Skip to main content

Modelling Genetic Programming as a Simple Sampling Algorithm

  • Chapter
  • First Online:

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

This chapter proposes a new model of tree-based Genetic Programming (GP) as a simple sampling algorithm that samples minimal schemata (subsets of the solution space) described by a single concrete node at a single position in the expression tree. We show that GP explores these schemata in the same way across three benchmarks, rapidly converging the population to a specific function at each position throughout the upper layers of the expression tree. This convergence is driven by covariance between membership of a simple schema and rank fitness. We model this process using Price’s theorem and provide empirical evidence to support our model. The chapter closes with an outline of a modification of the standard GP algorithm that reinforces this bias by converging populations to fit schemata in an accelerated way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banzhaf, W., Francone, F.D., Nordin, P.: The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data sets. In: H.M. Voigt, W. Ebeling, I. Rechenberg, H.P. Schwefel (eds.) International Conference on Parallel Problem Solving from Nature (PPSN-96), pp. 300–309. Springer (1996)

    Google Scholar 

  2. Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: L. Eshelman (ed.) International Conference on Genetic Algorithms (ICGA-95), pp. 9–16. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  3. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, E. Costa (eds.) European Conference on Genetic Programming, EuroGP 2003, pp. 70–82. Springer, Berlin, Heidelberg (2003)

    Google Scholar 

  4. Korns, M.F.: Accuracy in symbolic regression. In: R. Riolo, E. Vladislavleva, J. Moore (eds.) Genetic Programming Theory and Practice IX, pp. 129–151 (2011)

    Google Scholar 

  5. Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: European Conference on Genetic Programming, pp. 240–248. Springer (1997)

    Google Scholar 

  6. Luke, S., Spector, L.: A revised comparison of crossover and mutation in genetic programming. In: European Conference on Genetic Programming, pp. 208–213. Springer (1998)

    Google Scholar 

  7. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In: International Conference on Parallel Problem Solving from Nature, pp. 21–31. Springer (2012)

    Google Scholar 

  8. O’Reilly, U.M., Oppacher, F.: Using building block functions to investigate a building block hypothesis for genetic programming. Santa Fe Inst., Santa Fe, NM, Working Paper pp. 94–02 (1994)

    Google Scholar 

  9. O’Reilly, U.M., Oppacher, F.: The troubling aspects of a building block hypothesis for genetic programming. In: Foundations of Genetic Algorithms (FOGA-95), vol. 3, pp. 73–88. Elsevier (1995)

    Google Scholar 

  10. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: Part i. Evolutionary Computation 11(1), 53–66 (2003)

    Article  Google Scholar 

  11. Price, G.R.: Selection and covariance. Nature 227, 520–521 (1970)

    Article  Google Scholar 

  12. Rosca, J.P., Mallard, D.H.: Rooted-tree schemata in genetic programming. In: K.E. Kinnear, W.B. Langdon, L. Spector, P.J. Angeline, U.M. O’Reilly (eds.) Advances in Genetic Programming, Vol 3, pp. 243–271 (1999)

    Google Scholar 

  13. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation 13, 333–349 (2008)

    Article  Google Scholar 

  14. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines 14(1), 3–29 (2013)

    Article  Google Scholar 

  15. White, D.R., Poulding, S.: A rigorous evaluation of crossover and mutation in genetic programming. In: European Conference on Genetic Programming, pp. 220–231. Springer (2009)

    Google Scholar 

Download references

Acknowledgements

WB acknowledges funding from the Koza Endowment provided by MSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Banzhaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

White, D.R., Fowler, B., Banzhaf, W., Barr, E.T. (2020). Modelling Genetic Programming as a Simple Sampling Algorithm. In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds) Genetic Programming Theory and Practice XVII. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-39958-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39958-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39957-3

  • Online ISBN: 978-3-030-39958-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics