Skip to main content

Plastic Fitness Predictors Coevolved with Cartesian Programs

  • Conference paper
  • First Online:
  • 1055 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9594))

Abstract

Coevolution of fitness predictors, which are a small sample of all training data for a particular task, was successfully used to reduce the computational cost of the design performed by cartesian genetic programming. However, it is necessary to specify the most advantageous number of fitness cases in predictors, which differs from task to task. This paper introduces a new type of directly encoded fitness predictors inspired by the principles of phenotypic plasticity. The size of the coevolved fitness predictor is adapted in response to the learning phase that the program evolution goes through. It is shown in 5 symbolic regression tasks that the proposed algorithm is able to adapt the number of fitness cases in predictors in response to the solved task and the program evolution flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)

    Article  Google Scholar 

  2. Ellefsen, K.O.: Balancing the costs and benefits of learning ability. In: Advances in Artificial Life, ECAL 2013, vol. 12, pp. 292–299. MIT Press (2013)

    Google Scholar 

  3. Ellefsen, K.O.: Evolved sensitive periods in learning. In: Advances in Artificial Life, ECAL 2013, vol. 12, pp. 409–416. MIT Press (2013)

    Google Scholar 

  4. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1), 228–234 (1990)

    Article  Google Scholar 

  5. Imamura, K., Foster, J.A., Krings, A.W.: The test vector problem and limitations to evolving digital circuits. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 75–79. IEEE Computer Society (2000)

    Google Scholar 

  6. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. J. 9(1), 3–12 (2005)

    Article  Google Scholar 

  7. Miller, J.F.: Cartesian Genetic Programming. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Coevolutionary principles. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 988–1028. Springer, New York (2011)

    Google Scholar 

  9. Schmidt, M.D., Lipson, H.: Coevolution of fitness predictors. IEEE Trans. Evol. Comput. 12(6), 736–749 (2008)

    Article  Google Scholar 

  10. Sikulova, M., Hulva, J., Sekanina, L.: Indirectly encoded fitness predictors coevolved with cartesian programs. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) Genetic Programming. LNCS, vol. 9025. Springer, Heidelberg (2015)

    Google Scholar 

  11. Sikulova, M., Sekanina, L.: Acceleration of evolutionary image filter design using coevolution in cartesian GP. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 163–172. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Šikulová, M., Sekanina, L.: Coevolution in cartesian genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 182–193. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation project 14-04197S. The authors thank the IT4Innovations Centre of Excellence for enabling these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Wiglasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wiglasz, M., Drahosova, M. (2016). Plastic Fitness Predictors Coevolved with Cartesian Programs. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30668-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30667-4

  • Online ISBN: 978-3-319-30668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics