Skip to main content

Using Denoising Autoencoder Genetic Programming to Control Exploration and Exploitation in Search

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13223))

Included in the following conference series:

Abstract

Denoising Autoencoder Genetic Programming (DAE-GP) is a novel neural network-based estimation of distribution genetic programming (EDA-GP) algorithm that uses denoising autoencoder long short-term memory networks as a probabilistic model to replace the standard mutation and recombination operators of genetic programming (GP). At each generation, the idea is to flexibly identify promising properties of the parent population and to transfer these properties to the offspring where the DAE-GP uses denoising to make the model robust to noise that is present in the parent population. Denoising partially corrupts candidate solutions that are used as input to the model. The stronger the corruption, the stronger the generalization of the model. In this work, we study how corruption strength affects the exploration and exploitation behavior of the DAE-GP. For a generalization of the royal tree problem (high-locality problem), we find that the stronger the corruption, the stronger the exploration of the solution space. For the given problem, weak corruption resulting in a stronger exploitation of the solution space performs best. However, in more rugged fitness landscapes (low-locality problems), we expect that a stronger corruption resulting in a stronger exploration will be helpful. Choosing the right denoising strategy can therefore help to control the exploration and exploitation behavior in search, leading to an improved search quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as generative models. In: Advances on Neural Information Processing Systems (NIPS 2013), vol. 26, pp. 899–907 (2013)

    Google Scholar 

  2. Chollet, F.: keras. https://github.com/fchollet/keras (2015)

  3. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagńe, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

    MathSciNet  Google Scholar 

  4. Hasegawa, Y., Iba, H.: Estimation of Bayesian network for program generation. In: Proceedings of the Third Asian-Pacific Workshop on Genetic Programming, pp. 35–46. Hanoi, Vietnam (2006)

    Google Scholar 

  5. Hasegawa, Y., Iba, H.: Estimation of distribution algorithm based on probabilistic grammar with latent annotations. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, pp. 1043–1050. IEEE (2007), https://doi.org/10.1109/CEC.2007.4424585

  6. Hasegawa, Y., Iba, H.: A Bayesian network approach to program generation. IEEE Trans. Evol. Comput. 12(6), 750–764 (2008). https://doi.org/10.1109/tevc.2008.915999

    Article  Google Scholar 

  7. Hemberg, E., Veeramachaneni, K., McDermott, J., Berzan, C., O’Reilly, U.M.: An investigation of local patterns for estimation of distribution genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 767–774. ACM, Philadelphia (2012). https://doi.org/10.1145/2330163.2330270

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  9. Kim, K., Shan, Y., Nguyen, X.H., McKay, R.I.: Probabilistic model building in genetic programming: a critical review. Gene. Program. Evol. Mach. 15(2), 115–167 (2013). https://doi.org/10.1007/s10710-013-9205-x

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations. San Diego (2015)

    Google Scholar 

  11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, London (1992)

    MATH  Google Scholar 

  12. Kruskal, J.B.: An overview of sequence comparison: time warps, string edits, and macromolecules. Soc. Ind. Appl. Math. (SIAM) Rev. 25(2), 201–237 (1983). https://doi.org/10.1137/1025045

  13. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–418 (1997)

    Article  Google Scholar 

  14. Poli, R., McPhee, N.F.: A linear estimation-of-distribution GP system. In: Proceedings of the 11th European Conference on Genetic Programming (EuroGP 2008), pp. 206–217. Springer, Neapel (2008). https://doi.org/10.1007/978-3-540-78671-9

  15. Probst, M.: Denoising autoencoders for fast combinatorial black box optimization. In: Proceedings of the Companion Publication of the Annual Conference on Genetic and Evolutionary Computation, pp. 1459–1460. ACM, Madrid (2015)

    Google Scholar 

  16. Probst, M., Rothlauf, F.: Harmless overfitting: Using denoising autoencoders in estimation of distribution algorithms. J. Mach. Learn. Res. 21(78), 1–31 (2020). http://jmlr.org/papers/v21/16-543.html

  17. Punch, B., Zongker, D., Goodman, E.: The royal tree problem, a benchmark for single and multi-population genetic programming. In: Angeline, P.J., Kinnear, K.E., Jr. (eds.) Advances in Genetic Programming II, pp. 299–316. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Ratle, A., Sebag, M.: Avoiding the bloat with stochastic grammar-based genetic programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 255–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46033-0_21

    Chapter  Google Scholar 

  19. Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn. Springer, Berlin (2011). https://doi.org/10.1007/978-3-540-72962-4

  20. Salustowicz, R., Schmidhuber, J.: Probabilistic incremental program evolution. Evol. Comput. 5(2), 123–141 (1997). https://doi.org/10.1162/evco.1997.5.2.123

    Article  Google Scholar 

  21. Shan, Y., McKay, R., Essam, D., Abbass, H.: A survey of probabilistic model building genetic programming. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds.) Scalable Optimization via Probabilistic Modeling, pp. 121–160. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-34954-9

    Chapter  MATH  Google Scholar 

  22. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), pp. 843–852. ACM, Lille (2015). https://doi.org/10.5555/3045118.3045209

  23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł, Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  24. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning (ICML 2008), pp. 1096–1103. ACM, Helsinki (2008). https://doi.org/10.1145/1390156.1390294

  25. Wittenberg, D., Rothlauf, F., Schweim, D.: DAE-GP: denoising autoencoder LSTM networks as probabilistic models in estimation of distribution genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 1037–1045. GECCO 2020, ACM, New York (2020). https://doi.org/10.1145/3377930.3390180

  26. Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with Bayesian network. In: IEEE Congress on Evolutionary Computation (CEC’14), pp. 739–746. IEEE, Beijing (2014)

    Google Scholar 

  27. Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with dependence learning and Bayesian network classifier. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 959–966. ACM, Vancouver (2014). https://doi.org/10.1145/2576768.2598256

  28. Yanai, K., Iba, H.: Estimation of distribution programming based on Bayesian network. In: IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1618–1625. IEEE, Canberra (2003). https://doi.org/10.1109/CEC.2003.1299866

Download references

Acknowledgements

I thank my team in Mainz, especially Franz Rothlauf, for insightful discussions on this topic, as well as Dirk Schweim and Malte Probst for previous work on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wittenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wittenberg, D. (2022). Using Denoising Autoencoder Genetic Programming to Control Exploration and Exploitation in Search. In: Medvet, E., Pappa, G., Xue, B. (eds) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science, vol 13223. Springer, Cham. https://doi.org/10.1007/978-3-031-02056-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02056-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02055-1

  • Online ISBN: 978-3-031-02056-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics