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Abstract

This thesis presents three new genetic programming (GP) algorithms designed to enhance ro-

bustness of solutions evolved in highly dynamic environments and investigates the application of

the new algorithms to financial time series analysis. The research is motivated by the following

thesis question: what are viable strategies to enhance the robustness of GP individuals when

the environment of a task being optimized or learned by a GP system is characterized by large,

rapid, frequent and low-predictability changes?

The vast majority of existing techniques aim to track dynamics of optima in very simple

dynamic environments. But the research area in improving robustness in dynamic environments

characterized by large, frequent and unpredictable changes is not yet widely explored. The three

new algorithms were designed specifically to evolve robust solutions in these environments.

The first algorithm ‘behavioural diversity preservation’ is a novel diversity preservation

technique. The algorithm evolves more robust solutions by preserving population phenotypic

diversity through the reduction of their behavioural intercorrelation and the promotion of indi-

viduals with unique behaviour.

The second algorithm ‘multiple-scenario training’ is a novel population training and evalua-

tion technique. The algorithm evolves more robust solutions by training a population simultane-

ously across a set of pre-constructed environment scenarios and by using a ‘consistency-adjusted’

fitness measure to favour individuals performing well across the entire range of environment sce-

narios.

The third algorithm ‘committee voting’ is a novel ‘final solution’ selection technique. The

algorithm enhances robustness by breaking away from ‘best-of-run’ tradition, creating a solution

based on a majority-voting committee structure consisting of individuals evolved in a range of

diverse environmental dynamics.

The thesis introduces a comprehensive real-world case application for the evaluation exper-

iments. The case is a hedge fund stock selection application for a typical long-short market-

neutral equity strategy in the Malaysian stock market. The underlying technology of the stock

selection system is GP which assists to select stocks by exploiting the underlying nonlinear re-

lationship between diverse ranges of influencing factors. The three proposed algorithms are all

applied to this case study during evaluation.

The results of experiments based on the case study demonstrate that all three new algo-
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Abstract

rithms overwhelmingly outperform canonical GP in two aspects of the robustness criteria and

conclude they are viable strategies for improving robustness of GP individuals when the envi-

ronment of a task being optimized or learned by a GP system is characterized by large, sudden,

frequent and unpredictable changes.
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Chapter 1

Introduction

Genetic Programming (GP), pioneered by John Koza, is an important tool for solving problems

automatically without being explicitly programmed. However, when GP operates in dynamic

environments, particularly ones in which changes are frequent, large and unpredictable, GP-

evolved solutions are often fragile and prone to failure [99, 16, 100, 123, 120, 18, 126]. This is

the problem for which this thesis aims to offer viable solutions. Using the stock market as a

case study, this thesis proposes three novel GP algorithms specifically designed to improve the

robustness of solutions to challenging, dynamic environments characterised by frequent, large

and unpredictable changes.

1. The first algorithm, ‘behavioural diversity preservation’, is a novel diversity preservation

technique. The algorithm evolves robust solutions by preserving population phenotypic

diversity through the reduction of population behavioural intercorrelation and the promo-

tion of individuals with unique behaviour.

2. The second algorithm ‘multiple-scenario training’ GP is a novel population training and

evaluation technique. The algorithm evolves robust solutions by training the popula-

tion across a set of preconstructed environment scenarios, simultaneously, and by using

a ‘consistency-adjusted’ fitness measure to favour individuals performing well across the

entire range of scenarios.

3. The third algorithm ‘committee voting’ GP is a novel final solution selection technique.

The algorithm enhances robustness by breaking away from ‘best-of-run’ tradition and cre-

ating a solution based on a majority-voting committee structure consisting of individuals

evolved in a range of diverse environment dynamics.

1.1 Research Gap

GP has proven to be successful in a vast number of static applications [95, 132] and has been

reported to achieve “human competitive”[96] results in many static applications including the

evolutionary quantum computer programming [96]; the evolution of local search heuristics for

SAT [96] ; the application of GP to the synthesis of complex kinematic mechanisms [160]; inven-

tion of optical lens systems [160]; the synthesis of interest point detectors for image analysis [160];
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and GP evolved antenna flown on NASA’s Space Technology 5 mission [109]. However, what

happens if there are changes in the environment in which the GP operates? For a canonical GP,

there is an implicit assumption of consistency in the evaluation function, because environmen-

tal information is accumulated by the system during successive iterations [121]. Unfortunately,

the consistency assumption does not apply to many real-world engineering, economic and IT

problems which require, in contrast, powerful heuristics that account for the uncertainty in

the environment. Instances of problems in which the environment changes are abundant, for

example designing modern aeroplanes that can maintain a flight path (direction, altitude and

velocity of flight) against perturbations in atmospheric conditions, operating a chilled natural

gas pipeline from Russia or Alaska under adverse suddenly changing temperamental climatic

conditions, and even predicting US presidential elections .

This work (in Section 3.1) classifies dynamic environments into 4 categories, namely Type

1, Type 2, Type 3 and Type 4, with ascending order of degree of dynamism and, to facilitate

explanation, a brief introduction of each type is given here. Type 1 environments are char-

acterised by regular, explicit and predictable small changes; Type 2 environments are more

challenging characterised by frequent, irregular and unknown changes; Type 3 environments are

even more volatile characterised by continuous, highly irregular, highly unpredictable and more

profound changes; and Type 4 environments are extreme environments characterised by abrupt

and radical transformation changes.

A standard strategy for dealing with uncertainty and dynamism in learning problems is to

regard each change as the arrival of a new problem instance that has to be solved from scratch

(e.g. [88]). For Type 4 environments, this highly expensive approach often has to be adopted as

the problem may alter completely after a change. However, this simple idea is often impractical

in Type 2 and Type 3 environments for a number of reasons. For example, consider that the

re-running of GP in dynamic environments can be performed either on a regular or an ad-hoc

basis:

• If a GP system is to re-run regularly, its success depends closely on the choice of frequency.

In a Type 1 dynamic environment where changes can occur regularly, it is relatively easy to

determine an appropriate frequency after a close observation of the environmental changes.

However, in Type 2 and Type 3 environments where changes occur randomly with a low

degree of predictability, determining the frequency can be difficult or even impossible. If

the system is re-run too frequently and the environment has not changed, effort is wasted.

If the system is re-run too infrequently and the environment changes before the anticipated

requirement for a re-run, the solution provided by GP is likely to be wrong, which can

cause a disaster in some critical operations.

• If a GP system is to run on an ad-hoc basis whenever changes occur, its success depends

on its ability to detect changes in the environment. With the exception of a Type 1

environment with regular changes, detecting changes can be problematic and as yet there

12
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is no effective detection method [166, 53, 81]. One problem is the difficulty in distinguishing

real changes in the underlying environment from mere noise in the information, in other

words over-detection. This causes a waste of resources due to re-running the system

unnecessarily. Another problem is the difficulty in detecting changes in time. In Type 2

and Type 3 dynamics, large changes can happen very quickly without any warning. In

such cases, even if changes are eventually detected, it is often too late to be useful.

Over the past few years, a number of authors (e.g.[166, 53, 81]) have proposed different

strategies for dealing with dynamic environments; most of which could be classified as ‘adaptive’

methods designed for Type 1 environments. ‘Adaptive’ here refers to continuously tracking

extrema or near extrema through the search space as closely as possible so that the resultant

solutions are ‘adaptive’ [18] to a changing environment. On the other hand, the field of research

on evolving robust GP solutions in Type 2 and 3 environments is yet to be largely explored

[126]. The survey of the existing GP literature in Chapter 2 observes that there is very limited

work focusing on robustness issues and of those reviewed none has so far dealt with Type 2 and

3 environments. This field opens up an important research gap and is the focus of this thesis.

Adaptive methods typically include multi-population(e.g. [20]), extra memory (e.g. [62])

and swarming (e.g. [28]). However, in Type 2 and Type 3 environments adaptive tracking does

not perform well either because the environment changes too quickly, severely and frequently; or

because it cannot be monitored closely enough; or because the changes occur after the commit-

ment to a particular solution has been made. In such cases, in order to deal with large, frequent

and unpredictable changes, creating robust GP solutions is a preferable strategy. This strategy

has been widely observed across many species in nature against high level of uncertainties in

their living habitats from the level of gene transcription to the level of systemic homeostasis

[91, 90, 156]. Robustness and adaptive tracking, however, are not mutually exclusive; they can

be combined if required. Robustness approaches would allow GP to continuously provide appro-

priate solutions to dynamic problems without the need for discontinuous operation or human

intervention and can improve efficiency and efficacy in complex real-world domains.

1.2 Importance

Evolving robust GP solutions for Type 2 and Type 3 environments characterised by large,

frequent and unpredictable changes is vital for the following reasons.

• Type 2 and 3 environments are extremely common in the real world given increasing un-

certainty and volatility in natural systems and in the global political, social and economic

systems. This work gives particular attention to economic systems, more specifically the

stock market. The stock market is a fascinating example of Type 2 and 3 environments

(very occasionally of Type 4). In the world of the stock market, risk, reward and catastro-

phe come in irregular cycles witnessed by every generation. Greed, hubris and systemic

fluctuations have led to tulip mania in the 17th century [150]; the South Sea bubble in
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the 18th century [150]; the land looms in the 1920s and 1980s [149]; the U.S. stock market

great crashes in 1929 and 1987 [149]; and the 2008 worldwide financial crises[125] to name

just a few of well-known examples. But more importantly, it has increasingly become one

of the most important economic forces, for example, in the last 60 years, the GDP share of

the financial industry in US increased dramatically from 20% in the 40’s to 80% in 2008.

• GP is an important automatic problem solving tool. GP is probably the closest devel-

opment ever made towards Alan Turing’s original “a machine that thinks”: computers

which automatically solve problems [162, 161], although it does have difficulties in evolv-

ing robust solutions in dynamic environments [30, 126] . It is especially suited as an

automatic optimisation tool for complex dynamic problems given its unique advantages

[126](detailed explanation in Section 2.1): it is a superior general-purpose search method

[11]; it provides an explicit solution process breaking out of ’black-box’ methods [54] ; its

fitness functions make it possible to incorporate domain specific information [54]; and it

is able to discover the underlying data-generation process of a series of observations using

symbolic regression[30].

1.3 Thesis Null Hypothesis

When the environment of a task being optimised or learned by a GP system is characterised

by large, sudden, frequent and low-predictability changes, the robustness of genetic individuals

cannot be improved by means of the following algorithms.

Behavioural diversity preservation This preserves phenotypic diversity of a genetic popu-

lation by reducing the degree of correlation between phenotypic behaviour of those indi-

viduals; greater phenotypic diversity leads to more robust solutions.

Multiple-scenario training This enhances robustness of solutions evolved by GP by means

of training a population across a range of environment dynamics and selecting individuals

that perform well in multiple scenarios.

Committee voting This enhances robustness of solutions evolved by GP by means of a com-

mittee structure whereby a small (odd) number of trained GP individuals offer solutions

as votes, and the majority vote wins.

1.4 Contributions

1. The design and implementation of 3 novel GP algorithms for improving robustness of

solutions.

(a) ‘behavioural diversity preservation’ GP;

(b) ‘multiple-scenario training’ GP;

(c) ‘committee-voting’ GP.
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2. Validation of the novel algorithms by simulating a real-world hedge fund investment strat-

egy with real-world data.

3. Formulating a new robustness definition and metrics.

4. An empirical comparison and analysis of GP with a Support Vector Machine (SVM).

1.5 Publications

1. Evolving robust GP solutions for hedge fund stock selection in emerging markets, W.Yan

and C.Clack, Soft Computing - a fusion of foundations, methodologies and applications,

from the issue entitled “Special issue on Bio-inspired Learning and Intelligent Systems”

Volume 15, Number 1, 37-50, DOI: 10.1007/s00500-009-0511-4, Springer Berlin / Heidel-

berg, 2010.

2. Behavioural GP Diversity for Adaptive Stock Selection, W.Yan and C.Clack, in Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO 2009 ), ACM.

ISBN 978-1-60558-325-9/09/07.

3. Learning to optimize profits beats predicting returns - comparing techniques for financial

portfolio optimisation, W.Yan, M.Sewell and C.Clack, in Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2008 ), pp1681-1688. ACM. ISBN 978-

1-60558-131-6/08/07.

4. Evolving robust GP solutions for hedge fund stock selection in emerging markets, W.Yan

and C.Clack, in Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2007 ), pp 2234-2241. ACM. ISBN 978-1-59593-697-4/07/0007. Winner of

Best Paper Award.

5. Diverse committees vote for dependable profits, W.Yan and C.Clack, in Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO 2007), pp 2226-2233.

ACM. ISBN 978-1-59593-697-4/07/0007.

6. Behavioural GP Diversity for Dynamic Environments: an application in hedge fund invest-

ment, W.Yan and C.Clack, in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2006 ), pp 1817-1824. ACM. ISBN 1-59593-186-4.

1.6 Thesis Structure

This introductory chapter mainly discussed the motivational background for designing new GP

systems to evolve robust solutions. With the stage thus set, the remainder of this thesis is

divided into six chapters:

Chapter 2 discusses the key characteristics, advantages and weaknesses of a canonical GP

algorithm. It then considers previous work in dynamic environments, but it also reviews methods
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that have been proposed to categorise dynamic environments and describes the key financial

terminologies in the context of this thesis.

Chapter 3 describes the design and implementation details of three novel GP algorithms,

namely ‘behavioural diversity preservation’ GP, ‘multiple-scenario training’ GP and ‘committee-

voting’ GP. It also offers a new robustness definition and a new categorisation of dynamic

environments.

Chapter 4 presents the real-world environmental case study for evaluating the algorithms.

The case study is concerned with selecting stocks for a hedge fund in an emerging market,

Malaysia. It firstly highlights the important aspects of environmental characteristics of the

chosen financial market, and then explains the inner mechanism, design and function of the

fully automated hedge fund simulation system and the GP system. It also clarifies the data

used and the experimental method.

Chapter 5 focuses on the evaluation of the experiments performed on each of the three

novel algorithms in the context of the case study. It is divided into two parts: the first part on

the experiment settings for each algorithm and the second on the analysis of experiment results

for each algorithm.

Chapter 6 investigates empirically the qualitative system behaviour difference between GP

and SVM. The details are provided on the experiment design and the analysis of empirical

findings.

Chapter 7 concludes, reviews the contributions achieved and discusses future work.
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Chapter 2

Background and Related Work

This chapter provides essential background knowledge on the key topics covered by the thesis.

It has five sections. In the first section, the canonical GP model and its key advantages and

weaknesses are explained in a nutshell; the second section reviews existing research on categoris-

ing different types of dynamic environments; the third section surveys prior works dealing with

dynamic environments and the last two sections deal with the financial background, offering

real-world examples of market dynamism and terminologies.

2.1 Canonical GP Model

This section explains the canonical GP model and highlights its advantages compared to many

other intelligent systems. GP pioneered by John Koza enables computers to automatically solve

problems without being explicitly programmed, and is one of the important emergent techniques

in this broad area. In essence, GP is designed to solve program discovery [127]. The goals of

program discovery are, according to Koza [94]:

“Given a set of input-output pairs or formal specification of behaviour, produce a computer

program that:

1. Non-trivially computes correct outputs for the inputs of each test case. Non-trivial com-

putation implies that the program does not directly map from inputs to outputs by means

of some sort of table. Rather, the program is an encoding of some algorithm.

2. Computes outputs in such a way that, if the inputs have been representatively chosen, it

will compute correct outputs for novel inputs.”

What makes a program-discovery algorithm useful is the fact that many problems from a wide

range of domains can be translated into program discovery problems. Depending on the termi-

nology of the particular field involved, the ‘program’ may be a game-playing strategy, an optimal

design plan, a decision tree, an econometric model, or a stock selection strategy, perhaps more

generally, a ‘composition of functions’ [94].

The canonical form of the GP algorithm as described in Koza’s book [93] depicted in

Figure 2.1 has the following steps:
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Crossover/Mutation 
of Programmes

Evaluation of 
Programmes

Selection of 

Programmes

New Population of 

Programmes

Figure 2.1: Canonical GP algorithm — evolution cycle

1. Generate an initial population of random compositions of the functions and terminals of

the problem (computer programs).

2. Iteratively perform the following sub-steps until the termination criterion has been

satisfied:

a) Execute each program in the population and assign it a fitness value according to how

well it solves the problem.

b) Create a new population of computer programs by applying the following two primary

operations. The operations are applied to computer program(s) in the population selected, with

a probability based on fitness.

i. Copy existing computer programs to the new population.

ii. Create new computer programs by genetically recombining randomly chosen parts of

two existing programs.

3. The best computer program that appears in any generation (i.e. the best individual so

far) is designed as the result of GP. This result may be a solution (or an approximate solution)

to the problem.

2.1.1 Key Components

To apply the standard GP to a given problem, there are five components to specify: 1) functions

and terminals; 2) initial population; 3) fitness; 4) operators and 5) control parameters. Each of

them is explained below:

Functions and terminals

In Koza’s terminology [93], the representation of a GP program consists of terminals and func-

tions. The size, shape and contents of these computer programs can dynamically change during

the process. The set of all possible structures in GP is the set of all possible compositions of

functions that can be composed recursively from the set of N functions from F = f1, f2, ..., fn

and the set of N terminals from T = a1, a2, . . . , an.
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Initial structure

Each program individual can be expressed as a syntax tree. Figure 2.2 shows some examples

of such programs expressed as trees. Koza [93] defined two methods termed full and grow. The

full method works by selecting nodes from only the function set until a node is at a specified

maximum depth when it then switches to selecting only terminals. Hence every branch reaches

the maximum depth, creating more regular-shaped trees. The grow method randomly selects

nodes from the function and terminal set which are added to a new individual, until a terminal

node is reached, which terminates that branch.

crossover point +

* -

*a

xx b x

c*

+

+ or

a a ba

+

or

a b

*

*a

xx

+

a a

+

-

b x

c*

Parent 1 Parent 2

Child 2Child 1

crossover point

Figure 2.2: GP Trees and Crossover: Two crossover points are chosen and subtrees are exchanged
to produce two children.

Fitness

Genetic programming requires an evaluation, or fitness, function to determine the quality of

an individual. The fitness value is typically a single scalar value that allows selection methods

to distinguish between various levels of individual quality. Multiobjective methods often use

a vector to represent fitness. Most of the computation time, particularly for more complex

problem domains, is spent on the fitness evaluation. To determine a fitness value, the individual

is typically applied to a fitness case, or set of fitness cases. The score on the fitness case(s) is

represented in the final fitness function value. The fitness can be expressed as the raw fitness or

the adjusted fitness. The raw fitness describes the value that is assigned directly in relation to the

problem. It is quite common for raw fitness to be described as a measure of error, with a small

error representing a high fitness. The adjusted fitness represents the fitness of an individual as

a value between 0 and 1, where 1 is the ideal fitness.

adjustedfitness = 1/(1 + rawfitness)
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The “1+” is found in the denominator in order to avoid a division by zero situation. This will

also have the effect of increasing the difference between two individuals who are at the higher

end of the fitness scale.

Operators

GP shares many similarities with the broader domain of evolutionary algorithms, in particular in

using crossover, mutation and selection operators in order to generate novel evolved structures.

• Crossover and mutation

Crossover creates new offspring that consist of subtrees taken from each parent. It is a

sexual operation in that there are two parents combining. Both parent individuals are

selected from the population, a subtree in each tree is selected and the two subtrees are

exchanged between the trees. For example, consider the two binary trees, Parent 1 and

Parent 2, in Figure 2.2. Subtree selection is carried out by assigning a uniform probability

to all internal nodes and leaf nodes separately. Then, an internal node selection probability,

usually set to 0.9, defines the frequency of leaves or subtrees selected for crossover.

Since in canonical GP all functions and terminals return and expect the same type, any

exchange of subtrees between two trees will be valid. Mutation is often added alongside

crossover in order to prevent premature convergence by introducing diversity back into the

population. Subtree crossover tends to be the dominant operator in GP, while mutation

operators are often used at lower rates.

• Selection operators

The production and selection of new individuals is carried out in a generational or steady-

state algorithm. In a generational algorithm, a new population is created from parents

in the current population. In a steady-state algorithm, each new offspring replaces an

individual in the existing population, either randomly or based on fitness.

Fitness proportionate selection [93] is the most popular selection method that uses the

adjusted or normalised fitness value of an individual to decide whether it can be a parent

for crossover - the probability of selection is proportionate to its fitness value.

Rank selection[93] is where each individual in the population is assigned a rank (from 1 to

the size of the population, the least fit individual has the rank 1 and the fittest individual’s

rank is equivalent to the size of the population). The probability of each individual being

selected for mating depends on its fitness normalised to the total fitness of the population.

Tournament selection [88] does not require a centralised fitness comparison between all

individuals. Instead, small groups of individuals (‘tournaments’) are compared for fitness.

The fitter individuals in each tournament become parents for crossover with new offspring,

replacing the least fit in each tournament.

Control parameters

GP uses various parameters to control a run. Such parameters include the population size, the
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number of generations and the depth of the parse tree that is used to represent the programs.

Each of these should be chosen in a problem-specific way. A typical population might be around

400 - 500 to allow a large enough diversity in the initial set of individuals though many problems

will require more than this. A number of generations might be around 50 - 100, though more

generations may be required to arrive at a global optimum. The depth of the tree structure also

depends on the complexity of the problem as well as the resources available, such as memory.

There are no rules to describe which parameters should be used and often it is simply best to

try different options and see which are most suited to the particular problem [126].

2.1.2 Analysis – Advantages and Weaknesses

Advantages

GP offers many unique advantages over all other approaches in machine learning or adaptive

systems. These advantages can be summarised as follows:

• GP is a general-purpose search method and it achieves a better balance between exploita-

tion and exploration than other search methods [11]. It is one of three main types of search

methods defined in the current literature: calculus-based, enumerative, and random [65].

1. Machine learning methods such as (Artificial Neural Networks(ANNs) and SVMs)

are calculus-based methods. These methods either perform hillclimbing (by moving

in a direction related to a local gradient) or set the gradient of the objective function

to zero to solve a set of non-linear equations. They are local search methods. This

constraint “severely restricts their application in many real-life problems, although

they can be very efficient in a small class of unimodal problems.” [10]

2. Enumerative approaches, such as dynamic programming, evaluate every single point

in a given search space. It is obvious that this approach is not suitable for complex

problems with large or even infinite search space.

3. GP is based on enumerative approaches but it does not employ a point-to-point search

strategy, but instead uses a guided random search strategy. This strategy optimises

the trade-off between exploration and exploitation [65]. A GP system explores a

search space by spreading diverse search points across the space derived from a ran-

domly generated initial population and variants resulting from crossover/mutation

operations and at the same time it exploits the space towards peaks as selection dis-

favours inappropriate variants according to fitness criteria. GP is useful in problems

where the search space is huge, multimodal and complex.

• The evolutionary based paradigm provides an alternative approach breaking out of ’black-

box’ methods [54]. Users have high degree of control over the entire process: for instance,

users can explicitly and intuitively choose solution representations and fitness functions;

solutions produced by evolutionary algorithms (EAs) often can be interpreted by humans;
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users can observe the complete evolutionary loop from initial population creation to mat-

ing/combination process to fitness evaluation and to new population formation, making

’reverse engineering’ (understanding how the algorithm learns and where the algorithm

goes well or badly) a manageable task.

• Fitness functions in GP are not only concerned with statistical error measurements, but

are more flexible in enabling the incorporation of problem-specific knowledge and issues

– see Fogel [54]. Fogel further stated that “the problem of defining the payoff function

lies at the heart of the success or failure: Inappropriate description of the performance

index lead to generating the right answer for the wrong problem.” For example, within

many machine learning approaches or classic statistical methods, the quality of solutions

is judged uniquely based on the squared error between the forecast and actual data. In

contrast, within GP, the fitness function that is used to evaluate the appropriateness of

alternative behaviour can be any definable payoff function without any restriction that

the criteria be differentiable, smooth, or continuous [54] .

• GP is a knowledge discovery tool. It is able to discover the underlying data-generation

process of a series of observations using symbolic regression to search for the right equation

(or computer program) that produces the desired output for a given input in a given search

space [30]. Symbolic regression differs from conventional regression types such as linear

and polynomial regression, where the nature of the model is specified in advance by the

user. However, a real-world problem, often quite reverse, is to decide what type of model

most appropriately fits the data. Symbolic regression is particularly suited for this type of

problem as it searches for both the function form and the appropriate numeric coefficients

of a model.

Weaknesses

The genetic programming literature often states that the GP solution exhibits many diffi-

culties in achieving robust performance in dynamic environments [99, 16, 100, 123, 120, 18].

Many researchers use the case of ‘an artificial ant’ (the Santa Fe trail) in order to draw

some empirical insights into robustness of GP solutions. Langdon and Poli [103] observed that

“GP performance is not dramatically better than random search”, that it does not “guarantee

a generalisation of the behaviour”. Kushchu [100] observed that the GP test performance

does not demonstrate robustness over minimal variations of the Santa Fe trail. When the 15

best individuals were tested on a rotated Santa Fe trail (no changes were introduced to the

trail, but its mirror image was rotated by 90 degrees), the majority of individuals showed

average, or below-average, performances. The artificial ant problem highlights the fragility of

canonical GP in dealing with environment changes: solutions produced by GP can be ‘brittle’

and sensitive even to minor changes in complex environments. The ant problem also sheds

light on characteristics of the environments that are hard for GP to deal with. To explain the

22



CHAPTER 2. Background and Related Work

performance of GP, it is necessary to consider the fitness landscape the GP sees. The fitness

landscape of the artificial ant is characterised by a large, nonstatic search space and contains

many false peaks, and many plateaus riven with deep valleys. This kind of environment bears

a striking resemblance to environments of many real-world situations.

Various literatures in the field pinpointed four features of the canonical GP model which

impede GP’s ability to generate robust solutions. They are summarised below.

1. For problems in dynamic environments, GP gradually loses its capacity for exploration,

reaching ‘premature convergence’[103] because of the loss of phenotypic diversity in the

population [73, 104, 59, 93, 137, 106, 32, 63]. The behavioural diversity preservation

algorithms is designed to improve this feature (see Section 3.3.1 and 3.4.1).

2. The conventional training approach using a single environment scenario for dynamic en-

vironment does not provide sufficient learning opportunities for GP [100]. The multiple-

scenario algorithm is designed to improve this feature (see Section 3.3.2 and 3.4.2).

3. The standard fitness evaluation method cannot assess the performance of an individual

over several different environment cases [129]. Again, the multiple-scenario algorithm is

designed to improve this feature (see Section 3.3.2 and 3.4.2 ).

4. A single ‘best-of-run’ solution model for dynamic environments is brittle, as the outcome

has to rely on the accuracy of this single model [126, 129]. The committee voting algorithm

is designed to improve this feature (see Section 3.3.3 and 3.4.3)

2.2 Related Works in Dynamic Environments

This section provides a survey of the techniques that have been proposed to make ECs suitable

for dynamic environments and also a review of the existing EC applications in finance - stock

selection in particular.

The existing techniques proposed to make ECs suitable for dynamic environments can be

classified into two broad categories. The first category is ‘adaptive techniques’, referring to

a range of algorithms which continuously track dynamic optima in a changing environment.

The second is ‘robustness techniques’, referring to a range of algorithms that search for robust

solutions to cope with changes in an environment. Figure 2.3 summarises related approaches

discussed in this section.

2.2.1 Adaptive Techniques

Adaptive techniques attempt to track a global optimum as closely as possible in a changing

environment, usually by constantly and adaptively optimising the location of the individuals in

the search space so that the changes in the environment can be monitored and the global opti-

mum tracked. These techniques make an important assumption that the kind of environments

in which an evolutionary algorithm operates have only simple dynamics which can be closely

monitored and tracked.

23



CHAPTER 2. Background and Related Work

Figure 2.3: Categories of EC Approaches in Dynamic Environments

• Population-based Approaches

These approaches employ two or more populations and attempt to spread the individuals

across all possible peaks (optimum) in the landscape in order to increase the probability

of tracking the correct global optimum. However, the population-based approaches share

important drawbacks which limit their usefulness in challenging dynamic environments.

Firstly, they are too complex to implement successfully, as users have to manipulate a large

number of parameters which are often dealt with in an ad-hoc fashion. Secondly, and more

importantly, such systems critically depend on the assumption that new ‘peaks’ or ‘hills’

are simply gradual movements of the old ones and thus can be tracked or monitored

easily. However, such assumption cannot be made on many dynamic environments where

new peaks may shift very quickly and/or occur in a distant region from old ones.

– Multi-population

One typical example is Self-organising scouts (SOS)[19, 21, 22, 20]. SOS allocates

some ‘child population’ to peak regions of the search space while spreads out ‘base

population’ in other areas. Progressively, all the peak regions should be covered by

the child populations.

This approach is to some extent similar to the multi-niches crowding design, as the

search space is divided when a peak has been found. Results from experiments on

simple and simulated problems are encouraging [19, 21, 22, 20]. However, the efficacy

of this approach when applied to more complex problems or real-world problems

remains to be explored.
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– Roaming Optimisation

The roaming technique uses an ’archive’ external population ( containing potential

optima) to perform exploitation and subpopulation to perform exploration. [111].

– Shifting balance

This technique [172] maintains the EA’s exploratory power through evolving a number

of colony populations separated from the core population. At regular intervals, the

gene pool of the core population is diversified by receiving some emigrants from the

colonies. [20] reported that this technique, when tested on a problem with frequent

but small changes, is more efficient than a simple GA.

– Multinational

The multinational was proposed by Ursem [163]. The main idea is to divide the

population into nations or subpopulations, each corresponding to a potential peak

in the fitness landscape. The subpopulations are grouped according to ‘hills and

valleys’ in the landscape: for two points in the search space, the algorithm calculates

the fitness of a number of random samples on the line between the points; a valley is

detected if the fitness in a sample point is lower than the fitness of both end points.

• Implicit or explicit memory

Memory-enhanced techniques generally use redundant representations or extra memory for

storing and retrieving good solutions at different stages of the evolution. However, efficacy

of memory techniques is very restrictive because they are only suitable for small, regular

and periodical changing environments where there are repeated occurrences of a situation

[20]. Their performance in other types of dynamic environments remains problematic

[183, 181, 22].

– Redundant representations

Early works on redundant representations were not applied in the dynamic environ-

ment. Goldberg and Smith [62] report on experiments that use diploid and domi-

nance. They employed a triallelic scheme where an allele can take on one of the three

values ‘0’, ‘recessive 1’, and ‘dominant 1’. Kanta Vekaria (1998) implemented a GA

‘selective crossover’ mechanism similar to that of Goldberg and Smith but without

diploid. It uses an extra vector, which accompanies the chromosome, to accumulate

knowledge of what happened in previous generations, and uses this memory to bias

and combine successful alleles (individual bits) during recombination onto the next

generations. Ng and Wong proposed a new diploid scheme with four possible alleles

(0 and 1, each dominant and recessive).

– Artificial immune system (AIS)

The AISs are relatively new techniques for dynamic environments. Although they

directly model immune systems, they do not offer fundamental innovations beyond
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existing techniques such as multi-population or niching and crowding. AISs have

so far been used for detecting changes, not for dealing with changes. The main

purpose of the immune system is to recognise dangerous foreign antigens (for example,

bacteria, viruses) and the body’s own cells or molecules. This particular quality of

the natural immune system has inspired many researchers to apply AIS in anomaly

detections. For example, Dasgupta [38] attempted to develop an efficient detection

algorithm that could be used to notice any changes in steady-state characteristics of

a system or a process. He assumed that the ‘self’ (that is, normal behaviour) exhibits

stable patterns when observed over a time period. Any deviation exceeding allowed

variation in the observed data is considered ‘non-self’. His algorithm was successful

in detecting the existing broken teeth in a cutting tool. Kim and Bentley [86, 87]

used AIS for network intrusion detection. They focused on the ‘dynamic clonal

selection’ approach in continuously changing network environments. Their approach

essentially consisted of three populations of detectors, namely mature, immature and

memory detectors. These detectors evolve in parallel, not only taking advantage

of the previous experience of mature individuals, but dynamically generating new

detectors whenever a new set of antigens is added into the system. The authors

concluded that their algorithm was able to deal with a real environment where self

behaviours change after a certain period and only a small subset of self antigens is

visible at one time. [146, 182] proposed an immune system-based GA (ISGA) for

dynamic environments. In their ISGA, there are two populations of individuals. The

first population consists of plasma B-cell individuals and the individuals with the best

match to the optimum (antigen) are selected and cloned. The second population is a

collection of memory B-cell individuals which were the best ones at different stages

of evolution.

• Parameter Control

These methods can be classified into three categories: deterministic, adaptive and self-

adaptive [45]. For example, many works have used various techniques to controlling pop-

ulation size during the evolution [158, 68, 61, 92, 148]. Because these techniques control

one single parameter for an evolution run and ignore possible complex interaction be-

tween parameters, these techniques were found to offer a very limited improvement on an

algorithm’s adaptive tracking ability [181].

1. Deterministic

This takes place when the value of a parameter is controlled by some deterministic

rules, i.e. a generation-based time-varying schedule, without using any feedback from

the search [113].

2. Adaptive
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This takes place when the value of a parameter is altered using some form of feedback

from the search. Usually credit assignment is used to determine the value of the

parameter [147].

3. Self-adaptive

The parameters to be adapted are parts of the the individual’s the chromosomes.

They can be regarded as extra genes encoded into the chromosome and they undergo

mutation and recombination [8, 45].

• Multiobjective Optimisation Evolutionary Algorithms (MOEAs)

MOEAs attempt to solve multiple and conflicting objectives and usually contain several

optimal objective vectors representing different trade-offs among the objectives [186].

There are two major limitations of MOEA techniques: 1) multiple objectives to be opti-

mised by the algorithm have to be conflicting. This explains why some work (e.g. [101])

was not successful: the diversity promotion objective and their original problem objective

are not conflicting but complementary; 2) it is very difficult to determine the quality of

Pareto set approximations. In single-objective optimisation, quality can be defined by

means of the objective function: the smaller (or larger) the value, the better the solution.

However, in MOEA, often it is impossible to compare two solutions as neither dominates

the other [187].

MOEA calculates an individual’s fitness on the basis of Pareto dominance [61]. Some

approaches use the dominance rank [55] and others use the dominance depth [154, 41] or

the dominance count (that is, the number of individuals dominated by a certain individual)

[187, 188]. Investigation into the use of MOEAs in dynamic environments focuses on

diversity preservation. In earlier works, fitness sharing is a popular technique adopted

by MOGA [55], NSGA [154] and NPGA [70]. More recently, Bui et al. [101] added

a diversity objective which is determined based on the Euclidean distance to solve the

standard moving peak problem. They reported that the performance differences between

the traditional GA and MO (multiobjective optimisation) approach were not significant,

especially when random immigrants were introduced during the experiments.

• Adaptive particle swarm optimisation (PSO)

PSO’s population is composed of particles which each has a velocity and a location in

the problem space. These particles converge to a global optima using memories to adjust

their positions relative to a fitness goal at every generation. PSO approaches suffer similar

shortfalls to the population-based techniques discussed in the previous section. PSOs

critically depend upon successful detection of dynamic changes in the environment, which

is difficult to achieve when the complexity of the environment increases, even by a small

degree.
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As with genetic approaches, the original PSO is designed for a static environment [85],

and thus shares similar weaknesses with its genetic counterpart when facing dynamic

environments. Carlisle and Dozier [28] made a first attempt at adapting PSO to dynamic

environments by following the route of a ‘restart’ approach. The resetting is either done

on a periodic or an ad hoc basis if the magnitude of environmental change is considered

significant. Because it is a first look at dynamic PSO, their approach was tested on

a couple of largely simplified cases and the results are inconclusive. Hu and Eberhart

[74] introduced an automatic environment-sensing technique called the ‘fixed-gBest-value’

method. (‘gBest’ refers to the population global at which the best fitness so far has been

achieved.) They believe that if the PSO cannot follow the dynamic changes, the gBest

value will be trapped into the previous optimum value and thus never change. An optimum

change is detected when the gBest value has not changed for a certain number of iterations.

Parrott and Li [130] take inspiration from the GA-based multi-national approach which

tracks multiple peaks and valleys in a dynamic environment (see previous section). The

essence of their method lies in identifying appropriate particles and then grouping them

into subpopulations. The key criteria is d - a measurement of Euclidean distance between

two points in n dimensions. The model appears to be successful in a two-dimensional,

three-peak space.

2.2.2 Robustness Techniques

Robustness is a very broad theme and it is impossible to capture all its aspects by means of

a single definition. Robustness is considered to be a “ubiquitously observed property” and a

“fundamental feature” of biological/evolvable systems [89]. Robustness is a property that allows

a system to maintain its functionality despite internal and external perturbations [89, 168].

Although the need for producing systems with robustness has recently been recognised in

the GP community, research dealing primarily with robustness is limited to only a few papers.

The definition of robustness in evolution systems varies from author to author but, in broad

terms, it can divided into two categories:

1. Robust with respect to internal changes (genotypic robustness)

• Robustness as the resistance to changes from variation operators such as crossover

and mutation[153, 152].

The authors observed that “the most outstanding evidence of pressure towards this

type of robustness is the phenomenon of code growth (or code bloat) in GP”. GP

protects the useful codes by adding introns (code that does not contribute to the

program’s fitness [153]) so that they are not likely to be affected by crossover or

mutation. The work of Piszcz [131] confirms that code growth is a requirement

for GP robustness in complex solutions as it helps the evolved individuals to seek

redundant building blocks to improve their resilience to crossover events.
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• Robustness as the ability to repair itself when subject to severe genotype damage [118].

This behaviour is reminiscent of autonomous regeneration of the pond organism hy-

dra, which can reform itself when its cells are dissociated and then re-aggregated in

a centrifuge [60].

2. Robust with respect to external changes (phenotypic robustness)

• Robustness as the generalisation ability of the programs evolved [98, 97, 15, 129, 120].

The concept of generalisation originates from connectionist or symbolic learning re-

search and is defined as “the desired successful performance of the solution when it

is applied to an environment similar to the one for which it was evolved”[100]. In the

context of evolutionary systems, the ‘ability to generalise’ is defined as “the predictive

accuracy of the learner in mapping unseen input cases to outputs with a satisfactory

degree of correction. [97]” In this respect, robustness is in line with, though opposite

to, the definition of overfitting. Overfitting happens when the computational effort

spent on obtaining a more precise fit to the sample results in an increased error in

relation to other data. A formal definition is given by [119]: “Given a hypothesis

space H, a hypothesis h ∈ H is said to overfit the training data if there exists some

alternative hypothesis h’∈ H such that h has smaller error than h’ over the training

examples, but h’ has a smaller error than h over the entire distribution of instance.”

‘Linear scaling’ proposed by [83] is one of the most popular GP generalisation tech-

nique and experiments show some positive evidence of superiority using scaled error

fitness measure over standard fitness measure for symbolic regression problems. How-

ever, recently, [34] critically examined generalisation performance of linear scaling

technique and found that it does not generalise significantly better than the standard

GP when tested on unseen data.

• Robustness as the ability to cope with non-constant noise [80, 124].

Most practical problems involve noise. Some researchers [78, 134] [80] investigated

this particular aspect of robustness when noise is added to the deterministic objective

function values. These studies found that the use of noise can increase the “likelihood

of robustness” [134]. However, these experiments do not specify the measure of

robustness used and do not clarify whether the same level of robustness is achieved

in an un-seen environment other than the traning environment. The efficacy of these

methods remains unclear.

• Robustness as the sensitivity of performance quality in the presence of external envi-

ronmental perturbations.

This form of robustness is desirable because it is the most consistent with phenotypic

robustness in nature. Although a biological system exhibits robustness in terms of

genes and structures, et cetera, from an evolutionary perspective, ultimately robust-
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ness of only one feature matters: fitness - the ability to survive and reproduce (which

in evolutionary systems means the performance quality of a solution).

[171] focused on cooperative coevolutionary algorithms, which are capable of exploit-

ing the compositional nature of learning problems involving multiple, interacting

agents. The algorithm is concerned with finding a team that performs well, but is

also robust to deviations in individual member behaviour.

In Haynes and Wainwright [67], the environment where agents are evolved changes

randomly at the end of each generation. However, the results have not been validated

in out-of-sample data, the nature and the degree of robustness of the solutions remains

uncertain.

A similar approach is taken by [120] for optimising manoeuvres in pursuer/evader

problems in which new fitness cases are generated randomly at the end of each gen-

eration during evolution. The results are compared against the method using fixed

fitness cases and it is shown that this approach reduces the brittleness of the solu-

tions. However, there is a lack of a formal method that can be used to determine

how the training and testing processes should be conducted, how fitness values are

calculated and how the robustness should be measured. This is an aspect common

to most of these experiments. In addition, this is a static problem and robustness is

relatively easy to achieve using a simple technique.

• Diversity Preservation as a robustness mechanism

This thesis considers diversity preservation as a robustness mechanism. [89] observed

that for a natural system, robustness can be enhanced “if there are multiple means to

achieve a specific function, because failure of one of them can be rescued by others”.

This mechanism encompasses diversity. Diversity, or heterogeneity, refers to the

structure and/or behaviour differences between individuals in a population, “whereby

a specific function can be attained by different means available in a population of

heterogeneous components” [91]. For example, many organisms or species adopt

diversity preservation strategies such as ‘spreading of risk’, ‘escape in time and space’

and ‘bet-hedging’ [170] in uncertain environments.

In GP literature, diversity (or ‘variety’, a term used by Koza [93]) usually refers to

genotypic diversity – the number of structurally unique individuals. Langdon [103]

argued that genotypic diversity is “a sufficient upper bound of population diversity”.

However, [102] noted that measuring diversity with only unique genotypes “fails to

consider the ancestral history of individuals, the degree of difference between non-

unique individuals and their behavioural similarities”.

Numerous techniques have been developed to maintain population diversity. These

approaches have three main research directions:

(a) the preservation of genotype diversity based on formally-defined structural dis-
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tance measures;

(b) the preservation of phenotype diversity based on the unique individual fitness in

a population;

(c) the reintroduction of genetic material in various evolutionary phases.

Genotypic diversity preservation These approaches have been comprehensively re-

viewed by [65]. The main examples are

– ‘Pygmie’ algorithm [138] maintains diversity in terms of the length of an indi-

vidual.

– Multiobjective optimisation [39] using three objectives ⟨fitness, size, diversity⟩.

The diversity is measured based on edit distance between nodes.

– A structural difference measure [84] calculates edit distance between genotypes.

– A string edit distance [17] measures between fitness-contributing program codes.

– Diversity-guided evolutionary algorithm (DGEA) [164] uses ‘distance-to-average-

point’ diversity measure flexibly during exploration and exploitation stages of the

evolution.

– Fitness sharing with a tree distance diversity measure [47, 46] calculates the

distance between every pair of individuals in a weighted arithmetic mean.

Phenotypic diversity preservation In the existing literature, phenotypic diversity is

usually measured and preserved only at fitness value level. This kind of measure is

sometimes called ‘entropy1’ [136]. High entropy means that there are many unique

fitness values in a population and there is a low level of population convergence.

Conversely, low entropy means that a population contains many individuals have the

same fitness and there is a high level of population convergence.

McKay [116] and Hutter [76] work is an exception. It applied the fitness sharing

concept [61] to test its feasibility in genetic programming. The phenotypic diversity

was measured based on the number of fitness cases solved. Additionally, Mckay used

negative correlation [108] and a root Quartic negative correlation [117] to preserve

diversity.

Re-introduction One simple approach is just to increase the mutation rate. While

using a high mutation rate can definitely increase the population diversity, it is at

the cost of effective exploitation. In the later stages of a search, a high mutation rate

tends to disrupt existing individuals that have well-coupled components. The result-

ing individuals usually have very low fitness and cannot survive at all. It is clear that

diversity incurred by a high mutation rate does not imply an effective search. Simi-

lar reasoning also applies to the partial-reinitialisation approach, in which a portion

of the converged population is replaced with randomly generated individuals. The

1Entropy is calculated for a population by first placing fitness values into classes and noting the size of each
class.
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No. objective function constraints
1 static null
2 static static
3 static var
4 var null
5 var static
6 var var

Table 2.1: T & M 6 classes of environments.1 and 2 are static environments; 3 to 6 are dynamic
environments. null : the case where the set of constraints is empty; static: no changes in time;
var : changes in time.

multi-restart approach is even worse. In this approach, when the population shows

the signal of becoming trapped in local optima, an entire new epoch is started and

the population is filled with the new random individuals [57]. This will waste all use-

ful information collected in the previous epochs. The reintroduction techniques also

have their limitations: ‘random immigrants’ and ‘hypermutation’ [56] do not perform

well in continuously changing environments and abruptly changing environments, and

‘Restart’ techniques ignore the knowledge accumulated by the population from previ-

ous learning and are therefore expensive in terms of computing resources. None of the

previously mentioned techniques are wholly satisfactory. Studies have shown [26, 9]

that genotype diversity approaches “may not be useful for capturing the dynamics

of a population” and phenotypic measures appear to have better run performance.

However, phenotype diversity techniques do not explicitly consider behavioural di-

versity of individuals, although they successfully spread individuals across different

fitness levels. In other words, by ignoring the behaviour of individuals, the diversity

in the same fitness level is not maintained. Legg [106] remarked that “while the

total population diversity was improved, the diversity among the fit individuals was

not”. Darwen and Yao [37] studied cooperation in the Iterated Prisoner’s Dilemma

problem and found that increasing behavioural diversity, not genetic diversity, can

improve cooperation and performance. Using any one technique on its own appears

not to preserve useful diversity, implying that more elaborate techniques should be

explored.

2.3 Types of Changes in Dynamic Environments

In the real world, there are many different types of environments in which a problem can be

encountered. However, categorisation of environments in the current literature is rarely dealt

with and only four works in this area have been found so far.

The earliest work is by Trojanowski and Michalewicz (T & M) [159]. They categorise envi-

ronments into 6 classes and each class is characterised by two variables, as illustrated in Table 2.1.

The first variable is ‘function landscape’ and the second variable is ‘problem constraints’.

The changes of function landscape take the following forms:
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1. random changes – the next changes of the landscape do not depend on the previous

change and the time t.

2. non-random and non-predictable changes – the next changes do depend on the

previous changes, but the dependency is too complex to predict.

3. non-random and predictable changes – the change of the landscape is deterministic.

These changes can be further divided into cyclical and non-cyclical changes.

4. continuous changes– changes are continuous in time.

5. discrete changes – changes appear in the environment from time to time and there are

periods of stagnation between them.

K & M did not define the changes of problem constraints, the second variable. Instead

an example of a manufacturing factory was given to illustrate what constraints are. In this

example, constraints were a list of tasks, number of machines, repair time, et cetera. From

this description, changes of problem constraints can be understood as objectives and resources

available for a given problem. The constraints can be constant or discrete in time.

De Jong [40] described 4 categories of changes.

1. Drifty landscapes – The landscape undergoes small changes and the algorithm is able

to track the optimum as it moves.

2. Landscapes with morphological changes – The landscape undergoes large and com-

plex changes, for example new regions of fitness emerge where previously no optima resided.

3. Cyclic changes – This is where the changes happen periodically and regularly over time.

4. Abrupt and discontinuous changes – Sudden and cataclysmic changes.

Branke [19] developed another method of categorisation building upon the previous works.

4 main criteria were used by Branke.

1. Frequency of change – How often the environment changes.

2. Severity of change – This is usually characterised by the distance from the old to the

new optimum.

3. Predictability of change – Are the changes purely random or do they follow a pattern

that could be learned?

4. Cycle length/ cycle accuracy – This defines, for cycling environments, how long it

takes until the environment returns to a previous state, and how accurately it will return

to it.
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More recently, [135] used two criteria which they believe to be the “two most prominent

features of dynamic optimisation problems”. The first criteria used is the frequency of change,

as proposed by Branke. The second criteria is new, namely the magnitude which they defined

as the relatedness of two success instances of a time-variant series or more specifically, the

genotypic distance between successive global optima. Based on the definition, this criteria is in

fact consistent with the severity of change proposed by Branke.

These works actually focused on categorisation of changes not of environments. A new

categorisation focusing on environments is developed based on previous works, Branke’s in

particular, in the next chapter.

2.4 The Stock Market as an Example of a Dynamic Envi-

ronment

Buyers: 
Individuals, 

Professionals, 
Institutions

Sellers: 
Individuals, 

Professionals, 
Institutions

Stocks
Traded

Stocks Brokers

Market Makers

Global Economic Forces: 
macro economical  and 

micro economical factors

Global Political Forces: 
policies/laws,

globalisation, wars etc.

Global Technological 
Forces: internet, 

computational powers etc.

Global Natural Forces: 
Climate changes, resources, 

natural disasters etc.

Figure 2.4: The stock market as a complex dynamic environment

The stock market is a fascinating example of a challenging dynamic environment. Figure 2.4

illustrates that the environment dynamics is influenced often simultaneously by both internal

forces (different types of market participants) and external economic, political, technological and

natural forces. These forces are ever changing and unpredictable and their interactions create the

highly dynamic nature of the stock market. For example, according to a study by Economist

[2], global economic crisis, capital mobility and IT boom have increased the importance of

worldwide factors, in contrast to local country factors, in steering stock prices. The study found

that the correlation between changes in American and European share prices has risen 100%

since mid-1990s from 0.4 to 0.8. This dramatic increase means that “movements on Wall Street

can now explain 80% of price movements in Europe”.

Another example is that the current slower economic growth in the US has had negative
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Figure 2.5: The equity markets are struggling in face of slower growth (Reproduced from [4])
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Figure 2.6: Stock Market Dynamics – S & P Index (data provided by Reuters)

impact on its equity market as illustrated in Figure 2.5 [4] . As the Baltic Dry Index, an indicator

of global trading activity, started to turn down toward the end of 2010, the US defensive stocks
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S&P 500 Volatility
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Figure 2.7: Stock Market Dynamics – S & P volatility (data provided by Reuters)
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Figure 2.8: Stock Market Dynamics – DotComs Boom and Bust (data provided by Reuters)

including utility and food businesses which have relatively high level of consumer resilience

outperformed the other businesses.
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Figure 2.9: Black Swan : May 6, 2010 S & P 500 Market (Reproduced)

S & P 500 is one of the most important and traded indices in the world. It offers a

good representation of dynamics of the US market. Figure 2.6 depicts S & P 500 index price

movements and Figure 2.7 depicts S & P 500 index daily volatility. The figures very clearly

show that the market undergoes irregular changes almost continuously. And the market often

undergoes very large changes, as highlighted in Figure 2.7, and these changes often occur rapidly

and are very difficult to detect or predict [1]. A good example is the boom and bust of DotComs

during 1999 – 2001. Figure 2.8 depicts the extent of the market landscape changes before, during

and after the boom. The rise of the e-commerce began in late 1999 and very swiftly caught

the imagination of the investors. The value of NASDAQ increased three-fold in the period of

10 months, but very quickly the bubble went bust and NASDAQ lost more than third its value

within a week. In such a volatile environment, few investors spotted the change when the bear

market started with many billions lost and life ruined [3].

Very rarely, the market undergoes extreme and sudden changes caused by highly improba-

ble/inconceivable dramatic events. These events are called the “black swans”[157]. The terrorist

attack of September 11, 2001 is a typical example. All stock trading activities were suspended

for a week in the States after the event and the market suddenly lost 10% (Dow Jones Industrial

Average) when it re-opened and it took more than 3 months to recover. Another typical and

very recent example is the May 6, 2010 volatility event as illustrated in Figure 2.9 which is

reproduced from a report of US Securities and Exchange Commission [35]. According to the

report, that afternoon, the prices of many U.S.-based equity products including indices in both
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the futures and securities markets “experienced an extraordinarily rapid decline and recovery”

suddenly plummeting 5-6% in a matter of minutes before rebounding almost as quickly.

In summary, the stock market is a very challenging dynamic environment where changes

are often large, irregular and difficult to detect or predict.

2.5 Stock Selection Strategies and Multi-factor Models

The goal of this section is to give essential background knowledge about stock investment in the

context of this thesis.

The publication of Security Analysis by Benjamin Graham and David Dodd in 1934 started

the era of modern money management. Graham and Dodd introduced the first systematic

approach to stock-valuation based on company information. In the 1970s, a quarter-century

of empirical work gave birth to two important theories of market price behaviour. The first

theory was the Efficient Market Hypothesis (EMH)[50] which argued that the market is fully

efficient and price changes follow a random walk and are thus unpredictable. The second was

the Capital Asset Pricing Model (CAPM)[141] which argued that the stock returns are only

associated with risk, in other words, higher returns imply higher risks and vice versa. By the

1990s, with the advancement of computing power and new statistical techniques for parsing

data, these two theories has now been extensively revised by a new generation of empirical

research. The empirical evidence shows that the stock market is largely inefficient and there lies

substantial investment opportunity [79]; and CAPM is replaced by Multifactor models because

stock returns are not necessarily related to risks but are also related by many other factors

including microeconomical and macroeconomical factors [33, 79]. For more than a decade and a

half, a new breed of investment strategies has emerged to exploit the market inefficiency. They

specialise in market timing or value or emerging markets or macroeconomics, etc. Grouped

together, these strategies are called hedge funds. Hedge funds have rapidly growing importance;

for example, in the UK, they now account for more than half the daily turnover of shares on

the London Stock Exchange [6].

2.5.1 Terminology

The financial terminology used in the thesis is explained in this section.

• Long positions — Stocks are brought by an investor who expects the prices of these

stocks to go up between the purchase and resale period.

• Short positions — Stocks are sold by an investor, but the investor does not own the

stocks which are borrowed from a third party, generally a broker, and he will return the

stocks at a fixed future date. The investor expects the prices of these stocks to go down

between the sale and return period.

• Long-short strategy — This is an active portfolio construction strategy that balances

long positions in high-expected-return stocks and short positions in low-expected-return
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stocks. The strategy attempts to maximise portfolio profit and reduce the market exposure

risk by exploiting long and short positions simultaneously.

• Long-short return — The main return of the portfolio derives from the return spread

between aggregate long and aggregate short positions. Because the aggregate long posi-

tions and the aggregate short positions are of approximately equal value and have equal

sensitivity to the underlying market, those portions of their returns that reflect overall

market movements cancel each other out. All that remains is the return spread.

2.5.2 Related Work in Building Factor Models

Factor models capture the impact of various stimuli on returns, expressed either as linear or

(more recently) non-linear combinations of the individual factors.

Traditionaly, financial models on the behaviour of stock returns typically use linear re-

gression, the earliest example being the Efficient Frontier, established by Markowitz [115, 114].

Building on the Markowitz framework, Sharpe [141] developed what is now known as the Capital

Asset Pricing Model (CAPM), a single factor model which specifies returns as a linear function

of only systematic risk (beta). Three-Factor model by Fama and French [51] adds two other fac-

tors to CAPM, size and book-to-markt value. Arbitrage Pricing Theory (APT), a multi-factor

model, extends CAPM and specifies returns as a linear function of various macro-economic

factors.

In contrast, a number of recent studies have suggested the existence of non-linear structures

in financial markets. Pesaran and Timmermann [66] found substantial evidence that stock re-

turns follow a non-linear regressive process on various macro-economic variables such as interest

rates and some non-linear terms such as the lagged values of the squared returns. LeBaron et

al.[105] proposed a non-linear Adaptive Belief System (ABS) to capture the essential feature

of a stock market where many different trading strategies compete and evolve. Following the

same research line, Hommes[69] using market models based on non-linear adaptive evolutionary

systems explained important stylized factors such as fat tails, clustered volatility, and long mem-

ory, of real financial series. However, discovering the optimal non-linear function in thousands

financial variables remains an extremely challenging task and automated search algorithms such

as GP can be a good candidate to undertake such a task.

Using GP to discover profitable trading models with technical rules has remained a very

active research topic since mid-90’s. These GP technical models, to some degree, are pseudo

factor models, as each technical rule could be regarded as a factor. [122] and [112] adopted a

GP approach to discover technical trading rules for the foreign exchange rates and stock market

index (S&P 500). The results obtained by their research were encouraging and their line of

research has been further explored by many researchers. For example, [42] developed a trading

system based on a broad range of indicators for FX trading. Becker & Seshadri [12] used GP

to evolve trading rules by simplifying representations used by Allen and Karjakainen for the

S&P 500 index. [110] replicated Becker & Seshadri’s work and observed that their approach
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provides better performance over buy-and-hold strategy than earlier attempts. More recent

examples include that [48] used GP to generate risk-adjusted technical trading rules in Tehran

Stock Market. [155] combined GA and GP. GA was used to optimise a weighted combination

of technical rules. A similar design was also implemented with a GP that evolved complex rules

from a pool of constituent rules and Boolean operators to combine them. [72] used GP evolved

technical trading rules to investigate whether market capitalisation (size) is a significant factor

to explain returns. [169] based on the work by [107] attempted to use GP to improve technical

rule predictions on historical Dow Jones Average (DJIA) index data.

However, the relevant studies on evolving nonlinear factor models are very few in number

and this research area remains largly unexplored. The closest example is by [13]. They used GP

to evolve linear stock selection factor models to buy and sell stocks in S&P 500 universe. They

reported that the portfolio returns were greatly enhanced using GP generated models comparing

to the traditional CAPM and the three-factor model.

Past attempts to build non-linear factor models were predominantly focused on the use of

the Support Vector Machines (SVMs).

Originally, SVM was developed to solve pattern recognition (classification) problems. How-

ever, with the introduction of Vapnik’s ε-insensitive loss function [165], SVMs have been ex-

tended to solve nonlinear regression estimation problems and have been successfully applied to

financial time-series forecasting [29, 128]. Although most of these works do not involve multi-

factor models using only price data, there are a number of exceptions. For instance, SVMs were

applied to forecast various global market index prices [31, 75] using basic macroeconomic vari-

ables as factors such as interest rates and GDP etc. These works found that SVMs outperformed

ANNs. SVMs were also applied to forecasting exchange rates [27] using technical indicators as

factors as well as stock selection [52] using a small number of accounting information as factors.

There are few existing studies on the comparison of regression SVM against EC techniques

in finance. Bankruptcy detection is one of the popular areas; Vieira et al [167] concluded that

GP achieved the best results for balanced datasets, but SVMs are more stable for unbalanced

datasets. However, another study conducted by Alfaro-Cid et al [7] found that GP achieved

very satisfactory results, improving on those obtained with the SVM using a highly unbalanced

database. Zhang et al [185] compared credit-scoring models; they observed that although GP

are better on average than SVM, the accuracy of SVM is more stable. Another area of interest

is the prediction of insolvency in non-life insurance companies, where Salcedo-Sanz et al [139]

found that SVM performed poorer than GP. The most relevant study probably is [25]. They

compared GP and SVM in optimising a linear factor trading model and concluded that SVM

produced better return with less risk than GP in predicting movements of Dow Jones Industrial

Average (DJIA) index. This thesis has not found existing comparisons work on the topic of stock

selection and portfolio optimisation. This is an important research gap and Chapter 6 attempts

to make contribution in this area by offering empirical analysis on the differences between GP
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and SVM.

2.6 Summary

Chapter 2 summarised background information of the key topics covered by this thesis. It in-

cluded a critical review of canonical GP, a survey of the state-of-art EC techniques in dynamic

environments, a review of dynamic environment categorisation, an examination of stock mar-

ket characteristics, definitions of financial terminologies and an overview of related works on

automated methods for building factor models.

The first part presented some of the unique advantages of a GP system (in its canonical

form) over other systems for solving many complex problems in dynamic environments. However,

such a system has also exhibited many difficulties evolving robust solutions as observed by many

researchers. This problem is mainly caused by four GP components spanning across the key

building blocks of a complete genetic evolution cycle. They are described as follows:

• Training – The canonical training method cannot provide a sufficient level of training to

GP in a complex, dynamic real-world environment.

• Evaluation – The canonical fitness evaluation mechanism cannot bias the search for a

robust solution that can perform in all kinds of environments.

• Solution selection – While for static problems the best solution found during the run is

typically implemented, this choice is not so clear in the setting of dynamic environments.

A single best individual in terms of fitness during one run or one environment will not

necessarily cope with different types of environments.

• Diversity – Canonical GP does not have an explicit diversity, especially phenotypic diver-

sity, preservation mechanism which prevents premature convergence in optimised explo-

ration of dynamic environments.

The chapter then investigated the past and current related EC techniques designed for

dynamic environments. These techniques were critically reviewed under two different classes,

namely ‘adaptive techniques’ and ‘robust techniques’. Because the definition of robustness has

varied considerably in prior work, an in-depth survey of many robustness definitions used in the

domain of evolutionary computation was also presented. This is the first known comprehensive

survey in this area.

From this comprehensive survey and analysis of different types of dynamic environment,

two following research gaps associated with the existing works were identified:

• The adaptive approaches typically lack robustness and are not suitable for dynamic en-

vironments characterised by large, frequent and unpredictable changes. They tend to

focus on the genotype or on cases in simple lab-controlled environments. This highlights

the need for alternative approaches which focus on enhancing robustness of solutions for

challenging dynamic environments.
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• The existing definitions of robustness are vague and cannot be used for measuring robust-

ness quantitatively.

It also described many categories of changes which could characterise dynamic environ-

ments. This highlighted not only the importance of taking into account the unique environ-

mental characteristics in designing algorithms, but also No Free Lunch theorems [173] whose

main gist is that algorithms cannot be universally good. The stock market is a very challenging

environment, characterised by large, frequent and unpredictable changes. This chapter, using

many historical real market examples, illustrated its unique characteristics.

The final part of the chapter briefly explained the historical development of stock selection

strategies and factor models as well as some terminologies. It showed that market movements are

determined by intricate interactions which can be expressed as non-linear multi-factor models

between a web of different influential market elements. Given the high-level market complexity,

building factor-models is a very difficult task and automated regression algorithms such as SMVs

have been used for this purpose. However, GP applications were found to be very limited. It

highlighted the need for comparative study in this area between evolutionary approaches and

statistical approaches i.e. GP vs SVM.

The next chapter proposes three new algorithms which evolve robust GP solutions for

real-world dynamic environments.
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New Algorithms

This chapter mainly focuses on design and implementation of the three new GP algorithms

designed specifically to improve robustness of solutions and is primarily based on our published

work [175, 177, 174, 179, 180]. The first two sections of the chapter explains our own method

of categorisation of dynamic environments and a new definition of robustness. These two parts

are indispensable for the following two reasons: 1. Different types of environmental dynamics

require different approaches that take into account the unique environmental characteristics

associated with each type and one approach cannot be suitable for all types of dynamics (there

is ‘no free lunch’); 2. The new definition of robustness provides quantitative measures which are

critical for validating new algorithms.

3.1 Categorisation of Environmental Dynamics

Categorisation of environments is important because different types of dynamics require different

approaches that take into account the unique environmental characteristics associated with each

type. As illustrated in Table 3.1, this thesis classifies dynamic environments into four types

based on the four environmental characteristics identified by the previous works, Branke [19]

and De Jong [40] in particular, reviewed in Section 2.2. The four characteristics are: frequency

of change, predictability of change, landscape morphological change and visibility of change.

In Type 1 environments, the changes take place rarely, regularly and explicitly with high

degree of predictability and the fitness peak drifts slowly and slightly from one region to an-

other nearby. Type 2 environments display higher level of dynamics than Type 1 with higher

frequency change, lower predictability and visibility, and the landscape undergoes more impor-

tant changes. Type 3 environments have an even more complex level of dynamics than Type 2.

In these environments, changes are continuous over time, highly irregular and difficult to pre-

dict. Although the fitness landscape before and after a change display some reasonable degree of

exploitable similarities, their morphologies undergo profound changes. Type 4 have the highest

level of dynamics. In these extreme environments, abrupt, unpredictable, undetectable changes

make fitness landscape transform entirely without any reference to the history. Complex real-

world dynamic environments such as stock markets may exhibit Type 2, Type 3 and Type 4

characteristics over a period of time. But Type 4 changes are extremely rare, they are so called
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‘black swans’ described in Section 2.4. This work focus on Type 2 and Type 3 environments

which are highly representative in these environments.

3.2 New Robustness Definitions

The purpose of redefining robustness is to highlight specific aspects of robustness that are

believed to be fundamental in the context of dynamic environments and to facilitate the devel-

opment of quantitative measures for robustness.

Solutions S1 and S2 are trained in an environment T and used in a previously unseen

environment V (which is different to T ).

In environment V, their performance is measured at discrete time intervals. The key terms

for determining robustness are

1. overall fitness scores

2. the standard deviation of fitness scores measured at each time interval (stability of fitness)

3. the variation in overall performance between the training environment T and the unseen

environment V (percentage rate of fitness change)

A solution S1 is defined to be more robust than a solution S2 if any of the following apply:

1. S1 and S2 have similar standard deviations, and S1 has a higher overall fitness than S2

in V.

2. S1 and S2 have a similar overall fitness, and the standard deviation of S1 in V is smaller

than the standard deviation of S2 in V.

3. S1 has smaller percentage rate of overall fitness drop from environment T to environment

V than S2.

Robustness of solutions evolved by proposed new algorithm will be evaluated in accordance

to this new definition later in the thesis.

3.3 New Algorithms

Three new GP algorithms are proposed in order to enhance robustness. The three new algo-

rithms are:

• Behavioural diversity preservation. For Type 2 dynamic environments, it enhances robust-

ness of GP solutions by means of preserving phenotypic behavioural diversity of a genetic

population through the reduction of degree of correlation of behavioural patterns among

the GP individuals.

• Multiple-scenario. For Type 3 dynamic environments, it enhances robustness of GP solu-

tions by means of training the whole population across a range of environmental scenario

dynamics and selecting individuals that perform well in multiple scenarios.
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• Committee voting. For Type 3 dynamic environments, it enhances robustness of GP

solutions by means of using a committee structure whereby a small (odd) number of

trained GP individuals offer solutions as votes, and the majority vote wins.

All of the three algorithms are substantially different to prior work in this area. This section

firstly highlights the unique features of each algorithm, including the design logic behind them,

and Section 3.4 provides a detailed explanation on their implementation.
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3.3.1 Behavioural diversity preservation

This algorithm takes its inspiration from the notion of ‘diversification’ in financial management,

which creates portfolios that are more robust to changes in the market environment. 1 The

notion of not “putting all one’s eggs in the same basket” has always been a tenet of commonsense

financial wisdom. Modern Portfolio Theory (MPT) (as developed by pioneers H. Markowitz and

W. Sharpe [142]) formalised this conventional principle. Before MPT, a naive portfolio manager

may have believed that s/he was conservatively lowering the risk profile of their portfolio by

spreading their assets over 100 shares rather than over 10 shares. MPT showed that this was not

necessarily the case. In fact, a portfolio of 10 shares made of stocks with low intercorrelations

could be much more ‘efficient’ than a portfolio of 100 narrowly-correlated stocks.

To be able to use the power of statistical concepts, MPT developed a formalised representa-

tion of financial instruments. Each instrument is regarded as a random variable, yielding returns

which follow a probability distribution. As a first approximation, all probability distributions

are assumed to be normal. Based on that representation, the ‘risk’ of every financial instrument

is represented by (a function of) the standard deviation of the distributed returns. What then

is the best way to go about selecting a portfolio of stocks? Within the framework of MPT, a

portfolio is a linear combination of financial instruments and each portfolio is itself a ‘return

variable’, yielding returns with a mean equal to the linear combination of the mean returns of

each instrument included in the portfolio, and with standard deviation (risk) depending on the

variance and covariance of the financial instruments included in the portfolio. The desirable or

‘efficient’ portfolios are portfolios endowed such that it is impossible to find another portfolio

which exhibits a higher mean return without having also a higher standard deviation (risk). By

analogy, it is proposed to observe a principle of diversification in selecting the individuals allowed

to survive and recombine in the new GP algorithm (NGP). Whereas canonical GP selects only

high fitness individuals for survival, individuals are treated as financial instruments and their

intercorrelation is looked at. The total population is then stratified into fitness subgroups. For

each subgroup, a low level of intercorrelation is constantly maintained so that the individuals

permitted to survive and recombine present behavioural diversification. This algorithm differs

from other ‘layered’ approaches (the population are classified either based on fitness or age)[71]

by inserting an additional diversity preservation mechanism which monitors intercorrelation

between individuals.

Figure 3.1 shows that three new mechanisms (highlighted in grey) are used to preserve both

fitness diversity and behavioural diversity.

• Multiple fitness segments

1Because the algorithm is inspired by the key financial notion and then later in the thesis it is evaluated in the
context of financial portfolio management, the algorithm may be misunderstood to be only suitable for specific
financial applications. It is to be stressed that the key features of the algorithm demonstrate that it is a general
algorithm and that it can be applied to any time-series related problem domain.
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new population

evaluation

Crossover/mutation

Random individual 
generator

Fitness 

segment 1

Fitness 

segment 2

…

…

Fitness 

segment n

Detection and deletion of behavioural

correlated individuals

selection

Figure 3.1: Behavioural Diversity Preservation GP

Multiple fitness segments are used to classify individuals based on their fitness value.

These segments accommodate individuals within a specified range of fitness, and the entire

range of possible fitness is spanned by the union of the fitness range of all segments. Each

segment has a lower-bound fitness threshold and upper-bound fitness threshold determined

adaptively.

This organisation of the population extends the search in the search space. It can also

be understood as a way to maintain many diversified phenotypic groups, using fitness as

an indication of an individual’s phenotypic diversity within the global population. Un-

like canonical GP, individuals on relatively unpopulated fitness segments are given an

opportunity to survive, and are allowed to mature continuously.

• Behavioural diversity measure

This measure is designed to monitor ‘behavioural diversity’ in the population. The term

‘behavioural’ instead of ‘phenotypic’ is used here because of two reasons.

– The first of course is that it emphasises the distinction of this diversity approach from

genotypic approaches (which aim to preserve GP tree structure diversity) taken by

many existing work (details see Chapter 2).

– The second is that it also emphasises its difference from existing phenotypic ap-
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proaches which typically preserve fitness score/entropy level diversity (details see

Section 2.2.2). The new algorithm aims to preserve behavioural level diversity, an

extra dimension beyond fitness. The fitness score generally indicates the survival abil-

ity. But the behavioural dimension goes deeper, it indicates the observable character-

istics or traits of an individual in a given environment. The relationship between the

fitness dimension and the behavioural dimension is one-to-many which means that

two individuals with the same fitness score can exhibit very different behavioural

traits. For example, consider two GP individuals representing two trading strategies

X and Y having the same track record of total profitability (fitness) of 10% over the

past 4 years with year 1 to year 4 profitability -20%, +10%, -20% , 40% and +3%,

+2%, 2.5% 2.5%, respectively. In this example, if one looks beyond fitness, X and Y

clearly have different phenotypic behaviour, in other words, there is a low degree of

behavioural correlation between X and Y: X is volatile with big losses and gains; in

contrast, Y is consistent with modest gains. This kind of approach is more coherent

with the definition of phenotypic behaviour in biology.

The logic behind preserving behavioural diversity is straightforward. Consider an indi-

vidual that has a behaviour (the way it reacts to the environment) that is very different

from other individuals at the same fitness level: if that individual were to be deleted, this

would decrease the total population diversity of phenotypic behaviour. Conversely, if a

set of individuals has correlated behaviour then all but one from this set can be deleted

without comprising behavioural diversity.

The behavioural diversity measure is needed to monitor constantly diversity at behavioural

level. During the evolution process, the phenotypic behaviour of each individual within the

same fitness segment is recorded along with the phenotypic behaviour of the fitness segment

it belongs to. Then measurements are taken of the degree of behavioural correlation

between the individual and its fitness segment. If the difference of behaviour pattern

between an individual and its segment is large, then it means that this individual exhibits

either largely different behaviour from other individuals, or unique behaviour which one

would strive to preserve. Individuals found to have highly correlated behaviour are chosen

for deletion from the fitness segment.

• Random individual generator

A random individual generator feeds new genetic material (in the form of individuals)

continuously into the bottom processing level . It is beneficial if this generator is made to

be unbiased such that it is able to supply a complete set of all possible low-level building

blocks, unless there is prior knowledge about the search space that should be used to bias

the generator. Of course, new building blocks may be discovered by recombination and

other genetic operations and this unbiased conditioning is not strictly necessary, however,

the inflow of random individuals relieves NGP from depending on a large population size
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to provide and preserve enough different generic material at the outset.

3.3.2 Multiple-Scenario approach

This algorithm is designed to improve GP solution robustness in Type 3 extreme environments

by using multiple scenarios in training and fitness evaluation favouring individuals that perform

well across multiple environment scenarios. During the GP runs, a well-structured training

process is particularly important (or even a prerequisite) for maintaining robustness in highly

dynamic environments.

The multiple-scenario training approach is inspired by the widespread Case-Based Learning

(CBL) in the fields of medicine, law and business, and Case-Based Reasoning (CBR) in machine

learning. The case-based methodology makes learning efficient and effective by exploiting past

experience in similar context, and by creating wide exposure to a variety of case dynamics, so

that knowledge about how to deal with various difficult and extreme environment situations can

be learnt and/or experienced during the training. The methodology also overcomes the sampling

difficulties in complex dynamic environments - through selective sampling of the environment

and avoidance of sampling excessively large samples, which is often practically unfeasible and

inefficient. In this algorithm, during the training, the GP population is simultaneously fully ex-

posed to a variety of distinctive environment scenarios, especially difficult and extreme scenarios.

There are 3 unique features in this algorithm as depicted (in grey) in Figure 3.2.

new population

consistency-adjusted mean fitness

Crossover/mutation

scenario 1 scenario 2 … scenario n

evaluation

Fitness vector (f1, f2,…fn)

Selection

Figure 3.2: Multiple-Scenario Training GP

• Construction of environment scenarios

The environment scenarios are constructed in two phases. During the first phase, the

assortment of the environment scenarios for training is determined. Those scenarios rep-

resent either classical environmental characteristics or broad environmental trends. During

the second phase, a large time-series data is broken down into a number of series of sub-

component data, according to predetermined characteristics and trends, for constructing

scenarios. These series of sub-components become the multiple scenarios for training GP
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individuals. These two phases could be achieved either by user manually or by computer

automatically. In this thesis, the scenarios are constructed manually because the relatively

small data size and small number of scenarios make the task completely manageable. Of

course, the automatic approach is preferable for better integration with the main system

and errors reduction when data is large and scenarios are complex.

• Training

Multiple-scenario training can be integrated into the GP system at two different stages.

– The set of training scenarios is integrated with the whole evolutionary process, each

individual in the population is evaluated repeatedly under the various scenario set-

tings during generational selection process. This is probably the most natural ap-

proach.

– The set of training scenarios is only applied to the individuals in the final generation,

by re-evaluating each individual in the final population several times. If one considers

the individuals in the last population as representative of the knowledge gathered by

GP, it is reasonable to simply re-evaluate individuals in the final population. This

option also has the advantage, in terms of minimising computational cost, of fewer

evaluation iterations.

• ‘Consistency-Adjusted’ mean fitness

A new measure of fitness is defined for use in dynamic environments. Since the analysis is

concerned with the performance of the GP individuals across the entire range of environ-

ment dynamics, the unit of measure shall be considered to be: the entire fitness trajectory

collected across GP exposure to a large sample of the scenarios. To begin, the mean fitness

is defined as the simple average of fitness values over all scenarios. The definition is similar

to the ‘on-line performance measure’ originally suggested by DeJong[40]. The individuals

are also measured in terms of overall performance consistency which serves as an indication

of the method’s ability to cope with large environmental changes (robustness dimension

2). Statistical variance is used to measure the effect of fitness value fluctuations. The two

measures are combined in a single formula to produce a single value which is designed

to provide an aggregate picture of an individual’s performance, where the performance

information has been collected over a representative scenario of environment dynamics.

3.3.3 Committee voting

The committee voting algorithm is designed to enhance the robustness of the GP solution

in a type 3 dynamic environment by creating a committee-based final decision-making struc-

ture which consists of ‘fit’ individuals (each trained under a different environment scenario),

this replaces the conventional best-of-run approach based on a single individual. Committee
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learning (or ensemble learning) has been adopted widely in statistical-based machine learning

methods[64, 43]. Figure 3.3 depicts the key features of the algorithms.

The advantages of robustness and the minimisation of solution risk that accrue from using

a team of solutions instead of a single model are particulary suitable for a highly dynamic

environment. The advantages that have been previously reported are:

1. Firstly, since the final decision is a combination of a number of problem solvers, one obtains

a more consistent estimate of the output. The performance of the system is more robust

as the outcome no longer depends on the accuracy of one single model, but on the outcome

of several models [77, 151].

2. Secondly, the spread or variance of the different outcomes can be used to derive a measure

of confidence, called ‘model disagreement indicator’. A small difference in behaviour gives

the users greater certainty about the decision [184].

3. Another advantage of a committee is that it enables redundancy. If the committee consists

of models that behave differently on different environmental inputs, there will be at least

one model available for a particular type of environment [44, 24].

• Committee decision making

In the proposed system, a committee makes decisions by combining the results of several

individuals generated by GP runs. The basic idea behind this approach is that GP are

population-based and produce a variety of individuals. The diversity of the individuals

generated during the evolution provides a rich resource for building committees.

The decision-making committee is composed of three or more individuals trained inde-

pendently in a set of diverse market environments. This is to maximise the chance of

phenotypic heterogeneity among the committee members. The committee normally com-

prises an odd number of individuals and the team solution for an environmental case is

achieved through the ‘simple majority voting’ mechanism. Weighted voting is not used

in this case because it is difficult to determine which team member contributes the most

to the team’s overall performance in dynamic environments in order to assign appropriate

credits for members.

3.4 Algorithm Implementation

This section describes implementation details of the new algorithms.

3.4.1 Behavioural diversity preservation GP

In this system, each individual has not only a fitness value but also an individual behaviour

vector storing its behaviour pattern. How a behaviour pattern is represented in an algorithm is

domain specific. But in general an application domain can be classified as non-time dependent

(e.g. artificial ant problem, block-stacking problem given by Koza [93]) or time-dependent (e.g.

financial time series problem).
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• For non-time dependent problems, a large set of training example cases representing a

variety of possible problem configurations is usually provided to evaluate fitness of indi-

viduals. The behaviour pattern for an individual I, in this context, represents a set of

performances recorded for each of the training cases.

Let C be a vector containing a set of training cases and C = {c1 . . . , cn} where cn

is a training case. Let O(I) be the vector of performance of I across C and O(I) =

{pc1(I), . . . , pcn(I)} where pcn(I) is the performance of I over a test case cn . O(I) shall

be called the individual behaviour vector.

• For time series problems where the training data are measured typically at successive times

spaced at uniform time intervals, an individual is trained over a time period. The behaviour

pattern for an individual I, in this context, represents a set of historical performance

recorded over a time period.

Let O(I) be the vector of historical behaviour of an individual I during the whole training

time period and ptn(I) be the behaviour of an individual at a particular time tn. Then,

O(I) = {p1(I), ..., ptn(I)}. O(I) shall be called the individual behaviour vector.

At the beginning of each evolutionary selection cycle, after the initial population fitness is

calculated, individuals are grouped according to their fitness value into a number of segments.

Let Fmax, Fmin be the maximum and minimum fitness values for a population. Segments

{(Fmin, Fmin + d), (Fmin + d + 1, Fmin + 2 ∗ d), ..., (Fmin + n ∗ d + 1, Fmax)} are collections of

fitness intervals of equal length with defined lower and upper bounds. In a fitness segment S,

there are n individuals IS1 ...ISn each with a behaviour vector.

Behavioural diversity in each of the fitness segments can be determined by measuring the

correlation of the behaviour vectors either between an individual and every other individuals

in its segment or between an individual and its segment. The major advantage of the second

method is the computational cost (O(n) rather than O(n2)). The segment behaviour vector

can be defined as a vector of average mean performance output of all individuals in a fitness

segment S over a time period ( for time series problems) or over a number of cases (for non-time

dependent problems) ti.

If the difference of behaviour pattern between an individual and other individuals or its

segment is large, then it means that this individual exhibits unique or largely different be-

haviour from other individuals. The difference is measured based on the Spearman correlation

test between two individuals Ix and Ix. The Spearman correlation measure simply ranks the

two variables, and makes no assumption about the distribution of the values. The Spearman

correlation coefficient ρ(O(Ix), O(Iy)) is computed as follows:

1−
6

N∑
i=1

d2i

N3 −N
(3.1)
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where N is the numbers of pairs , and di is the distance between (i) the rank of performance

pi(Ix) (compared with all other pj(Ix), j ̸= i) in the individual behaviour vector O(Ix) and

(ii) the rank of pi(Iy) (compared with all the other pi(Iy), j ̸= i) in another behaviour vector

O(Iy). The degree of correlation returned by this measure varies from −1.0 representing negative

correlation, through 0.0 indicating no correlation, to 1.0 representing positive correlation. As

an example, consider three individuals (i.e. trading strategies) X, Y and Z in a segment with

behaviour vectors as follows:

O(IX) = (−20%,+10%,−20%,+40%)

O(IY ) = (+3%,+2%,+2.5%,+2.5%)

O(IZ) = (−3%,−2%,+6%,+0.5%)

Then the segment behaviour vector S would be

S = (−6.67%,+3.33%,−3.83%,+14.33%)

And the behavioural differences between the segment vector S and each of O(IX), O(IY ),

and O(IZ) is given by the Spearman correlation coefficient as:

ρ(S,O(IX)) = 0.9

ρ(S,O(IY )) = −0.5

ρ(S,O(IZ)) = 0.4

From the above rank correlation coefficients, it may be deduced that individual Y exhibits

unique or largely different behaviour from other individuals.

If a segment contains a set of individuals that have correlated or similar behaviour through-

out the run, the behaviour diversity of the segment would be compromised without deleting in-

dividuals from this set. Conversely, if individuals are kept, whose reactions to the environment

are very different from other individuals, the diversity level of the segment can be maintained.

Therefore, there is firstly a check for the correlation coefficient value ρ of each individual in

each segment and then individuals with high ρ (higher than a predefined correlation threshold,

which has been be set at 0.67) are deleted. Additionally, in the case of domination of one

or two particular fitness segment(s)- those where the number of individuals contained in the

segment are higher than the average (defined as P/s where P is the total population size and

s the number of segments)- not only shall those individuals with a high correlation coefficient

be deleted, but also surplus individuals in order of decreasing correlation. In this way, the al-

gorithm encourages the creation of individuals at all fitness levels throughout the evolutionary

cycle and also preserves diversity at the global population level. After crossover and mutation,

randomly generated individuals are inserted into the population in order to keep the population

size constant.

3.4.2 Multiple-scenario GP

The investigation is concerned with not only the performance or fitness of the GP-evolved

solutions, but also the performance consistency of the GP-evolved solutions across a range of

environment dynamics. For example, in a financial scenario where market prices are rising (‘bull
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market’), a scenario where market prices are falling (‘bear market’) and a scenario where market

prices are fluctuating with large amplitude (‘volatile market’).

The training data is therefore considered to be a set of fitness cases — a vector of envi-

ronments — representing a possible range of different environments and then adjust the fitness

with its perceived volatility to obtain an whole picture of an individual’s performance .

There are three ways in which the GP population can be exposed to these scenarios:

1. ‘Standard GP’ (SGP): use the entire vector S, treated as a single unit, throughout all

generations;

2. ‘Multiple-scenario Evaluation in the Last Generation’ (MELG): use a variant of the three-

dataset methodology [129, 58], where the entire vector S (treated as a single unit) is used

for n− 1 generations, and in the final generation individuals are tested against a subset of

environments {si} drawn from S. The ‘best-of-run’ individual used in the validation on

set V is that which has, in the final generation, the highest ‘Consistency-Adjusted Fitness’

(CAF)(see below);

3. ‘Multiple-scenario Evolution’ (MEVO): in each generation, use a subset of environments

{si} drawn from S, and ascribe to each individual a CAF (see below). Evolution proceeds

as normal on the basis of this adjusted fitness measure.

Consistency-adjusted fitness

S has previously been introduced as the training environments vector and sn as the nth possible

scenario; hence S = {s1 . . . , sn}. Now let M = {m1 . . .mp};mj ∈ S be a subset of S that is

used for fitness evaluation.

Let Ii be an individual in the population, and f
mj

Ii
be the fitness of individual Ii when

evaluated on scenario mj . Then FIi is the ‘fitness vector’ of Ii when evaluated on a subset of

scenarios, given by FIi = {fm1

Ii
, . . . , f

mp

Ii
}.

Standard deviation is used to calculate the consistency of the fitness (performance) of the

individual across this range of scenarios:

σIi =

√√√√1

p

p∑
j=1

(f
mj

Ii
− FIi)

2 (3.2)

where: FIi is the mean of FIi , given by 1
p

∑p
j=1 f

mj

Ii
. The ‘Consistency-Adjusted Fitness’ (CaF )

of an individual is now defined as the mean fitness divided by volatility:

CaFIi =
FIi

σIi

(3.3)

MELG

For MELG a variation of the three-dataset methodology is used, as outlined in [129, 58]. In

this version of the methodology, the training set is used to evaluate the fitnesses of individuals
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in n − 1 generations; elitism ensures that the best-of-generation individuals survive to the last

generation, and the individuals in the last (nth) generation are tested against a different in-

sample volatility set ; a best-of-run individual is selected and its quality is assessed using yet

another, different, out-of-sample validation set.

Note that a possible drawback of this methodology is that, where data samples are limited,

either the training set or the out-of-sample validation set must be smaller than it would be in

a two-dataset methodology. However, in this proposed variation of the methodology, the in-

sample volatility set is a vector of subsets of the initial training set. The fitness vector was also

chosen so as to be set at FIi = {fm0

Ii
, fm1

Ii
, . . . , f

mp

Ii
}, where fm0

Ii
is the fitness of the individual

previously calculated in the n− 1th generation — thus, the fitness vector contains information

about fitness for the whole training set treated as a single unit, as well as about fitness relating

to each of the scenarios.

The selected methodology permits a direct comparison with SGP, since it is known that

both SGP and MELG have been given identical training data — what is different is the way in

which that data is presented to the population.

MEVO

The MEVO algorithm differs from MELG in that it uses a two-dataset method: the in-sample

volatility set used in MELG is used not only in the final generation, but in every generation.

The second dataset is therefore the out-of-sample validation set V .

Thus, evolutionary selection is based on the consistency-adjusted fitness CaFIi , which is

calculated from FIi = {fm1

In
, . . . , fmn

In
} (see above). FIi can be thought of as an ‘intermediate’

fitness vector for each individual, and V aFIi is the ‘real’ fitness of an individual. Note that

MEVO is not exposed to the entire training set (fm0

In
); it is only exposed to the extreme scenarios.

One might think that MEVO would thus be put at a disadvantage, because it does not have

access to as much information as MELG or SGP, but in early trials it was discovered that using

the entire training set as another scenario led to poor results.

3.4.3 Committee voting GP

A committee C is composed of a number of members (I1 . . . , In) which are evolved by entirely

separate GP evolutions using different training data to obtain widely-differing behaviour in the

committee; hence C = {I1 . . . , In}. In a new environment, C generates an output vector o with

o = {oI1 . . . , oIn} where oIn represents the output generated by each member in the C. Then

o needs to be combined to obtain a single output as a final solution O for the algorithm. This

can be expressed as O = f(o) where f is a combination function.

This algorithm uses a simple f function because its essential novelty is using a committee

not a novel combination approach which is of great focus for ensemble methods research for

machine learning [43] and is not in the scope of this thesis.

Depending upon the types of application in real-world, oIn may be required to generate

either (a) numerical value(s)(e.g. a temperature prediction; a stock price prediction or a set of
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parameters values for architecture) or (a) choice(s) among many (e.g. buy or sell signals for

trading systems or fraud detection or a set of robotic instructions).

In the first case, if oIn ∈ ℜ, then f is a simple average function:

O =
1

n

n∑
i=1

oIn (3.4)

In the second case, the f is a simple majority voting function; more precisely, the final

solution is accepted if it is voted for by more than the half of the members of C.

Because this thesis applies the algorithm in a financial trading context involving either

buying or selling stocks, the simple majority voting function is used in the implementation and

more details are explained in Section 5.3. It does not exclude the usage of a simple average

function in other applications.

3.5 Summary

This chapter has described the key features and implementation details of the three new algo-

rithms designed to enhance robustness of solutions evolved by GP.

A new categorisation method of dynamic environments developed by this work was pre-

sented at the beginning of the chapter. The new categorisation aimed to underline key character-

istics which could be associated with different types of environments and to facilitate algorithm

design and evaluation, which needed to take into consideration these characteristics. In accor-

dance with four characteristics of changes, such as frequency, predictability, morphology and

visibility, dynamic environments were divided into categories Type 1, Type 2, Type 3 and Type

4. Type 2 and Type 3 environments are characterised by frequent, unpredictable and large

changes and are extremely common in real world. The novel algorithms presented in this work

were specifically designed for Type 2 and Type 3 environments.

The first algorithm, ‘behavioural diversity preservation’, is a novel diversity preservation

technique for use in a Type 2 dynamic environment. The algorithm evolves more robust solu-

tions by preserving population phenotypic diversity through the reduction of their behavioural

intercorrelation and the promotion of individuals with unique behaviour.

The second algorithm, ‘multiple-scenario training’, is a novel population training and eval-

uation technique for use in Type 3 dynamic environment. The algorithm evolves more robust

solutions by training a population across a set of preconstructed environment scenarios simulta-

neously and by using a ‘consistency-adjusted’ fitness measure to favour individuals performing

well across the entire range of environment scenarios.

The third algorithm, ‘committee voting’, is a novel ’final solution’ selection technique for

use in Type 3 dynamic environment. The algorithm enhances robustness by breaking away

from ‘best-of-run’ tradition, creating a solution based on a majority-voting committee structure

consisting of individuals evolved in a range of diverse environmental dynamics.

The next chapter describes the case study for robustness evaluation of these new algorithms.

58



Chapter 4

Case Study - a long-short hedge fund in the Malaysia

equity market

In the previous chapter, a detailed description of new algorithms was provided. In order to

evaluate the robustness performance of these techniques, an appropriate, challenging and inter-

esting real-world validation environment is needed in which to apply them. In this chapter, a

real-world case study environment is introduced - a Malaysian equity market, a description of

a simulated investment strategy system powered by GP is given and the experimental method

and detailed settings for performance evaluation are clarified.

4.1 Malaysian Equity Market

Emerging stock markets have for many years attracted market participation due to their return

potential and higher return predictability, than developed markets. Malaysia is one of the biggest

emerging economies in east Asia and its stock market, the Kuala Lumpur Stock Exchange

(KLSE), was at various times the most active exchange in the world, with trading volume

exceeding even that of the New York Stock Exchange (NYSE). The Kuala Lumpur Composite

Index (KLCI) is the leading stock market indicator.

As well as possessing the many environmental characteristics, discussed in Section 2.4,

the Malaysian stock market has high volatility with continuous irregular changes and a high

frequency of large morphological changes. This is in line with the overall patterns exhibited

by emerging markets with Type 2 and often Type 3 environments dominating at different time

periods. These characteristics are easy to detect by inspection of Figure 4.1 showing KLCI index

movements during the 1996 to 2005 period.

The environment was particularly volatile and uncertain from mid-1997 to mid-1999, with

sharp falls and rises. This reflected the direct impact of the east Asian financial crisis, as the

economy and the confidence of the investor were badly shaken. During this period, it was a Type

3 environment. It can also be observed that there were many large changes which generated

the notable environmental morphological shifts. These changes were influenced by important

domestic and international political and economic events (marked as the circles in the graph).

The domestic events included the capital control measures implemented by the government in
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03/12/93 1018.73 1275.32 1018.73 1275.32 0 1275.32

03/01/94 1278.61 1332.04 967.92 1106.99 0 1106.99

02/02/94 1114.32 1158.13 1065.01 1125.63 0 1125.63

01/03/94 1124.96 1125.63 936.8 952.72 0 952.72

01/04/94 954.49 1067.75 920.28 1054.5 0 1054.5

03/05/94 1054.13 1054.13 983.45 993.73 0 993.73
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Figure 4.1: Malaysia Stock Market Environment

September 1998 that set off the market recovery, and the cooling down of the property bubble at

the beginning of 2000 that marked a period of market down-turn. International events included

the 1997-1998 Asian financial crisis, which triggered a long period of high volatility, and the

11th September 2001 tragedy that suddenly but briefly interrupted the market recovery and

stabilisation process.

4.2 Hedge Fund Simulation and GP system

In this thesis, a long-short hedge fund is simulated and applied to the Malaysian stock market,

with the objective of generating a return entirely from the stock selection model provided by a

GP system.

The hedge fund simulation adopted by this work consists of three steps:

1. Identification of stock price related factors for inclusion in the stock selection model.

2. Development of portfolio investment simulator.

3. Development of GP stock selection system.

4.2.1 Factor Selection

The choice of factors is influenced by the work of Achour et al. [5]. Their work is probably

the most comprehensive analysis so far concerning firm attributes for investment in emerging

markets (including Malaysia). Factors are classified into three groups: historical accounting

characteristics (fundamental factors); past returns (technical factors) and size (size factors).

Each of the factors is detailed in Table 4.1
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CHAPTER 4. Case Study - a long-short hedge fund in the Malaysia equity market

4.2.2 Portfolio Investment Simulator

The portfolio simulator simulates the portfolio investment strategy adopted by the hedge fund.

A key characteristic of the strategy is market neutrality, which is implemented as follows:

• The portfolio is dollar-neutral, which means it maintains equal dollar amounts of long and

short investment to achieve a balanced long/short exposure. For convenience, the global

portfolio can be understood to consist of a long sub-portfolio and a short sub-portfolio,

equally weighted.

• The portfolio is sector-neutral, which means it maintains investment balance across the

four main market sectors (financial, retail, property and manufacturing) and within each

sector; the portfolio remains evenly divided between stocks. Being sector-neutral, the

portfolio attempts to offset the risk of sector/industry-wide volatility.

• Before the global portfolio is constructed, the stocks are grouped into market sectors and

within each sector all stocks are ranked according to expected return, which indicates the

attractiveness of the stock. Each sector of stocks is then divided into top stocks, middle

stocks and bottom stocks. The top stocks, which have the highest rankings, are assigned

to the ‘long’ portfolio. The bottom stocks have the lowest rankings and are assigned to

the ‘short’ portfolio.

The portfolio investment takes a monthly trading approach (as opposed to high-frequency

trading strategy) to minimise transaction costs and taxes. Stocks in the long-short portfolio

are subject to a monthly investment review. At the end of each month, all of the positions

held in the portfolio are closed and the profit or loss of the portfolio during the month is

calculated. Although closing all the positions at the end of each month is not a real hedge

fund trading practice, it facilitates accounting during programming. This leads to a slightly

conservative estimate of GP performance as the costs of closing the positions represent a very

small percentage indeed. At the end of each year, the Sharpe ratio is calculated.

The profits of the overall fund portfolio are derived from the performance spread between

the stocks held long and the stocks sold short 1. These profits are in addition to the interest

received on proceeds of the short sales as the stock borrowed does not need to be returned until

a later date.

4.2.3 GP System

Selection of the stocks which form the long-short portfolio for the investment simulator is entirely

guided by the GP system. This is implemented by coupling the investment simulator and the

GP, as illustrated in Figure 4.2. The coupling between the two systems is the fitness function:

the investment simulator is called each time the GP system needs to determine the fitness of

an individual. The solution model evolved by the GP is a non-linear combination (equation) of

stock return factors, described in the previous section.

1CFDs (Contracts for Differences) are used instead of conventional shares to trade on stocks.
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Figure 4.2: Validation System Design: GP + Investment Simulator

The GP process comprises the following steps:

1. Randomly generate an initial population of stock return models. Each GP individual

is a nonlinear mathematical equation composed of the factors described in the previous

section, a range of arithmetic functions and real value constants. The GP-evolved equation

generates a quantitative measure for the investment simulator to rank and select the stocks.

2. Calculate the fitness measure of each individual.

(a) Iteratively perform the following sub-steps for each simulated sub-period time (e.g.

month by month) until the end of the simulated investment period:

i. For each stock in the investment universe, the Investment Simulator retrieves

appropriate variables of the nonlinear function, i.e. monthly factors and price

data from a stock information database (see data section), and then calculates

the equation. The result of the equation is a quantitative measure of the attrac-

tiveness of a stock.

ii. The investment simulator then constructs the portfolio, sells and buys the stocks

selected and also computes the overall profit and loss (P & L) of the investment

during the trading sub-period.

(b) Return the computed Sharpe Ratio across all sub-periods as the fitness measure.

3. Use the fitness measures to select models from the population to create new individuals

for the population by applying reproduction, crossover and mutation.
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CHAPTER 4. Case Study - a long-short hedge fund in the Malaysia equity market

4. Repeat until the termination criterion is satisfied.

4.3 Data

Data for the universe of stocks as well as benchmark returns are sourced entirely from the

Reuters 3000Xtra database system. The relevant investment universe focuses on the companies

listed on the Kuala Lumpur Composite Index, which is the main index for the Malaysian stock

market and is comprised of 100 companies in total. The universe actually contains 36 company

stocks, and that is solely because of limited data availability from the Reuters system.

For every stock in the universe, data consists of the monthly closing stock prices, expressed

in US dollars as given by Reuters, and monthly data for 19 factors. Monthly rather than daily

data were chosen to avoid the potential bias associated with microstructural issues, non-trading

and the problem of thin trading 2, all of which are often associated with most emerging markets.

Data span from the period of 31st July 1997 to 31st December 2004.

4.4 Experiment Method

This section gives a description of the experimental conditions used to evaluate the proposed

techniques. These conditions have been applied to all experiments conducted in this thesis and

are described below:

• The simulation of a long-short equity fund in a Malaysian equity market is used as a

dynamic environment case study for all experiments.

• Robustness of the solutions/individuals evolved by GP algorithms is evaluated in accor-

dance with the robustness definition described in Section 3.2. Therefore, there are 3

measures.

1. fitness (F ) which is calculated depending on the different methods designed for each

algorithm as described in Section 3.4 and the next chapter.

2. standard deviation of fitness (σ) measured at each time interval unit.

3. percentage of decrease in fitness between training and validation (c)

Robustness of individuals evolved by the new algorithms are compared against those

evolved by a canonical GP algorithm. In order to put the comparison in a real world

context, the results are also benchmarked against the traditional investment strategies

often used by portfolio managers (e.g. buy and hold strategy (index) or technical trading

strategies).

An individual (I1) is more robustness than another individual (I2), if:

1. F (I1) > F (I2) when σ(I1) ≈ σ(I2), or,

2“A condition in which there is little trading activity in a market because of a lack of buy or sell orders to
drive up the volume. Thin trading usually occurs around holidays and sometimes in the doldrums of August.
Thin trading conditions make it difficult for large buyers or sellers to execute orders because their trading activity
may move prices.” [49]
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Population size (N ) 1000

Method of generation Ramped half and half

Function set {+, -, *, /, Exp}
Terminal set 18 firm-specific factors

Selection scheme Fitness proportionate selection

Criterion of fitness Monthly Sharpe ratio

Number of trees generated by elitism 10 (1%)

Number of trees generated by crossover 950 (95%)

Number of trees generated by mutation 40 (4%))

Termination criterion 100-generation evolution

Maximum depth of initial generation 6

Table 4.2: GP Parameter Settings

2. σ(I1) < σ(I2) when F (I1) ≈ F (I2), or,

3. c(I1) < c(I2)

• The following investment simulator parameters are used across all experiments.

– The stock universe is grouped into 4 main market sectors.

– At all times, 12 long positions and 12 short positions were maintained, thus there are

in total 24 stocks in the portfolio and each counts for approximately 4% of the total

portfolio value.

– According to the ranking, the top 3 stocks in each sector became the top fractile (for

long positions) and the bottom 3 became the bottom fractile (for short positions).

– In accordance with common industry practice, there is an assumption of 20% no-

tional trading requirement (margin), 0.25% trading commission (trading cost) and

5% financing rate.

– The initial investment capital was set as US$100M to keep the size of the fund

relatively small and flexible enough to implement the investment strategy.

• The comparison of the new techniques is conducted across 25 runs, which is the chosen

sample size. A larger sample size (more runs) would provide slightly more precision in the

comparisons, but the trade-off would be the extensive use of computational resources. A

small sample size, on the other hand, would provide less precision. Hence the choice of 25

was made because it provides a reasonable sample size from which a fair comparison can

be made, and also saves on computational resources.

• For all 25 independent runs, the same set of seeds (for the random number generator)

is used for each of the techniques being tested, under the assumption that the initial

population of each GP run will have a significant effect on the population.
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• To make this a strict comparison, all GP operators and parameters were kept constant. To

be consistent, all experiments and analysis in this work were conducted using these con-

ditions, which represent one variation of the many different forms of GP. The parameters

listed in Table 4.2 were used.

• ECJ3 GP package is used to implement all the GP systems including standard GP and

three new GP algorithms. The parameters chosen for the experiments are default settings

for ECJ environment that are widely adopted by the research community.

4.5 Summary

This chapter presented the Malaysian stock market as the chosen case-study environment for

evaluating the proposed techniques. It is a challenging environment for GP as it has relatively

high volatility and frequently undergoes large changes.

This chapter also described the design of the long-short hedge fund simulation system.

The system comprises an investment simulator coupled with a GP system. The GP system

evolves non-linear factor equations that guide the ranking process performed by the investment

simulator during the stock selection process to form a long-short portfolio.

Finally, this chapter also clarified a set of experimental conditions used for evaluations of

the algorithms. These conditions include robustness measures in the context of the financial

application, fitness measure, investment simulator parameter settings, GP parameter settings

and number of GP runs.

The next chapter evaluates the three proposed algorithms (namely a behavioural diversity

preservation GP, a multiple-scenario GP and a committee voting GP) in terms of robustness

performance, and compares them with the canonical GP approach.

3A Java-based evolutionary computation programming environment developed at George Mason University’s
ECLab Evolutionary Computation Laboratory.
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Chapter 5

Evaluation Results

In the previous chapter there is a description of our dynamic environment case study for ro-

bustness evaluation of the proposed technique. In this chapter an evaluation is conducted of the

‘multiple-scenario’ approach, the ‘committee voting’ approach and the ‘behavioural diversity

preservation’ approach. This work has been published in [175, 177, 174, 179]

In order to verify the hypothesis of this thesis, the three new GP approaches are empirically

evaluated by comparing their performance, robustness in particular, with that of the canonical

GP on a real-world application problem: stock selection in long-short hedge funds in an emerging

market. The results of experiments should determine:

• the efficacy of the new system — that is to say, to what extent it improves performance

(fitness) in general, compared with a standard GP system;

• the robustness behaviour of an individual chromosome obtained by such a system, com-

pared with that obtained from a standard GP system.

This chapter, for each algorithm, firstly specifies the experiment settings (i.e. experiment

method, key research questions and data) and then offer detailed discussion and analysis on

the experiment results.

5.1 Behavioural Diversity Preservation GP

5.1.1 Experiment Settings

The motivation for this experiment is to validate whether the behavioural diversity preservation

GP can be used in a continuous-learning context [42] which is particularly suitable in a Type

2 environment. Continuous learning in this context refers to retraining individuals whenever

the market environment changes and a new batch of training data is available. The previously

trained population is retained so that it can be retrained on this new data. Old data is not used

for retraining.

Following a shift in economic context it will be necessary to continue to use the previously

trained ‘best’ individual while new data is being accumulated for retraining — the interest is in

the behaviour of this previously-trained ‘best’ solution, and how well it performs in the context

of a new economic environment. When sufficient new data has been accumulated for retraining,
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CHAPTER 5. Evaluation Results

it is required that the system should retrain effectively on the new data — the expectation is that

shifts in context will not normally be excessive in a Type 2 environment and therefore retraining

should start from the previously trained population (rather than from a random population)

since the system is then less likely to converge on a local optimum, especially when there are few

data points available for the new environment [133]. Initial training will use an ‘in-sample’ data

set; subsequent retraining will be based on ‘out-of-sample’ data in the context of the original

training.

Experiments were performed to answer the following three research questions:

1. does the new technique really improve population diversity when compared with a standard

GP system, and how does this affect fitness?

2. when retraining on data that comes from a different economic context, how quickly, and

how well, does the diverse population adapt to a new environment?

3. are trained individuals from the new system more robust when exposed to a new economic

environment?

Three new experiments were run, presented below. In each case, a standard GP system (SGP)

was compared with the new GP system (NGP). The training data and validation data was in

all cases identical for both SGP and NGP.

The fitness f for an individual is given by Equation 5.1.

f =
1

1 + |1.5− S|
where S =

1

n

n∑
i=1

xi −RFRi

σi
(5.1)

In Equation 5.1, S is the average Sharpe Ratio over the training period (comprising n sub-

periods), xi is the monthly ROI over the sub-period i, σi is the standard deviation of monthly

ROIs over the sub-period i, and RFRi is the average monthly Risk Free Rate for sub-period

i. RFRi was set to 0.003 for all i (equivalent to 3.6% per annum). Fund managers often set

a target Sharpe Ratio, as shall these experiments — the target set is 1.5 1, and the absolute

difference between the measured Sharpe Ratio and the target is then normalised to provide a

fitness value that varies between 0 and 1.

In-sample population dynamics (Experiment 1)

The aim of Experiment 1 was to see whether NGP improved diversity, and what effect it had on

fitness. Both SGP and NGP were trained separately using 41 months of data for 24 Malaysian

stocks (from 31/7/97 to 31/12/2000). The following measurements were made for each genera-

tion:

1. the fitness of the best chromosome, the fitness of the worst chromosome, the average fitness

across all chromosomes, and the standard deviation of all fitnesses;

1Achieving Sharpe ratio of 1.5 is considered as an industry excellence by the fund managers for a long-short
hedge fund. For this reason the GP fitness function adopted this industry benchmark as the target.
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CHAPTER 5. Evaluation Results

2. the distribution of chromosomes in the segment vector in terms of (i) fitness and (ii)

phenotypic behaviour.

The average value from 25 runs of each measurement was plotted for each generation.

Retraining population dynamics (Experiment 2)

The aim of Experiment 2 was to see how well the population as a whole adapted to a new

environment; in each case it started with a population that had previously been trained on the

41 months of training data (Experiment 1 above) and then retrained SGP and NGP separately

on new training data that reflected a different economic climate. Three sets of new training

data were used and the population behaviour for each was investigated:

Period a: 31/12/2000 — 31/4/2002 (16 months).

Period b: 31/4/2002 — 31/1/2003 (9 months)

Period c: 31/1/2003 — 31/12/2003 (11 months)

As with Experiment 1, this experiment was repeated 25 times and for each generation the best,

average and worst fitnesses, and standard deviation, were measured.

Out-of-sample individual behaviour (Experiment 3)

The aim of Experiment 3 was to investigate whether improved population dynamics has re-

sulted in improved robustness of behaviour of individuals in a previously unseen context, using

the three robustness measures in both a training-validation context and a continuous-learning

context. The following three sets of data were used for this experiment. Period a: 31/07/1997

to 31/12/2000; Period b: 01/01/2001 to 31/06/2002; Period c: 01/07/2002 to 31/12/2003.

1. Training-validation. Using the best individual trained using Period a + Period b, a

validation test was run on Period c. First, the best trained individual from the SGP

system was used, and then the best trained individual from the NGP system.

2. Continuous-learning. For both SGP and NGP separately, starting with the previously

trained population from Period a, then the population was retrained using Period b. The

best individual was obtained and a validation test was run on Period c.

In all cases (for both SGP and NGP) the monthly ROI and monthly ROI standard deviation

were measured and recorded, the Sharpe Ratio for the entire test period calculated, and the

experiments repeated 25 times.

5.1.2 Discussion of Results

In-sample population dynamics

The first research question posed was “Does the new technique really improve population diversity

when compared with a standard GP system, and how does this affect fitness?”. Fig. 5.1 illustrates
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CHAPTER 5. Evaluation Results

Figure 5.1: In-sample training (population dynamics). The average value from 25 runs of each
measurement was plotted for each generation ; the best and worst runs are indicated by error
bars.

how the fitness of individuals in the population evolved over 100 generations while being trained

on the base data of 41 months. Whilst the mean fitness difference between SGP and NGP

remains negligible as the population evolves, the difference in standard deviation of fitnesses

clearly increases as the population evolves, with NGP developing a substantially greater diversity

of fitness. It is interesting to note a corollary of these two statements, which is that the fitness of

the best individual is much greater for the NGP system — this in itself is a compelling reason to

use diversity-preserving techniques, regardless of other possible benefits in terms of adaptability.

Fig. 5.2 gives the distribution of individuals across the fitness segments (κ = 5) at three

points during evolution (after 0, 50 and 100 generations), indicating a slight bi-modal char-

acteristic for both SGP and NGP. Of more importance from the point of view of ‘phenotypic

behavioural’ fitness, Fig. 5.3 investigates the correlation coefficient of individuals in the highest

fitness segment (the segment from which the final solution(s) will be drawn). Fig. 5.3 illustrates

how phenotypic behavioural diversity increases as the population evolves — to help visualise

this behaviour, on the left is a graph of correlations from a single (typical) run of NGP show-

ing the mean, best and worst correlations of individual behaviour vectors together with the

segment behaviour vector. To quantify this behaviour, on the right is a graph comparing the

mean correlations with error bars for 25 runs for NGP and SGP.2 The results indicate that

NGP provides a substantial improvement over SGP in diversity of phenotypic behaviour of the

highest-fitness segment in the later generations. It takes several generations for the diversity-

2For SGP, population snapshots were saved for generations 0, 20, 50, 80 and 100, and those individuals
identified which would have been in the highest fitness segment if NGP were being run; then each such individual
was used in the investment simulator and its individual behaviour vector obtained; finally, a segment behaviour
vector was calculated and the correlations measured (repeated for each “snapshot”).
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Figure 5.2: Phenotypic diversity for SGP and NGP. The average value from 25 runs of each
measurement was plotted for each generation ; the best and worst runs are indicated by error
bars.

Figure 5.3: Evolution of behavioural phenotypic diversity for SGP and NGP. The average value
from 25 runs of each measurement was plotted for each generation ; the best and worst runs are
indicated by error bars.
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Figure 5.4: Retraining period-a population dynamics. The average value from 25 runs of each
measurement was plotted for each generation ; the best and worst runs are indicated by error
bars.

preservation techniques to affect the highest-fitness segment — this explains why the graph on

the right of Fig. 5.3 tracks SGP during the first 20 generations. Student’s T-test (less than

0.00002 for Generations 80 and 100) confirms that for the later generations, NGP provides a

highly significant improvement.

Retraining population dynamics

The second research question posed was “When retraining on data that comes from a differ-

ent economic context, how quickly and how well does the diverse population adapt to a new

environment?”

Figs. 5.4, 5.5 and 5.6 illustrate how the populations for SGP and NGP evolve during

retraining on data from different economic climates. In all three cases (Periods a, b and c), the

standard deviation of fitness for NGP is significantly better for NGP than for SGP after about

20 generations. NGP always starts with a best fitness that is higher than SGP (indicating that

the NGP individual is already better able to cope with the new economic climate than the SGP

individual), and that superiority is retained as the population retrains. In fact, in all cases,

NGP quickly finds the ideal Sharpe Ratio of 1.5 (giving the best adjusted fitness of 1.0) whereas

SGP never finds that ideal individual.

When retraining, both SGP and NGP appear to converge on their respective best individuals

at about the same rate, though SGP has the edge for Period c.

An interesting result from Figs. 5.4, 5.5 and 5.6 is the fact that the NGP standard deviation

decreases for the first ten generations of retraining, then rises strongly. The initial generation
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Figure 5.5: Retraining period-b population dynamics. The average value from 25 runs of each
measurement was plotted for each generation ; the best and worst runs are indicated by error
bars.

Figure 5.6: Retraining period-c population dynamics. The average value from 25 runs of each
measurement was plotted for each generation ; the best and worst runs are indicated by error
bars.
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comprises individuals trained for a different economic context, and these individuals do not have

a normal distribution of fitnesses in the context of the new data. In particular, (i) the fitness

peak for the highest segment that is observed at the end of the original training is unlikely

to occur in the context of the new data, and it is much more likely that a peak will occur in

the middle segments, and (ii) the behavioural diversity of individuals in the highest segment

is likely to be low. In the early generations, the NGP algorithm will discard many individuals

whose behaviours are too well correlated with others, and replacements will be drawn from

random samples — the overall effect will be to increase the number of individuals in the middle

segments, thus producing a more peaked distribution. The NGP standard deviation therefore

dips towards that of SGP, then rises strongly after the distribution has normalised, and the

diversity-preserving algorithm has a stronger effect.

Out-of-sample individual robustness

The third research question posed was “Are trained individuals resulting from the new system

more robust when exposed to a new economic environment?”

Case 1. The best individual trained from 31/07/1997 to 31/06/2002 (period a+b)

and tested over the period 01/07/2002 to 31/12/2003 (period c).

Fig. 5.9 and Fig. 5.7 illustrate the performance robustness of NGP and SGP using robustness

measures 1, 2 and 3 (see section 3.2 and 4.4) when the economic context changes.

1. Standard deviation of NGP and SGP is almost on the same level (a ranked T-test indicates

no significant difference in the distribution). This indicates that NGP and SGP achieve a

similar degree of robustness in terms of standard deviation of returns (measure 1).

2. However, NGP consistently generates considerably higher average returns than SGP. This

indicates that NGP achieves a superior degree of robustness in terms of average returns

(robustness measure 2).

3. SGP still outperforms the index portfolio. Although SGP and the index portfolio produce

a similar level of returns, SGP has lower return volatility.

4. The Sharpe Ratio over the test period is also calculated and compared. The percentage

reductions in Sharpe Ratio from in-sample training to out-of-sample validation of NGP

is less significant than SGP. The reduction for NGP is 32% (T-test t(30) = 8.41, p =

5.3 × 10−11) and for SGP is 57% (T-test t(30) = 9.90, p = 3.4 × 10−13). NGP is more

robust in terms of robustness measure 3.

Case 2. Retraining was performed on the last generation of individuals initially

trained on Period a. After retraining on Period b (only), the best individual was

tested on Period c.

The monthly ROI and monthly standard deviation of ROI in the new economic climate

is plotted for both the best NGP individual and the best SGP individual. Retraining was
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Figure 5.7: Robustness (Sharpe Ratio)
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Figure 5.8: Retraining Robustness (Sharpe ratio)
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Figure 5.9: Robustness Comparison (Cases 1 & 2)

carried out on 18 months data and tested on the remaining 18 months data. This simulated

a continuous-learning context where the GP system is periodically retrained to accommodate

non-extreme changes in the economy.

1. At Fig. 5.9, the comparison of robustness plot indicates that NGP “retraining” in the

continuous-learning context can produce more robust individuals than SGP “retraining”

in terms of average return (measure 2). NGP retraining and SGP retraining share a similar

level of volatility but the mean returns of NGP are clearly greater than those of SGP. This

observation is consistent with Case 1. (robustness measure 2)

2. As in Case 1, the Sharpe ratios over the test period are calculated and compared. Fig. 5.8

shows that NGP (-24%, t(30) = 7.28, p = 3.9 × 10−9) suffers a much lower percentage

reduction in Sharpe ratio from training to out-of-sample than SGP (-65%, t(30) = 8.89,

p = 6.3 × 10−11). NGP is more robust in terms of degree of change in Sharpe ratio.

(robustness measure 3)

Traditional training and validation vs continuous learning (Case 1 vs Case 2)

Fig. 5.9 also compares robustness of the trained individuals obtained through the tradi-

tional training and validation method and the continuous learning method. T-test comparison

(Table 5.1) of return and standard deviation indicates a statistically significant difference be-

tween individual robustness evolved by systems with retraining and systems without retraining.

Individuals evolved by NGP with retraining achieve a significantly lower standard deviation of

ROI than those evolved by NGP using the traditional training and validation method, while
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maintaining a comparable level of return. Very similar observations can be applied when com-

paring individuals evolved by SGP with retraining against individuals evolved by SGP with

traditional training and validation. Therefore, the continuous learning method generates more

robust individuals according to robustness measure 1.

Std. Devs. ROIs

SGP retraining vs. SGP: 3.06× 10−16 0.28

NGP retraining vs. NGP: 3.24× 10−16 0.42

Table 5.1: Summary of Ranked T-test (p-values)

5.2 Multiple-scenario training GP

5.2.1 Experiment settings

The multiple-scenario approach is specifically designed for Type 3 environments where severe

changes often occur and the fitness landscape before and after the change may display low degree

of exploitable similarities. In this kind of environment, the GP learning process would NOT

benefit in terms of robustness and efficiency from continuous adaptation (in other words using

the previously trained individuals for continuous retraining). In this context, a ‘two-step method’

is used for this experiment. In the first step the GP system is trained to evolve individuals in

one environment or one set of environments; and in the second step the trained individuals are

validated directly in a previously unseen and profoundly different environment. The method

does not involve an ‘intermediate’ step (which would involve retraining the previously trained

individuals using a part of the data from the unseen environment).

The primary research question relating to the multiple scenarios approach is: “are the best-

of-run individuals from the two new systems more robust than the best-of-run individual from

SGP when exposed to a volatile and previously unseen environment?”

The experiment compares the performance of all three systems: SGP, MELG and MEVO.

Data

The training data for all three systems comprises time-series financial data for the 33 stocks

taken from the period 31st January 1999 to 31st December 2004.

SGP and MELG use a training data set of financial time-series data taken from the period

31st January 1999 to 31st December 2004 (71 months).

For MELG (last generation only) and MEVO, the following three scenarios were chosen:

1. Bull market: 31/05/2003 to 31/12/2004 (19 months);

2. Bear market: 31/01/2000 to 31/05/2001 (16 months);

3. Volatile market: 31/01/1999 to 31/03/2000 (14 months).
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Figure 5.10 shows the overall market index for Malaysian stocks, and a non-weighted portfolio

index (constructed from all 33 stocks in which the simulator invests) 3, for the overall period

under study; it also indicates the three scenario periods (bull, bear and volatile) and the valida-

tion period. The market and portfolio indices both show considerable volatility — the portfolio

index is slightly more volatile than the overall market index, and so beneficial effects displayed

by the GP system cannot be due solely to ‘cherry-picking’ of the least volatile stocks.

Figure 5.10: Market and portfolio indices (fractional monthly returns, 31st July 1997 to 31st December
2004) - scenarios and validation period.

Fitness

MELG and MEVO uses the Consistency Adjusted Fitness CaF as described in Equation 3.3 to

calculate an individual (i)’s fitness.

CaFi = F ÷ σ (5.2)

where F is the mean fitness of 3 scenario fitnesses (fbull, fbear and fvolatile, they are calculated

using Equation 5.1) and σ is the standard deviation of fbull, fbear and fvolatile.

The fitness of canonical SGP is calculated using Equation 5.1).

Out-of-Sample Validation

All three systems are validated on a previously unseen ‘out-of-sample’ data set, comprising time-

series financial data for the 33 stocks taken from the period 31st July 1997 to 31st December

3Because of the data availability, the number of stocks included in the investment universe is less than the
number of total stocks listed in the index market. Therefore, the investment universe movement may not perfectly
mirror the index movement. This is one of the reasons that the portfolio index are also observed. Another reason
is that the portfolio index represents a buy-and-hold investment strategy which is often used as a benchmark for
active investment strategies such as the hedge fund strategy used in the thesis.
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1998. During this period, the Malaysia stock market was subject to great volatility including

both the highest and lowest monthly returns in the entire period under study. From May 1998

to October 1998, the stock index lost more than 40%. Then, from November 1998 onwards,

there was a remarkable performance from the market index, rising 23.3% in November alone.

This period has been deliberately chosen as a real test of robustness of individuals in a

dynamic and hostile Type 3 environment. Episodes of very high volatility occur often in world

stock markets and in emerging markets in particular. A successful hedge fund stock selection

model must be robust — that is, it must be able to perform in both up and down markets.

For the out-of-sample validation, 25 complete training runs were performed (each run being

seeded with a different random number) of each of the three systems (SGP, MELG, and MEVO)

and the ‘best-of-run’ individual was selected from the final generation of each run.

The selected individuals were then validated on the previously unseen data and the results

of the 25 runs are discussed in the following section.

5.2.2 Discussion of Results

Figure 5.11: Mean monthly fractional returns.

Figure 5.11 shows the mean monthly returns (over 25 runs) on the validation data for

all three systems (SGP, MELG and MEVO), together with the portfolio index returns. The

index shows considerable volatility — it is more volatile than the overall market index seen in

Figure 5.10, and so beneficial effects displayed by the new GP system cannot be due solely to

‘cherry-picking’ the least volatile stocks. SGP is not very volatile, but neither does it make

much profit. Both MELG and MEVO appear to be adept at avoiding losses yet are still able

to make good gains in positive months. Figure 5.12 show vividly the difference between the
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Figure 5.12: Cumulative monthly fractional returns.
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Figure 5.13: Frequency distributions of mean monthly fractional returns.

large cumulative losses of the portfolio index compared with the cumulative gains of MELG and

MEVO.

Figure 5.13 gives another view of the mean monthly returns by plotting the frequency

distributions of returns in the validation period. The portfolio index (shown dashed) is very

volatile, whereas all three GP systems are much less volatile (though with significant positive

fat tails).
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Robustness

The performance of the three systems, using robustness measures 1 and 2, are illustrated in

Figure 5.14, which shows standard deviation plotted against returns. Specifically, the figure

plots returns in excess of the risk-free rate, and data has been added for the portfolio index and

for a popular non-genetic technical strategy (using Moving Average Convergence Divergence

(MACD) to select stocks). The portfolio index is shown to be not at all satisfactory, with both

low returns and high standard deviation; the MACD approach performs much better than the

portfolio index, but not as well as any of the three GP systems. In terms of robustness:

1. the three GP systems and MACD all have similar standard deviations (a ranked T-test

indicates no significant difference in the GP distributions) and so by this measure no one

system is more robust than another;

2. by contrast, the three GP systems and MACD differ in their returns while their standard

deviations do not differ, so by measure 2 they are not equally robust. In order (from least

to most robust) there is MACD, then SGP, the MEVO and finally (the best) MELG. This

is further quantified below.

Fund managers use a very similar approach to the robustness measures 1 and 2 — they use

the Sharpe Ratio [143] which determines the ROI (in excess of the risk-free rate) per unit of

risk (given by the standard deviation). Since the standard deviations in this case are the same,

a Sharpe Ratio comparison also provides a quantitative comparison of returns and thus of the

robustness measure 2. Therefore, the Sharpe Ratios (across 25 runs) have been calculated for

each of the three GP systems.

Comparison of the Sharpe Ratio distributions shows that all three systems achieve substan-

tially better results than the portfolio index (as expected from Figure 5.14) and a ranked T-test

comparison of the Sharpe Ratios indicates a statistically significant difference between all three

systems. The p-values (the probabilities that two compared distributions are from the same

population) are presented in Table 5.2. The means of the Sharpe Ratio distributions are: 0.125

(SGP), 0.305 (MEVO), and 0.421 (MELG) — MELG is substantially the most robust system

of the three.

Compare SGP with MELG: 4.01× 10−16

Compare SGP with MEVO 4.13× 10−16

Compare MEVO with MELG 4.62× 10−9

Table 5.2: Summary of Ranked T-test (p-values)

The third measure of robustness selected determines how much the mean return per unit

of risk reduces when moving from the training set to the validation set. This is shown in

Figure 5.15. The percentage reductions in Sharpe Ratio (and associated p-values from a ranked
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Figure 5.14: Robustness comparison.

Figure 5.15: Robustness measure: drop in Sharpe Ratio.

T-test) were 65% for SGP (1.4 × 10−11) , 25% for MEVO (3.1 × 10−8) and just over 2% for

MELG (0.92), indicating a substantial robustness advantage for MELG.
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Figure 5.16: The Committee in action: either Averaging or Voting.

5.3 Committee Voting GP

5.3.1 Experiment Settings

The committee is implemented as part of the investment simulator. The simulator is used both

during GP evolution (where it is called by the fitness function) and during validation, but the

committee is only used during validation.

There are two possible combining mechanisms, either Averaging or Voting, as shown in

Figure 5.16.

Averaging: The first mechanism averages the team members’ output. This results in a mean

predicted return for the next 30 days for each stock. The stocks are then ranked in order

of this mean predicted return, with the top half being selected for buying and the bottom

half being selected for selling.

Voting: With the second mechanism, each team member uses its predicted returns to generate

its own ranking of all the stocks; this is then converted into a buy decision for those stocks

in the top half of the ranking and a sell decision for those stocks in the bottom half.

After the ‘buy’̀sell’ recommendations have been calculated for all team members and for all

stocks, a majority voting method is applied to each stock and a final buy or sell decision is

derived for that stock. With majority voting, if a stock has more ‘buy’ recommendations

than ‘sell’ recommendations, it will be bought - otherwise it is sold.

Because in this application GP generates the factor models for ranking purpose, the exper-

iment adopts the voting mechanism.
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The primary research question concerning the committee voting approach is: “does a voting

system provide more robust results than the best-of-run individual from SGP when exposed to a

volatile and previously unseen environment?”

This experiment compares the performance of an SGP individual with the Voting system

comprising three ‘best-of-run’ individuals derived from three GP evolutions with different train-

ing data sets.

Fitness

The fitness f for an individual is given by Equation 5.1.

Data

This experiment uses the same data as the multi-scenario GP to train and validate the algo-

rithms.

The committee

During validation, the ‘Voting investment’ simulator is augmented with a committee structure

containing a team of three individuals.

In investment portfolio optimisation the trading is carried out monthly and the aim is to pick

those stocks that will perform well regardless of whether the market in the following month will

be bull, bear, or volatile. Thus, this experiment does not follow the otherwise obvious strategy

of detecting the current market conditions and using an individual that has been trained only

on that one market condition. Rather, the voting team comprises the ‘best-of-run’ individual

chosen from each of the final populations of three GP systems, each of which has been trained

on only one market condition, — in other words, the three systems have undergone separate

training with predefined distinctively different training data sets representing the three market

environments - ‘bull’, ‘bear’ and ‘volatile’. The expectation is that the behavioural correlation

between team members will be low.

5.3.2 Discussion of Results

Figure 5.17 plots the frequency distributions of returns in the validation period. The market and

portfolio indices (dashed lines) are both very volatile; SGP makes a fairly consistent slight loss

balanced by some gains in a positive short fat tail. The Voting system makes a fairly consistent

slight gain but with a short fat positive tail.

Robustness

In this experiment, as in the previous experiment, robustness measures 1, 2 and 3 are observed.

In each case there were 25 training runs, each run being seeded with a different random number:

for SGP, the reported mean ROI and standard deviation are the results of applying the best

individual from the final generation to the validation data; for the Voting system, a voting pool

of 3 individuals was selected from final generations of each of the 25 runs — the voting pools

were then applied to the validation data and the mean ROI and standard deviation calculated.
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Figure 5.17: Frequency distributions of mean monthly fractional returns.

The performance of the two systems, using robustness measures 1 and 2, are illustrated in

Figure 5.18.

• The Voting system and SGP system have similar standard deviations and so by this

measure no one system is more robust than another.

• By contrast, the Voting system is superior in terms of return. Figure 5.19 gives the

frequency distribution for the Sharpe ratio for both SGP and the Voting system. As

above, in each case there were 25 training runs, each run being seeded with a different

random number. Both systems beat the portfolio index Sharpe Ratio of -0.297 (a negative

return on investment!), but the Voting system is substantially superior. A ranked T-test

result is displayed in Table 6.3.4 and indicates a convincing difference between the two

systems. Therefore, the Voting system is more robust than SGP in terms of measure 2.

The percentage reductions in Sharpe Ratio (and associated p-values from a ranked T-test)

were 65% for SGP (1.4× 10−11), and 13% for the Voting system (5.6× 10−4). The performance

of the voting system in the different environments is more resilient to changes, thus more robust.

SGP vs. Voting (Mean ROI): 3.8× 10−8

SGP vs. Voting (Standard Deviation): 4.0× 10−4

SGP vs. Voting (Sharpe Ratio): 4.32× 10−16

Table 5.3: Ranked T-test results (p-value)
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Robustness Comparison

0

0.05

0.1

0.15

0.2

0.25

-0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05

Mean Return less Risk Free Rate

S
ta

n
d

a
r
d

 D
e
v
ia

ti
o

n

Voting SGP MACD Portfolio Index

Figure 5.18: Robustness comparison.

5.3.3 Multiple Scenarios Approach vs. Voting Approach

Robustness of the two approaches (MELG vs. MEVO vs. voting system) is compared in

Figures 5.20 and 5.21. Figure 5.20 compares the robustness of the three systems in terms of

performance in relation to associated risk (robustness measures 1 & 2). Figure 5.21 compares the

robustness of the three systems in relation to change of the performance in different environments

(robustness measure 3). In Figure 5.20, MEVO is slightly outperformed by MELG and the

Voting system as, given the same level of risk, it does not yield higher returns than the other

two systems. MELG gives higher returns more consistently than the voting system, at the cost

of higher risk. The same pattern emerges in Figure 5.21; again, MELG has the best performance,

beating MEVO, and SGP has the worst performance.

5.3.4 Summary

Experiment results were presented based on simulation of a portfolio system which used a GP

system to evolve a non-linear factor model for stock-picking, coupled with an Investment Simu-

lator that modelled a long-short, market-neutral, sector-neutral hedge fund, trading Contracts

for Difference (CFDs) in the highly volatile Malaysia stock market. Historical stock data (both

technical and fundamental) was used from the period 1997-2004.

In summary, the evaluation provided in this chapter produced positive results for all of the

three new algorithms proposed and the results demonstrated that these approaches are viable

strategies for improving robustness of solutions evolved by GP in dynamic environments.

• Behavioural diversity preservation GP

The main objective of this experiment was examination of GP behaviour in a continuous

learning context that was most suitable for a Type 2 environment which had a medium
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Figure 5.19: Frequency distributions of Sharpe ratios. Voting average = 0.567292236, σ = 0.111250913,
SGP average = 0.12483279, σ = 0.062651544.
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Figure 5.20: Robustness comparison of all three systems.
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Figure 5.21: Drop in mean Sharpe Ratios for all three systems.

level of dynamics. The algorithm was tested at three different levels. The first level

was population diversity, the second, population dynamics during retaining and the third,

individual robustness in continuous learning.

Statistical analysis demonstrated that the new algorithm increased the population diversity

of phenotypic behaviour and positively affected the global population dynamics in terms

of fitness and adaptivity. It also demonstrated that the new algorithm consistently evolved

more robust individuals in terms of robustness measures 2 and 3 than the canonical GP.

• Multiple-scenario GP

The main objective of this experiment was the examination on the robustness of MELG-

and MEVO-evolved individuals in a Type 3 environment. Statistical analysis of the results

overwhelmingly demonstrated that MELG and MEVO evolved more robust individuals

than canonical GP, using robustness measures 2 and 3 in extreme dynamic environments.

There were no significant differences using robustness measure 1.

• Committee-voting GP

The main objective of this experiment was examination of the robustness of individuals

evolved in a Type 3 environment. The statistical analysis demonstrated that the vot-

ing system was superior in terms of robustness measures 2 and 3 in extreme dynamic

environments compared with the canonical GP.

When comparing the committee-voting GP with MELG and MEVO systems, the voting

GP was slightly outperformed by the two multiple-scenario GP algorithms in terms of

robustness measures 2 and 3.
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The excellent profits produced in the experiments over unseen data provide a justification for

further investigation. For example, is there anything intrinsically better about a GP system

when compared with, for example, a machine-learning technique such as Support Vector Machine

(SVM)? In the next chapter, a head-to-head evaluation is provided of GP and SVM applied to

the Malaysia case study.
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Chapter 6

Comparing Techniques for Financial Portfolio

Optimisation -GP vs Support Vector Machine

The evaluation of the ‘multiple-scenario’ algorithm, the ‘committee voting’ algorithm and the

‘behavioural diversity preservation’ algorithm in the previous chapter demonstrated that they

each enhance robustness of GP solutions in the Malaysian test case. Stock selection for hedge

funds has previously been tackled by SVMs as reviewed in Section 2.4. But which is the better?

The aim of this chapter is to provide a head-to-head analysis and comparison of GP and SVM

and to show that the GP approach is qualitatively different to SVM, and produces much higher

profits as a result for this real-world problem. This chapter has been published in [178].

The experiments included both a comparison of Return On Investment (ROI) and a com-

parison of the two techniques when extended with a ‘voting’ mechanism to improve both ROI

and robustness to volatile markets. Robustness is an important additional dimension to this

comparison, since the markets (the environment in which the GP or SVM solution must survive)

are dynamic, unpredictable and unforgiving.

In addition to GP, there are two other major automatic regression techniques, namely, Ar-

tificial Neural Networks (ANNs) and SVMs. However, SVMs, the most popular kernel machine

[36], based on recent advances in statistical learning theory has become increasingly important

rapidly replacing ANNs which using traditional linear multi-layer regression approaches [14].

The main advantages of SVMs over linear learning machines such as ANNs are [82, 140, 144, 14]:

they are less prone to overfitting; they need less parameters to tune; they have more solid math-

ematical theoretical foundation and they are flexible through an appropriate choice of kernel

to generate or to replace many existing machine learning architectures e.g. feedforward neural

networks, radial basis function networks.

This chapter provides an explanation of the portfolio optimisation systems, followed by

detailed comparisons of GP and SVM in terms of (i) returns on investment and (ii) extension

with a voting system; the results are discussed and an explanation for GP’s superiority is

proposed. Finally, a further experiment is conducted to investigate the proposed explanation.



CHAPTER 6. Comparing Techniques for Financial Portfolio Optimisation -GP vs Support
Vector Machine

6.1 The Portfolio Optimisation Systems

6.1.1 The SGP System

The selected test system comprises a standard GP system (SGP) coupled with an investment

simulator. The SGP system is identical to the system described in Sections 4.2 and (with voting)

in Section 5.1.3

6.1.2 The SVM System

The selected SVM system supports a market-neutral hedge fund simulation identical to that

used in the SGP system. It consists of a support vector regression system (SVR) and an

investment simulator. The SVM system has been implemented independently by Martin Sewell,

the co-author of the paper mentioned at the beginning of the chapter[178].

The resulting SVM is used in the Investment Simulator during the validation phase; how-

ever, unlike SGP, the Investment Simulator is not used during training. Instead, during training

the SVR is provided with the 1-month future prices of each stock. The SVR system outputs

stock return predictions by aiming to fit the 1-month future prices, and regresses to a nonlinear

equation that should be very similar to that evolved by SGP.

For the forecasting problem of a univariate time series, the inputs of SVR are the past,

lagged observations of the data series and the outputs are the future values. Each set of input

patterns is composed of any moving window of fixed length within the data series. The mapping

function of the form can be described as below:

yt+1 = f(yt, yt−1, ..., yt−p) (6.1)

Here, yt means the observation of price return at time t ; and p means the dimension of the

input vector or the number of the past observations related to the future value.

Performance Criteria

The SVM prediction performance is evaluated using the mean square error (MSE)— the measure

of the deviation between the actual and predicted values. The smaller the values of MSE, the

closer the predicted time series values to the actual values.

MSE =

∑n
i=1(ai − pi)

2

n
(6.2)

where ai and pi are the actual values and predicted values.

6.2 Profitability Comparison

6.2.1 Experiment

The research question posed is: “does SGP produce more profitable results than SVM when

exposed to a volatile and previously unseen environment?”
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The experiment compares the returns on investment of an SGP individual with the SVM

system. The basic SGP and SVM parameter settings are given in Table 6.1 and Table 6.2.

Population size (N ) 1000

Method of generation Ramped half and half

Function set {+, -, *, /, Exp}
Terminal set 18 firm-specific factors

Selection scheme Fitness proportionate

Criterion of fitness Monthly Sharpe ratio

Elitism 10 (1%)

Crossover 950 (95%)

Mutation 40 (4%))

Termination criterion 100-generation evolution

Initial Max. depth 6

Table 6.1: SGP Parameter Settings

Kernel Gaussian radial basis function

C (margin of tolerance of error) 0.01

ϵ (data point accuracy) 0.1

γ (width of sampling Gaussian) 1

Table 6.2: SVM Parameter Settings

6.2.2 Data

All systems use an Investment Simulator that has an investment universe of 33 Malaysian stocks.

The training data for both systems comprises time-series financial data from 31st January 1999

to 31st December 2004 (71 months).

Because SVM needs a cross-validation procedure during the training to determine kernel

parameters, SVM’s training data is split into two phases:

1. Initial training period: 31 Jan. 1999 to 31 Dec. 2002

2. Cross-validation period: 31 Jan. 2002 to 31 Dec. 2004

6.2.3 Out-of-Sample Validation

The two systems are validated on a previously unseen ‘out-of-sample’ data set, comprising time-

series financial data for the 33 stocks taken from the period 31st July 1997 to 31st December

1998.

• For SGP out-of-sample validation, the ‘best-of-run’ individual was selected from the final

generation and 25 runs were recorded.

• For SVM out-of-sample validation, the trained SVM was tested on the same investment

simulator for SGP and since SVM is deterministic only one run is recorded. This was

carried out independently by Martin Sewell.
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6.2.4 Results and Discussion

Table 6.2.4 compares the average monthly ROI of 25 SGP runs against SVM. For comparison

data for the portfolio index has been added and a common technical strategy used by investors;

Moving Average Convergence Divergence (MACD). It shows clearly that SGP (1%) can produce

more profitable results than SVM (-0.4%). SVM is significantly worse than SGP (about three

standard deviations away from the SGP mean), and even suffered a greater loss than MACD.

SGP 0.0096 (σ = 0.005)

MACD -0.0033

SVM -0.0047

Portfolio Index -0.06

Table 6.3: Comparing Returns on Investment (ROI)

6.3 Impact of Voting Mechanism

A voting mechanism can be used to improve both ROI and robustness in volatile markets [176],

so the next step is to incorporate voting into both SGP and SVM.

6.3.1 The SGP Voting System (SGP-V)

During validation, the investment simulator is augmented with a committee containing a team

of three individuals which have been trained in three different environments.

6.3.2 The SVM Voting system (SVM-V)

In order to be consistent with the SGP-voting approach, SVM-V also incorporates the voting

committee in the investment simulator during validation. The SVM-V voting committee consists

of three entirely distinctive SVMs trained on specialised scenarios such as ‘bull’, ‘bear’ and

‘volatile’.

6.3.3 Experiment

The research question posed is: “does an SVM voting system provide more robust results than

a SGP voting system when exposed to a volatile and previously unseen environment?” The

experiment devised compares the performance of 4 systems: SGP, SGP-V SVM, and SVM-V.

Data

For the three special-scenario GP evolutions, the following three market contexts were chosen:

1. Bull market: 31 May 2003 to 31 Dec 2004 (19 months);

2. Bear market: 31 Jan 2000 to 31 May 2001 (16 months);

3. Volatile market: 31 Jan 1999 to 31 Mar 2000 (14 months).

The above three market contexts were also chosen to train and cross-validate the three distinctive

SVMs specialising in the bull, bear and volatile market conditions. However, in order to increase
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the number of available data points and thereby obtain improved performance from the SVMs,

each market context data set was augmented with a certain amount of data from the ‘normal’

market context period from 1st June 2001 to 30th May 2003. In all cases, two thirds of the

context data was used for training and one third for cross-validation.

6.3.4 Results and Discussion

Table 6.3.4 compares ROIs of the four systems, SGP, SGP-V, SVM and SVM-V. Both GP

systems outperform the two SVMs: SVM-V is significantly worse than SGP-V (about three

standard deviations away from the SGP-V mean). It is to be noted that integrating a voting

mechanism can remarkably enhance profitability of both GP systems and SVM systems; the

improvement in terms of pure profitability for the GP system is over 188% and for the SVM

system is 240%. So what does this say about “robustness”, and how can it be measured?

SGP-V 0.026 (σ = 0.006)

SGP 0.0096 (σ = 0.005)

SVM-V 0.0077

MACD -0.0033

SVM -0.0047

Portfolio Index -0.06

Table 6.4: Voting Improves Returns on Investment

Simplistically, robustness might be taken to be synonymous with ‘low variance’ — that is to

say, the performance of the individual does not alter much, despite the extreme volatility of

the market environment. However, in practice there is a much more exacting requirement: it

is not helpful to an investor to know that an individual robustly (with low variance) makes a

loss regardless of the market! A much more helpful measure is to know that the individual

combines two qualities of (i) high return on investment and (ii) low variance in the face of

extreme volatility.

The performance of the four selected systems, using robustness measures 1 and 2 above, are

illustrated in Figure 6.1, which shows standard deviation plotted against returns in excess of the

risk-free rate. The portfolio index is shown to be not at all satisfactory, with both low returns

and high standard deviation; the MACD approach performs much better than the portfolio

index, but not as well as any of the two GP systems. In terms of robustness:

1. the two GP systems have similar standard deviations (a ranked T-test indicates no sig-

nificant difference in the GP distributions), and so by measure 1 no one system is more

robust than another. By contrast, the SGP and the SGP-V systems differ greatly in their

returns. The SGP-V system consistently produces superior returns than SGP. Thus, by

robustness measure 2, the SGP-V system is more robust than SGP;

2. sharing a similar trend, the standard deviations of SVM and SVM-V do not differ sig-

nificantly, but SVM-V greatly improves its return. Again, by robustness measure 2, the
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Figure 6.1: Robustness comparison.

SVM-V is more robust than SVM.

The Sharpe Ratios for the two SMV systems and the two GP systems (averaged across 25

runs) have been calculated — see Table 6.3.4. SVM-V is over five standard deviations worse

than the SGP-V mean, and SVM is over ten standard deviations worse than SGP. For the

SGP-V 0.44 (σ = 0.039)

SGP 0.11 (σ = 0.033)

SVM-V 0.22

MACD -0.03

SVM -0.196

Portfolio Index -0.297

Table 6.5: Sharpe Ratio Comparison

two GP systems, comparison of the Sharpe Ratio distributions shows that the two systems

achieve substantially better results than the portfolio index (as expected from Figure 6.1) and

a (non-parametric) Ranked T-test comparison of the Sharpe Ratios indicates a statistically sig-

nificant difference between the two systems. The p-values (the probabilities that two compared

distributions are from the same population) are presented in Table 6.3.4.

For the two SVM systems, the comparison of the Sharpe Ratio clearly shows that the

SVM-V achieves a significantly higher Sharpe ratio.

The combined results of the four systems overwhelmingly indicate that 1) SGP-V is more

robust than SVM-V and 2) voting can enhance both GP and SVM robustness.
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SGP vs. SGP-V (Mean ROI): 3.8× 10−8

SGP vs. SGP-V (Standard Deviation): 4.0× 10−4

SGP vs. SGP-V (Sharpe Ratio): 4.32× 10−16

Table 6.6: Ranked T-test results (p-value)

6.4 Learning to optimise profits vs predicting returns

Having determined that SGP is better than SVM, and SGP-V is better than SVM-V, for this

portfolio optimisation problem, the obvious question is: ‘why?’ According to the literature,

SVMs are very good at nonlinear regression, and therefore should be good at predicting stock

returns. GPs are also known to be good at symbolic regression, but why are they so superior

in solving this particular problem?

It is conjected that the SGP (and SGP-V) system is performing a different task to SVM

(and SVM-V) — rather than predicting the returns that each stock will provide in the next

month, it provides a stock ranking that optimises the overall performance of the investment

simulator.

Consider the fitness function in the GP system: it takes an individual equation and passes it

to the investment simulator, which applies the equation to every stock to give a number which is

used to rank the stocks in order from best to worst; this is repeated with that same equation for

every month in the simulation and the Sharpe Ratio of the investment simulator’s performance

is returned. This Sharpe Ratio is the basis for the fitness value. Thus, each GP individual is

given a fitness value based not on how accurately it predicts the returns of stocks, but on how

well it ranks stocks such that the simulator optimises its Sharpe Ratio.

The GP systems do not just predict returns — they optimise excess profit per unit-risk.

They can do this because the investment simulator is embedded in the fitness function —

something that is not at all easy for an SVM to achieve.

The proposed hypothesis is that learning to optimise profits is better than predicting re-

turns, but how can this be checked? The obvious way is to assess the performance of a GP

system that only predicts profits and does not interact with the investment simulator during

training.

6.4.1 Prediction GP (pSGP)

In order to replicate the prediction approach adopted by SVM in a GP context, pSGP (and

pSGP with voting: pSGP-V) detaches the investment simulator from the evolution process and

only employs the simulator for validation. Thus, individual fitness f is measured purely as

accuracy in predicting returns of n stocks, using the mean squared error as in the SVM system,

as follows:

f =
1

n

n∑
i=1

(Riprediction −Riactual
)
2

(6.3)
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Riprediction = predicted price return of the stock i

Riactual
= actual price return of the stock i

6.4.2 Experiment

The null hypothesis is that pSGP (pSGP-V) will continue to perform as well as SGP (SGP-V),

and therefore the proposed hypothesis (that GP is performing a substantially different task to

SVM as a result of the embedding of the investment simulator) is incorrect. Obviously, it is

hoped that the null hypothesis shall be proven false!

The following experiment compares the performance of all six systems: SGP, SGP-V, pSGP,

pSGP-V, SVM and SVM-V. As before, both ROI and robustness are compared.

Comparison of Returns

Figure 6.2 compares ROIs of all six systems, SGP-V, SGP, SVM-V, SVM, pSGP-V and pSGP.

The two GP systems that only use returns prediction (pSGP and pSGP-V) perform substantially

worse than both SGP and SGP-V, with ROIs that fall between those of SVM and SVM-V.

Figure 6.2: ROI comparison.

Robustness Comparison

The performance of the 6 systems (pSGP, pSGP-V, SGP, SGP-V, SVM, SVM-V), using ro-

bustness measures 1 & 2, are illustrated in Figure 6.3, which shows standard deviation plotted

against returns. The 6 systems have also been compared with a random strategy which gives

random stock rankings for the investment simulator.

• pSGP has similar risk but very different returns to SGP (a Ranked T-test gives a p-value

of 5.88 × 10−9), and in fact is closer to SVM’s returns (both pSGP and SVM generate

negative returns).
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Figure 6.3: Robustness comparison.

• Similarly, pSGP-V has similar risk but very different returns to SGP-V (a Ranked T-test

gives a p-value of 4.52× 10−16), and is closer to SVM-V’s returns.

The above results demonstrate that the null hypothesis is false, and give confidence in the

proposed assertion that the GP systems are learning to optimise profits rather than simply

predicting monthly returns.

6.5 Summary and Conclusion

The application of machine-learning, genetic and evolutionary computing techniques to the real-

world problem of portfolio optimisation is becoming increasingly realistic, and results from GP

systems in particular are starting to show excellent profits. But is there anything intrinsically

better about a GP system when compared with a popular machine-learning technique such as

a Support Vector Machine (SVM)? In this paper a head-to-head comparison has been provided

and has shown that the GP approach is qualitatively different to SVMs.

This investigation has included both a standard comparison of returns on investment and

a comparison of both techniques when extended with a ‘voting’ mechanism designed to improve

both returns and robustness to volatile markets. Robustness is an important additional di-

mension to this comparison, since the markets are dynamic and unpredictable. An investment

simulator was used to model a long-short, market-neutral, sector-neutral hedge fund portfolio,

trading Contracts for Difference (CFDs) in the highly volatile Malaysia stock market. Technical

and fundamental historical stock data were used from the period 1997 to 2004.

It has been demonstrated that both a standard GP system and a voting GP system sub-

stantially outperforms its equivalent SVM on this problem. It is proposed that there is a key

reason for this difference in performance — that the GP systems learn to optimise profits rather
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than simply predicting monthly stock returns. An experiment was conducted that demonstrated

how GP systems provide solutions to this problem at a similar level of quality to SVMs when

restricted to pure prediction of returns.

Prediction Optimisation

Voting SVM-V: 0.22 SGP-V: 0.44

pSGP-V: 0.04

Non-Voting SVM: -0.19 SGP: 0.11

pSGP: -0.007

Table 6.7: Sharpe ratios

These experiments have compared the performance of six different systems. Table 6.7 sum-

marises the results by comparing Sharpe ratios. The dominance of the Optimisation/-Voting

system (SGP-V) is clear, as is the general dominance of optimisation methods (SGP, SGP-V)

over prediction methods (SVM, SVM-V, pSGP and pSGP-V). In conclusion, whilst the use of a

voting mechanism is strongly beneficial to both SVM and GP systems in portfolio optimisation,

GP’s ability to integrate an overall portfolio profit optimisation with the evolution of a nonlin-

ear stock ranking equation plays a vital role in generating profitable and robust solutions for

use in volatile environments. This finding echoes perfectly the third unique advantage of GP

highlighted in Section 2.1.2 that fitness functions add flexibility to the system by enabling the

incorporation of problem-specific knowledge and encourage appropriate alternative behaviours.
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Chapter 7

Conclusion

This chapter summarises the previous 6 chapters, reviews the contributions made, concludes

with a discussion on the main results and finally suggest directions for future study in this area.

7.1 Summary of Thesis

This thesis has presented three novel GP algorithms designed to enhance the robustness of

solutions evolved in highly dynamic environments and it has investigated the application of the

new algorithms to financial time series analysis. The research is motivated by the following

thesis question: what are viable strategies to enhance the robustness of GP solutions when the

environment of a task being optimised or learned by a GP system is characterised by large,

frequent and low-predictability changes?

The vast majority of existing techniques aimed to track dynamics of optima in very simple

dynamic environments. But the research area in improving robustness in dynamic environments

characterized by large, frequent and unpredictable changes is not yet widely explored. The three

new algorithms were designed specifically to evolve robust solutions in these environments.

The first algorithm, ‘behavioural diversity preservation’ GP, is a novel diversity preservation

technique for use in a Type 2 dynamic environment1. The algorithm evolves more robust

solutions by preserving population phenotypic diversity through the reduction of behavioural

intercorrelation and the promotion of individuals with unique behaviour.

The second algorithm, ‘multiple-scenario training’ GP, is a novel population training and

evaluation technique for use in a Type 3 environment. The algorithm evolves more robust solu-

tions by training a population across a set of pre-constructed environmental scenarios simulta-

neously and by using a ‘consistency-adjusted’ fitness measure to favour individuals performing

well across the entire range of environmental scenarios.

The third algorithm, ‘committee-voting’ GP, is a novel ’final solution’ selection technique

for use in a Type 3 environment. The algorithm enhances robustness by creating a solution

based on a majority-voting committee structure consisting of individuals evolved in a range of

diverse environmental dynamics.

The thesis has introduced a comprehensive real-world case application for the evaluation

1See Section 3.1 for a discussion of different types of dynamic environments.
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experiments. The case was a hedge fund stock selection application for a typical long-short

market-neutral equity strategy in the Malaysian stock market. The underlying technology of

the stock selection system was GP which assisted to select stocks by exploiting the underly-

ing nonlinear relationship between diverse ranges of influencing factors. The three proposed

algorithms were all applied to this case study during the evaluation experiments.

The results of experiments based on the case study demonstrated that solutions evolved by

all three new algorithms are overwhelmingly more robust than those evolved by canonical GP.

The thesis has also presented the findings based an empiricial head-to-head comparison

between GP and SVM for stock selection. The results demonstrated that GP substantially

outperforms SVM and highlighted the advantage of using a fitness function in evolutionary

approaches which allows for incorporating domain-specific requirements and knowledge.

7.2 Review of Contributions

This thesis has made the following contributions:

1. The design and implementation of 3 novel GP algorithms for improving ro-

bustness of solutions.

(a) ‘behavioural diversity preservation’ GP

This algorithm was designed to address the problem of diversity preservation, more

precisely phenotypic diversity preservation. The main design characteristics of the

algorithm described in Section 3.3.1 are:

• Preservation of diversity in a global population: Individuals in the population are

classified based on their fitness values into hierarchical fitness segments whose

size is constantly monitored during the evolution to prevent domination of a

particular segment.

• Preservation of diversity in fitness segments: An individual is deleted or preserved

according to the degree of correlation of its phenotypic behaviour with other

individuals in the same segment.

• A random individual generator is used to continuously feed new genetic material

into the lowest fitness segments.

The full details of the algorithm implementation were given in Section 3.4.1. The

details included:

• Representation and calculation of fitness segments.

• The mathematic formula of the correlation measure.

• The rules on deletion and preservation of individuals in the fitness segments

during evolution.

• How a random individual generator was integrated in the evolution process.
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(b) ‘multiple-scenario training’ GP;

This algorithm was designed to address two of the problems identified - training

and fitness evaluation. The main design characteristics of the algorithm described in

Section 3.3.2 are:

• Parallel training of individuals in a set of different environmental scenarios.

• The selection of the individuals based on the mean-and-variance-adjusted

(‘consistency-adjusted’) fitness evaluation which designed to favour individuals

with good consistent overall performance across a set of different environments.

The full details of the algorithm implementation were given in Section 3.4.2. The

details included:

• How a set of scenarios were selected and integrated in the GP evolution cycle.

• Mathematical formula used to represent ‘consistency-adjusted’ fitness.

(c) ‘committee-voting’ GP.

Committee-voting GP was designed to address the problem of selecting a final solu-

tion. The main design characteristics of the algorithm are described in Section 3.3.3

are :

• The final solution consists of a set of individuals trained independently in a set

of diverse environments.

• This set of individuals creates a decision-making committee for a given environ-

ment.

The full algorithm implementation details were given in Section 3.4.3. The details

included:

• The two mechanisms for combining the solutions provided by each member in

the committee -

2. Validation of the novel algorithms by simulating a real-world hedge fund in-

vestment strategy with real-world data.

The GP algorithms were validated by a real-world case study presented in Chapter 4.

This case study focused on evolving multi-factor stock selection models for a long-short

hedge fund invested in the Malaysia stock market. All the aspects of the case study were

constructed in a real-world situation, including the data, factors, investment strategy and

the portfolio trading process.

There were three main parts in this case study. The first was the factors. This work used

18 different factors, including fundamental, technical and size factors.

The second part was the investment simulator. The investment simulator was responsible

for the execution of the hedge fund investment strategy. It traded on a monthly basis

buying stocks to form the long portfolio and borrowing stocks to form the short portfolio
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for selling. Selection of long and short positions was based on a ranking measure which

was generated by a GP system.

And the third part was the GP system. This was responsible for evolving factor models

to generate quantitative attractiveness measures for stocks. The GP terminals were made

of the factors and the functions were made of arithmetic functions plus several constants.

A GP individual representing the underlying relationship between factors was expressed

as a mathematic equation of the factors. The outputs of the system were the quantitative

results derived from equations and they would be used to guide the investment simulator.

The investment simulator and the GP system were integrated together via the fitness func-

tion. The investment simulator was called each time the GP system needed to determine

the fitness of an individual.

The validation involving measurement, comparison and analysis of the solutions evolved by

the proposed GP algorithms and canonical GP, especially in terms of the three quantitative

robustness measures, namely standard deviation, returns and rate of reduction of return

(according to the new definition in Section 1.2) in the context of the case study, were

summarised in Chapter 5.

3. Formulating a new robustness defintion metrics.

A new definition of robustness developed by this work was formulated in Section 3.2 in

the context of dynamic environments according to three criteria: (i) an overall measure of

performance (fitness ); (ii) a measure of the standard deviation of performances measured

at each time interval (stability of fitness); (iii) the variation in overall performance between

the training environment T and the unseen environment V (rate of fitness change).

The new definition was used later in the thesis (Chapter 5 and Chapter 6) to quantitatively

evaluate the robustness of solutions evolved by GP systems in each of these fundamental

aspects.

4. An empirical comparison and analysis of GP with a SVM.

The main objective of this ‘early stage’ empirical study in Chapter 6 was to shed some

light on the qualitative differences between GP and other learning algorithms outside evo-

lutionary approaches, such as SVM, in terms of the ‘learning’ mechanism in the context of

the financial market. In this study, both the GP systems and SVM system were exposed

to the Malaysian stock market during the long-short hedge fund simulation. In the first

part the study, the GP systems used profit optimisation as the fitness function, and in

the second part the GP systems used prediction accuracy (as used by SVM) as the fit-

ness function. Two parameters were used to compare the systems: return on investment

and robustness. The results clearly demonstrated that profit optimisation GP systems

produced solutions which gave higher returns on investment and were more robust in dy-

namic environments than SVM systems. In contrast, the prediction GP systems did not
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offer advantages vis-à-vis the SVM system in either of the two parameters. The differing

results obtained by the optimisation GP and prediction GP led to the conclusion that

the qualitative difference between GP and SVM was GP’s ability to integrate a (profit)

optimisation mechanism into its learning mechanism.

7.3 Conclusion

In Chapter 1, the thesis null hypothesis was stated as

“When the environment of a task being optimised or learned by a GP system is characterised

by large, sudden, frequent and low-predictability changes, the robustness of genetic individuals

cannot be improved by means of the following algorithms.

Behavioural diversity preservation This preserves phenotypic diversity of a genetic popu-

lation by reducing the degree of correlation between phenotypic behaviour of those indi-

viduals; greater phenotypic diversity leads to more robust solutions.

Multiple-scenario training This enhances robustness of solutions evolved by GP by means

of training a population across a range of environment dynamics and selecting individuals

that perform well in multiple scenarios;

Committee voting This enhances robustness of solutions evolved by GP by means of a com-

mittee structure whereby a small (odd) number of trained GP individuals offer solutions

as votes, and the majority vote wins. ”

In order to test the hypothesis, this thesis has implemented three new GP algorithms and

has evaluated each in a real world application which simulates stock selection process for a long-

short market-neutral hedge fund operating in the Malaysia stock market. Real historical stock

data from 1997 to 2004 including price, technical factors and fundamental factors were used

throughout the evaluation experiments. During this period, the Malaysia market underwent a

long highly volatile phrase (Type 2 environment) and followed by a stabilising period (Type 3

environment). The results demonstrated that:

• In a Type 2 dynamic environment, it is viable to improve robustness of the solutions by

preserving behavioural diversity of GP population.

The results obtained provide an insight into the utility of the new algorithm (NGP) com-

pared with a standard GP algorithm (SGP):

1. on the test data, using robustness measure 2, NGP consistently produced a ‘best’

individual that was more robust with higher fitness than that produced by SGP

without increasing volatility.

2. on the test data, using robustness measure 3, NGP consistently produced a ‘best’

individual that was more robust with a lower rate of reduction of Sharpe ratio from

training to out-of-sample test than that produced by SGP.
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3. on the test data, in the context of continuous adaptation in a changing environ-

ment, NGP consistently produced a ‘best’ individual that was more robust than that

produced by SGP using robustness measures 2 and 3.

4. on the test data, NGP consistently retrained (in the context of a shift in the envi-

ronment) faster, and better, than SGP.

The results obtained also confirm that, on the test data, the new algorithm does what it

intends — it increases the population diversity of phenotypic behaviour. It also increases

diversity of standard fitness. Furthermore, analysis indicates that the difference from a

standard GP algorithm is statistically highly significant.

It is concluded that (i) there is good evidence to recommend the use of NGP for preserving

diversity of phenotypic behaviour in any GP context, and (ii) there is encouraging evidence

to recommend the use of NGP for improving robustness in continuous adaptation contexts

where the environment is continually changing.

• In an Type 3 environment, it is viable to obtain a substantial improvement of robustness

of the solutions through 1) the use of carefully selected scenarios of market behaviour

during GP training; and 2) the use of a voting committee comprising an odd number of

GP individuals trained on a variety of different training sets (and therefore with differing

phenotypic behaviour).

For the multiple-scenario GP, experiments were run on three GP systems (MELG, MEVO

and a ‘standard’ GP system — SGP) with 25 runs of each, and comparisons were made

with both a portfolio index and a non-genetic simple technical analysis for stock picking.

Although robustness measure 1 showed no significant difference between the three GP

systems, statistical analysis of measures 2 and 3 indicated overwhelmingly that MELG

provides the most robust individual, with SGP being the least robust. All three GP

systems were shown to have better performance than the non-genetic technical analysis,

and this in turn performed very much better than the portfolio index.

For the committee voting GP, experiments were run on two GP systems: (i) SGP, and (ii)

a committee of three ‘best-of-run’ individuals from three GP systems utilising different

sets of training data. Statistical analysis indicated that the Voting system provides a

remarkable improvement in terms of robustness measure 2 when compared to SGP.

When the three best systems are compared — MELG, MEVO and the voting system —

MELG and the voting system show a slight edge over MEVO in terms of all three robust-

ness measures. The voting system appears to be slightly better than MELG; however,

there is no statistically significant difference between MELG and the Voting system when

the distributions of their Sharpe Ratios are compared.

In summary, the results produced in the experiments have rejected the null hypothesis and
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therefore, it is concluded that the proposed new algorithms are viable strategies for improving

robustness of solutions evolved by GP in challenging dynamic environments.

7.4 Future Work

The literature survey in Chapter 2 observed that promoting robustness in EC techniques, espe-

cially for problems in dynamic environments, is a new area of research and that there are only

a handful of works which implemented explicit robustness mechanisms. The new algorithms

proposed in this thesis are, to date, the first to attempt to enhance the robustness of genetic

individuals evolved by GP in extreme and complex real-world dynamic environments. Although

the experiment results demonstrate that the new algorithms achieve the desired capabilities

in Type 2 and Type 3 dynamic environments, the work is still in its early stages with many

limitations, and there are many possible directions for future research.

7.4.1 Multiple-scenario training GP

One of the key features of the algorithm is the use of a fitness approximation function to

calculate an individual’s overall performance across a set of environmental scenarios. Fitness is

a combination of standard deviation (representing consistency) and mean of a set of scenario

fitnesses. For future research, the fitness approximation function can be extended to use other

statistical methods to represent performance consistency.

Another direction is to investigate new ways to integrate a set of scenarios into the evolution

process. This work proposed two ways: in one way the integration occurs at the beginning of

the evolution process, generation 0, and in another the integration occurs at the last generation.

The results showed that the second way was more effective. This may suggest that intensive

training at a very early stage in the learning process is not necessary.

The algorithm used human intervention in selecting a set of environmental scenarios for

training. One obvious extension is to fully automate this process.

7.4.2 Committee-voting GP

Committee member selection is one of the key aspects of the algorithm. This work used a 3-

member committee and majority voting for the final decision. Future work in this area includes

experimenting with different sizes of committees and different decision mechanisms, for example,

integrating various assembly techniques developed in the area of machine statistical learning.

Another interesting direction is to investigate different ways to obtain good individual

members with widely phenotypic behaviour, for example, the committee members may not

necessarily need to be best-of-run individuals; or to investigate ways to optimise the combination

of members, for example, the number of specialists (who excel in one type of environment) and

the number of generalists (who perform consistently in all types of environments) required for

an optimal combination.

One of the advantages of this algorithm is that it can be combined easily with other tech-

niques. One possible extension is to combine the voting mechanism with the other two robustness
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techniques.

7.4.3 Behavioural diversity preservation GP

This algorithm uses Spearman correlation to measure the degree of correlation between an

individual and its fitness segment. The obvious extension is to study and compare the impact of

using different correlation measures. Future work could also undertake a parameter sensitivity

analysis of the proposed system. The parameters are are the size of a fitness segment, number

of random individuals generated at each generation and correlation threshold.

There are a number of existing diversity preservation works in the field, though they are not

specifically designed for dynamic environments like this work. The evaluation of the algorithm

can be extended to include comparison with some of the most well-known existing diversity

preservation techniques.

7.4.4 The case study experiment

Because of great difficulty in collecting factor data mainly due to financial cost, the case study

used 7-year data of 19 factors for 33 companies in one emerging market. Further work needs

to extend the experiment to a larger universe of stocks over a longer period and to a different

market to establish that these results are repeatable for a much wider range of test cases.

Naturally, the experiment can also be extended to other appropriate areas of finance. One area

of particular interest is to fully explore the capability of diversity algorithms in the context of

online continuous-learning. This thesis was only able to initiate the discussion on this theme

because of the lack of environment data.

7.4.5 Categorisation of dynamic environments

The categorisation of dynamic environments developed by this thesis was based on qualitative

criteria. This left the categorisation quite broad. In order to develop more precise definitions,

formulation of quantitative criteria for each environmental characteristic may be helpful. How-

ever, it would be extremely difficult to develop universal quantitative criteria because they are

influenced by their domain characteristics, for instance, financial markets are very different from

ecosystems etc. Furthermore, for some environments, many environmental criteria are difficult

or impossible to quantify, the stock market is a such an example.
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