
From Deep Learning to 
Human Judgments: 

Lessons for Genetic Improvement
Westley Weimer

University of Michigan
(11th International Workshop on Genetic Improvement, 9 July 2022)



Outline (45+15 minutes)

● An Existential Crisis?
● Summary of Recent Advances

○ Generative Pre-Trained Transformers

● Concerns
○ Cost
○ Novelty
○ Problem Statement
○ Evaluations

● Recommendations: 
○ Deception, Eyes, Algorithms, etc. 

● Industrial Deployments
● Summary

This talk will provide a gentle introduction to 
these topics

We will benefit from a vigorous discussion!

Many of you may be familiar with other 
aspects of these issues 

2



Program Improvement, AI and Machine Learning

● Increasing use of techniques associated with AI and ML (e.g., neural 
networks, language models, machine translation approaches, etc.) for 
program repair and improvement

● Researchers from other backgrounds (e.g., EC, SE, PL) have expressed 
significant concerns
○ Heard from PC members, collaborators and non-collaborators, multiple countries, etc. 

● Example: “They will descend like a plague of locusts, convince everyone it 
is another problem defeated by their hammer, and then move on.”

3



Fear, Uncertainty, and Doubt?

● Important to separate out reactionary resistance to change vs. more 
nuanced critiques
○ If these techniques really do entirely solve this problem, excellent!
○ But do they entirely solve this problem?

● Common critiques
○ Problem formulation: assuming perfect fault localization
○ Assessment and evaluation: internal metrics
○ Foundational limitations: lack of novel synthesis
○ Moral accessibility concerns: monetary cost of training models excludes participation

4



Challenge and Opportunity

“The rise of language models raises many interesting connections [...] At the 
most basic or unit level, there is a dire need to improve the code generated by 
language models like Codex [...] a need to understand the kind of semantic 
errors that lurk in such auto-generated code [...] value in proposing analysis or 
fixing mechanisms specifically for auto-generated code [...] However, there is 
the opportunity to expand on these prompts to capture the power of program 
synthesis. Program synthesis, or programming by example approaches, differ 
from language model-based approaches primarily in the ability to synthesize 
code which was never seen before.”

- Abhik Roychoudhury, NUS (SemFix, Angelix, Concolic Program Repair, etc.)

5

https://nus-apr.github.io/


Deep Learning & Language

● OpenAI Codex is a Generative 
Pre-trained Transformer (GPT) 
approach in which a neural network 
based on a deep learning model is 
trained on an enormous corpus of 
text

● It can produce prose with 
human-equivalent fluency

6



GitHub Copilot

● Beyond natural language, 
models can be trained and 
applied to source code

● Using NLP on code at scale 
is not new, but the way it 
is playing out now is

7



Facebook TransCoder

● The TransCoder technique from 
Facebook AI Research uses a 
transformer (encoder-decoder) 
architecture to translate source 
code between languages

● It predates the emphasis on 
Codex, and its specific emphasis 
on readability (and evaluations) 
makes it relevant for a Genetic 
Improvement discussion

8



Example in Program Repair: CoCoNuT

● We now have all of the building 
blocks to apply directly to APR

● The popular CoCoNuT project uses AI 
and deep learning and views program 
repair as translating from buggy to 
correct source code

● It reports very strong results, fixing 
509 bugs (inc. 309 not fixed by 27 
other baseline techniques) across 4 
languages

9



Training is Critical

● Training large models really matters, as the 
GPT-3 paper notes: “we show that scaling 
up language models greatly improves 
task-agnostic, few-shot performance, 
sometimes even reaching competitiveness 
with prior state-of-the-art fine tuning 
approaches”
○ That is, a model trained on a large-enough corpus 

matches or outperforms approaches specialized 
for specific tasks

10



Training is Expensive

● GPT-3 was trained on 50x more than GPT-2 (600 GB) resulting in a 175 
Billion parameter model. GPT-J was trained an 800 GB dataset. Copilot was 
trained on billions of lines of code. 

● The Codex paper notes “First, Codex is not sample efficient to train [...] 
The original training of GPT-3-12B consumed hundreds of petaflop/s-days of 
compute, while fine-tuning it to create Codex-12B consumed a similar 
amount of compute. This training was performed on a platform (Azure) that 
purchases carbon credits […]” 

● Newer datasets (e.g., C4) are larger, with maintainers directly 
recommending the use of distributed cloud services for their use. 

11



Training Concerns

● As a result, many researchers are morally concerned about the training 
costs (etc.) required for these techniques going forward

● Beyond environmental and “fairness in AI” concerns, my informal summary:
○ A generic model trained on a large corpus outperforms prior research
○ Training sizes have increased dramatically even within the last two years
○ Modern peer review de facto requires an X% improvement over the state of the art
○ Researchers need publications (e.g., for tenure or for students)

● Therefore, less-resourced researchers cannot afford to participate in fields 
dominated by such models
○ Both cannot afford the cloud computing training time
○ And also cannot afford to do “pure research” and then not get publications

● Overheard: “Soon only big companies will be able to participate.” 

12



Novel Code Creation Concerns

● Approaches that generate based on pre-training are not suitable for creating 
new code not present in the training data
○ This is a nuanced claim, since they can rearrange trained words in different orders
○ GPT is good at “using novel words in a sentence after seeing them defined only once”

● By contrast
○ A semantics-based approach like SemFix or Angelix can create unseen code (e.g., by solving 

logical or arithmetic constraints)
○ A template-based approach may create unseen code via instantiation (but see “nuanced”)

● The impact of this is uncertain (CoCoNuT success vs. ~50% upper bound)

13



Problem Statement Concerns

● In NLP settings, the problem is often to produce the text that comes next
○ Given these X tokens, what should the next Y tokens be?
○ Others are possible (e.g., translate these X tokens from language A into language B)

● This can be cast naturally to program repair or improvement
● Informally: “Delete the buggy tokens, then given all of the previous tokens 

in the program before the bug, what new code should be placed there?”
● This formulation assumes perfect fault localization

○ In practice, fault localization is difficult in many contexts
■ Some security bugs (e.g., cross-site scripting or SQL code injection), some 

multi-threaded bugs, some entire domains (e.g., Verilog circuit designs), etc. 

14



Fault Localization in Recent Evaluations

● The CoCoNuT paper, for example, 
describes using perfect fault 
localization to admit a fair 
comparison between 
generate-and-validate techniques
○ To me, that per se is quite reasonable

● The transitive argument is tricky
○ Ref [49] there is Liu et al.: 
○ The paper calls out that it only applies 

to template-based tools and that 
constraint-based tools (e.g., ACS, 
Nopol) were not equally sensitive

○ Would GPT approaches be impacted 
more or less? 

15



Evaluation Metrics

● In NLP domains, metrics such as ROUGE and BLEU and Perplexity are used
○ Recall-Oriented Understudy for Gisting Evaluation looks at the overlap of sequences of 

words between the reference and the output
○ BiLingual Evaluation Understudy uses sequence precision and brevity between reference 

sentences and output sentences
○ Perplexity measures how well a probability distribution predicts a sample, often in a “bits 

required per word” sense (“is this word common or expected here?”) 
○ Reference match measures perfectly matching the ground truth reference

● Metrics like ROUGE are syntactic, not semantic (e.g., do not handle 
synonyms or meaning) 
○ Human1: “The cat is on the mat.” Human2: “There is a cat on the mat.”
○ Candidate3: “There is a cat on the mat.” BLUE score is 7/7 = 1.0
○ Candidate4: “Mat the cat is on a there.” BLUE score is 7/7 = 1.0 

16



Appropriate Metric Selection

● To be clear: NLP metrics may be entirely appropriate in many situations
○ Comparing algorithmic advances between models
○ Researchers in another discipline first considering this problem domain 
○ Elucidating internal algorithm behavior

● Just as we might measure “number of generations to produce a patch” as 
well as “number of programs improved”
○ An end user will care more about “number of programs improved”
○ But we, as researchers, may use information about a population search as a function of 

generation to guide internal decisions, study convergence, etc.
○ Example: early GenProg papers at GECCO did just that
○ Danger: “X uses fewer generations than Y so X is better than Y”

● Examples are illustrative of popularity, not “call outs” 

17



18



Program Repair and Improvement Without Tests?

● One of the first papers to use such models but also consider running the 
resulting code against tests was Facebook’s TransCoder (9/2020)

● From the language model perspective, tests were novel and uncommon

19



GPT Evaluation With Tests?

● While TransCoder is a different problem (translation, not repair or 
improvement), the “computational accuracy” of 25-75%

● … is more like what we see from non-GPT program repair

20



The Lens of Construct Validity

● Construct validity is the appropriateness of inferences made on the basis of 
observations or measurements (often test scores), specifically whether a 
test can reasonably be considered to reflect the intended construct. It 
subsumes content and criterion validity. 
○ In this context, informally: are you measuring what you say you’re measuring?

● Example: You conduct a human study in which you show participants 
snippets of code and ask them comprehension questions. You use their 
times and accuracies to make inferences about code readability. However, 
a threat to the construct validity of those results relates to whether you are 
measuring readability or complexity.

21



Two Countries Divided By A Common Language

● Approach X is better than approach Y at the program repair task
○ Better than

■ “Produces token sequences yielding higher ROUGE (etc.) scores w.r.t. a reference”
■ “Produces more patches that pass all test cases” 

○ Program repair task
■ “Given a program prefix and perfect fault localization and a large trained model, 

produce a patch using previous code”
■ “Given a program and test cases, produce a patch that possibly uses new code”

● Informally, one anxiety making the rounds in our community is that program 
committees and grant panels may be too inundated to make the distinctions
○ And thus mistakenly conclude that a claim about “Better_definition1” is really a claim about 

“Better_definition2”, etc. 

22



Recommendation: More Human Studies

● We evaluated a state-of-the-art 
encoder-decoder model via a human study of 
45 professionals and students

● Metrics like BLEU did not necessarily match 
human intuition
○ In the example on the right, the summary has a 

moderately high score
● Participants performed significantly better (p 

= 0.029) using human-written summaries 
versus machine-generated summaries

● Participants’ performance showed no 
correlation with the BLEU and ROUGE scores 
often used to assess the quality of 
machine-generated summaries

23



Recommendation: Human Studies, Deception, Context

● One challenge in comparative human 
studies is that non-anonymized 
presentations may result in bias

● A human study may employ deception 
(e.g., describing a patch as written by 
a human instead of a machine, or 
vice-versa), with a debriefing

● Alternatively, real-world contexts, 
such as deployments on GitHub, 
provide end-to-end assessments

24



Recommendation: Eye Tracking

● Eye tracking is becoming an increasingly 
common addition to human studies
○ The equipment is inexpensive
○ It can often detect where attention is paid at 

the level of individual words or syntax
○ It provides a validated way of assessing 

cognitive load (via pupil dilation, etc.)

● As deep learning models produce code 
or text, and as NLP metrics largely 
ignore semantics, measuring where 
humans pay attention is quite relevant

25



Recommendation: Algorithms

● In code summarization work, we used an “encoder + decoder + additional 
encoder for the AST” model to incorporate program structure

● Such AST-inclusive approaches may form a natural bridge to the 
grammar-based GP work of Langdon and others

● We need algorithms to take the output of deep learning models (e.g., 
Copilot) and improve it

● We might focus on the synthesis and discovery of novel code, leaving simple 
bugs that can be fixed with existing ingredients to AI
○ Just as we may not leave null pointer errors to program repair approaches

● Target fault localization for transformer approaches or, dually, target 
domains for which perfect fault localization is unreasonable

26



Program Repair Deployments

Janus Manager (2017): smaller, fixes 
Python Exceptions

Facebook SapFix, Getafix (2018-19): 
60MLOC+, mostly Null Pointer Exceptions

Bloomberg (2021): uninitialized 
variables, other templates, 48% dev 
accept rate

Fujitsu (2016-2017): method invocation 
bugs, ~50% acceptance rate, reduces dev 
time by ~29%

27



Deployment Commonalities

● Most focus on a single type of defect (e.g., Null Pointer Exceptions, OO 
Method Invocation errors, etc.) via fix patterns
○ For example, while Getafix handles multiple types of bugs, 

804/1264 were Null Pointer Exceptions
● “Bloomberg views the readability of a fix and future-proofing of fixes as 

a fundamental and crucial part of the overall repair process”
● Acceptance rates are uniform: ~50% at Bloomberg, Facebook, and 

Fujitsu
● Potential implication: near-future deployments may not require >50% 

success rate and may favor readability and simplicity

28



Trust and Acceptability

● Surveying 100 developers, Noller et al. 
found that manual review and test cases 
were critical to acceptancing of APR

● The emphasis on manual review 
motivates the inclusion of human studies 
(including advanced approaches like eye 
tracking or deception) in evaluations

● The emphasis on test cases motivates 
the nuanced use of extrinsic metrics in 
evaluations

29



Summary

● The application of neural network deep learning language models to 
program improvement, completion and repair tasks has surged 
○ Codex, Copilot, GPT, Transcoder, etc., are popular examples

● Concerns and challenges abound
○ Training costs may be exclusionary, novel synthesis is uncertain, perfect fault localization is 

often assumed, and intrinsic metrics omit semantics (such as running the program)
○ Informally, there is a fear that PCs and PMs will misinterpret results

● At the same time, opportunities exist
○ How we conduct peer review, clarity of communication, human studies (e.g., eye tracking 

and deception), and algorithmic advances (e.g., grammars, novelty, FL)
○ Real-world deployments focus on simplicity, humans reading patches, tests, and trust

■ Perhaps fear has misdirected our recent attention away from end-user needs

30


