
GP Age-layer and Crossover Effects in Bid-Offer Spread
Prediction

Amy Willis
Dept. Computer Science

UCL, Gower Street, London,
UK, WC1E 6BT

amywillis@gmail.com

Suneer Patel
Dept. Computer Science

UCL, G ower Str eet, London,
UK, WC1E 6BT

Suneer.Patel@barclayscapital.com

Christopher D. Clack
Director, Financial Computing

Dept. Computer Science
UCL, Gower Street, London,

UK, WC1E 6BT
clack@cs.ucl.ac.uk

ABSTRACT

The bid-offer spread on equity options is a key source of
profits for market makers, and a key cost for those trading
in the options. Spreads are influenced by dynamic mar-
ket factors, but is there also a predictable element and can
Genetic Programming be used for such prediction? We in-
vestigate a standard GP approach and two optimisations —
age-layering and a novel crossover operator. If both are ben-
eficial as independent optimisations, will they be mutually
beneficial when applied simultaneously? Our experiments
show a degree of success in predicting spreads, we demon-
strate significant benefits for each optimisation technique
used individually, and we show that when both are used
together significant detrimental over-fitting can occur.

Categories and Subject Descriptors

I.2.M [Artificial Intelligence]: Miscellaneous

General Terms

Algorithms, Experimentation

Keywords

GP, Finance, Options, Spreads, Age Layers, ALPS, Crossover

1. INTRODUCTION
Genetic Programming (GP) offers an interesting alterna-

tive options pricing technique [3, 4, 5], using directed explo-
ration of a vast search space of equations to find an effective
solution that makes no assumptions about the market. The
problem of predicting bid-offer spreads is harder still, and it
is not clear whether there exists a predictable element based
purely on the basic parameters of the option being traded.

Encouraged by the existence of the commercial product
“AutoQuote” (see below), we suspect that a learnable com-
ponent of spreads does exist — though AutoQuote may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

derive its predictions from dynamic market information to
which we do not have access. We therefore set out to in-
vestigate whether a GP system could detect any learnable
gradient based purely on the available underlying inputs to
standard options pricing equations.

Exploration of this search space is a very hard problem
for GP, and we have investigated two optimisations to de-
termine their efficacy in the context of such a large and
complex search space:

1. age-layering (the Age Layered Population Structure —
ALPS [9]) is a new GP optimisation that achieves fitter
solutions by preventing premature convergence; and

2. a non-standard crossover operator, which attempts to
achieve fitter solutions by more directed exploration
the search space.

These two techniques both aim to improve the fitness of
the final GP solution, but in opposite ways — ALPS delays
convergence, whereas non-standard crossover operators at-
tempt to speed convergence through more intelligent search.
We are interested to explore the effects of implementing both
optimisations simultaneously.

In this paper we present the real-world problem of pre-
dicting bid-offer spreads, describe the two optimisation tech-
niques, and present empirical evidence of their effect on the
fitness of the evolved solution. We investigate use of each
optimisation individually, and in conjunction, and comment
on their relative effects on fitness.

1.1 Options pricing
Pricing equity options is difficult. Standard mathematical

techniques such as the Black Scholes model [2] make assump-
tions about the market (volatility, distributions, continuity
of trading, etc.) that are unrealistic and unsatisfactory [14,
15, 18]. Yet accurate pricing is extremely important — es-
pecially to the seller (writer) of an option, who (unlike the
buyer) cannot choose not to exercise the contract and so
risks large losses.

The Euronext LIFFE web site provides data for a wide
range of equity options. It also provides a system (“Au-
toQuote”) that predicts bid-offer spreads for those options,
though AutoQuote gives a rather inaccurate prediction of
these spreads.

Figure 1 shows the format of a Euronext LIFFE screen
(http://www.liffe-data.com/). A range of call and put op-
tions for Ladbrokes at various strike prices are shown. The
underlying stock price of Ladbrokes is shown at the top to

1665

Strike AQ AQ Bid Offer Last Last Vol Total OI Settle

Bid Offer Trade Trade Daily

at Vol

300 0 1.75 - - - - - 0 - 0.5

330 0.5 3 - - - - - 0 130 2

360 3.75 7.5 4 6 ##### 5 10 10 45 6.25

390 11.5 16.5 13.3 15.25 ##### 13.75 3 3 298 15.25

420 28 33 29.3 31.75 - - - 0 26 32.25

460 59 65.25 - - - - - 0 30 64.75

500 98.3 104.5 - - - - - 0 - 104

Puts

398.5

Settle OI Total Vol Last Last Bid Offer AQ AQ Strike

Daily Trade Trade Bid Offer

Vol at

101.25 6 0 - - - - - 100.8 107 300

72.75 11 0 - - - - - 72 78.25 330

46 3 0 - - - 46.8 49.25 45.25 51.5 360

24.25 246 4 4 ##### 24.5 25.3 27.25 22.5 28.75 390

10.25 59 10 10 ##### 10.5 10.3 12.25 8.75 13.75 420

2.25 101 0 - - - - - 1.25 3.75 460

0.5 - 0 - - - - - 0 1.75 500

Expiry: 16Mar07

Ladbrokes

Calls

Figure 1: Example Euronext LIFFE screen, including

AutoQuote data. The left side of the screen (Calls) is

shown above: the right side (Puts) is below. The Strike

column is shown twice for convenience.

be 398.5 and the expiry date of the option is 16 March 2007.
The four columns titled either AQ Bid or AQ Offer show the
AutoQuote bid-offer spreads for both types of option (Calls
and Puts). The columns titled Bid and Offer show the ac-
tual prices of the bid-offer spreads quoted by dealers. There
are 3 cases for call and 3 for put where there is enough in-
formation to use as data, these are the ones corresponding
to strike prices of 360, 390 and 420. They all illustrate the
inaccuracy of AutoQuote pricing mechanisms.

The models that are used to predict the spreads are not
divulged, but AutoQuote’s inaccuracies may be due to it be-
ing based on standard parametric techniques. The instru-
ments are American options, and pricing this type of option
is more difficult than the simpler European options (for ex-
ample, the Black-Scholes equation can, with its limitations,
price European options but not American options).1

Genetic programming is a technique that requires minimal
assumptions about the market. Used with data obtained
from real-world trades at LIFFE, we set out to explore how
a standard GP system and the two identified GP optimisa-
tions would respond to the challenge of predicting bid-offer
spreads for American equity options.

2. RELATED WORK

2.1 Avoidance of premature convergence
The Age Layered Population Structure (ALPS) [9] is a

new mechanism that aims to avoid premature convergence,
and Hornby presents evidence of substantial success. By

1Put simply, a European option can only be exercised on a
stated date, whereas an American option can be exercised at
any time up to a stated date and is therefore more difficult
to price.

“premature convergence” we mean the tendency for a GP
system to converge on a local optimum rather than contin-
uing to search for a better (preferably global) optimum. A
key contribution of ALPS is to enforce an age-layered struc-
ture on the population and to restrict breeding to individuals
that occupy the same age layer. See Section 3.2.

Many techniques for the reduction of premature conver-
gence and the preservation of diversity exist. The Hierar-
chical Fair Competition (HFC) model [10] is very similar
to ALPS. It splits the population into layers and also intro-
duces randomly generated individuals into the bottom layer.
However HFC uses fitness rather than age to segregate in-
dividuals into layers. This results in the problem of indi-
viduals that have converged to a local optima near the top
fitness layer preventing newer individuals in different basins
of attraction from climbing through that fitness layer [9].

The multipopulation genetic programming [19] technique
also uses a method based on the segregation of individuals.
However, the system differs from ALPS and HFC as it in-
volves an initial population split into subpopulations. The
subpopulations evolve using differing mutation and crossover
probabilities. Each subpopulation can communicate and
transfer their best individuals every few generations. How-
ever, an individual can only move into a subpopulation with
a lower fitness than its own. This would lead to a reduc-
tion in diversity given the newly migrated individual will
have a higher fitness than the rest of the subpopulation
and dominate the subpopulation during crossover and muta-
tion. Therefore the rate at which individuals are allowed to
move into new subpopulations must be carefully considered.
There is also no introduction of randomly generated individ-
uals and there is no guarantee that all subpopulations will
not converge to the same local optimum.

2.2 Non-standard crossover
Many techniques have been proposed to improve the stan-

dard GP crossover operator. For example:

• Both homologous crossover [13] and size fair crossover
[13] aim to reduce code bloat, the first by selecting
nodes for crossover that are closest in position within
their parent trees, and the second by selecting to cross
over subtrees that are similar in size. These two tech-
niques do not address fitness.

• Context preserving crossover [6] looks at only cross-
ing over nodes from sections of the parents that are
identical, as do one-point and uniform crossover [17].
These techniques are shown to speed convergence in
problems with known solutions, but they can be overly
restrictive, and prevent code from being moved into a
position that may suit it better.

• Directed crossover [12] uses biases to choose crossover
locations that avoid disrupting working code, crossover
is biased in favour of changing code that appears to be
performing poorly.

Novel crossover techniques that can modify GP search to
improve the fitness of the final solution include:

• SSAC and SAMC [1] use a parameter tree for each
individual of identical size and shape to determine the
probability of crossover for each node. The parameter
tree is updated with random noise each generation,

1666

and if an update is beneficial to crossover this increases
the fitness of the tree. However a detrimental change
may inadvertently allow a good crossover point to go
unnoticed. This technique doubles memory usage since
two trees now have to be stored for each individual,
which may be problematic for large problems. They
measure fitness for a non-trivial problem (prediction
of the number of sunspots, based upon historical data)
and show that there is an increase in fitness of solutions
using SSAC.

• Context-aware crossover [16] chooses a random subtree
from the first parent and finds the best location in the
second parent to place this subtree, with the intention
of improving performance. No consideration is given
to the strength of the subtree that is being inserted
into the second parent, therefore it is possible the sys-
tem merely finds the best location to insert a poor
subtree. Also no second child is made, so a lot of ge-
netic material is thrown away; most of the first parent,
and a subtree from the second parent. The average fit-
ness and fitness of the best individual is measured for
several problems and an increase is shown.

• Selective crossover [8, 22] evaluates the contribution of
each node to the overall fitness by removing the node
and reevaluating the tree without it. The node that
causes least change when removed is called the weak-
est node, and the one causing most change is called
the strongest node. The weakest node in each parent
is replaced by the strongest node from the correspond-
ing parent, eliminating weak subtrees and combining
strong ones. This method evaluates each tree n times
(where there are n nodes), which causes a large in-
crease in running time.

• Directed crossover [20] identifies the node whose con-
tribution to the tree is maximal in each parent, and
crossover is performed on these nodes, ensuring only
highly operative segments of code are exchanged. It
is not made clear how the contribution of a node to
the tree is measured, just that fitness is measured and
recorded at each node. Crossover biases [21] are used
to select a node for crossover based upon fitness, and
then find the best location to place it in the second
parent. Again, there is no description of how to mea-
sure fitness, this paper just states that it is informa-
tion that is freely available. Both of these papers mea-
sure the number of converging solutions for problems
with known solutions and the classification accuracy
for classification problems, and the average size of so-
lutions is compared. However, details of implementa-
tion are not given, so it is difficult to reproduce their
work.

2.3 Using GP to predict options prices
GP is increasingly being applied to problems in finance,

and the prediction of market prices has been a particular
area of interest. GP is an attractive non-parametric mech-
anism for deriving options prices from the underlying pa-
rameters that are thought to drive the price; it requires
minimal assumptions, can adapt to changing market condi-
tions, learns optima more flexibly and more accurately than
SVM [23], and uses a directed search that is faster than ran-
dom search (as used for example in Monte Carlo methods).

Chidambaran et al [4] propose a GP system to develop an
adaptive evolutionary model of option pricing that is data-
driven and non-parametric. They show that this method
can operate on small data sets, thereby avoiding the large
data requirement of the neural network approach (see for
example Hutchinson et al [11]).

There have been several attempts to use GP to price op-
tions using simulated data; the Black-Scholes model is often
taken to be the “true” model and is used to generate artifi-
cial data for training and testing. [5] is one such approach.
Monte Carlo simulations are used to generate artificial stock
price data; this is used to generate call options of varying
strike prices and maturity. The call options are then priced
using the Black-Scholes model. These sets of data are used
to train and test the GP. The initial population is seeded
with the Black-Scholes equation to see if this helps to de-
velop a better model; it is discovered that this does help.
Various parameter settings are tested, with the conclusion
that smaller data sets that are stochastically changed, larger
population sizes and higher mutation rates all lead to faster
convergence of the problem. The paper concludes that their
GP is suitable for use in the real world.

Though the study is an interesting exploration of the mech-
anisms of evolutionary search in a particular problem do-
main, and gives a good indication that evolutionary search
is effective in such a solution landscape, using a GP to learn
the Black-Scholes model has little real-world benefit — there
would be nothing to gain in accuracy of price prediction from
using the GP system over Black-Scholes model. Of course,
if the evolved GP equation can price an option considerably
faster than Black Scholes, then this could be beneficial when
a very large number of options must be priced.

[3] is a study of option pricing using GP that does use real
data. The data used is from S&P 500 index options. They
are European options so the Black-Scholes model can be
used to price them. Two implementations are used: “One-
stage GP” simply trains on the data, and then validation oc-
curs on out-of-sample data using a pricing formula obtained
by averaging the prediction made by the top k programs
where k = 10,50 and 100; by contrast “Two-stage GP” dis-
tinguishes between in-the-money (ITM) options and out-of-
the-money (OTM) options. The data set is split into options
which are ITM and options that are OTM. This is done to
improve the performance of the GP, since ITM options are
intrinsically more valueable than OTM options. Both tech-
niques are compared to other methods of pricing options,
and Two-stage GP outperforms all of the linear regression
models and ANNs in the comparison. Two-stage GP also
outperforms the Black-Scholes model in training, but not in
testing. This experiment compares the errors from Black-
Scholes calculations based upon the data (and compared to
the actual trade prices) to the errors from the GP system.

Our problem is different to prior work in that we aim
to predict bid-offer spreads, and our target is the actual
quoted bid-offer spreads of the options dealers (as quoted
on Euronext LIFFE). This is not as simple as predicting
a mid price and then predicting the spread; indeed, there
are elements to the setting of the spreads that could not
be predicted either by us or by AutoQuote — for example,
a dealer may modify the quoted spread depending on the
dealer’s exposure to risk.

1667

3. DESCRIPTION OF THE ALGORITHMS

3.1 The GP system
Traditionally, the value of an option is held to depend

upon five factors; the strike price at which the option can be
exercised, the stock price of the underlying instrument, the
time to expiry, the risk-free interest rate and the volatility
of the stock price. A data set consisting of these five pieces
of information along with the AutoQuote predictions for the
bid-offer prices, and the bid-offer prices of actual trades has
been collected. The GP system creates two sets of equations
based on the five variables discussed. One set of equations
will be for bid prices and the other for offer prices. The
fitness function aims to minimize the mean squared error of
the predictions from the actual values; thus, the fitness of
each equation will be calculated as follows:

f =
(
P

n

i=1
(xi − ai)

2)

n
(1)

where xi represents the value calculated for the ith item
in the data set, and ai represents the actual (bid or offer)
price for the ith item in the data set. System parameters
are given in Table 1.

3.2 ALPS
A common problem in GP is premature convergence, cau-

sed by individuals in the population being strongly drawn
towards a high fitness individual that is close to a local (not
global) optimum in the search space. New individuals need
to be introduced to explore other parts of the search space
allowing us to move away from local optimum and hope-
fully towards a global optimum. The problem with this in
standard GP is the fitness of a new individual will be much
lower than that of the old individual that has reached a local
optimum, so the search will still be directed towards the old
individual. ALPS is suggested as a method to overcome this
problem [9]. It allows new randomly generated individuals
to be integrated into the population and provides a mech-
anism to prevent these new individuals from being directed
away from the new area of search space they are exploring.
ALPS introduces age as a measure of how long an individual
has been in the population. Age begins at 0, and is increased
by 1 each time an individual is used to produce offspring, and
the age of the offspring produced via mutation and crossover
is the age of its oldest parent +1. Age is used as a restric-
tion on breeding, hence competition between individuals is
reduced. Age-layers are used to implement the restriction.
The population is separated into multiple age-layers where
each age-layer has a maximum age limit. Selection, breeding
and replacement are restricted to adjacent age layers, and
new individuals are regularly introduced into the initial age
layer. Structuring the population this way allows individu-
als to explore newly discovered optimum in the search space,
without being directed towards local optimum discovered by
older individuals.

3.3 Novel crossover
The second optimisation aims to modify crossover so that

the overall fitness of the population is increased. Standard
crossover in genetic programming randomly selects a node
from each parent and exchanges their subtrees. Doing this
may destroy a strong subtree, if a point within that subtree

Node Value Fitness

A 4 (10 − 4)2 = 36

B 2 (10 − 2)2 = 64

C 8 (10 − 8)2 = 4

D 5 (10 − 5)2 = 25

E 13 (10 − 13)2 = 9

Figure 2: Tree and fitness calculation for each node

is chosen for crossover. An alternative method is to deter-
mine the strongest subtree from each parent and perform
crossover on a node above this subtree. Doing so would
preserve the structure of the subtree. It is possible to deter-
mine which subtrees are strong by analysing the fitness of
each node.

We present a novel crossover operator that has some sim-
ilarity to Terrio’s work [20] (though Terrio does not give
sufficient details for a full comparison).

As each tree is evaluated the fitness of each node within
the tree is calculated, and this is stored in the node for future
use. The fitness of a node is calculated in the same way as
the fitness of a tree; a mean squared error between the values
of the node when evaluated, and the actual prices from the
data set. A simplified example of this is shown in Figure 2,
where fitness values of nodes are calculated for a single data
item, with a target value of 10. The fitness value of each
node depends upon how close the node was when evaluated
to 10. The diagram shows node C as the node with the
minimum error.

Parents are chosen using a tournament selection, and when
crossover is performed the fitness values of the nodes are
considered. For each parent, a pair of nodes is chosen for
crossover. To choose this pair of nodes, the fitness values of
all the nodes in the tree are compared allowing us to find
the best one (in this case the best one is the one which min-
imises the error). This best node is called n. The second
node, c is a randomly selected node on the path from the
root to n. Choosing a random c on the path to n allows the
context in which n is used to survive. We know that n works
well in this context because the overall fitness of the parent
is high, otherwise the parent would not have been selected
for crossover. If n is the root node of the parent, then n and
c are the same — see Figure 3.

We now have two parents, p1 and p2, and the pairs of
nodes chosen from each parent, n1 and c1 from p1, and n2

and c2 from p2

1668

Figure 3: Choosing the best node n and a path node c.

Figure 4: Crossover of path nodes.

Figure 5: Single child: replication of parent.

Figure 6: Single child: subtree.

1669

Crossover can now be performed; a threshold fitness level
has been set; if the fitness of n1 or n2 does not beat this
threshold, standard crossover is performed, with new nodes
being randomly selected. This allows random exploration
— if a subtree is not particularly strong we do not want
to preserve it. If the threshold has been reached the pair
of selected nodes is used: a biased coin is flipped to decide
which of the nodes should be used for crossover. An 80%
chance is given to the nodes c1 and c2 being chosen. In this
case a strong subtree is tested in a different position in the
next generation, and it may perform better — see Figure 4.
A 20% chance is given to the better out of n1 and n2 being
chosen as one crossover point with the second crossover point
being chosen as the root node of the corresponding tree.

In this case, if the better out of n1 and n2 was the root of
its respective parent, this will simply replicate the parent —
see Figure 5. Otherwise the better one will become the root
of a child, as shown in Figure 6. This will throw away a lot
of genetic material, hence it is only used a small amount of
times.

4. EXPERIMENT
Four systems have been evaluated: Standard GP (SGP),

ALPS, SGP with modified crossover (X), and ALPS with
modified crossover (X+ALPS) (see Figure 7). In all cases,
a generational GP is used, running for 500 generations with
a population size of 500. Tournament selection is used with
elitism — system parameters were empirically tuned by hand
for SGP and then kept constant for ALPS, X and X+ALPS.
See Table 1.

X + ALPSALPSALPS

XSGPNo ALPS

Modified

Crossover

Normal

Crossover

Indicates a comparison has been made between cases

Figure 7: Cross-comparison of ALPS and novel

crossover

The training data is a set of 500 real bid and ask prices
for equity options taken from Euronext LIFFE. The data
was collected over a period of 3 days for 100 different equity
options. It consists of the five factors that affect the prices
of options, predicted bid-offer spreads and actual bid-offer
spreads. All data collected was randomly sorted to pre-
vent the training and validation sets from containing large
amounts of data that may be biased.

Table 1: GP Parameter Settings

Population size (N) 500
Method of generation Ramped half and haif
Function set {+, -, *, /, Exp, min,

max, power, SQRT, ln}
Terminal set {stock price, strike price,

time to expiry, volatil-
ity, risk-free interest
rate,random numeric
value}

Selection scheme Tournament selection
Tournament size 7
Criterion of fitness Mean squared error
Number of trees generated by
elitism

1 (0.2%)

Number of trees generated by
crossover

500 (100%)

Number of trees modified by
mutation

250 (50%))

Termination criterion 500-generation evolution
Maximum depth of initial gen-
eration

7

We make multiple runs of all four systems and choose
25 evolved equations from each system. Distributions con-
taining 25 data points each are large enough for statistical
comparison; however, these distributions cannot be assumed
to be Gaussian and so we use a non-parametric statistical
test — the Ranked T-Test.2

The out-of-sample validation data consists of 200 data
points.

5. MAIN RESULTS
Figure 8 shows the effect of the two optimisations on evo-

lutionary convergence. It plots the mean performance of the
best individual per generation, averaged across all runs, for
each of the four experiments.

The first observation to be made from Figure 8 is that all
four systems are learning — evolutionary pressure is caus-
ing the mean squared errors to improve. This supports the
notion that there is some learnable component to bid-offer
spreads, even from the basic data used in this experiment.

ALPS is shown to initially learn faster, although it con-
verges to a similar level as novel crossover (X), and novel
crossover with ALPS (X+ALPS). SGP is shown to learn
more slowly initially and to converge at a higher (less fit)
level. This is counter to our expectation that ALPS would
converge more slowly.

Table 2 shows the minimum and average errors for the per-
formance on the training data of the 25 individuals for each
of the 4 experiments. Table 3 shows this same information,
but for the performance on validation data. Tables 4 and
5 show the results of applying a ranked T-test to compare
each of the five comparisons shown in Figure 7, on training
and validation errors.

A (non-parametric) Ranked T-test is used to determine
whether the means of the error distribution from the experi-
ments are statistically different from each other. The p-value

2A valid alternative would be the Mann-Whitney-Wilcoxon
test.

1670

1

10

100

1000

10000

0 100 200 300 400 500 600

L
o

g
 (

M
e
a
n

 F
it

n
e
s
s
 o

f
B

e
s
t

I
n

d
iv

id
u

a
l)

SGP ALPS X X+ALPS

Generation

Figure 8: Evolutionary convergence of the systems.

Table 2: Training Results

Standard Crossover Modified Crossover
Min.
error

Mean
error

Min.
error

Mean
error

Standard
GP

55.06 87.87 41.25 64.31

GP with
ALPS

49.49 56.83 57.52 61.502

represents the confidence that they are drawn from the same
distribution; a small p-value suggests that we can be highly
confident that there is a statistically significant difference.
We consider anything under 0.05 to be significant.

The novel crossover operator (X) shows a significant im-
provement when compared against SGP on both training
and validation results.

The results show that while ALPS makes no significant
improvement on training, it does improve validation results
significantly when compared to SGP. This suggests that the
mechanisms used in ALPS have reduced over-fitting during
training.

The situation with X+ALPS is more complex:

• X+ALPS compared with ALPS: ALPS performs sig-
nificantly better on both training and validation than
X+ALPS.

• X+ALPS compared with SGP: X+ALPS produces sig-
nificant improvements during training, but no signifi-
cant difference in validation results, when compared to
SGP. We infer that the improvement in training results
was the result of over-fitting.

• X+ALPS compared with X: X+ALPS produces signif-
icantly better results on training than X alone, but in
validation, this result is reversed: using X alone pro-
duces better results.

To summarize: either technique used on its own gives sig-
nificant benefit during validation, but the combination of
the two techniques does not perform well.

Table 3: Validation Results
Standard Crossover Modified Crossover
Min.
error

Mean
error

Min.
error

Mean
error

Standard
GP

58.01 107.14 42.0998 71.27

GP with
ALPS

39.81 66.93 71.1775 79.34

Table 4: Training Significances

Test P-Value Winner

SGP vs ALPS 2.58×10−1

SGP vs X 6.20×10−3 X

SGP vs X +
ALPS

1.05×10−4 X + ALPS

X vs X + ALPS 1.15×10−2 X + ALPS

ALPS vs X +
ALPS

6.58×10−4 ALPS

6. SUMMARY AND CONCLUSION
We have investigated the possibility that there is a GP-

learnable component to predicting American options bid-
offer spreads in the Euronext LIFFE market, coupled with
an investigation of the effects of using two optimisation meth-
ods and how they interact when used simultaneously on this
problem.

The first result from our experiments is that the progres-
sive reduction in errors from generation to generation indi-
cates that a GP-learnable component to bid-offer spreads
does indeed exist. Of course, the errors are still high even
after many generations and this raises interesting questions
for further work — is this the best that we can achieve us-
ing the described basic input data? what further (public)
input data could we present to the GP system in the expec-
tation that errors might be reduced further? is it possible to
conjecture what additional data is used by the AutoQuote
system? and is it possible that a GP system could, with
access to the same data, provide more accurate predictions
than AutoQuote?

Of the two optimisation techniques investigated, one is
a novel crossover operator and the other is ALPS. We have
compared how the two techniques perform alone, and along-
side each other, against a standard GP system. We have
demonstrated that when either optimisation is used individ-
ually it significantly improves validation results (e.g. when
ALPS is used alone, over-fitting during training is reduced),
but when used in combination they increase over-fitting to
the training data. We conjecture that using the two tech-

Table 5: Validation Significances

Test P-Value Winner

SGP vs ALPS 2.74×10−2 ALPS

SGP vs X 2.74×10−2 X

SGP vs X +
ALPS

8.11×10−1

X vs X + ALPS 3.924×10−2 X

ALPS vs X +
ALPS

4.52×10−8 ALPS

1671

niques together encourages more exploration of local optima
by the novel crossover technique, and this may prevent the
exploration of a better optimum. Reducing the amount of
novel crossover occurring in the younger age-layers might
provide a solution to this problem.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees

for their helpful comments.

8. REFERENCES
[1] P. J. Angeline. Two Self-Adaptive Crossover

Operators for Genetic Programming. Advances in
Genetic Programming 2, pp. 89–110, MIT Press, 1996.

[2] F. Black and M. Scholes. The Pricing of Options and
Corporate Liabilities. Journal of Political Economy,
81(3): 637–654, 1973.

[3] S-H. Chen, C-H. Yeh and W-C. Lee. Option Pricing
with Genetic Programming. Genetic Programming
1998: Proceedings of the Third Annual Conference,
pp. 32–37, Morgan Kaufmann, 1998.

[4] N. K. Chidambaran, C. H. J. Lee and J. R. Trigueros.
An Adaptive Evolutionary Approach to Option
Pricing via Genetic Programming. Computational
Finance — Proceedings of the Sixth International
Conference, editors: Y. S. Abu-Mostafa, B.LeBaron,
A. W. Lo, and A. S. Weigend, Cambridge, MA, MIT
Press 1999.

[5] N. K. Chidambaran. Genetic programming with
Monte Carlo simulation for option pricing. Genetic
Programming 1998: Proceedings of the Third Annual
Conference, Vol. 1, pp. 285–292, IEEE, 2003.

[6] P. D’haeseleer. Context preserving crossover in genetic
programming. IEEE World Congress on
Computational Intelligence, Vol. 1, pp. 256–261, IEEE
Press, 1994.

[7] A. Ekart and S. Z. Nemeth. Maintaining the Diversity
of Genetic Programs. Proceedings of EuroGP 2002,
LNCS 2278, pp.162–171, Springer-Verlag, 2002.

[8] S. Hengproprohm and P. Chongstitvatana. Selective
Crossover in Genetic Programming. ISCIT
International Symposium on Communications and
Information Technologies, 2001.

[9] G. S. Hornby. ALPS: the age-layered population
structure for reducing the problem of premature
convergence. GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary
computation, Vol. 1, pp. 815–822, ACM Press, 2006.

[10] J. J. Hu and E. D. Goodman. The Hierarchical Fair
Competition (HFC) Model for Parallel Evolutionary
Algorithms. Proceedings of the Congress on
Evolutionary Computation 2002, pp. 49–54, IEEE
Press, 2002.

[11] J. Hutchinson, A. Lo and T. Poggio. A Nonparametric
approach to the Pricing and Hedging of Derivative
Securities Via Learning Networks. Journal ofFinance,
Vol. 49, 1994.

[12] W. B. Langdon. Directed Crossover within Genetic
Programming. Advances in Genetic Programming 2,
Number RN/95/71, 1995.

[13] W. B. Langdon. Size Fair and Homologous Tree
Genetic Programming Crossovers. Genetic
Programming and Evolvable Machines, Vol. 1, No.1/2,
pp. 95–119, 2000.

[14] J. D. Macbeth and L. J. Merville. An empirical
estimation of the Black-Scholes call option pricing
model. Journal of Finance, Vol. 34, 1980.

[15] J. D. Macbeth and L. J. Merville. Tests of the
Black-Scholes and Cox call option valuation model.
Journal of Finance, Vol. 35, 1980.

[16] H. Majeed and C. Ryan. Using context-aware
crossover to improve the performance of GP. GECCO
2006: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, Vol. 1, pp.
847–854, ACM Press, 2006.

[17] R. Poli and W. B. Langdon. On the Search Properties
of Different Crossover Operators in Genetic
Programming. Genetic Programming 1998:
Proceedings of the Third Annual Conference, pp.
293–301, Morgan Kaufmann, 1998.

[18] M. Rubinstein. Implied Binomial Trees. Journal of
Finance, Vol. 49, 1977.

[19] L. Tang, M. Li and J. Zhang. Multipopulation Genetic
Programming For Forecasting Crop Pests. IEEE Int.
Conf. Neural Networks and Signal Processings 2003,
pp.554–557, 2003.

[20] M. D. Terrio and M. I. Heywood. Directing Crossover
for Reduction of Bloat in GP. IEEE CCECE 2003:
IEEE Canadian Conference on Electrical and
Computer Engineering, pp. 1111-1115, IEEE Press,
2002.

[21] M. D. Terrio and M. I. Heywood. On Naive Crossover
Biases with Reproduction for Simple Solutions to
Classification Problems. Genetic and Evolutionary
Computation, GECCO-2004, Vol. 3103 of Lecture
Notes in Computer Science, pp. 678–689,
Springer-Verlag, 2004.

[22] K. Vekaria and C. D. Clack. Genetic Programming
with Gene Dominance. in J.Koza (ed) Late breaking
papers at the Genetic Programming 1997 Conference,
pp 300, Stanford University, ISBN 0-18-206995-8,
1997.

[23] W. Yan, M. Sewell and C. D. Clack. Learning to
Optimize Profits Beats Predicting Returns —
Comparing Techniques for Financial Portfolio
Optimisation. Proc. Genetic and Evolutionary
Computation, GECCO-2008, ISBN 978-1-60558-131-6,
ACM, 2008.

1672

