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Abstracts 
In data mining, we emphasize the need for learning from huge, incomplete and imperfect data sets 

(Fayyad et al. 1996, Frawley et al. 1991, Piatetsky-Shapiro and Frawley, 1991). To handle noise in 

the problem domain, existing learning systems avoid overfitting the imperfect training examples by 

excluding insignificant patterns. The problem is that these systems use a limiting attribute-value 

language for representing the training examples and the induced knowledge. Moreover, some 

important patterns are ignored because they are statistically insignificant. In this paper, we present 

a framework that combines Genetic Programming (Koza 1992; 1994) and Inductive Logic 

Programming (Muggleton, 1992) to induce knowledge represented in various knowledge 

representation formalisms from noisy databases. The framework is based on a formalism of logic 

grammars and it can specify the search space declaratively. An implementation of the framework, 

LOGENPRO (The Logic grammar based GENetic PROgramming system), has been developed. 

The performance of LOGENPRO is evaluated on the chess endgame domain. We compare 

LOGENPRO with FOIL and other learning systems in detail and find its performance is 

significantly better than that of the others. This result indicates that the Darwinian principle of 

natural selection is a plausible noise handling method which  can avoid overfitting and identify 

important patterns at the same time. Moreover, the system is applied to one real-life medical 

database. The knowledge discovered provides insights to and allows better understanding of the 

medical domains. 

 

Area: Data mining, Genetic Programming, Evolutionary Computation, Rule Learning 
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1. Introduction 

 
Data mining is defined as the non-trivial process of identifying valid, novel, potentially useful, and 

ultimately understandable patterns in data stored in databases (Fayyad et al. 1996, Frawley et al. 

1991, Piatetsky-Shapiro and Frawley 1991). The knowledge discovered can be expressed in 

different knowledge representations such as logic programs, decision trees, decision lists, and 

production rules.  

Two of the approaches in data mining are Inductive Logic Programming (ILP) and Genetic 

Programming (GP). Dzeroski and Lavrac showed that ILP can be used to induce knowledge 

represented as logic programs (Dzeroski and Lavrac 1993, Dzeroski 1996). GP (Koza 1992; 1994, 

Kinnear 1994) extends traditional Genetic Algorithms (Holland 1975, Goldberg 1989, Davis 1987; 

1991) to induce automatically S-expressions in Lisp. It performs both exploitation of the most 

promising solutions and exploration of the search space. It is featured to tackle hard search 

problems and thus applicable to program induction and data mining. 

In this paper, we present a framework that can combine GP and ILP to induce knowledge 

from databases. We can also specify the search space declaratively. This framework is based on a 

formalism of logic grammars and is implemented as a data mining system called LOGENPRO (The 

LOgic grammar based GENetic PROgramming system). The formalism is powerful enough to 

represent context-sensitive information and domain-dependent knowledge which can be used to 

accelerate the learning of knowledge. It is also very flexible and the knowledge acquired can be 

represented in different knowledge representations such as logic programs and production rules 

(Wong and Leung 1995). 

The problem of learning knowledge from huge, incomplete, and imperfect datasets is very 

important in data mining (Piatetsky-Shapiro and Frawley 1991). The various kinds of imperfections 

in data are: 1) random noise in training examples and background knowledge; 2) the number of 

training examples is too small; 3) the distribution of training examples fails to reflect the 

underlying distribution of instances of the concept being learned; 4) an inappropriate example 

description language is used: some important characteristics of examples are not represented, 

and/or  irrelevant properties of examples are provided; 5) an inappropriate concept description 

language is used: it does not contain an exact description of the target concept; and 6) there are 

missing values in the training examples. 

Existing inductive learning systems employ noise-handling mechanisms to cope with the 

first five kinds of data imperfections. Missing values are usually handled by a separate mechanism. 

These noise-handling mechanisms are designed to prevent the induced concept from overfitting the 

imperfect training examples by excluding insignificant patterns (Lavrac and Dzeroski 1994).  They 

include tree pruning in CART (Breiman et al. 1984), rule truncation in AQ15 (Michalski et al. 
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1986) and significant test in CN2 (Clark and Niblett 1989). However, these mechanisms may 

ignore some important patterns because they are statistically insignificant. 

Moreover, these learning systems use a limiting attribute-value language for representing 

the training examples and induced knowledge. This representation limits them to learn only 

propositional descriptions in which concepts are described in terms of values of a fixed number of 

attributes. Currently, only a few learning systems such as FOIL (Quinlan 1990; 1991) and mFOIL 

(Lavrac and Dzeroski 1994) address the issue of learning logic programs from imperfect data. 

Consequently, we compare LOGENPRO with FOIL and mFOIL in their performance in learning 

logic programs from noisy databases. 

This paper is organized as follows. The next section presents the formalism of logic 

grammars and the details of LOGENPRO. In section 3, we employ LOGENPRO to combine GP 

and FOIL to induce knowledge represented as logic programs from noisy datasets. The data mining 

system has been applied to a real-life medical database. The results are presented in section 4. 

Finally, a conclusion is given in the section 5. 

 

2. Logic grammars and LOGENPRO 

 
The LOgic grammars based GENetic PROgramming system (LOGENPRO) can induce knowledge 

represented in various knowledge representation formalisms such as computer programs and 

production rules. Thus, LOGENPRO must be able to accept grammars of different knowledge 

representation languages. Most languages are specified in the notation of BNF (Backus-Naur form) 

which is a kind of context-free grammars (CFGs). However, LOGENPRO is based on logic 

grammars because CFGs (Hopcroft and Ullman 1979, Lewis and Rapadimitrion 1981) are not 

expressive enough to represent context-sensitive information for some languages and domain-

dependent knowledge of the target knowledge being induced. This section first introduces the 

formalism of logic grammars followed by the descriptions of LOGENPRO.  

 

2.1. Introduction to logic grammars 

 
Logic grammars are the generalizations of CFGs. Their expressivenesses are much more powerful 

than those of CFGs, but equally amenable to efficient execution. In this paper, logic grammars are 

described in a notation similar to that of definite clause grammars (Pereira and Warren 1980, 

Pereira and Shieber 1987, Sterling and Shapiro 1986). The logic grammar for some simple 

S-expressions in table 1 will be used throughout this section.  

A logic grammar differs from a CFG in that the logic grammar symbols, whether terminal 

or non-terminal, may include arguments. The arguments can be any term in the grammar. A term is 
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either a logic variable, a function or a constant. A variable is represented by a question mark ? 

followed by a string of  letters and/or digits. A function is a grammar symbol followed by a 

bracketed n-tuple of terms and a constant is simply a 0-arity function. Arguments can be used in a 

logic grammar to enforce context-dependency. Thus, the permissible forms for a constituent may 

depend on the context in which that constituent occurs in the program. Another application of 

arguments is to construct tree structures in the course of parsing, such tree structures can provide a 

representation of the semantics of the program. 

 
1: start  -> [(*], exp(W), exp(W), exp(W), [)]. 
2: start  -> {member(?x,[W, Z])}, [(*], exp-1(?x),  
    exp-1(?x), exp-1(?x), [)]. 
3: start  -> {member(?x,[W, Z])}, [(+], exp-1(?x),  
    exp-1(?x), exp-1(?x), [)]. 
4: exp(?x) -> [(/ ?x 1.5)]. 
5: exp-1(?x) -> {random(1,2,?y)}, [(/ ?x ?y)]. 
6: exp-1(?x) -> {random(3,4,?y)}, [(- ?x ?y)]. 
7: exp-1(W) -> [(+ (- W 11) 12)]. 
 
Table 1: A logic grammar 

 
The terminal symbols enclosed in square brackets correspond to the set of words of the 

language specified. For example, the terminal [(- ?x ?y)] creates the constituent (-

 1.0 2.0) of a program if ?x and ?y are instantiated respectively to 1.0 and 2.0. Non-terminal 

symbols are similar to literals in Prolog, exp-1(?x) in table 1 is an example of non-terminal 

symbols. Commas denote concatenation and each grammar rule ends with a full stop.  

The right-hand side of a grammar rule may contain logic goals and grammar symbols. The 

goals are pure logical predicates for which logical definitions have been given. They specify the 

conditions that must be satisfied before the rule can be applied. For example, the goal 

member(?x, [W, Z]) in table 1 instantiates the variable ?x to either W or Z if ?x has not been 

instantiated, otherwise it checks whether the value of ?x is either W or Z. If the variable ?y has not 

been bound, the goal random(1, 2, ?y) instantiates ?y to a random floating point number 

between 1 and 2. Otherwise, the goal checks whether the value of ?y is between 1 and 2.  

Domain-dependent knowledge can be represented in logic goals. For example, consider the 

following grammar rule: 
a-useful-program -> first-component(?X), 

     {is-useful(?X, ?Y)}, 

     second-component(?Y). 

This rule states that a useful program is composed of two components. The first component 

is generated from the non-terminal first-component(?X). The logic variable ?X is used to 

store semantic information about the first component produced. The logic goal then determines 

whether the first component is useful according to the semantic information stored in ?X. Domain-
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dependent knowledge about which program fragments are useful is represented in the logical 

definition of this predicate. If the first component is useful, the logic goal is-useful(?X, ?Y) 

is satisfied and some semantic information is stored into the logic variable ?Y. This information 

will be used in the non-terminal second-component(?Y) to guide the search for a good 

program fragment as the second component of a useful program. 

The special non-terminal start corresponds to a program of the language. In table 1, some 

grammar symbols are shown in bold-face to identify the constituents that cannot be manipulated by 

genetic operators. For example, the last terminal symbol [)] of the second rule is revealed in bold-

face because every S-expression must be ended with a ‘)’.  The number before each rule is a label 

for later discussions. It is not part of the grammar. 

 

2.2. Representations of programs 

 
One of the fundamental contributions of LOGENPRO is in the representations of  programs in 

different programming languages appropriately so that initial population can be generated easily 

and the genetic operators such as reproduction, mutation, and crossover can be performed 

effectively. A program can be represented as a derivation tree that shows how the program has been 

derived from the logic grammar. LOGENPRO applies deduction to randomly generate programs 

and their derivation trees in the language declared by the given grammar. These programs form the 

initial population. For example, the program (* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can 

be generated by LOGENPRO given the logic grammar in table 1. It is derived from the following 

sequence of derivations: 
start => [(*] exp(W) exp(W) exp(W) [)] 

=> [(*] [(/ W 1.5)] exp(W) exp(W) [)] 

=> [(*] [(/ W 1.5)] [(/ W 1.5)] exp(W) [)] 

=> [(*] [(/ W 1.5)] [(/ W 1.5)] [(/ W 1.5)] [)] 

=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 

This sequence of derivations can be represented as the derivation tree depicted in figure 1.  

In literature, the terms derivation trees and parse trees are usually used interchangeably. 

However, we will use the term derivation trees to refer to the tree structures in our framework and 

the term parse trees to refer to those in GP. The bindings of logic variables are shown in italic font 

and enclosed in a pair of braces. The sub-trees enclosed in a dashed rectangular are frozen. In other 

words, they are generated by bold-faced grammar symbols and they cannot be modified by genetic 

operators. 

An advantage of logic grammars is that they specify what is a legal program without any 

explicit reference to the process of program generation and parsing. Furthermore, a logic grammar 

can be translated into an efficient logic program that can generate and parse the programs in the 
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language declared by the logic grammar (Pereira and Warren 1980, Pereira and Shieber 1987, 

Abramson and Dahl 1989). In other words, the process of program generation and parsing can be 

achieved by performing deduction using the translated logic program. Consequently, the program 

generation and analysis mechanisms of LOGENPRO can be implemented using a deduction 

mechanism based on the logic programs translated from the grammars.  

Alternatively, initial programs can be induced by other learning systems such as FOIL 

(Quinlan 1990; 1991) or given by the user. LOGENPRO analyzes each program and creates the 

corresponding derivation tree.  

 

 

[(*] exp(W) exp(W) exp(W) [)]

start

[(/ ?x 1.5)] 
{?x/W}

[(/ ?x 1.5)] 
{?x/W}

[(/ ?x 1.5)] 
{?x/W}

 
 

Figure 1: A derivation tree of the S-expression in Lisp 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 

 

2.3. Crossover of programs 

 
The crossover is a sexual operation that starts with two parental programs and the corresponding 

derivation trees. One program is designated as the primary parent and the other one as the 

secondary parent. Their derivation trees are called the primary and secondary derivation trees 

respectively. The following steps are used to produce an offspring program: 

1. If there are sub-trees in the primary derivation tree that have not been selected 

previously, select randomly a sub-tree (primary sub-tree) from these sub-trees using a 

uniform distribution. The root of the selected sub-tree is called the primary crossover 

point. Otherwise, terminate the algorithm without generating any offspring. 
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2. Select another sub-tree (secondary sub-tree) in the secondary derivation tree under the 

constraint that the offspring produced must be valid according to the grammar.  

3. If a sub-tree can be found in step 2, create and return the offspring, which is obtained by 

deleting the primary sub-tree and then inserting the secondary sub-tree at the primary 

crossover point. Otherwise, go to step 1. 

 

Consider two parental programs generated randomly from the grammar in table 1. The 

primary parent is (+ (- Z 3.5) (- Z 3.8) (/ Z 1.5)) and the secondary parent is 

(* (/ W 1.5) (+ (- W 11) 12) (- W 3.5)). The corresponding derivation trees are 

depicted in figures 2 and 3 respectively. In the figures, the plain numbers identify the sub-trees of 

these derivation trees, while the underlined numbers indicate the grammar rules used in deducing 

the corresponding sub-trees.  

For example, if the primary and secondary sub-trees are respectively 2 and 15. The valid 

offspring is (* (- Z 3.5) (- Z 3.8) (/ Z 1.5)) is obtained and its derivation tree is 

shown in figure 4. It is interesting to find that the sub-tree 25 has a label 2. This indicates that the 

sub-tree is generated by the second grammar rule rather than the third rule applied to the primary 

parent. The second rule must be used because the terminal symbol [(/] is changed to [(*] and 

only the second rule can create the terminal [(*]. 

In another example, the primary and secondary sub-trees are 3 and 16 respectively. The 

valid offspring (+ (/ Z 1.5) (- Z 3.8) (/ Z 1.5)) is produced and the derivation 

tree is shown in figure 5. It should be emphasized that the constituent from the secondary parent is 

changed from (/ W 1.5) to (/ Z 1.5) in the offspring. This must be modified because the 

logic variable ?x in sub-tree 41 is instantiated to Z in sub-tree 39. This example demonstrates the 

use of logic grammars to enforce contextual-dependency between different constituents of a 

program. 

LOGENPRO disallows the crossover between the primary sub-tree 6 and the secondary sub-

tree 19. The sub-tree 19 requires the variable ?x to be instantiated to W, But, ?x must be 

instantiated to Z in the context of the primary parent. Since W and Z cannot be unified, these two 

sub-trees cannot be crossed over. 

LOGENPRO has an efficient algorithm to check these conditions before performing any 

crossover. Thus, only valid offspring are produced and this operation can be achieved effectively 

and efficiently.  
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{member(?x, [W,Z])} 
{?x/Z}

[(+] exp-1(?x) 
{?x/Z}

[)]

start

[(- ?x ?y1)] 
{?x/Z, ?y1/3.5}

exp-1(?x) 
{?x/Z}

exp-1(?x) 
{?x/Z}

{random(3, 4, ?y1)} 
{?y1/3.5}

[(/ ?x ?y3)] 
{?x/Z, ?y3/1.5}

{random(1, 2, ?y3)} 
{?y3/1.5}{random(3, 4, ?y2)} 

{?y2/3.8}

[(- ?x ?y2)] 
{?x/Z, ?y2/3.8}

0

1

2 3

4

5

6

7

8

9

10

11

12

3

6 6 5

 
Figure 2: The derivations tree of the primary parental program (+ (- Z 3.5) (-

 Z 3.8) (/ Z 1.5)). 



Page 9 

 

{member(?x, [W,Z])} 
{?x/W}

[(*] exp-1(?x) 
{?x/W}

[)]

start

[(/ ?x ?y1)] 
{?x/W, ?y1/1.5}

exp-1(?x) 
{?x/W}

exp-1(?x) 
{?x/W}

{random(1, 2, ?y1)} 
{?y1/1.5}

[(- ?x ?y2)] 
{?x/W, ?y2/3.5}

{random(3, 4, ?y2)} 
{?y2/3.5}[(+ (- W 11) 12))]

13

14

15 16

17

18

19

20

21

22

23

24

2

5 7 6

 
Figure 3: The derivations tree of the secondary parental program 

(* (/ W 1.5) (+ (- W 11) 12) (- W 3.5)). 
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{member(?x, [W,Z])} 
{?x/Z}

[(*] exp-1(?x) 
{?x/Z}

[)]

start

[(- ?x ?y1)] 
{?x/Z, ?y1/3.5}

exp-1(?x) 
{?x/Z}

exp-1(?x) 
{?x/Z}

{random(3, 4, ?y1)} 
{?y1/3.5}

[(/ ?x ?y3)] 
{?x/Z, ?y3/1.5}

{random(1, 2, ?y3)} 
{?y3/1.5}{random(3, 4, ?y2)} 

{?y2/3.8}

[(- ?x ?y2)] 
{?x/Z, ?y2/3.8}

25

26

27 28

29

30

31

32

33

34

35

36

37

2

6 6 5

 
Figure 4: A derivation tree of the offspring produced by performing crossover between 

the primary sub-tree 22 of the tree in figure 2 and the secondary sub-tree 1155 of 

the tree in figure 3. 
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{member(?x, [W,Z])} 
{?x/Z}

[(+] exp-1(?x) 
{?x/Z}

[)]

start

[(/ ?x ?y1)] 
{?x/Z, ?y1/1.5}

exp-1(?x) 
{?x/Z}

exp-1(?x) 
{?x/Z}

{random(1, 2, ?y1)} 
{?y1/1.5}

[(/ ?x ?y3)] 
{?x/Z, ?y3/1.5}

{random(1, 2, ?y3)} 
{?y3/1.5}{random(3, 4, ?y2)} 

{?y2/3.8}

[(- ?x ?y2)] 
{?x/Z, ?y2/3.8}

38

39

40 41

42

43

44

45

46

47

48

49

50

3

5 6 5

 
Figure 5: A derivation tree of the offspring produced by performing crossover between 

the primary sub-tree 33 of the tree in figure 2 and the secondary sub-tree 1166 of 

the tree in figure 3. 

 

2.4. Mutation of programs 

 
The mutation operation in LOGENPRO introduces random modifications to programs in the 

population. A program in the population is selected as the parental program. The selection is based 

on various methods such as fitness proportionate and tournament selections. The following steps 

are used to produce an offspring program: 

1. If there are sub-trees in the derivation tree of the parental program that have not been 

selected previously, select randomly a sub-tree from these sub-trees using a uniform 

distribution. The root of the selected sub-tree is called the mutation point. Otherwise, 

terminate the algorithm without generating any offspring. 

2. Generate a new derivation tree using the deduction mechanism produced by 

LOGENPRO. The new derivation tree is created under the constraint that the offspring 

produced must be valid according to the grammar.  
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3. If a new derivation-tree can be found in step 2, create and return the offspring, which is 

obtained by deleting the selected sub-tree and then inserting the new derivation tree at 

the mutation point. Otherwise, go to step 1. 

 

For example, assume that the program being mutated is (+ (- Z 3.5) (-

 Z 3.8) (/ Z 1.5)) and the corresponding derivation tree is depicted in figure 2. If the sub-

tree 3, MUTATED-SUB-TREE, is selected to be modified and the root of the MUTATED-SUB-

TREE is designated as the MUTATE-POINT. Then a new derivation tree, NEW-SUB-TREE, for 

the S-expression (/ Z 1.9) can be obtained from the non-terminal symbol exp-1(Z) using 

the fifth rule of the grammar. The derivation tree is shown in figure 6. A new offspring is obtained 

by duplicating the genetic materials of its parental derivation tree, followed by deleting the 

MUTATED-SUB-TREE from the duplication, and then pasting the NEW-SUB-TREE at the 

MUTATE-POINT. The derivation tree of the offspring (+ (/ Z 1.9) (-

 Z 3.8) (/ Z 1.5)) can be found in figure 7. 

LOGENPRO has an efficient implementation of the mutation algorithm. Moreover, an 

inference engine has been developed for deducing derivation trees (or programs) from a given logic 

grammar. Thus, only valid mutations can be performed and this operation can be achieved 

effectively and efficiently.  

 

 

exp-1(?x) 
{?x/Z}

[(/ ?x ?y1)] 
{?x/Z, ?y1/1.9}

{random(1, 2, ?y1)} 
{?y1/1.9}  

 

Figure 6: A derivation tree generated from the non-terminal exp-1(Z) 
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{member(?x, [W,Z])} 
{?x/Z}

[(+] exp-1(?x) 
{?x/Z}

[)]

start

[(/ ?x ?y1)] 
{?x/Z, ?y1/1.9}

exp-1(?x) 
{?x/Z}

exp-1(?x) 
{?x/Z}

{random(1, 2, ?y1)} 
{?y1/9}

[(/ ?x ?y3)] 
{?x/Z, ?y3/1.5}

{random(1, 2, ?y3)} 
{?y3/1.5}{random(3, 4, ?y2)} 

{?y2/3.8}

[(- ?x ?y2)] 
{?x/Z, ?y2/3.8}

51

52

53 54

55
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58

59

60

61

62

63

3

5 6 5

 
Figure 7: A derivation tree of the offspring produced by performing mutation of the tree 

in figure 6 at the sub-tree 22  

 

2.5. The evolution process of LOGENPRO 

 

The problem of inducing programs can be reformulated as a search for a highly fit program in the 

space of all possible programs in the language specified by  the logic grammar. In LOGENPRO, 

populations of programs are genetically bred (Goldberg 1989) using the Darwinian principle of 

survival and reproduction of the fittest along with genetic operations appropriate for creating 

programs. LOGENPRO starts with an initial population of programs generated randomly, induced 

by other learning systems, or provided by the user. Logic grammars provide declarative 

descriptions of the valid programs that can appear in the initial population. A fitness function must 

be defined by the user to evaluate the fitness values of the programs. Typically, each program is run 

over a set of fitness cases and the fitness function estimates its fitness by performing some 

statistical operations (e.g. average) to the values returned by this program. 

The initial programs in generation 0 are normally incorrect and have poor performance. 

However, some programs in the population will be fitter than others. Fitness of each program in the 

generation is estimated and the following process is iterated over many generations until the 

termination criterion is satisfied. The reproduction, sexual crossover, and asexual mutation are used 
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to create new generation of programs from the current one. The reproduction involves selecting a 

program from the current generation and allowing it to survive by copying it into the next 

generation. Either fitness proportionate or tournament selection can be used.  

The crossover is used to create a single offspring program from two parental programs 

selected. Mutation creates a modified offspring program from a parental program selected. Unlike 

crossover, the offspring program is usually similar to the parent program. Logic grammars are used 

to constraint the offspring programs that can be produced by these genetic operations. 

This algorithm will produce populations of programs which tend to exhibit increasing 

average of fitness. LOGENPRO returns the best program found in any generation of a run as the 

result.  

 

3. Learning logic program from imperfect data 

 
In this section, we describe the application of LOGENPRO to learn logic programs from noisy and 

imperfect training examples. Empirical comparisons of LOGENPRO with FOIL (the publicly 

available version of FOIL, version 6.0 , is used in this experiment) and with mFOIL (Lavrac and 

Dzeroski 1994) in the domain of learning illegal chess endgame positions from noisy examples are 

presented.  

mFOIL is based on FOIL that has adapted several features from CN2 (Clark and Niblett 

1989), such as the use of the Laplace and m-estimate as a search heuristics and the use of 

significance testing as a stopping criterion. Moreover, mFOIL uses beam search and can apply 

mode and type information to reduce the search space. The parameters that can be set by a user are: 

1) the beam width, 2) the search heuristics, 3) the value of m if m-estimate is used as the search 

heuristics, and 4) the significance threshold used in the significance test. A number of different 

instances of mFOIL have been tested on the chess endgame problem. Their parameter values are 

summarized in table 2. 

 

 
 beam width heuristics m significance threshold 

mFOIL1 5 m-estimate 0.01 0 
mFOIL2 10 m-estimate 0.01 0 
mFOIL3 5 m-estimate 0.01 6.35 
mFOIL4 10 m-estimate 32 0 

 
Table 2: The parameter values of different instances of mFOIL examined in this section. 

 

In this section, LOGENPRO employs a variation of FOIL to find the initial population of 

logic programs. Thus, it uses the same noise-handling mechanism of FOIL. The variation is called 

BEAM-FOIL because it uses a beam search method rather than the greedy search strategy of FOIL. 
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BEAM-FOIL produces a number of different logic programs when it terminates and the best 

program among them is the solution of the problem. The logic programs created by BEAM-FOIL 

are used by LOGENPRO to initialize the first generation. In order to study the effects of the genetic 

operations performed by LOGENPRO on the initial programs provided by BEAM-FOIL, a 

comparison between them is also discussed. 

The chess endgame problem is presented in the following sub-section. The experimental 

setup is detailed in sub-section 3.2. We compare LOGENPRO with other learning systems in the 

subsequent sub-sections. 

 

3.1. The chess endgame problem 

 

The chess endgame problem is a benchmark problem in the field of data mining for evaluating 

performance of data mining systems (Dzeroski and Lavrac 1993). In the problem, the setup is white 

king and rook versus black king (Quinlan 1990). The target concept illegal(WKf, WKr, WRf, WRr, 

BKf, BKr) states whether the positions where the white king at (WKf, WKr), the white rook at 

(WRf, WRf), and the black king at (BKf, BKr) are not a legal white-to-move position.  

The background knowledge is represented by two predicates, adjacent(X, Y) and 

less_than(W, Z), indicating that rank/file X is adjacent to rank/file Y and rank/file W is less than 

rank/file Z respectively.  

There are 11000 examples in the dataset (3576 positive and 7424 negative examples). 

Muggleton et al. (1989) used smaller datasets to evaluate the performances of CIGOL and DUCE 

for the chess endgame problem. There were five small sets of 100 examples each and five large sets 

of 1000 examples each. In other words, there were 5500 examples in total. Each of the sets was 

used as a training set. The induced programs obtained from a small training set was tested on the 

5000 examples from the large sets, the programs obtained from each large training set was tested 

on the remaining 4500 examples. 

 

3.2. The setup of experiments 

 

In each experiment of the ten experiments performed, the training set contains 1000 examples (336 

positive and 664 negative examples) and the disjoint testing set has 10000 examples (3240 positive 

and 6760 negative examples). These training and testing sets are selected from the dataset using 

different seeds for the random number generator.  

Different amounts of noise are introduced into the training examples in order to study the 

performances of different systems in learning logic programs from noisy environment. To 

introduce n% of noise into argument X of the training examples, the value of argument X is 
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replaced by a random value of the same type from a uniform distribution, independent to noise in 

other arguments. For the class variable, n% positive examples are labeled as negative ones while 

n% negatives examples are labeled as positive ones. Noise in an argument is not necessarily 

incorrect because it is chosen randomly, it is possible that the correct argument value is selected. In 

contrast, noise in classification implies that this example is incorrect. Thus, the probability for an 

example to be incorrect is 
1 −{[(1 − n%) + n% *

1
8

]6 * (1 − n%)}
. For each experiment, the 

percentages of introduced noise are 5%, 10%, 15%, 20%, 30%, and 40%. Thus, the probabilities 

for an example to be noisy are respectively 27.36%, 48.04%, 63.46%, 74.78%, 88.74% and 

95.47%. Background knowledge and testing examples are not corrupted with noise.  

A chosen level of noise is first introduced in the training set. Logic programs are then 

induced from the training set using LOGENPRO, FOIL, different instances of mFOIL, and 

BEAM-FOIL. Finally, the classification accuracy of the learned logic programs is estimated on the 

testing set. For BEAM-FOIL, the size of beam is ten and thus ten logic programs are returned. The 

best one among the programs returned is designated as the solution of BEAM-FOIL. 

LOGENPRO uses the logic grammar in table 3 to solve the problem. In the grammar, 

[adjacent(?x, ?y)] and [less_than(?x, ?y)] are terminal symbols. The logic goal 

member(?x, [WKf, WKr, WRf, WRr, BKf, BKr]) will instantiate logic variable ?x of 

the grammar to either WKf, WKr, WRf, WRr, BKf, or BKr, the logic variables of the target logic 

program. 

The population size for LOGENPRO is 10 and the maximum number of generations is 50. 

In fact, different population sizes have been tried and the results are still satisfactory even for a 

very small population. This observation is interesting and it demonstrates the advantage of 

combining inductive logic programming and evolutionary algorithms using the proposed 

framework.  
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start  -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-], antes, [.]. 
consq  -> [illegal(WKf, WKr, WRf, WRf, BKf, BKr)]. 
antes  -> antes, [,], antes. 
antes  -> ante. 
ante  -> {member(?x,[WKf, WKr, WRf, WRf, BKf, BKr])}, 
   {member(?y,[WKf, WKr, WRf, WRf, BKf, Bkr])},  
   literal(?x, ?y). 
literal(?x, ?y) -> [?x = ?y]. 
literal(?x, ?y) -> [ ~ ?x = ?y]. 
literal(?x, ?y) -> [ adjacent(?x, ?y) ]. 
literal(?x, ?y) -> [ ~ adjacent(?x, ?y) ]. 
literal(?x, ?y) -> [ less_than(?x, ?y) ]. 
literal(?x, ?y) -> [ ~ less_than(?x, ?y) ]. 
 
Table 3: The logic grammar for the chess endgame problem. 

 

For concept learning (DeJong et al. 1993, Janikow 1993, Greene and Smith 1993), each 

individual logic program in the population can be evaluated in terms of how well it covers positive 

examples and excludes negative examples. Thus, the fitness functions for concept learning 

problems calculate this measurement. Typically, each logic program is run over a number of 

training examples so that its fitness is measured as the total number of misclassified positive and 

negative examples. Sometimes, if the distribution of positive and negative examples is extremely 

uneven, this method of estimating fitness is not good enough to focus the search. For example, 

assume that there are 2 positive and 10000 negative examples, if the number of misclassified 

examples is used as the fitness value, a logic program that deduces everything are negative will 

have very good fitness. Thus, in this case, the fitness function should find a weighted sum of the 

total numbers of misclassified positive and negative examples.  

In this experiment, the fitness function of LOGENPRO evaluates the number of training 

examples misclassified by each individual in the population. Since LOGENPRO is a probabilistic 

system, five runs of each experiment are performed and the average of the classification accuracy 

of these five runs is returned as the classification accuracy of LOGENPRO for the particular 

experiment. In other words, fifty runs of LOGENPRO have been performed in total. The average 

execution time of LOGENPRO is 1 hour 43 minutes on a Sun Sparc Workstation. The results of 

these systems are summarized in table 4. The performances of these systems are compared using 

the one-tailed paired t-test with 0.05% level of significance. The sizes of logic programs induced by 

these learning systems are summarized in table 5. 
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    Noise Level   

 0.00 0.05 0.10 0.15 0.20 0.30 0.40 

LOGENPRO (Average) 0.996 0.983 0.960 0.938 0.855 0.733 0.670 

Variance 0.00E+00 7.74E-06 2.96E-04 7.85E-04 2.57E-03 2.47E-03 1.44E-04 

FOIL (Average) 0.996 0.898 0.819 0.761 0.693 0.596 0.529 

Variance 0.00E+00 5.07E-04 6.56E-04 5.15E-04 5.30E-04 3.35E-04 3.11E-04 

BEAM-FOIL (Average) 0.996 0.802 0.757 0.744 0.724 0.685 0.674 

Variance 0.00E+00 7.07E-04 1.62E-04 1.88E-04 2.00E-04 1.40E-04 1.04E-04 

mFOIL1 (Average) 0.985 0.883 0.845 0.815 0.785 0.719 0.685 

Variance 0.00E+00 5.15E-05 7.29E-05 3.12E-04 2.15E-04 1.39E-04 1.30E-04 

mFOIL2 (Average) 0.985 0.932 0.888 0.842 0.798 0.713 0.680 

Variance 0.00E+00 7.47E-05 9.16E-05 9.26E-04 3.09E-04 1.41E-04 3.05E-04 

mFOIL3 (Average) 0.896 0.836 0.805 0.771 0.723 0.677 0.676 

Variance 1.97E-16 7.83E-04 1.05E-04 1.89E-04 9.81E-04 7.74E-06 0.00E+00 

mFOIL4 (Average) 0.985 0.985 0.880 0.806 0.740 0.692 0.668 

Variance 0.00E+00 4.05E-06 7.85E-03 5.14E-03 2.14E-03 3.72E-04 2.86E-04 

 
Table 4: The averages and variances of accuracy of LOGENPRO, FOIL, BEAM-FOIL, 

and different instances of mFOIL at different noise levels.  

 
    Noise Level   

 0.00 0.05 0.10 0.15 0.20 0.30 0.40 

LOGENPRO (#clauses) 4.000 9.540 8.960 8.620 6.680 4.220 2.540 

#literals/clause 1.50 2.59 2.94 3.20 3.40 4.39 4.98 

FOIL (#clauses) 4.000 35.100 48.000 48.700 56.200 59.800 71.300 

#literals/clause 1.50 3.65 4.44 4.73 5.06 5.23 5.40 

BEAM-FOIL (#clauses) 4.000 5.000 4.400 4.200 4.000 3.500 2.800 

#literals/clause 1.50 3.75 3.93 4.17 4.63 5.25 6.07 

mFOIL1 (#clauses) 3.000 31.900 35.700 31.100 28.300 18.100 15.700 

#literals/clause 2.00 3.07 3.20 3.18 3.42 3.34 3.57 

mFOIL2 (#clauses) 3.000 48.800 50.600 48.200 44.500 41.400 34.900 

#literals/clause 1.67 3.18 3.33 3.44 3.57 3.62 3.70 

mFOIL3 (#clauses) 2.000 12.400 10.400 7.300 3.300 0.100 0.000 

#literals/clause 1.50 2.68 3.10 3.02 3.46 4.00 0.00 

mFOIL4 (#clauses) 3.000 3.000 2.400 1.800 1.200 1.200 11.200 

#literals/clause 1.67 1.73 1.80 2.15 2.00 1.46 3.55 

 
Table 5: The sizes of logic programs induced by LOGENPRO, FOIL, BEAM-FOIL, and 

different instances of mFOIL at different noise levels.  

 

3.3. Comparison of LOGENPRO with FOIL 

 

The classification accuracy of both systems degrades seriously as the noise level increases (figure 

8). The classification accuracy of LOGENPRO decreases smoothly when the noise level is on or 

below 0.15. It reduces from 0.996 to 0.938, a 5.8% decrement. There are sudden drops of accuracy 

when the noise level is between 0.15 and 0.40. It falls from 0.938 to 0.670, a 28.5% reduction. The 

accuracy of FOIL decreases rapidly when the noise level is on or below 0.20. It drops from 0.996 to 
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0.693, a 30.4% reduction. The decrease slightly slows down between the noise levels of 0.20 and 

0.40. It drops from 0.693 to 0.529, a 23.7% reduction.  
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Figure 8: Comparison between LOGENPRO, FOIL, BEAM-FOIL,  mFOIL1, mFOIL2, 

mFOIL3 and mFOIL4 

 

The results are statistically evaluated using the one-tailed paired t-test. For each noise level, 

the classification accuracy is compared to test the null hypothesis against the alternative hypothesis. 

The null hypothesis states that the difference in accuracy is zero at the 0.05% level of significance. 

On the other hand, the alternative hypothesis declares that the difference is greater than zero at the 

0.05% level of significance. The t-statistics are listed as follows: 
Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics NA 12.59 17.78 19.33 14.17 8.07 26.82 

 

The t-statistics at the 0.00 noise level is not available because the variances are very small 

(near zero). The t-statistics at the 0.05 noise level is 12.59 which is greater than the critical value of 

4.78. Thus, we can reject the null hypothesis and assert that the classification accuracy of 

LOGENPRO is higher than that of FOIL. Similarly, the classification accuracy of LOGENPRO at 

the noise levels between 0.05 and 0.40 is significantly higher than that of FOIL. The largest 

difference reaches 0.177 at the 0.15 noise level. The average number of induced clauses and the 

average number of literals per clause show that LOGENPRO generates compact and 
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comprehensive logic programs even at the high noise levels. On the other hand, the complexity of 

the logic programs learned by FOIL increases when the noise level increase. In other words, FOIL 

overfits noise in the dataset. 

 

3.4. Comparison of LOGENPRO with BEAM-FOIL 

 

The results of the one-tailed paired t-test are listed as follows: 
Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics NA 22.20 33.82 21.91 9.19 3.26 -0.81 

 

The t-statistics at the 0.00 noise level is not available because the variances are very small 

(near zero). The classification accuracy of LOGENPRO at the noise levels between 0.05 and 0.20 

is significantly higher than that of BEAM-FOIL.  At the noise level of 0.30, the accuracy of 

LOGENPRO is higher than that of BEAM-FOIL, but the difference is not significant. On the other 

hand, the accuracy of BEAM-FOIL at the noise level of 0.40 is higher than that of LOGENPRO, 

but the difference is insignificant. This comparison indicates that the genetic operations of 

LOGENPRO can actually improve the logic programs generated by other learning systems such as 

BEAM-FOIL. The sizes of logic programs induced by BEAM-FOIL show that BEAM-FOIL over-

generalizes at the high noise levels. 

 

3.5. Comparison of LOGENPRO with mFOIL1 

 

We compare LOGENPRO with mFOIL1 to mFOIL4 one by one in this and the following sub-

sections. The parameters of this instance are presented in table 2. Lavrac and Dzeroski (1994) 

compare the performances of mFOIL1 with FOIL2.0, a version of FOIL, for the chess endgame 

problem using the smaller dataset described in sub-section 2.1. They find that mFOIL1 outperforms 

FOIL2.0 at all noise levels. Our results depicted in figure 8 are inconsistent with those obtained by 

Lavrac and Dzeroski. We find that FOIL outperforms mFOIL1 at the noise levels of 0.0 and 0.05. 

On the other hand, mFOIL1 has better performance when the noise level is on or over 0.1. The 

inconsistency may be explained because we employ an improved version of FOIL, FOIL6.0, and 

larger sets of training and testing examples. The results of the one-tailed paired t-test between 

LOGENPRO and mFOIL1 are listed as follows: 
Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics 3.03E+08 35.38 17.29 14.98 5.15 1.11 -3.37 

 

The classification accuracy of LOGENPRO at the noise levels between 0.0 and 0.20 is 

significantly higher than that of mFOIL1. At the noise level of 0.30, the accuracy of LOGENPRO 
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is higher than that of mFOIL1 by about 0.014, but the difference is not significant. On the other 

hand, the accuracy of mFOIL1 at the noise level of 0.40 is higher than that of LOGENPRO, the 

difference is insignificant.  

 

3.6. Comparison of LOGENPRO with mFOIL2 

 

The results of the one-tailed paired t-test between LOGENPRO and mFOIL2 are listed as follows: 
Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics 3.03E+08 21.59 13.05 9.95 4.37 1.23 -1.65 

 

The classification accuracy of LOGENPRO at the noise levels between 0.0 and 0.15 is 

significantly higher than that of mFOIL2.  At the noise levels of 0.20 and 0.30, the accuracy of 

LOGENPRO is higher than that of mFOIL2, but the differences are not significant. On the other 

hand, the accuracy of mFOIL2 at the noise level of 0.40 is higher than that of LOGENPRO, but the 

difference is insignificant. 

 

3.7. Comparison of LOGENPRO with mFOIL3 

 

The accuracy of mFOIL3 at the noise levels of 0.00, 0.30, and 0.40 is not acceptable. By comparing 

mFOIL3 with mFOIL1 (figure 8), we can conclude that the significance threshold for noise-

handling affects the performance of mFOIL severely (see table 2). The results of the one-tailed 

paired t-test between LOGENPRO and mFOIL3 are listed as follows: 
Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics NA 16.99 22.29 16.44 8.12 3.65 -1.66 

 

The t-statistics at the 0.00 noise level is not available because the variances are very small 

(near zero). The classification accuracy of LOGENPRO at the noise levels between 0.05 and 0.40 

is significantly higher than that of mFOIL3. 

 

3.8. Comparison of LOGENPRO with mFOIL4 

 

The results of the one-tailed paired t-test between LOGENPRO and mFOIL4 are listed as follows: 
Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics 2.22E+08 -1.45 2.77 6.37 8.00 2.20 0.24 

 

The classification accuracy of LOGENPRO at the noise levels 0.00, 0.15 and 0.20 is 

significantly higher than that of mFOIL4. The sizes of the logic programs learned by mFOIL4 
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illustrate that mFOIL4 over-generalizes at the noise levels between 0.10 and 0.30. On the other 

hand, mFOIL4 overfits the noise in the dataset at the 0.40 noise level. 

 

3.9. Discussion 

 
In this section, we employ LOGENPRO to combine evolutionary algorithms and BEAM-FOIL, to 

learn logic programs. The performance of LOGENPRO in a noisy domain has been evaluated by 

using the chess endgame problem. Detailed comparisons between LOGENPRO and other ILP 

systems have been conducted. It is found that LOGENPRO outperforms these ILP systems 

significantly at most noise levels. These results are surprising because the LOGENPRO uses the 

same noise-handling mechanism of FOIL by initializing the population with programs created by 

BEAM-FOIL.  

One possible explanation of the better performance of LOGENPRO is that the Darwinian 

principle of survival and reproduction of the fittest is a good noise handling method. It avoids 

overfitting noisy examples, but at the same time, it finds interesting and useful patterns from these 

noisy examples. 

 

4. Learning rules from the fracture database 

 
The data mining system has been applied to a real-life medical database consisting of children with 

limb fractures, admitted to the Prince of Wales Hospital of Hong Kong in the period 1984-1996. 

This data can provide information for the analysis of children fracture patterns. This database has 

6500 records and 8 attributes. The attributes are listed in table 6. 

From the database, we expect to learn knowledge about these attributes. The medical expert 

provides extra knowledge on how the rules should be formulated. He suggests that the attributes 

can be divided into three time stages: a diagnosis is first given to the patient, then an operation is 

performed, and after that the patient stays in the hospital. This knowledge leads to three kinds of 

rules. Firstly, sex, age and admission date are the possible causes of diagnosis. Secondly, these 

three attributes and diagnosis are the possible causes of operation and surgeon. Thirdly, length of 

stay has all other attributes as the possible causes. A grammar (see Appendix A) is written to 

specify these three kinds of rules. In this experiment, we have used a population size of 300 to run 

for 50 generations.  
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Name Type Description Possible Value 
Sex Nominal Sex ‘M’ or ‘F’ 
Age Numeric Age Between 0 to 16 years old 
Admday Date Admission date Between year 1984 to 1996; Divided into four 

parts:Day, Month, Year and Weekday 
Stay Numeric Length of staying in 

hospital 
Between 0 to 1000 days 
Discretized into 18 non-uniform ranges. 

Diagnosis Nominal Diagnosis of fracture 10 different values, based on the location of 
fracture 

Operation Nominal Operation ‘CR’ (Simple Closed Reduction), 
‘CR+K-wire’ (Closed Reduction with K-wire), 
‘CR+POP’ (Closed Reduction with POP), 
‘OR’ (Open Reduction), or 
Null (no operation) 

Surgeon Nominal Surgeon One of 61 surgeons or Null if no operation 
Side Nominal Side of fracture ‘Left’, ‘Right’, ‘Both’ or ‘Missing’ 
Table 6: Attributes in the fracture database  

 
One of the two interesting rules discovered about diagnosis is given below:  
If age is between 2 and 5, then diagnosis is Humerus.  

LOGENPRO finds  that humerus fracture is the most common fracture for children between 

2 and 5 years old, while radius fracture is the most common fracture for boys between 11 and 13. 

Eight interesting rules about operation are found. One of them is presented as follows: 
If age is between 0 and 7 and admission year is between 1988 and 1993 

and diagnosis is Radius, then operation is CR+POP.  

These rules suggest that radius and ulna fractures are usually treated with CR+POP (i.e. 

plaster). Operation is usually not needed for tibia fracture. Open reductions are more common for 

elder children with age larger than 11, while young children with age lower than 7 have a higher 

chance of not needing operations. We do not find any interesting rules about surgeons, as the 

surgeons for operation are more or less randomly distributed in the database. 

Seven interesting rules about length of stay are found. One of them is: 
If admission year is between 1985 and 1996 

and diagnosis is Femur , then stay is more than 8 days.  

The rules about the length of stay suggest that Femur and Tibia fractures are serious injuries 

and have to stay longer in hospital. If open reduction is used, the patient requires longer time to 

recover because the wound has been cut open for operation. If no operation is needed, it is likely 

that the patient can return home within one day. Relatively, radius fracture requires a shorter time 

for recovery. 

The results have been evaluated by the medical expert. The rules provide interesting 

patterns that were not recognized before. The analysis gives an overview of the important 

epidemiological and demographic data of the fractures in children. It clearly demonstrated the 

treatment pattern and rules of decision making. It can provide a good monitor of the change of 
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pattern of management and the epidemiology if the data mining process is continued longitudinally 

over the years. It also helps to provide the information for setting up a knowledge-based instruction 

system to help young doctors in training to learn the rules in diagnosis and treatment. 

 

5. Conclusion 
 

We have proposed a framework for combining Genetic Programming and Inductive Logic 

Programming. This framework is based on a formalism of logic grammars. To implement the 

framework, a system called LOGENPRO (The LOgic grammar based GENetic PROgramming 

system) has been developed. The formalism can represent context-sensitive information and 

domain-dependent knowledge. The formalism is also very flexible and the knowledge learned can 

be represented in various knowledge representations such as logic programs and production rules. 

LOGENPRO has been tested on some learning tasks. These experiments and the results 

demonstrate that LOGENPRO is a promising system for inducing knowledge from databases. 

Since the framework is very flexible, different representations employed by other learning 

systems can be specified easily. It facilitates the integration of LOGENPRO with the latter. One 

approach is to incorporate the search operators of other systems into LOGENPRO. These operators 

include information guided hill-climbing (Quinlan 1990; 1991), explanation-based generalization 

(DeJong and Mooney 1986, Mitchell et. al. 1986, Ellman 1989), explanation-based specialization 

(Minton 1989) and inverse resolution (Muggleton 1992). LOGENPRO can also invoke these 

systems as front-ends to generates the initial population. The advantage is that we can quickly find 

important and meaningful components (genetic materials) and embody these components into the 

initial population. Moreover, it has been found that LOGENPRO, when combined with other 

learning systems, has superior performance in learning logic programs from imperfect data as in the 

chess-endgame problem. The Darwinian principle of survival and selection of the fittest is a 

plausible noise handling method which can avoid overfitting and identify important patterns 

simultaneously. This superior noise handling ability is intrinsically embedded in LOGENPRO 

because it uses genetic algorithms as its primary learning mechanism.  

We have described how to combine LOGENPRO and a variation of FOIL, BEAM-FOIL, in 

learning logic programs. The initial population of logic programs is provided by BEAM-FOIL. The 

performance of LOGENPRO in inducing logic programs from imperfect training examples is 

evaluated using the chess endgame problem. A detailed comparison to FOIL, BEAM-FOIL, and 

mFOIL has been conducted. It is found that LOGENPRO outperforms the other systems 

significantly in this domain.  
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The system has been applied to one real-life medical database. The results can provide 

interesting knowledge as well as suggest refinements to the existing knowledge. The system 

automatically uncovered knowledge about the age effect on fracture, the relationship between 

diagnoses and operations, and the effect of diagnoses and operations on lengths of staying in the 

hospital. 

In conclusion, LOGENPRO, which is a grammar driven genetic based system, has been 

demonstrated to be a promising tool for knowledge discovery in a noisy environment. 
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Appendix A: The logic grammar for the fracture database 
 

This grammar is not completely listed. The grammar rules for the other attribute descriptors are 

similar to the grammar rules 14 - 25 

 

 
1: start  -> rule1. 
2: start  -> rule2. 
3: start  -> rule3. 
4: rule1  -> [if], antes1, [, then], consq1, [.]. 
5: rule2  -> [if], antes1, [and], antes2, [, then], consq2 [.]. 
6: rule3  -> [if], antes1, [and], antes2, [and], antes3,  

    [, then], consq3, [.]. 
7: antes1 -> sex1, [and], age1, [and], admday1. 
8: antes2 -> diagnosis1. 
9: antes3 -> operation1, [and], surgeon1. 
10: consq1 -> diagnosis_descriptor. 
11: consq2 -> operation_descriptor. 
12: consq2 -> surgeon_descriptor. 
13: consq3 -> stay_descriptor. 
14: sex1  -> [any]. 
15: sex1  -> sex_descriptor. 
16: sex_descriptor -> {sex_const(?x)}, [sex = ?x]. 
17: admday1  -> [any]. 
18: admday1  -> admday_descriptor. 
19: admday_descriptor -> {day_const(?x)}, {day_const(?y)},  
     [admission day between ?x and ?y]. 
20: admday_descriptor -> {month_const(?x)}, {month_const(?y)},  
     [admission month between ?x and ?y]. 
21: admday_descriptor -> {year_const(?x)}, {year_const(?y)},  
     [admission year between ?x and ?y]. 
22: admday_descriptor -> {weekday_const(?x)}, {weekday_const(?y)},  
     [admission weekday between ?x and ?y]. 
23: diagnosis1  -> [any]. 
24: diagnosis1  -> diagnosis_descriptor. 
25: diagnosis_descriptor -> {disgnosis_const(?x)}, 
      [diagnosis is ?x]. 

… 
… 

 
 


