27540 3% 59670 2% 146880 
6% 30400 2% 59670 4% 160650 
7% 34200 3% 123930 3% 264480 
2% 34200 3% 129960 \% 422280 
4% 41040 3% 252450 2% 453720 
\% 146880 1% 270810 \% 633420 
3% 161880 0% - \% 665550 
1% 203450 0% - 0% -

3.3% 72,075 2.1% 124,110* 2.0% 330,978* 
Table 5.7 - Even 3 Parity Problem, Population Size 10, 1=0 

average of available result) 

C=0.0 1=10 P=10xl C=0.5 1=10 P=10xl C=1.0 1=10 l»=10xl 
% runs Effort E % runs Effort E % runs Effort E 

5% 28,800 4% 27,540 3% 18,360 
6% 38,760 5% 45,200 3% 43,320 
5% 42,560 3% 47,880 7% 45,900 
5% 44,100 4% 50,160 7% 47,250 
5% 50,400 2% 50,490 2% 50,490 
4% 52,440 3% 82,620 2% 105.570 
6% 71,190 4% 84,360 3% 132,240 
3% 87,210 4% 120,080 2% 133,110 
6% 106,400 3% 136,800 1% 197.370 
4% 136,730 4% 203,400 2% 312.360 

4.9% 65,859 3.6% 84,853 3.2% 108,597 
Table 5.8 - Even 3 Parity Problem, Population Size 10, 1=10 

C=0.0 1=30 l»=10xl C=0.5 1=30 I»=10xl C=1.0 1=30 I*=10xl 
% runs Effort E % runs Effort E % runs Effort E 

5% 11400 3% 32120 3% 22950 
4% 22950 4% 59280 2% 32130 
8% 31360 5% 85120 7% 36480 
3% 41310 2% 169830 5% 50490 
6% 50160 2% 180120 5% 53110 
4% 59280 2% 192780 4% 89680 
5% 59280 2% 197370 4% 95760 
3% 105570 3% 206550 2% 215730 
1% 119340 2% 243270 1% 238680 
2% 145920 1% 247860 2% 419520 

4.1% 64,657 2.6% 161,430 3.5% 125,453 
Table 5.9 - Even 3 Parity Problem, Popularion Size 10, 1=30 
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C=0.0 l=50P=10xl C=0.5 1=50 P=10xl C=1.0 1=50 P=10xl 
% runs Effort E % runs Effort E % runs Effort E 

4% 31.640 3% 18360 3% 13770 
6% 36.000 5% 41310 2% 41310 
6% 41,040 4% 57630 7% 51680 
4% 45,600 1% 68850 4% 66120 
5% 48,640 4% 73440 2% 78030 
3% 79,040 3% 91800 3% 96390 
4% 101,700 2% 109440 2% 100980 
2% 123,930 3% 110160 1% 183600 
3% 171,760 2% 152760 1% 449820 
\% 348,840 1% 330480 0% -

3.8% 102,819 2.8% 105,423 2.5% 120,188* 
Table 5.10 - Even 3 Parity Problem, Population Size 10, 1=50 

Even with a very small population size of only 10 individuals solutions to the problem arc 

found. It must also be remembered that the top 5 individuals within each population are 

elite. The best results for this parameter set are obtained when the crossover mutation rate 

(sec section 5.3.3), C, is set to 0.0 and the injection mutation rate set to 10 (the population 

size) with 65,859 individuals needing to be processed to produce a result with 99% 

certainty. Turning off the injection mutation operator has the effect of shghtly increasing 

the computational effort to 72,075 individuals. An increase in the injection mutation 

operator further reduces performance. The results are used to produce the graph shown in 

figure 5.8. 
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Figure 5.8 - Graph Of Evaluations Required To Solve The Even 3 Parity Problem 

With A Population Size Of 10 With Various Injection Mutation Rates. 

The injection mutation rate will now be set to the population size based on these results. 

The population size is now increased to 20 individuals again all within one species group. 

The results are presented in table 5.11. 

C=0.0I=20 P=20xl C=0.5 1=20 P=20xl C=1.0 1=20 P=20xl 
% runs Effort E % runs Effort E % runs Effort E 

15% 15,000 10% 36,480 4% 68,400 
15% 17,600 11% 45,000 8% 69,920 
18% 24,200 8% 45,600 6% 73,440 
15% 25,200 9% 48,640 8% 74,580 
15% 27,360 9% 54,000 6% 76,000 
14% 33.320 8% 75,580 10% 79,200 
13% 36,480 6% 90.400 6% 95,400 
12% 37,120 8% 97,180 9% 124,200 
12% 40,500 6% 113,000 5% 164,160 
14% 43,200 4% 155,040 3% 275,400 

14.3% 29,998 7.9% 76,092 6.5% 110,070 
Table 5.11 - Even 3 Parity Problem With A Population Size Of 20x1 
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Again it can be seen that the best results are achieved with no crossover mutation and 

requires only 29,998 individuals to be processed. 

The next series of runs increases the population size to 30 individuals, one set of runs using 

only one species group (P=30xl), and another series of runs using 3 species of 10 

individuals. 

0=0.0 1=30 P=30xl C=0.5 1=30 P=30xl C=1.0 1=30 P=30xl 
% runs Effort E % runs Effort E % runs Effort E 

23% 17,640 12% 30,870 14% 34.200 
23% 18,000 16% 32,400 12% 41,310 
28% 19,530 11% 32,640 14% 51,450 
32% 19,950 19% 35,640 13% 55,080 
27% 21,420 12% 38,280 12% 67.800 
24% 21,420 17% 46,200 6% 68,400 
20% 23,100 18% 56.250 10% 88,140 
22% 24,180 9% 60.750 11% 118,650 
22% 24,300 9% 61.020 7% 124.200 
13% 27,120 5% 123.120 7% 165,240 

23.4% 21,666 12.8% 51,717 10.6% 81,447 
Table 5.12 - Even 3 Parity Problem With A Population Size Of 30x1 

C=0.0 1=30 I*=10x3 C=0.5 1=30 P=10x3 C=1.0 1=30 I*=10x3 
% runs Effort E % runs Effort E % runs Effort E 

59% 13,680 45% 9120 39% 27,000 
61% 14,490 35% 13,500 44% 27,360 
53% 15,840 49% 20,520 51% 29,640 
62% 17.160 59% 21,420 51% 29,700 
53% 17,640 54% 23,400 45% 32,130 
55% 18,000 58% 23,700 38% 32,340 
63% 18,870 49% 23,850 42% 33,600 
59% 21.600 46% 29,580 42% 34,800 
53% 24,480 47% 31,860 44% 41,520 
51% 27.720 40% 37,440 40% 49,980 

56.9% 18,948 48.2% 23,439 43.6% 33,807 
Table 5.13 - Even 3 Parity Problem With A Population Size Of 10x3 

Table 5.12 shows the best results for a single population run are achieved with no crossover 

mutation requiring 21,666 individuals to be processed. By splitting the population into sub-

populations or species, shown in table 5.13, the number of individuals required to solve the 

problem is reduced to 18,948, again with no crossover mutation. Further results were 

obtained using larger population sizes, and are presented in tables 5.14 to 5.19. 
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C=0.0 1=40 P=40xl C=0.5 1=40 l'=40xl C=1.0 1=40 P=40xl 
% runs Effort E % runs Effort E % runs Effort E 

40% 23760 25% 33600 7% 36,720 
32% 26040 23% 34720 18% 60.760 
32% 27200 18% 40960 14% 61,200 
29% 28160 17% 47360 18% 66,640 
33% 28800 18% 58080 11% 67,800 
28% 29000 14% 60000 6% 79,040 
29% 30160 18% 64000 8% 100.800 
30% 34680 19% 72480 13% 101,920 
16% 38000 13% 134750 11% 135,000 
16% 84000 13% 148800 13% 180,800 

28.5% 34,980 17.8% 69,475 11.9% 89,068 
Table 5.14 - Even 3 Parity Problem With A Population Size Of 40x1 

C=0.0 1=40 P=20x2 C=0.5 1=40 P=20x2 C=1.0 I=40P=20x2 
78% 9,600 71% 16.120 66% 20,640 
72% 11.880 64% 16,640 48% 21,280 
72% 11,880 67% 19,200 59% 23,520 
72% 12.960 60% 19,360 56% 25,200 
79% 13.400 59% 22.680 52% 25,800 
77% 13.920 59% 22,680 60% 26,800 
74% 14.400 67% 23.400 52% 27,360 
72% 14.880 67% 24.000 48% 30,240 
70% 15,600 71% 24.000 51% 31.200 
71% 17,480 61% 24,360 43% 32,240 

73.7% 13,600 64.6% 21,244 53.5% 26,428 
e 5.15 - Even 3 Parity Problem With A Population Size Of 

0=0.0 1=40 P=10x4 C=0.5 1=40 P=10x4 C=1.0 1=40 P=10x4 
% runs Effort E % runs Effort E % runs Effort E 

74% 15.360 69% 23400 64% 23,520 
79% 16,120 63% 24480 50% 30.720 
74% 16,560 62% 24600 55% 30,800 
72% 16,640 68% 25760 54% 31.920 
72% 18,240 61% 26400 54% 31.920 
66% 20,400 60% 26600 48% 32,640 
74% 20,440 62% 28160 58% 33.280 
75% 20,800 58% 28800 62% 34.320 
66% 22,080 52% 31000 53% 34,320 
66% 25,920 58% 32000 56% 34,560 

71.8% 19,256 61.3% 27120 55.4% 31,800 

20x2 

Table 5.16 - Even 3 Parity Problem With A Population Size Of 10x4 
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C=0.0 1=50 P=50xl C=0.5 1=50 P=50xl C=1.0 1=50 P=50xl 
% runs Effort E % runs Effort E % runs Effort E 

47% 17150 25% 34000 19% 35750 
33% 20250 22% 37200 11% 58500 
42% 20400 27% 37400 17% 61600 
44% 21850 26% 43400 14% 70400 
44% 25650 16% 44000 19% 72000 
42% 26250 21% 48000 15% 73500 
38% 27500 18% 48000 14% 91000 
35% 29400 18% 66000 13% 107350 
37% 29700 17% 77000 15% 120000 
41% 33600 15% 77000 8% 330000 

40.3% 25.175 20.5% 51,200 14.5% 102,010 
Table 5.17 - Even 3 Parity Problem With A Population Size Of 50x1 

C=0.0 1=80 P=20x4 C=0.5 1=80 I>=20x4 C=1.0 1=80 P=20x4 
% runs Effort E % runs Effort E % runs Effort E 

94% 11.200 90% 15.040 86% 16.000 
92% 11,200 88% 16,000 85% 18.720 
95% 12.160 88% 16.240 90% 18,800 
92% 14,080 86% 16,800 83% 20.640 
97% 14,400 90% 17.280 84% 20,800 
94% 14,400 87% 17.280 81% 21,120 
92% 14,560 86% 18.560 82% 21.760 
93% 14,720 87% 19.200 90% 22.320 
95% 15,360 90% 19,520 83% 24.000 
94% 15,680 89% 20.800 77% 24.960 

93.8% 13,776 88.1% 17,672 84.1% 20,912 
Table 5.18 - Even 3 Parity Problem With A Population Size Of 20x4 

C=0.0 1=200 P=50x4 0=0.5 1=200 P=50x4 C=1.0 1=200 P=50x4 
% runs EfTort E % runs Effort E % runs Effort E 

100% 11400 87% 32000 93% 21.600 
100% 12000 77% 32000 99% 22,200 
100% 12000 78% 32200 100% 23.200 
98% 12000 81% 32400 99% 23.400 

100% 12600 85% 32400 95% 24,600 
100% 13200 84% 33600 97% 25,000 
100% 13600 76% 35200 97% 25,200 
99% 13600 84% 36400 99% 26.400 

100% 13800 82% 43200 97% 26.400 
99% 14000 79% 44600 91% 27,000 

99.6% 12,820 81.3% 35,400 96.7% 24,500 
Table 5.19 - Even 3 Parity Problem With A Population Size Of 50x4 

Figure 5.9 shows the results of using only single populations for solving the Even 3 Parity 

problem. 
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Figure 5.9- Single Population Even 3 Parity Results 

Figure 5.9 clearly shows that the crossover mutation rate has a direct bearing on the 

computational expense required to solve the problem. The better results for each population 

si/x are achieved with no crossover mutation. The best overall result is produced using a 

population size of 30, and required 21,666 individuals to be processed. The worst results 

occur with a crossover mutation rate of 1.0. This seems to confirm the idea that fit sub-trees 

are being crossed, improving the fitness of successive individuals by not disrupting the 

swapped sub-trees. If the best results were obtained using a crossover mutation rate of 1.0 

then the disruption to the sub-tree would be too large and the idea of useful sub-trees 

contributing to higher fitness individuals would be invalid. 

Figure 5.10 shows the effect of the crossover mutation rale on the multi-population runs. 
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Figure 5.10- Multi-Population Even 3 Parity Results 

As with the previous results the best results for the multi-populations are achieved with no 

crossover mutation but the number of individuals that need to be processed is reduced, the 

lowest being 12,820 using 4 species each consisting of 50 individuals. The results of the 

20x2 and 20x4 populations are also low, both being below 15,000 evaluations. So with a 

population size 200 times smaller than the results pubUshed in (Koza, 1992) a result is 

produced using 6.24 times less evaluations. 

5,6.2 The Even 4 Parity Problem 

This problem is as parity 3 but using 4 input variables ( Koza, 92, 94). The goal function of 

the even 4 parity function/of 4 variables DO, D l , D2 and D3 is shown in table 5.20. 
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no. D3 D2 Dl DO Ouiput f 
0 0 0 0 0 1 
1 0 0 0 1 0 
2 0 0 1 0 0 
3 0 0 1 I 1 
4 0 1 0 0 0 
5 0 1 0 I 1 
6 0 1 I 0 1 
7 0 1 I I 0 
8 I 0 0 0 0 
9 I 0 0 I 1 
10 I 0 I 0 1 
11 1 0 1 1 0 
12 I 1 0 0 1 
13 I 1 0 I 0 
14 I I I 0 0 
15 1 1 1 I 1 

Table 5.20 - Truth Table For Even 4 Parity Problem 

The run parameters are the same as the parity 3 parameters except the terminal set is 

increased to T={dO,dl,d2,d3}, the maximum chromosome length is 256, test points=16, 

maximum node complxjty=320, and minimum node complexity=200. The crossover 

mutation rale was set to 0.5 for all runs. Table 5.21 shows a comparison of standard GP 

and DRAM-GP. 

Method Population size M 
(popsize X species) 

Effort E 

Koza,1992(STD) 4000 (4000x1) 1.276.000 
KozaJ994(STD) 16000 (16000x1) 384.000 
Koza,I992(ADF) 4000 (4000x1) 88,000 
Ko7^1994(ADF) 16000 (16000x1) 176,000 
DRAM-GP 30 (30x1) 198,450 
DRAM-GP 50 (50x1) 215,600 
DRAM-GP 50 (10x5) 195,300 
DRAM-GP 80 (80x1) 169,520 
DRAM-GP 100 (100x1) 144,000 
DRAM-GP 100 (10x10) 267,900 
DRAM-GP 100 (20x5) 102,600 
DRAM-GP 120 (120x1) 192,000 
DR\M-GP 150 (10x15) 145,800 
DRAM-GP 150 (30x5) 111,600 
DRAM-GP 200 (10x20) 145.200 
DRAM-GP 200 (20x10) 104.400 
DRAM-GP 200 (40x5) 95.400 
DRAM-GP 250 (50x5) 87.000 
DRAM-GP 300 (20x15) 47.700 
DRAM-GP 300 (30x10) 83.400 
DRAM-GP 400 (40x10) 56.400 
DRAM-GP 500 (50x10) 78.500 

Table 5.21 - Even 4 Parity Results 
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Table 5.21 shows lhat using a population size of 3(X), consisting of 10 species of 30 

individuals, a lotaJ of 47,700 individuals need to be processed to provide a solution with a 

99% probability of success. As with the 3 parity results the population size required to solve 

this problem is greatly reduced with an increase in performance. 

5.6.3 The Even 5 Parity Problem 

This problem has 5 input variables (Koza, 92, 94). Run parameters are as parity 3 except 

that the terminal set Ls increased to T={d0,dl,d2,d3,d4), the maximum chromosome length 

is 600, number of lest points=32, maximum node complexity=600, and minimum node 

complexity=430. Table 5.22 shows a comparison of standard G P with D R A M - G P . 

Method Population size M 
(popsize X species) 

Effort E 

Koza, 1992 (STD) 16.000 (16,000x1) 6,528.000 
Koza, 1994 (ADF) 4,000 (4.000x1) 152,000 
Koxa, 1994 (ADF) 16,000 (16,000x1) 464,000 
DRAM-GP 80 (80x1) 2,119.680 
DRAM-GP 250 (25x10) 5,128.250 
DRAM-GP 250 (50x5) 5.137,000 
DRAM-GP 500 (500x1) 2.048,500 
DRAM-GP 500 (100x5) 1,260,000 
DRAM-GP 500 (50x10) 3.870,000 

Table 5.22 - Even 5 Parity Results 

The results presented in table 5.22 show an improvement over standard G P but perform less 

well against automatically defined functions (ADF's) (Koza, 1994). The computational 

effort required to solve the problem is about ten times greater than GP using ADF's but the 

population size is eight limes smaller. ADF's are well suited to the parity class of problems, 

if a sub-function is produced which solves the even 3 parity problem then 25% of the 

fitness cases are correct. The solution for the even 5 parity problem can be described using 

the even 3 parity sub-tree (Koza, 19924) which again confirms the suitability of this 

problem when using ADF's. 
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5.6.4 The 6-Multiplexer Problem 

The input to ihc Boolean A^-muIliplcxer function is the Boolean value (0 or 1) of the 

particular data bit that is singled out by the k address bits C2i and 2^ data bits dj, where 

N=k+2\ The experiments presented here have k=2, i.e. the 6-multiplexer. The DRAM-GP 

parameters are shown in table 5.23. 

Functional set F ={and ,or ,noi , ir } 
Arguments FA = { 2, 2. U 3 } 
NC Functionals NF=|1 .2 , 1.2, 1.1.1.3 } 
Terminal set T={aO,al,dO,dUd2,d3} 
NC Terminals N T = { U , I . 1 , M 1 
Crossover Mutation Rate 0.5 
[mutation (IM) every 80 evaluations 
Test points (TP) 64 
Fiuicss (TP-Hits)+0.001NCI01 
Max. NC 60.0 
Min. NC 5.0 
Elite 5 
CCC ± 2 . 0 of NC value 
Chromosome lengUi 100 
Max. generations 200 

Table 5.23 - Run Parameters For 6-IVlultiplexer Problem 

In order to maintain the high level of mutation using D R A M - G P sub-tree repair is required. 

If a NOT function (arity 1) is mutated into a O R / A N D (arity 2) function, an extra argument 

is required and so a terminal is randomly chosen from the set T to ensure a correct function, 

this process is repeated if a NOT is mutated into an I F function. End sub-trees are deleted 

when mutating from I F to AND/OR, I F to NOT, and AND/OR to NOT. This process 

ensures that the mutation can be unbiased in selecting new functionals, and also ensures that 

all mutated individuals are closed and valid tree structures. After initial runs the best 

performance was achieved using the node complexity values presented in table 5.23. The 

values are similar in magnitude to the values used for the even parity problems presented 

earlier. Any change in node complexity values disrupted the C C C mechanism and so values 
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for the node complexity are set to unity for terminals and slightly larger than unity for 

functionals. 

Table 5.24 shows a comparison of G P with D R A M - G P for the 6-multiplexer. 

Metliod Population size EITori E 
Koza, 94 500 245,000 
Koza, 94 1000 343.000 
Koza, 94 2000 200,000 
Koza, 94 4000 160,000 
Koza, 94 greedy over selection 1000 33.000 
Koza, 94 greedy over selection 2000 18.000 
Koza, 94 greedy over selection 4000 24,000 
Koza, 94 tournament selection 1000 123.000 
DRAM-GP 10 (10x1) 491.130 
DRAM-GP 20 (10x2) 15,600 
DRAM-GP 30 (30x1) 300,960 
DRAM-GP 40 (20x2) 13,320 
DRAM-GP 50 (50x1) 109,950 
DRAM-GP 50 (10x5) 14,250 
DRAM-GP 80 (80x1) 65,520 
DRAM-GP 100 (100x1) 90,000 
DRAM-GP 100 (10x10) 16,500 
DRAM-GP 100 (20x5) 14,100 

Table 5.24 - Initial 6-MulUplexer Results 

As with the parity problems, further runs were produced to determine the effect of the 

various parameters and are presented in tables 5.25 to 5.33. The parameters changed are the 

crossover mutation rate, C , and the population size and number of species. The injection 

mutation rale is usually set to the total population size. AJJ results for computational effort 

(Koza, 1992) are calculated by producing 100 runs and repeating this 10 times, the average 

of the 10 runs is then calculated, producing 1000 runs for each parameter set. 
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C=0.0 1=10 P=10xl C=0.5 1=10 l*=10xl C=1.0 1=10 l»=IOxl 
% runs Effort E % runs Effort E % runs Effort E 

2% 111720 7% 70200 2% 64,260 
5% 104880 2% 173280 5% 85,120 
5% 82620 4% 66880 4% 91,800 
8% 59280 8% 36720 4% 95,760 
5% 105570 4% 170630 4% 103,360 
5% 45900 2% 201960 5% 120,840 
2% 87210 9% 71440 3% 133,110 
8% 70680 3% 284240 1% 137,700 
2% 169830 7% 75240 3% 279,680 
6% 62100 2% 119340 1% 362,610 

4.8% 89,979 4.8% 126,993 3.2% 147,424 
»le 5.25 - 6-Multiplexer Problem With A Population Size O 

C=0.0 1=20 P=10x2 C=0.5 1=20 I*=10x2 C=1.0 1=20 P=10x2 
% runs Effort E % runs Effort E % runs Effort E 

49% 18.960 54% 15,840 56% 15,600 
59% 18.180 5 1 % 13,600 65% 15,860 
50% 20,400 5 1 % 19,580 57% 16,320 
54% 16.380 57% 12,960 59% 17,280 
47% 14,960 53% 15.840 52% 17,400 
56% 16,800 56% 16,800 49% 17.760 
47% 19.400 4 1 % 24,240 48% 18,360 
53% 14.760 52% 14,400 53% 18,720 
47% 19,880 55% 12.400 53% 20.400 
46% 19,500 50% 19.740 4 1 % 25,840 

50.8% 17,922 52.0% 16,540 53.3% 18,354 
Table 5.26 - 6-Multiplexer Problem With A Population Size Of 20 (10x2) 

C=0.0 1=20 P=20xl 0=0.5 1=20 P=20xl C=1.0 1=20 l»=20xl 
% runs Effort E % runs Effort E % runs Effort E 

14% 83,080 26% 48,000 24% 31,960 
22% 61,600 25% 63,580 24% 39,680 
17% 74,500 18% 87,840 15% 46,640 
18% 75,000 16% 82,080 20% 47,040 
22% 50,800 18% 87,500 18% 50,160 
27% 55,500 19% 77,880 16% 53,700 
14% 114,700 17% 93,500 16% 54,560 
16% 106,920 15% 104,400 17% 54,880 
23% 69,160 18% 90,000 16% 56,840 
17% 40,500 2 1 % 78,540 11% 67,100 

19.0% 73,176 19.3% 81,332 17.7% 50,256 
Table 5.27 - d-Multiplexer Problem With A Population Size Of 20 (20x1) 
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C=1.0 1=30 P=30xl C=0.0 1=30 I'=10x3 C=0.5 1=30 P=10x3 C=1.0 1=30 
P=10x3 

% runs Effort E % runs Effort E % runs Effort E % runs Effort E 
46% 24,480 60% 35,280 60% 35,460 70% 18,000 
36% 29,070 54% 34,020 6 1 % 33,660 7 1 % 20.100 
36% 31,050 65% 26,700 62% 29,850 64% 21,360 
33% 34.020 67% 27.600 59% 35,460 67% 21,840 
33% 36,400 56% 32,040 63% 27,750 65% 23,400 
29% 37.200 59% 32,220 59% 34,020 63% 24,030 
32% 38,940 58% 35.100 60% 34,740 63% 24,600 
26% 41,820 58% 33,120 68% 30,000 59% 24,960 
23% 42,750 55% 35.280 66% 30,000 63% 27.720 
25% 62,160 58% 34,200 68% 26,250 52% 28,080 

31.9% 37,789 59.0% 32,556 62.6% 31,719 63.7% 23,409 
Table 5.28 - 6-Multiplexer Problem With A Papulation Size Of 30 

C=1.0 1=40 
P=40xl 

C=1.0 1=40 
P=10x4 

% runs Effort E % runs Effort E 
50% 26.800 83% 15.800 
50% 30.240 83% 16,320 
45% 32,400 84% 16,560 
48% 32.640 78% 16,640 
45% 32,640 80% 17,200 
44% 35,840 78% 18.400 
43% 33,440 82% 18,600 
43% 36.480 75% 18,960 
43% 36,480 83% 19,360 
44% 36,720 79% 21,200 

45.5% 33,368 80.5% 17,904 
Table 5.29 - 6-IVIultiplexer Problem With A Population Size Of 40 

C=1.0 1=50 
P=50xl 

C=1.0 1=50 
P=10xS 

% runs Effort E % runs ElTort E 
65% 22,400 90% 11.700 
66% 25,200 92% 13,000 
62% 25,300 89% 15,600 
61% 26,000 88% 15.600 
55% 28,000 89% 16,250 
59% 30,000 93% 16,950 
61% 31,500 9 1 % 17,500 
52% 34,450 89% 17,600 
48% 35,000 90% 17,600 
51% 43,200 9 1 % 18,500 

58.0% 30,105 90.2% 16,030 
Table 5.30 - 6-Multiplexer Problem With A Population Size Of 50 
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C=1.0 1=80 P=80xl C=0.0 1=80 P=20x4 C=1.0 1=80 I*=20x4 
% runs Effort E % runs Effort E % runs Effort E 

80% 21,600 98% 12,720 99% 10.240 
78% 23,040 98% 13.200 100% 10,880 
75% 24.960 97% 10.240 96% 11.200 
77% 25.760 92% 16.800 98% 11.520 
76% 25.760 97% 14.880 98% 13,200 
70% 25.920 99% 10.080 96% 13,000 
75% 27.360 99% 13.200 99% 13,120 
71% 30,080 97% 13,120 100% 13.600 
70% 30.720 98% 16.320 99% 14,400 
72% 36,480 96% 13,600 95% 16,320 

74.4% 27,168 97.1% 13,416 98.0% 12,748 
Table 5.31 - 6-IVlultiplexer problem with a population size of 80 

C=1.0 1=0 P=20x4 
% runs Effort E 

97% 16.320 
87% 19,200 
9 1 % 20.480 
96% 20.880 
94% 21.120 

93.0% 19,600 

Table 5.32 - 6-Multiplexer With A Population Size Of 80 And No Injection Mutation 

O l . O 1=100 P=100xl 
% runs Effort E 

85% 20.500 
85% 24.000 
86% 24,400 
80% 26.800 
83% 28.200 
8 1 % 28.200 
82% 28.800 
84% 30,000 
76% 30.100 
76% 37,800 

81.8% 27,880 
Table 5.33 - 6-IVlultiplexer problem with a population size of 100 

133 



150000 

140000 

130000 

1 2 0 0 0 0 

110000 

100000 

90000 

g 80000 

g 70000 

60000 

50000 

40000 

30000 

2 0 0 0 0 

10000 

-

• 

-

-

-
1 1 

-

: > 

; 

i 
A 

-
•A 1 

! 

-
1 1 1 1 1 1 1 « « 1 i 

• c=0.0 

• c=o.s 
A C = 1.0 

0 1 0 2 0 2 0 30 30 40 40 50 so 80 80 1 0 0 

( 1 0 X 1 ) ( 2 0 X 1 ) ( 1 0 X 2 ) ( 3 0 X 1 ) ( 1 0 X 3 ) (40X1) (10x4) (50x1) (10x5) (80x1) (20x4) ( 1 0 0 x 1 ) 

Population Size 

Figure 5.11- 6-Multiplexer Results 

Figure 5.11 shows the results from tables 5.25 to 5.33. The results clearly show that in 

every case the multi-populations performed better than the single population runs. The best 

result is achieved using a population size of 80 (4 species of 20 individuals) requiring a total 

of 12,748 evaluation to obtain a solution with a probability of success of 99%. It is also 

interesting to note that there is only a small improvement in the performance when the 

population size is increased above 40 individuals. The variation of performance produced by 

the crossover mutation rate for this problem shows little effect except for the very small 

population sizes. The results are comparable with GP using ADF's (Koza, 1994) but 

requiring only 80 individuals compared with 2000 with ADF's . 
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5.7 Symbolic Regression 

It has been shown that the new method produces very good results for Boolean induction 

problems as shown in section 5.6. Systems identification problems, tested earlier in the 

thesis, will now be tested using the improved G P paradigm. 

5.7.1 The Two-Box Problem 

The two-box problem concerns the identification of a relationship between six independent 

variables (x\ , ... , xe), where this relationship relates to the difference y in the volumes of 

the first box whose length, width, and height are , JC2 , -V3 and the second box whose 

length, width, and height are .V4 , ^ 5 , xo. Thus:- y = ( A I A-2 ) - ( X 4 X5 xo). The goal 

of this symbolic regression is to derive the above equation as a **completc form" when given 

a set of observations. 

In this problem, where the raw fitness is a floating point number rather than an integer, there 

is no need to include the NCtO] weighting in the fitness calculation. The fitness is calculated 

using the mean squared error (MSE) of all of the lest points. 

The multiplication and divide functions are considered more complex than the plus and 

minus functions and thus have higher Np values. Using 10 sets of 6 data points ranging from 

0.0-10.0, and a functional set of: F = { -i-, - , * , % }, 

with N F values of: Np = {1.1, 1.1, 1.2, 1.2) respectively. 

The terminal set is: T = { a l , a2, a3, a4, a5, a6 } 

where al,a2 and a3 are the length, width and height of box 1 and a4,a5 and a6 are the 

length, width and height of box 2. 
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Using various tree generation methods, and various tree sizes, random trees can be 

produced to attempt to solve the two-box problem. The results of these are presented in 

table 5.34. 

creatioD individuals max max mio avg best fit worst fii average fit 
method produced layer teagth length length (MSE) (MSE) (MSE) 

grow 1,000.000 1 7 3 4.6015 3722.356 2.1213E7 5.3622 E4 
grow 1.000,000 2 15 3 5.8725 2018.921 8.0341 E l 3 1.2371 E7 
JCTOW 1,000,000 3 31 3 6.9075 2018.921 5.7103 E16 2.7581 E l l 
grow 1.000,000 4 49 3 7.7212 2573.798 3.6681 E20 3.7083 E14 
prow 1.000.000 5 65 3 8.3705 2269.796 7.5757 E20 7.8406 E14 
prow 1.000,000 6 83 3 8.8938 2556.219 1.7160 E22 2.8181 E I 6 
full 1.000.000 1 3 3 3.0000 38526.410 5.2948 E4 4.1558 E4 
full 1.000.000 2 7 7 7.0000 3722.357 2.1214 E7 9.8201 E4 
full 1.000.000 3 15 15 15.0000 1846.201 1.0518EI4 1.6482 E9 
full 1.000.000 4 31 31 31.0000 1976.505 1.7782 E21 2.4647 E l 5 
full 1.000.000 5 63 63 63.0000 1469.860 1.8023 E30 1.8324 E24 
full 1.000.000 6 127 127 127.0000 2447.048 CPO 

Table 5.34 - Average Fitnes Of Various Tree Representations For The Two-Box 
Problem 

Table 5.34 shows that even after 12,000,000 random individuals have been processed, no 

solutions are found. 

The D R A M - G P parameters used for the two-box problem are shown in table 5.35. 

Functional set F ={ + , - , * , % } 
Arguments FA = { 2, 2,2, 2 } 
NC Functionals Np={l.1,1.1.1.2,1.2} 
Terminal set T={xl,x2,x3,x4,x5,x6} 
NC Terminals NT={1,1,1,1,1,1} 
Test points (TP) 10 
Fitness MSE 
Elite 5 
CCC ± 2.0 of NC value unless stated 
Max. Chromosome length 50 
Max. generations 200 

Table 5.35 - Run Parameters For The Two-Box Problem 

Table 5.36 shows pubUshed results (Koza, 1992, 994). The important point to note is the 

population size required to solve the problem, at 4000 individuals, the memory required to 

initiate a run is excessive and the high population size is reflected in the amount of 

processing required to produce a solution. 
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Population size M Effort E 
Koza, 1992 (STD) 4000 1,176,000 
Koza, 1994 (ADF) 4000 2,220,000 

Table 5.36 - Standard GP Twobox Problem Results 

As with previous lesis, the population size and the crossover mutation rales are set at 

various values to assess the affects on the amount of processing required. 

C=0.0 l=10P=10xl C=0.5 1=10 P=10xl C=1.0 1=10 P=10xl 
% runs Effort E % runs Effort E % runs Effort E 

4% 134,470 22% 31,820 13% 40,670 
5% 141,300 17% 32,550 12% 42,800 
5% 147,600 13% 34,300 12% 43,200 
4% 150,480 13% 36,750 13% 45,900 
5% 155,700 14% 41,440 10% 48,400 
4% 200,010 9% 52,480 9% 48,950 
3% 250,800 12% 55,550 9% 63,750 
3% 255,360 9% 58,850 7% 67,500 
3% 259,930 9% 79,010 7% 69,300 
3% 304,000 9% 95,760 7% 76,500 

3.9% 199,965 12.7% 51,851 9.9% 54,697 
Table 5.37 - Two-Box Problem With A Population Size of 10 

C=0.0 1=20 P=10xl C=0.5 1=20 P=10xl C=1.0 1=20 P=10xl 
% runs Effort E % runs Effort E % runs Effort E 

3% 221,920 13% 41,800 12% 38,280 
1% 472.770 11% 51,750 13% 44,000 
1% 633,420 10% 53,100 12% 50,160 
1% 711,450 12% 54,450 11% 54,400 
\% 729,810 7% 58,760 8% 56,320 
0% OQ 10% 59,840 7% 67,800 
0% oo 6% 63,900 6% 91,200 
0% oo 8% 72,960 4% 120,840 
0% oo 8% 73,150 6% 122,250 
0% oo 8% 91.300 5% 127.800 

0.7% 276,937' 9.3% 62,101 8.4% 77,305 
i* indicates average of available results) 

137 



1=10 P=10xl CCC=5.0 
C % runs Effort E 
0.0 5% 201,140 
0.0 2% 355.680 
0.5 5% 91,800 
0.5 5% 146.900 
0.5 5% 167,400 
1.0 10% 48,950 
1.0 9% 62.720 

Table 5.38 - Two-Box Problem With A Population Size of 10 and Constrained 
Complexity Crossover Of ± 5.0 

C= 0.5 I*=l0xl 
1 % runs Effort E 
30 11% 65,600 
40 6% 87,300 
50 10% 79,100 
60 13% 43,600 
70 7% 48.590 
80 6% 68,400 
90 8% 88.920 
100 14% 58.000 

Table 5.39 - Two-Box Problem With A Population Size Of 10 And Various Injection 
Mutation Values 

C=0.0 1=20 P=10x2 C=0.5 1=20 P=10x2 C=1.0 1=20 P=10x2 C=1.0 1=30 
P=20xl 

% runs Effort E % runs EfTori E % runs Effort E % runs Effort E 
10% 103.360 17% 53,040 17% 52.780 12% 80,360 
8% 133.200 15% 71,540 16% 69,520 11% 82,500 
6% 153,000 12% 81,340 12% 70,400 12% 92,400 
5% 156,060 12% 88,200 11% 78.320 10% 94,600 
8% 181,800 14% 96,720 12% 90,200 9% 97,180 
5% 191,520 11% 99,000 9% 121,600 9% 128.380 
5% 221,480 11% 100,100 10% 124,200 8% 140,400 
5% 257.400 8% 112,500 10% 128,000 9% 149,600 
5% 270,560 8% 136,960 8% 132.000 8% 169.500 
5% 288,800 7% 183,040 5% 243,200 6% 328,320 

6.2% 195,718 11.5% 102,244 11.0% 111,022 9.4% 136,324 
Table 5.40 - Two-Box Problem With A Population Size Of 20 
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C=0.0 1=30 P=30xl C=0.5 1=30 l»=30xl C=1.0 1=30 P=30xl 
% runs Effort E % runs Effort E % runs Effort E 

32% 41,400 43% 32,340 4 1 % 31,620 
29% 46,170 3 1 % 38,760 40% 34,200 
33% 46,410 34% 39.330 30% 40,500 
33% 48.960 38% 42,750 33% 42,300 
34% 49,140 33% 43,200 36% 42,840 
27% 56,070 35% 45,000 35% 43.680 
28% 63.000 32% 46,620 36% 45.000 
27% 66,660 33% 48,840 3 1 % 50.430 
24% 69,600 36% 51,300 33% 56,760 
24% 73,530 22% 87.120 29% 59,220 

34.4% 56,094 33.7% 47,526 34.4% 44,655 
Table 5.41 - Two-Box Problem With A Population Size Of 30x1 

C=0.0 1=30 I*=10x3 C=0.5 1=30 P=10x3 C=1.0 1=30 P=10x3 
% runs Effort E % runs Effort E % runs Effort E 

12% 117,600 14% 73,260 20% 74.370 
11% 120,960 17% 80.190 17% 76.440 
15% 122,400 19% 81,030 18% 88.740 
8% 136,320 14% 86,700 15% 91.200 
8% 144,000 18% 93.930 16% 98.790 
9% 201.390 19% 98.010 12% 108,780 

10% 203,520 7% 117.000 16% 115,200 
8% 220,800 16% 120,930 15% 115.200 
7% 303.750 14% 120.990 8% 140,400 
6% 384.750 11% 145.200 11% 169.950 

9.4% 195,549 14.9% 101,724 14.8% 107,907 
Table 5.42 - Two-Box Problem With A Population Size Of 10x3 

C=0.0 1=40 P=10x4 C=0.5 1=40 P=10x4 C=1.0 1=40 P=10x4 
% runs Effort E % runs Effort E % runs Effort E 

22% 72.080 38% 41.600 3 1 % 63,240 
20% 96.120 27% 62,560 28% 69.120 
15% 113,600 25% 64.960 25% 71.000 
15% 114,400 24% 80,000 26% 83.160 
14% 138,240 24% 85,560 24% 84.000 
14% 153,120 26% 87,000 22% 84.000 
13% 153,680 19% 100.440 22% 93,240 
14% 166,400 19% 103,880 17% 94,720 
13% 174,000 20% 118,320 22% 98,280 
14% 202,240 19% 124,000 20% 107.800 

15.4% 138,388 24.1% 86,832 23.7% 84,856 
Table 5.43 - Two-Box Problem With A Population Size Of 10x4 
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C=0.0 1=40 I*=20x2 0=0.5 1=40 P=20x2 C=1.0 1=40 I*=20x2 
% runs Effort E % runs Effort E % runs Effort E 

25% 72,800 38% 46,200 33% 47,120 
22% 99,960 29% 58,320 32% 53,280 
19% 103,000 28% 64,800 28% 57,240 
2 1 % 104,720 23% 68.000 24% 62,640 
2 1 % 109.040 27% 72,000 26% 63.840 
18% 119.560 26% 79.360 3 1 % 64,200 
15% 121,600 24% 80,000 3 1 % 67,320 
19% 125.280 26% 81,600 28% 68,800 
13% 143.360 26% 81,600 28% 68.800 
14% 215,040 20% 90,280 20% 84,680 

18.7% 121,436 26.7% 72,216 28.1% 63,792 
Table 5.44 - Two-Box Problem With A Population Size Of 20x2 

C=0.0 1=50 l*=50xl C=0.5 1=50 P=50xl C=1.0 I=50P=50xl 
% runs Effort E % runs Effort E % runs Effort E 

45% 52.500 48% 42,000 54% 37,600 
37% 63,700 52% 43,500 54% 39.600 
38% 65,000 44% 46,800 53% 40.500 
40% 65,650 43% 48,000 52% 44.000 
36% 67,150 45% 50,500 52% 45.500 
31% 69,750 4 1 % 51,000 52% 45,500 
36% 76,500 43% 55.250 47% 46.350 
30% 80,100 4 1 % 60,600 50% 46.800 
33% 86,700 43% 62,700 44% 47,500 
29% 88,000 37% 68,250 40% 58.500 

35.5% 71,505 43.7% 52,860 49.8% 45,185 
Table 5.45 - Two-Box Problem With A Population Size Of 50x1 

C=1.0 1=50 C=1.0 1=50 
P=25x2 P=10x5 
% runs Effort E % runs Effort E 

39% 46,800 28% 62,350 
35% 53,550 32% 66,000 
37% 57.950 3 1 % 71,400 
36% 60,000 30% 78,850 
31% 60,300 25% 87,000 
37% 60,350 27% 87.500 
33% 61,000 29% 93,600 
38% 62,050 28% 97,500 
37% 63,000 26% 98,600 
28% 87,500 25% 107,300 

35.1% 61,250 28.1 % 85,010 
Table 5.46 - Two-Box Problem With A Population Size Of 25x2 And 10x5 
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C=I.O 1=80 l»=80xl C=1.0 1=80 I'=40x2 C=1.0 1=80 I*=20x4 C=1.0 1=80 
I'=10x8 

% runs ElTort E % runs ElTort E % runs Effort E % runs Effon E 
67% 45,360 55% 49,280 62% 43,670 32% 81,600 
65% 48,800 50% 50,400 5 1 % 47,520 35% 85.680 
57% 49.280 47% 60,480 49% 50,400 33% 94,800 
59% 53,760 4 1 % 61,360 50% 58,080 37% 96.000 
52% 53.760 45% 68,640 45% 63,200 33% 100,320 
57% 54,400 48% 69,600 43% 70,080 32% 100.640 
57% 57,600 45% 70,560 42% 72,800 36% 102.000 
60% 58,800 42% 72,080 40% 73,200 32% 104,960 
58% 61.600 34% 88,400 38% 77,280 34% 116,160 
53% 68,400 31% 106,400 49% 82,160 28% 124,000 

58.5% 55,176 43.8% 69,720 46.9% 63,839 33.2% 100,616 
Table 5.47 - Two-Box Problem With A Population Size Of 80 

Tables 5.37 to 5.47 are used to produce the graph shown in figure 5.12. 
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Figure 5.12- Two-Box Results 
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Figure 5.12 indicates lhai the best results are achieved when the crossover mutation rate is 

set to 1.0. The minimum amount of computational effort required is produced with a 

population size o f 50x1 with 45,185 individuals needing to be processed. This compares 

with 3320 iterations using NN's and 1,176,000 evaluations using standard GP with a 

population size of 4000. 

5.7.2 Complex Multiplication 

The previous example of symbolic regression involved one or more independent variables, 

but only one dependent variable. The problem described here is that o f multiple regression. 

This problem attempts to find the unknown relationships between two independent 

variables, vi and >'2, and four dependent variables, .V| ^xi A'3 . and .V4 given 50 six-tuples of 

data. Where the target function is vector multiplication, i.e.:-

Vi = . V | .V3 - .V2 -V4 and y2 = .V2 .V3 - . v i ,1-4. 

The DRAM-GP parameters for this problem are shown in table 5.48. 

Functional set F = { + , - . *. %, UST2 } 
Argumenu F A - { 2 , 2 . 2, 2 } 
NC Funciionals N | : = | l . l , 1.1, 1.2. 1.2 } 
Terminal set T = { x l , x2 , x3 , x4 1 
NC Terminals NT={ 1.0, 1.0, 1.0, 1.0} 
Tesi points (TP) 50 
Fiuiess MSE 
Miix. NC 50.0 
Min. NC 0.0 
Elite 5 
Crossover mutation rate 1.0 
CCC ± 2 . 0 o f NC viUuc 
Max. Chromosome Icngtli 100 
Max. generations 200 

Table 5.48 - Run Parameters For Complex-Multiplication Problem 

The functional LIST2 performs no function other than linking two sub-trees. It is used only 

once at the top of each tree and allows the whole tree to evolve the two independent 

variables. The results of various runs are presented in table 5.49. 
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Pop. si7x M 

(pop.X.species) 
Effort E 

Ko/a, 1992 (STD) 500 609,500 
DRAM-GP 10 (10x1) 729,810 
DRAM-GP 20 (10x2) 229,500 
DRAM-GP 30 (30x1) 90,720 
DRAM-GP 50 (50x1) 97,000 
DRAM-GP 100 (20x5) 100,100 
DRAM-GP 150 (30x5) 155,700 
DRAM-GP 200 (40x5) 142,800 
DRAM-GP 250 (50x5) 155,000 

Table 5.49 - Complex-Multiplication Results 

5.7.3 Simple Symbolic Regression Problem 

Suppose a sampling of ihc numerical values f rom a target curve over 20 points in some 

domain is given, such as the real interval |-1.0,+ 1.0|. That is, a sample o f data in the form of 

20 pairs ( X i , yO is given, where X i is the value of the independent variable in the interval 

(-1.0,+ 1.01 and yi is the associated value of the dependent variable. The 20 values of X i arc 

chosen at random in the interval |-1.0,+ 1.01. The target function here is the polynomial 

expression: 

y = x**+x'Vx"+x 

(5.14) 

The goal is to find a function, in symbolic form, that is a good or a perfect fit to the 20 pairs 

of numerical data points. 

The terminal set is 

T = { x } . (5.15) 

The next step is to identify the set of functions that are used to generate the mathematical 

expressions that attempt to fit the given finite sample o f data. I f knowledge thai the answer 

is x''+x^+x^+x is used, a function set consisting o f only addition and multiplication 

operations would be sufficient for this problem. A more general choice might be the 

functional set consisting of the four ordinary arithmetic operators of addition, subtraction, 
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multiplicaiion, and the proiecied division function %. I f a wider variety of problems are to 

be solved, the sine function SIN, the cosine function COS, the exponential function EXP, 

and the protected logarithm function RLOG are included. The functional set for this 

problem is thus: 

F={ +, *, %, SIN, COS, EXP, RLOG} (5.16) 

Taking two,two,two,two,one,one,one,one arguments respectively. 

The raw fitness for this problem is the sum, taken over the 20 fitness cases, of the absolute 

value of the difference (error) between the value in the real-valued range space produced by 

the expression for a given value o f the independent variable Xj and the correct yi in the range 

space. The closer this sum is to zero, the better the computer program. Error-based fitness 

is the most common measure of fitness used. 

The hits measure for this problem counts the number of fitness cases for which the 

numerical value returned by the expression comes within a sniiill tolerance called the hits 

criterion of the correct value. For this example, the hits criterion is 0.01 (Koza, 1992). 

Published computational effort result (Koza, 1992) using a population size M of 500 and a 

maximum number of generations o f 50, is 162,500 evaluations. The results arc based on 

113 runs. The parameters for the D R A M - G P run are shown in table 5.50. 
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Funciioiuil SCI F = ( + . - , *. %, SIN, COS. EXP, RLOG 1 
Arjjumcnis F^ = { 2 , 2 , 2, 2, 2, 2, 2, 2 } 
NC Fui»clionals N[:={1.1. 1.1. 1.2, 1.2,1.3,1.3,1.4,1.4 } 
Terminal set T = ( X 1 
NC Terminals NT={ 1.0 } 
Tcsi points (TP) 20 
Fimcss MSE 
Max. NC 50.0 
Min. NC 0.0 
Elite 5 
CCC ± 2 . 0 ol" NC value 
Chromosome lengtli 100 
Max. generations 200 

Table 5.50 - D R A M - G P Parameters For The Simple Symbolic Regression Problem 

The results for the simple symbolic regression problem are shown in tables 5.51 and 5.52. 

The computational effort is based on 100 runs for each table. 

C=1.0 1=100 P=20x4 
% runs Effort E 

90% 6.080 
Table 5.51 - Simple Symbolic Regression Problem With A Population Size O f 80 

C=1.0 1=100 P=50xlO 
% runs Effort E 

90% 15,000 
Table 5.52 - Simple Symbolic Regression Problem With A Population Size Of 200 

The results show that with a population size of 80 individuals only 6,080 evaluations arc 

required to produce a correct solution, this compares with 162,500 evaluations using 

standard GP and a population size of 500 (Koza, 1992). 

5.8 Continuous Symbolic Regression Problems 

The previous example of symbolic regression contained no numerical constants within ihe 

target curves or within the terminal set, nor was there any explicit facility for creating them. 

The search space of possible solutions was discrete, although large, but with the inclusion of 

real numbers the search space is infinite. 
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5.8.1 Symbolic Regression Using Real Numbers 

Real numbers are now included in the continuous equation. The test function here is:-

y = 0.5 x^ (5.17) 

The functional set is F = { +, -, +, % }wi th arguments ( 2, 2, 2, 2 ) respectivly. The 

terminal set has to include x and the set of real numbers 9?. When a program tree is being 

created and a terminal is selected there is a 50% chance that a real number wi l l be chosen. A 

range is set for these real numbers which for this problem is between -5.0 and 5.0 and the 

number used is randomly chosen between these limits. I f a real number is chosen for 

mutation it is replaced by another randomly selected number. The parameters for the 

DRAM-GP run are shown in table 5.53. 

Funciional set F = { + . - , * , % } 
Arguments F ^ - { 2 , 2 . 2, 2} 
NC Funciionals N , : = { I . I . I . I , 1.2, 1.2 } 
Terminal set T = | x . 9 i } 
NC Terminals N , = { I.O } 
Test points (TP) 20 
Fiuicss MSB 
Max. NC 20.0 
Min. NC 0.0 
Elite 5 
CCC ± 2 . 0 of NC value 
Max. Chromosome lengUi 100 
Max. generations 200 

Table 5.53 - D R A M - G P Parameters For The Symbolic Regression Problem 0.5x-

Tables 5.54 and 5.55 show the results of 100 runs for each parameter set. 

C=1.0 1=100 P=20.\4 
% runs Effort E 

71 19,410 
Table 5.54 - ().5x" Symbolic Regression Problem With A Population Size O f 80 

C=1.0 1=100 P=50x4 
% runs Effort E 

100 13,000 
Table 5.55 - 0.5x^ Symbolic Regression Problem With A Population Size O f 200 
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The results of Koza (Koza, 1992) state that using a population size of 200, 19,800 

evaluations are required to solve the problem with a probability of success of 99%, based on 

190 runs. 

One evolved solution to this problem included no real numbers, but did include the sub tree 

xy(x+x) which reduces to the real number 0.5. This shows that even if real numbers are not 

explicitly included within the GP process, real numbers can, and are produced. Due to the 

nature of the test function the generation of the required real number is relatively easy to 

produce, so, to further examine i f the revised GP method can be used with real numbers a 

more complex symbolic regression problem is used. 

5.8.2 Increased Complexity Symbolic Regression 

The test problem Ls y = 2.718 x^ + 3.1416 x and 20 equally spaced test points are produced 

between the range of -1.0 < x < 1.0. It would be much more difficult for the numbers Pi and 

e to be generated without the use of reaJ numbers. The range of any created (or mutated) 

real numbers is again between -5.0 and 5.0. The fitness is calculated using 'hit points' 

(Koza, 1992) a hit being scored i f the y value o f the evolved solution is within 0.01 of the 

test value.The parameters for the DRAM-GP run are shown in table 5.56. 

Functional sci F = { + , - . * . % } 
Arguments FA = { 2 . 2 , 2 , 2 } 

NC Funciionals N p = { l . l , 1.1, 1.2, 1.2 } 
Terminal set T = { X.9? } 
NC Terminals N T = { 1.0 1 
Test points (TP) 2 0 

Max. NC 4 0 . 0 

Min. NC 0 .0 

Elite 5 

CCC ± 2 . 0 of NC value 
Max. Chromosome lengili 7 0 5 

Max. ^^enc^alions 5 0 

Table 5.56 - D R A M - G P Parameters For The Complex Symbolic Regression Problem 
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Tables 5.57 to 5.60 show the results of 10 runs for each parameter set. 

C=1.0 1=160 P=20x8 
% runs Effort E 

10 225,280 
Table 5.57 - Complex Symbolic Regression Problem With A Population Size O f 160 

C=1.0 1=250 P=50x5 
% runs Effort E 

30 85,800 
Table 5.58 - Complex Symbolic Regression Problem With A Population Size O f 250 

C=1.0 1=300 P=50x6 
% runs Effort E 

80 29.700 
Table 5.59 - Complex Symbolic Regression Problem With A Population Size Of 3(U» 

C=1.0 1=500 P=50xl0 
% runs Effort E 

80 38,400 
Table 5.60 - Complex Symbolic Regression Problem With A Population Size Of 500 

The results compare with 305,500 evaluations using a population size o f 500, based on 100 

runs (Koza, 1992). 

5.9 Summary 

The results show that performance improvements similar to that obtained using ADF\s 

(Koza, 1992,1994) is possible using DRAM-GP, but the population size and thus the 

memory required to initiate a run is greatly reduced. ADF's look for sub-trees which can be 

repeated within the tree structure and so wi l l perform well on problems which have 

solutions which can be constructed f rom these f i t sub-trees. This is shown in the 5 parity 

problem where ADF's outperformed DRAM-GP. Future research could explore the use of 

DRAM-GP with ADF's for the Boolean induction class o f problems. 

148 



Although all performance calculations assume that the computational effort required to 

evaluate a single generation is the same for conventional GP, GP using ADF's , and R A M -

GP, it is evident that this is not the case with DRAM-GP. The crossover operator requires 

extra administration to fmd sub-trees with NC values within the required range. However 

this extra administration cost is considered small when compared with the fitness function 

computational effort and therefore of little consequence. 

The distribution of NC values throughout the individuals wi l l be biased towards lower 

values (i.e. lower NC values wi l l have a higher frequency than higher ones), and so because 

the sub-irce selection is random for CCC, there is a higher probability that the sub-tree to be 

replaced wil l have a low NC value. The smaller sub-trees wi l l also have less chance of being 

disrupted by the mutation operator within the CCC operator. Individuals are created and 

are then slowly reduced or expanded in size through the action of the CCC operator. Once 

one species finds a solution which is fitter than any other individual within the total 

population, it very quickly propagates this information to other species, accelerating the 

evolution towards fitter solutions. 

I f a run is continued after an exact solution is found, the evolutionary process wil l continue 

to evolve solutions that have lower NC values and thus less complex solutions. 

The injection mutation, I M , is important for the D R A M - G P paradigm in that it naturally 

disrupts the fitness of the individuals within each species (apart from the elite 5) and then 

evolves solutions using the elite and disrupted individuals. This prevents the population 

from prematurely converging and can be considered as keeping the population in a state of 

entropy, f rom which new fitter individuals are created. When the injection mutation Ls 
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turned o f f the species quickly converge, and the performance o f the adaptive program is 

greatly reduced. 
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CHAPTER 6 

APPLICATIONS TO PRELIMINARY DESIGN SOFTWARE 

Chapter five has shown that DR7 \M-GP outperforms conventional GP in terms of both 

performance and population si/e. For problems involving discrete search spaces, GP is the 

most effective search method for systems identification of all the evolutionary computation 

techniques. However the GP paradigm has no efficient method for searching continuous 

search space as are encountered when real numbers are included within the problems under 

investigation. GP produces real numbers by initially randomly creating them within the 

initial population and then through the action of crossover the real numbers are manipulated 

to produce more real numbers, a process that is random and also one which adds a 

computational overhead to the problem solving process. 

The new GP technique presented is thus extended to incorporate borh continuous and 

discrete search spaces as is found within the domain of preliminary design. The revised 

technique is called H D R A M - G P (Watson & Parmee, 1997(b)) i.e. Hybrid Distributed, 

Rapid, Attenuated Memory, Genetic Programming. H D R A M - G P incorporates a real 

numbered genetic algorithm to aid search in the continuous space. Its application is 

demonstrated on engineering fluid dynamics systems which were initially investigated in 

section 4.5.1. 

6.1 A Hybrid Extension To DRAM-GP 

For mixed discrete and continuous search spaces, an algorithm which w i l l efficiently explore 

through both spaces is required. In order to achieve this H D R A M - G P uses two alternating 

crossover operators. The GP operator searches the discrete functional structure whilst the 
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G A searches the continuous coefficient space. The GP crossover operator can select parents 

from any species and is thus called an inter-species crossover operator, while the GA 

crossover operator is limited to selecting parents f rom the same species and is thus intra-

species. This crossover regime is possible due to the adopted computer representation of 

the individuals i.e. an array of characters for the functional description and an array of 

Hoating point numbers for the real number coefficients. GP crossover then operates within 

the character array to evolve the functional structures o f the system, whilst GA crossover 

concurrently operates only within the real number array to evolve the coefficients of the 

structures. 

The G A crossover operator is restricted to individuals within the same species and only 

manipulates the real numbers stored in the floating point array within the individual 

structures. T w o parents, PI and P2 are randomly selected from the same species and a 

single crossover point, C P l , is selected. AS in standard GP crossover this defines a sub-tree 

which is to be crossed. Only the real numbers o f PI and P2 arc swapped with all funciionals 

remaining unchanged. The resulting child individual is then evaluated. 

The G A crossover thus produces only one new individual and so is performed twice for 

every GP crossover, thus ensuring both operators produce the same amount of children. 

The H D R A M - G P algorithm performs one standard GP crossover, directly followed by two 

G A style crossovers, this cycle is repeated until the correct number of crossover operations 

has taken place. 

Every equivalent generation mutation occurs and changes only one allele within each 

individual with a probability of mutation o f 0.5 The top 5 individuals are elite and are never 

mutated, but are allowed to participate in crossover. 
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6.2 Explicit Formula For Friction Factor In Turbulent Pipe Flow 

This problem was first investigated in section 4.5.1 and a brief summary of the results 

produced is shown. The initial functional in every individual was set to logio this reduced 

the problem to finding the sub-function y in the following cquation:-

(6.1) 

where c/=constant and y = f[RE, KID). 

Usijig the following functional and terminal sets. 

F = } (6.2) 

and T = { Real .Re .K/D ] (6.3) 

The best evolved formula using standard GP with a local hill climber,presented in section 

4.5.1, 

is: -

^ 101^.^ 1 0 - 2 0 9 1 K 11.1001] . . . . - ^ = - 3 . 8 3 6 4 1 o g , o { ^ ^ . ^ } (6.4) 

The average error being within 0.27% of Colebrook and While's formula. This required a 

total of 1,000,000 evaluations to solve the problem. The inclusion of the hill climber 

increases computational expense, requiring a total of 3 runs, seeding successive runs with a 

simplified equation of the best result from the previous run. 

Using H D R A M , with a population size of 40 consisting of 4 species o f 10 individuals, and 

1000 generations, the best evolved equation from 5 independent runs is:-

= 3.7922logio -15.0169-
v / 

5.4353 
(57.3353 / (717.8244 + Rc)) + K / D 

(6.5) 
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with an average error of 0.79%. Although the result is less accurate than the standiu-d 

GP/hill climber technique, H D R A M requires only one run to provide a satisfactory solution 

and computational expense is reduced due to the much smaller population size and the 

exclusion of the local hill climber. 

A second scries of runs assumed a functional form for the resulting equation of :-

(6.6) 

where y= f(Re, K/D ) 

This increases the complexity o f the problem by including the log jo operator in the 

functional set. Using the standard GP/hill climber technique with a population size of 1000, 

and 1000 generations, performance is poor with runs producing average errors in the range 

of 20% to 30%. 

The best result of 5 independent runs using H D R A M - G P with a population size of 10 

individuals in 4 species, is:-

^ = 3-^0391/., J (6.7) 
^ JS.7046 + K/D [0.41644 - Re)\ 

The average error being within 1.82% of Colebrook and White's formula. The reduced 

accuracy of the result is due to the increased complexity of the problem domain but 

H D R A M - G P shows a significant improvement over standard GP/hill climber techniques for 

this increased complexity problem. 

Run parameters are shown in table 6.1. 
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Number of species 4 
Species population size 50 
Maximum NC value 40 
Minimum NC value 0 
Crossover mutation rale 0.5 
Maximum chromosome lengtli 750 
Real number minimum value -5.0 
Real number m«iximum value 5.0 
Maximum generations 1000 
Elite 5 

Table 6.1 - Run Parameters For Friction Factor Problem 

The results of 5 independent runs are shown in table 6.2. 

Run no. Worst error (%) 
1 5.73 
2 6.81 
3 2.12 
4 2.94 
5 2.52 

Table 6.2 - Results For Friction Factor Problem 

It can be seen that HDRAM-GP not only produces acceptable results using fewer function 

evaluations, but can also derive equations without a prespecified functional form. 

6.3 Laminar Two-Dimensional Sudden Expansion Flow Problem 

Previous work on sudden expansion flow in section 4.5.2 showed that although the standard 

GP paradigm can model this system to some extent, it requires multiple runs to achieve a 

satisfactory solution. The results were obtained by reducing the dimensions of the problem 

for an initial run i.e. only using the data at Re=l(X)(), and seeding a second run with the best 

result o f the first run, but using the whole range of test data for Re= 100,200,..., lOOO. 

Using H D R A M - G P , equations are evolved which describe the X and Y velocities using 

only one run of the algorithm and all the data i.e Re= 100,200,..., 1000. The resulting 

equation can produce velocity vectors for Re in the range 0—>1000. Figures 6.1 and 6.2 

show the X and Y velocity components at Re=1000. 
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Figure 6.1 - X-Velocity Test Surface 
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Figure 6.2 - Y-Velocity Test Surface 

HDRAM is used with a population size of 400, consisting of 10 species of 40 individuals 

within each species, and 1000 generations. Equations are evolved which describe the X and 

Y velocities using only one run of the algorithm and all of the test data i.e. 

Re=100,200,...,1000. This again shows that HDRAM-GP can solve more complex 

problems than standard GP. 

Figures 6.3 and 6.4 show the evolved X and Y velocity at Re=1000 of the best of 5 

independent runs. The average error is 15.5% and again the improved technique has a 

reduced computational expense, and produces acceptable solutions using only one run of 

the algorithm. 
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Figure 6.4 - Evolved Y-Velocity Surface 

H D R A M - G P outperforms DRAM-GP in several ways. The population size required to 

solve the problem is reduced from 10,000 individuals to 400 using H D R A M - G P . H D R A M -

GP had to initially solve the problem at a fixed Reynolds number (a reduced dimension) and 

then required further runs using the results from the initial run as a population seed to 

produce equations which represented the f low over the range of Reynolds numbers given in 

the test data. 

6.4 Thermal Paint Jet Turbine Blade Data 

The final problem under investigation is the modelling of the surface temperature of a 

turbine blade under set operating conditions, first investigated in section 4.5.3. Figure 6.5 

shows a typical surface of a turbine blade used for this test. 
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This problem was invesiigaied using standard GP in section 4.5.3 and acceptable results 

have been produced for one-dimensional curves. The best result for the modelling of the 

whole surface (i.e. surface filling) using the standard GP/hill climber approach has an 

average error of 13.4% using a population size of 1000 and a total of 10,000 generations. 

The functional set and terminal set arc 

Figure 6.6 shows the best evolved surface from 5 independent runs using HDRAM using a 

population size of 400 individuals consisting of 40 species of 10 individuals and 1000 

generations. 

The evolved surface has an average error of 7.5% over the 290 test points used. This again 

shows that the technique outperforms the standard GP/hill climber method with a greatly 

reduced population size and smalJer number of generations and thus fewer fitness 

evaluations. 
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Figure 6.6 - Evolved Thermal Paint Surface 

6.5 Summary 

The results presented here show that HDRAM-GP can be applied to model approximate 

equations to engineering systems with better or at least comparable accuracy to thai of 

earlier standard GP/hill climber methods. Advantages of this technique compared with a 

standard GP/hill climber approach arc:-

A reduction of overall population size and required generations. 

Reduced CPU running time. 

A reduction in computer memory required to run the evolutionary program. 

The ability to search discrete structures and continuous coefficients concurrently. 

A control mechanism for the lengths of individual tree structures. 

Ability to search higher dimensional problems. 

An efficient method for searching for numerical values. 
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The GP crossover mechanism is responsible for the transfer of information from species to 

species, and fit solutions are rapidly transferred to other species, including those of a lower 

NC grouping species, thus producing less complex solutions. The node complexity measure, 

which controls the GP crossover, minimises disruption by ensuring some similarity between 

crossed sub-trees and also controls tree length growth. The injection nnutation disrupts the 

fitness of the individuals within each species (apart from an elite 5 individuals within each 

species) and then evolves solutions using the elite and disrupted individuals. The method 

can also model systems which are too complex for conventional genetic programming and 

the hybrid GP/hill climber technique. 
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C H A P T E R 7 

DISCUSSION 

At the beginning of ihis thesis the objectives of the research were stated as follows:-

1) To identify the utility of evolutionary computation and in particular genetic programming 

for systems identification. 

2) To develop appropriate evolutionary strategies for systems identification. 

3) The integration of complementaiy adaptive search and traditional optimisation 

techniques for systems identification.. 

4) The improvement of areas of simple engineering software using the developed strategies. 

The first objective was dealt with in chapters 2 and 3 with a comparison of various 

techniques presented in chapter 4. From the investigation into the utility of different 

methods of evolutionary computation it has been shown that genetic programming provides 

the best method in terms of representation. The inputs to GP are usually presented directly 

in terms of the observed variables of the problem domain. Therefore, the representation 

used by genetic programming is the natural representation of the problem domain. The lack 

of pre-processing Ls a major distinction relative to conventional genetic algorithms operating 

on strings, neural networks, and other machine learning algorithms. Neural networks 

provide a mathematically proved method for solving any problem, the major drawback 

being that the results of the network are virtually impossible to view and represent as a 

mathematical function. Genetic programming can provide interpretable equations and does 

not require any prior knowledge of the system as in the case of a G A. 
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The second objective was achieved only after conventional GP was used on various 

problems. The results of ihese initial runs showed thai GP produces solutions that are very 

long and the lack of any mechanism for the evolution of numerical values required the 

inclusion of a local hill-climber to search for the correct numerical values. These drawbacks 

to conventional GP were then addressed by the use of a new GP algorithm called DRAM-

GP, and the success of this technique has been clearly demonstrated. The problem of 

numerical constant manipulation still existed with DRAM-GP and so to solve problems in 

both the discrete and continuous search spaces a hybrid technique has been produced called 

HDRAM-GP thus achieving objective three. This technique has been shown, through 

experimentation, to be belter then conventional GP for solving sysiems idcniificaiion 

problems. Finally chapter six used HDRAM-GP to evolve models for use within the 

engineering design domain. 

For HDRAM-GP the crossover mechanism is responsible for the transfer of information 

from species to species, and fit solutions arc rapidly transferred to other species, including 

those of a lower NC grouping species, thus producing less complex solutions. The node 

complexity measure, which controls the GP crossover, minimises disruption by ensuring 

some similarity between crossed sub-trees and also controls tree length growth. The 

injection mutation disrupts the fitness of the individuals within each species preventing the 

population from prematurely converging. When the injection mutation is turned off the 

species quickly converge, and the effectiveness of the technique is greatly reduced. 

The concurrent utilisation of the GA reduces the amount of processing required to obtain 

acceptable results by further reducing semantic disruption. The method can also model 

systems which are to complex for conventional GP and the hybrid GP/hill climber 

technique. 
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7.1 Conclusions 

The results presented here show that HDRAM-GP can be applied to model approximate 

equations to engineering systems with belter accuracy to thai of earlier conventional GP and 

GP/hill chmber methods. Advantages are:-

• A reduction of overall population size and required generations. 

• Reduced CPU running time. 

• A reduction in computer memory required to run the evolutionary program. 

• The ability to search discrete structures and continuous coefficients concurrently. 

• A control mechanism for the lengths of individual tree structures. 

The research has shown that HDRAM offers a better potential for the modelling of selected 

engineering systems producing improved calibrations when compared to standard GP/hill 

climber methods. 

The initial testing of conventional GP on engineering systems also showed that GP does not 

scale up to higher dimension problems very well. This was shown with the turbine blade 

data in which only 2-dimensionaJ curves could be fitted with any degree of accuracy, and 

also with the pipe friction factor problem where a functional form had lo be initially set to 

enable the GP algorithm to solve the problem, thus reducing the search space lo a level thai 

could be readily be solved by the application of conventional GP. With HDRAM-GP these 

problems were overcome but although the new method can solve problems up to 4 

dimensions, it Ls the author's view that GP docs not scale up past 4 dimensions. 
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There is also a continuing debate about the action of the crossover operator within GP. 

Some researchers believe that crossover is a macro-mutation operator (Angeline, 1997), 

and ii is the author's view that this is true, but only for certain problem domains, systems 

identification being one of these. If crossover is responsible for the transmission of 'good' 

genetic material then the use of the crossover mutation rate within HDRAM-GP should be 

set 10 zero. This was the case with Boolean induction problems, but when problems which 

contain continuous search spaces are encountered the best reported results occur when ihe 

crossover mutation rate is set to 0.5 or 1.0. This suggests that the crossover operator used 

on continuous problems is indeed actually a mutation operator. 

7.2 Future Research Directions 

The research reported in this thesis has shown the ability of GP to solve simple systems 

identificalion problems, but the research also opens other areas relating to GP and systems 

identification, possible future research is outlined here. 

One area that requires further work is that of addressing the problem of scalability of GP. l l 

has been shown that by modifying the conventional genetic programming algorithm, higher 

dimensional problems can be solved, but the new technique extends the problem solving by 

only a few dimensions. There seems to be no method for solving systems idcniificaiion 

problems which include real numbers with more than 5 dimensions. Furiher research could 

explore the utility of HDRAM-GP together with a local hiJJ-chmber and also the inclusion of 

ADF's. It has been shown that the hiU-cUmber can improve the fitness of individuals and 

also ensure that fit functional structures arc not lost due to poor terminal selection. The 

inclusion of ADF's could increase the performance of HDRAM-GP but the choice of 

problem would have to accommodate repeated sub-trees. 
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Other theoretical work on schemata theory for GP has been attempted but the work makes 

assumptions about the crossover operator and mutation method, a more general GP 

schemata theory would help researchers understand the mechanisms that make GP work 

effectively. 
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