Skip to main content

Advertisement

Log in

Introducing probabilistic adaptive mapping developmental genetic programming with redundant mappings

  • Original Paper
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Developmental Genetic Programming (DGP) algorithms have explicitly required the search space for a problem to be divided into genotypes and corresponding phenotypes. The two search spaces are often connected with a genotype-phenotype mapping (GPM) intended to model the biological genetic code, where current implementations of this concept involve evolution of the mappings along with evolution of the genotype solutions. This work presents the Probabilistic Adaptive Mapping DGP (PAM DGP), a new developmental implementation that involves research contributions in the areas of GPMs and coevolution. The algorithm component of PAM DGP is demonstrated to overcome coevolutionary performance problems that are identified and empirically benchmarked against the latest competing algorithm that adapts similar GPMs. An adaptive redundant mapping encoding is then incorporated into PAM DGP for further performance enhancement. PAM DGP with two mapping types are compared to the competing Adaptive Mapping algorithm and Traditional GP in two medical classification domains, where PAM DGP with redundant encodings is found to provide superior fitness performance over the other algorithms through it’s ability to explicitly decrease the size of the function set during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Assumes a symbiotic as opposed to a speciation model of cooperative coevolution. The latter is a distinct form of the symbiotic model, and widely used within evolutionary multi-objective optimization to encourage multiple solutions from a single population. It is thus not relevant to this work.

  2. That is, provided the noise threshold is set to anything less than 1.0, so that no column in the probability table will ever completely exclude any combination by setting the probability of its roulette selection it to 0.

References

  1. Keller, R., Banzhaf, W.: The evolution of genetic code in genetic programming. In: Banzhaf, W., Daida, J., Eiben, A., Garzon, M., Honavar, V., Jakiela, M., Smith, R. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando, Florida, pp. 1077–1082. Morgan Kaufman, San Francisco (1999)

    Google Scholar 

  2. Wilson, G., Heywood, M.: Probabilistic (Genotype) adaptive mapping combinations for developmental genetic programming. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp. 8667–8674. IEEE Press, Vancouver, Canada (2006)

  3. Wilson, G., Heywood, M.: Probabilistic adaptive mapping developmental genetic programming (PAM DGP): a new developmental approach. In: Runarsson, T., Beyer, H.-G., Burke, E., Merelo-Guervos, J., Whitley, L., Yao, X. (eds.) Proceedings of the 9th International Conference on Parallel Problem Solving from Nature (PPSN IX), Reykjavik, Iceland, pp. 751–760. Springer-Verlag, Berlin (2006)

    Chapter  Google Scholar 

  4. Margetts, S.: Adaptive Genotype to Phenotype Mappings for Evolutionary Algorithms, Ph.D. thesis, School of Computer Science, Cardiff University, Wales, Great Britain (2001)

  5. Margetts, S., Jones A.: Phlegmatic mappings for functional optimisation with genetic programming. In: Whitley, L., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.-G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), Las Vegas, Nevada, pp. 82–89. Morgan Kaufman (2000)

  6. Margetts, S., Jones, A.: An adaptive mapping for developmental genetic programming. In: Miller, J., Tomassini, M., Lanzi, P., Ryan, C., Tettamanzi, A., Langdon, W. (eds.) Proceedings of the Fourth European Conference on Genetic Programming (EuroGP 2001), Lake Como, Italy, pp. 97–107. Springer Verlag, Berlin (2001)

    Google Scholar 

  7. Banzhaf, W.: Genotype-phenotype mapping and neutral variation. In: Davidor, Y., Schwefel, H.-P., Manner, R. (eds.) Parallel Problem Solving from Nature III, Jerusalem, Israel, pp. 322–332. Berlin, Springer-Verlag (1994)

    Google Scholar 

  8. Keller, R., Banzhaf, W.: Genetic programming using genotype-phenotype mapping from linear genomes in linear phenotypes. In: Koza, J., Goldberg, D., Fogel, D., Riolo, R. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford, California, pp. 116–122. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  9. Keller, R., Banzhaf, W.: Evolution of genetic code on a hard problem. In: Spector, L., Goodman, E., Wu, A., Langdon, W., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, pp. 50–56. Morgan Kaufman, San Francisco (2001)

    Google Scholar 

  10. O’Neill, M., Brabazon, A.: mGGA: The meta-grammar genetic algorithm. In: Kaijzer, M., Tettamanzi, A., Collet, P., Hemert, J., Tomassini, M. (eds.) Proceedings of the 8th European Conference on Genetic Programming (EuroGP 2005), Lausanne, Switzerland, pp. 311–320. Springer, Berlin (2005)

    Google Scholar 

  11. O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evolution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) Proceedings of the Seventh European Conference on Genetic Programming (EuroGP 2004), Coimbra, Portugal, pp. 138–149. Springer, Berlin (2004)

    Google Scholar 

  12. Freeland, S.: The darwinian genetic code: an adaptation for adapting? Gen. Program. Evol. Mach. 3(2), 113–127 (2002)

    Article  MATH  Google Scholar 

  13. Wagner, G., Altenberg, L.: Perspectives: complex adaptations and the evolution of evolvability. Evolution 50(3), 967–976 (1996)

    Article  Google Scholar 

  14. Sella, G., Ardell, D.: The coevolution of genes and genetic codes: crick’s frozen accident revisted. J. Mol. Evol. 63(3), 297–313 (2006)

    Article  Google Scholar 

  15. Crick, F.: The origin of the genetic code. J. Mol. Biol. 38(3), 367–379 (1968)

    Article  Google Scholar 

  16. de Jong, E., Pollack, J.: Ideal evaluation from coevolution. Evol. Comput. 12(2), 159–192 (2004)

    Article  Google Scholar 

  17. Potter, M.: The design and analysis of a computational model of cooperative coevolution, Ph.D. thesis, Department of Computer Science, George Mason University, Fairfax, VA (1997)

  18. Potter, M., De Jong, K.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  19. Cliff, D., Miller, G.: Tracking the red queen: measurements of adaptive progress in co-evolutionary simulations. In: Moran, F., Moreno, A., Merelo, J., Chacon, P. (eds.) Advances in Artificial Life: Proceedings of the Third European Conference on Artificial Life (ECAL 95), Granada, Spain, pp. 200–218. Springer-Verlag, London (1995)

    Google Scholar 

  20. Wiegand, R., Potter, M.: Robustness in cooperative coevolution. In: Keijzer, M., Arnold, D., Babovic, V., Blum, C., Bosman, P., Butz, M., Coello, C., Dasgupta, D., Ficici, S., Foster, J., Hernandez-Aguirre, A., Hornby, G., Lipson, H., McMinn, P., Moore, J., Raidl, G., Rothlauf, F., Ryan, C., Thierens, D. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, pp. 369–376. ACM Press, New York (2006)

    Google Scholar 

  21. Bucci, A., Pollack, J.: On identifying global optima in cooperative coevolution. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D., Banzhaf, W., Blum, C., Bonabeau, E., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J., Jong, E.d., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G., Soule, T., Tyrrell, A., Watson, J.-P., Zitzler, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, DC, USA, pp. 539–544. ACM Press, New York (2005)

    Chapter  Google Scholar 

  22. Panait, L., Luke, S., Wiegand, R.: Biasing coevolutionary search for optimal multiagent behaviors. IEEE Trans. Evol. Comput. 10(6), 629–645 (2006)

    Article  Google Scholar 

  23. Panait, L., Wiegand, R., Luke, S.: A sensitivity analysis of a cooperative coevolutionary algorithm biased for optimization. In: Seattle, W.A., Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P., Spector, L., Tettamanzi, A., Thierens, D. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), Seattle, pp. 573–584. Springer, Berlin (2004)

    Google Scholar 

  24. Gathercole, C., Ross, P.: An adverse interaction between crossover and restricted tree depth in genetic programming. In: Koza, J., Goldberg, D., Fogel, D., Riolo, R. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford, California, pp. 291–296. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  25. Langdon, W., Poli, R.: An analysis of the MAX problem in genetic programming. In: Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Iba, H., Riolo, R. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford, California, pp. 222–230. Morgan Kaufman (1997)

  26. Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communication networks. J. Artif. Intell. Res. 9, 317–365 (1998)

    MATH  Google Scholar 

  27. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    Article  Google Scholar 

  28. Wilson, G.: Probabilistic Adaptive Mapping Developmental Genetic Programming, Ph.D. thesis, Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada (2007)

  29. Newman, D., Hettich, S., Blake, C., Merz C.: UCI Repository of machine learning databases [http://www.ics.uci.edu/∼mlearn/MLRepository.html], University of California, Department of Information and Computer Science, Irvine, CA (1998)

  30. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., Froelicher, V.: International application of a new probability algorithm for the diagnosis of coronary artery disease. Am. J. Cardiol. 64, 304–310 (1989)

    Article  Google Scholar 

  31. Wolberg, W., Mangasarian, O.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences, USA, vol. 87, pp. 9193–9196 (1990)

  32. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of a NSERC PGS-B and Izaak Walton Killam scholarship (Garnett Wilson), and the CFI New Opportunities and NSERC research grants (Dr. M. Heywood).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garnett Wilson.

Additional information

This paper is a revised and substantially extended version of: G. Wilson and M. Heywood. “Probabilistic Adaptive Mapping Developmental Genetic Programming (PAM DGP): A New Developmental Approach” in Proceedings of the 9th Parallel Problem Solving from Nature (PPSN IX), Reykjavik, Iceland, Runarsson et al. (eds.), Springer: Berlin, 2006, pp. 751–760.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, G., Heywood, M. Introducing probabilistic adaptive mapping developmental genetic programming with redundant mappings. Genet Program Evolvable Mach 8, 187–220 (2007). https://doi.org/10.1007/s10710-007-9027-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-007-9027-9

Keywords

Navigation