
Rethinking Genetic Improvement Programming

David R. White
School of Computing Science

University of Glasgow
Scotland

david.r.white@glasgow.ac.uk

Jeremy Singer
School of Computing Science

University of Glasgow
Scotland

jeremy.singer@glasgow.ac.uk

Keywords
Genetic Programming, Genetic Improvement Programming

ABSTRACT
We re-examine the central motivation behind Genetic Im-
provement Programming (GIP), and argue that the most
important insight is the concept of applying Genetic Pro-
gramming to existing software. This viewpoint allows us to
make several observations about potential directions for GIP
research.

1. INTRODUCTION
In some ways, we may argue that Genetic Improvement

Programming (GIP), or simply GI, would have been the
logical first step for Genetic Programming (GP): to amend
existing software rather than create it from scratch appears
to be a logical line of attack for the development of search-
based code generation. Perhaps because the roots of GP are
in the artificial intelligence community, rather than the soft-
ware engineering community, this was not the path that GP
research followed. The recent emergence of GIP as a major
strand of GP research, including several notable high-profile
achievements and publications e.g. [12, 15], has pivoted the
community back towards this more incremental approach.

Examined from this viewpoint, the major insight of GIP
is that existing software is a valuable resource for GP. We
examine the ways in which existing code can be exploited to
aid the search process, and discuss the implications of those
opportunities.

2. THE UTILITY OF EXISTING CODE
There are three reasons to value existing software:

1. As an Oracle.

2. To provide scalability.

3. To provide ready-made functionality.

We examine each in turn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768426

2.1 As an Oracle
Existing code can function as an oracle for software testing

or, in the case of bug-fixing applications, provide a partially
correct solution. This enables the calculation of expected
results from a set of test cases. Furthermore, if we relax our
definition of existing software to include unit tests and other
artifacts then we have a set of input-output pairs. Without
tests, we require input data: this may be provided by an
engineer or researcher when formulating the problem, but
equally automated testing approaches such as fuzz testing
[8] and Search-Based Software Testing [7] can be applied.

To date, GI research has used the oracle to test whether
potentially semantics-breaking transformations have broken
the functional specification of code. When bug-fixing, posi-
tive test cases are run through the oracle; when optimising
a non-functional property such as execution time, the oracle
can be used with any input and the output matched against
the output of the modified program.

What other opportunities does the oracle offer us? Until
now we have been focused on the process of program im-
provement; consider more general transformation. We may
transform a program into a different form, for example by
introducing concurrency. In fact, the latter was the subject
of a book that may be the very first on GIP, though it was
not recognised as such at the time [14]. Cloning software
in a more general sense using GP may be useful for reverse
engineering [4] or N-version programming [2].

Previous GIP work may be viewed as specialisation of
software for anticipated usage, or for a given platform. For
example, the work of Langdon [6] produced a specialised ver-
sion of the Bowtie2 genomic analysis software that patched
a program so as to make great gains in execution speed on
average, at the cost of partial loss of correctness. There is
no reason why we should not go a step further and optimise
for a given architecture, such as ARM or MIPS.

Example Research Direction One way of transforming
code using GIP would be to translate it to another language:
we can use existing software as an oracle to ensure equiva-
lence between the source and target versions.

2.2 For Scalability
GP has known scalability issues [11]: it suffers from bloat

[13] and is mostly applied to the generation of small S-
expressions in applications such as symbolic regression. The
use of existing software promises to improve scalability, in
that the overall artifact generated is large, even if our patch
is relatively small; GP can be applied to “real-world” soft-
ware. Furthermore, by copying parts of a program and in-

http://dx.doi.org/10.1145/2739482.2768426

serting them elsewhere, the size of the individual units under
manipulation are larger than in traditional GP. The princi-
pal contribution of the existing program to scalability in this
sense is that it provides a starting point in the search space
that is close to the overall goal. The reuse of program sub-
components also provides some guidance as to the possible
mutation operations we may apply during the search.

Existing code provides a much richer source of informa-
tion than this. The most obvious approach to aiding our
search is to profile the original program, which is used in
GI bug-fixing applications where the lines executed under
both positive and negative test cases are contrasted. Pro-
filing can also be used in optimisation of execution time, to
identify areas of the code responsible for a great deal of time
taken during execution. In the future, GIP should move be-
yond simple profiling: individual traces of a program may
be used to extract the semantics of intermediate steps in the
program, reducing the size of the problem to be solved by
considering only a subset of operations. More generally, any
static or dynamic analysis may be applied to extract useful
knowledge from the input program, a small fraction of which
is currently exploited.

Example Research Direction Little attention has been
paid to memory usage in GIP. Static analysis techniques can
be used to fix memory errors in existing code, and GIP could
also be used to reduce memory usage through heap profiling.

2.3 As Ready-made Functionality
In recent bug-fixing work, existing code is used as raw ma-

terial, i.e. genetic material to be inserted into the program.
Weimer et al [15] themselves cite Engler et al. [1] when they
observe:

“In practice, a program that makes a mistake in
one location often handles the situation correctly
in another.”

We may broaden our horizons much further than this. We
may consider the combination of existing code from multi-
ple sources. When solving problems “from scratch” in GP,
we may exploit codebases found in open-source projects, li-
braries and forums. Consider the concept of StackSort, an
idea posited by the XKCD author Randall Munroe [9] and
later implemented by Koberger [5]. Although tongue-in-
cheek, it illustrates an important point, and mirrors the way
Noble and Biddle [10] describe (post-)modern programming
as “Scrap-Heap System Construction”.

Broadening our definition of software to include other de-
velopment artifacts such as documentation based in code
(e.g. Javadoc) and change control history, we may em-
ploy data-mining methods to identify important and poten-
tially reusable code, as well as examining code for type-
compatibility.

Rather than combine small components to construct large
programs, an incremental approach seems more logical, i.e.
adding new features to existing programs rather than start-
ing from scratch. The method of “grow and graft” proposed
by [3] attempts to create a subcomponent independently and
insert it into a program; we propose that the subcomponent
is generated by code scavenging from the vast repositories
of code online.

Example Research Direction GIP can exploit the vast
repositories of source code online to solve new problems us-
ing existing code. We term this “code scavenging”.

3. CONCLUSION
In this position paper we have argued that the greatest

insight of Genetic Improvement is the value of incorporat-
ing existing source code into the automated programming
process. We have argued that this viewpoint identifies new
ways forward for GI: program transformation, translation,
cloning; code scavenging and recombination; and the full ex-
ploitation of code and related artifacts to guide our search
for solutions.

4. REFERENCES
[1] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and

B. Chelf. Bugs As Deviant Behavior: A General
Approach to Inferring Errors in Systems Code. In
SOSP ’01, 2001.

[2] R. Feldt. Generating Multiple Diverse Software
Versions with Genetic Programming. In Euromicro
Conference, 1998. Proceedings. 24th, 1998.

[3] M. Harman, Y. Jia, and W. B. Langdon. Babel
Pidgin: SBSE Can Grow and Graft Entirely New
Functionality into a Real World System. In
Search-Based Software Engineering 2014. 2014.

[4] M. Harman, W. B. Langdon, and W. Weimer. Genetic
Programming for Reverse Engineering. In 20th
Working Conference on Reverse Engineering (WCRE
2013), 2013.

[5] G. Koberger. stacksort.
http://gkoberger.github.io/stacksort/, 2015. [Online;
accessed 8-April-2015].

[6] W. Langdon. Performance of Genetic Programming
Optimised Bowtie2 on Genome Comparison and
Analytic Testing (GCAT) Benchmarks. BioData
Mining, 8(1):1, 2015.

[7] P. McMinn. Search-Based Software Test Data
Generation: A Survey. Software Testing, Verification
and Reliability, 14(2):105–156, June 2004.

[8] B. P. Miller, L. Fredriksen, and B. So. An Empirical
Study of the Reliability of UNIX Utilities. Commun.
ACM, 33(12):32–44, 1990.

[9] R. Munroe. XKCD: Ineffective Sorts.
https://xkcd.com/1185/, 2015. [Online; accessed
8-April-2015].

[10] J. Noble and R. Biddle. Notes on Postmodern
Programming. In Proceedings of the Onward Track at
OOPSLA 2002, 2002.

[11] M. O’Neill, L. Vanneschi, S. Gustafson, and
W. Banzhaf. Open Issues in Genetic Programming.
Genetic Programming and Evolvable Machines,
11(3-4):339–363, Sept. 2010.

[12] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using Genetic Improvement and Code
Transplants to Specialise a C++ Program to a
Problem Class. In EuroGP 2014 Proceedings. 2014.

[13] R. Poli, W. B. Langdon, and N. F. McPhee. A Field
Guide to Genetic Programming. Lulu Enterprises, UK
Ltd, 2008.

[14] C. Ryan. Automatic Re-engineering of Software Using
Genetic Programming. Springer US, 2000.

[15] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In ICSE ’09, 2009.

http://gkoberger.github.io/stacksort/
 https://xkcd.com/1185/

	Introduction
	The Utility of Existing Code
	As an Oracle
	For Scalability
	As Ready-made Functionality

	Conclusion
	References

