
Page 1

A Flexible Knowledge Discovery System Using Genetic
Programming and Logic Grammars

Man Leung Wong

Department of Computing and Decision Sciences

Lingnan University

Tuen Mun

Hong Kong

mlwong@ln.edu.hk

Page 2

A Flexible Knowledge Discovery System using Genetic

Programming and Logic Grammars

Abstract

As the computing world moves from the information age into the knowledge-base age, it is beneficial to induce

knowledge from the information superhighway formed from the Internet and intranet. Knowledge discovery in

databases is defined as the non-trivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data stored in databases. The knowledge acquired can be expressed in different

knowledge representations such as computer programs, first-order logical relations, or Fuzzy Petri Nets (FPNs). In

this paper, we present a flexible knowledge discovery system called LOGENPRO (The LOgic grammar based

GENetic PROgramming system) that applies genetic programming and logic grammars to learn knowledge in

various knowledge representation formalisms. The system is also powerful enough to represent context-sensitive

information and domain-dependent knowledge. An experiment is performed to demonstrate that LOGENPRO can

discover knowledge represented in FPNs that support fuzzy and approximate reasoning. To evaluate the

performance of LOGENPRO in producing good FPNs, the classification accuracy of the fuzzy Petri net induced by

LOGENPRO and that of the decision tree generated by C4.5 are compared. Moreover, the performance of

LOGENPRO in inducing logic programs from noisy examples is evaluated. A detailed comparison to FOIL, a

system that induces logic programs, has been conducted. These experiments demonstrate that LOGENPRO is a

promising alternative to other knowledge discovery systems and sometimes is superior for handling noisy and

inexact data.

Area: Knowledge Discovery in Databases, Genetic Programming, Logic Grammars,

Fuzzy Petri Nets

1. Introduction

As the computing world moves from the information age into the knowledge-base age, it is

beneficial to induce knowledge from the information superhighway formed from the Internet

and intranet. Knowledge discovery from various data sources of the new information

infrastructure is concerned with the non-trivial extraction of implicit, previously unknown, and

potentially useful information from them (Fayyad et al. 1996, Frawley et al. 1991, Piatetsky-

Shapiro and Frawley 1991). The knowledge acquired can be expressed in different knowledge

Page 3

representation formalisms such as computer programs, first-order logical relations, decision

trees, decision lists, production rules, or Petri nets.

Dzeroski and Lavrac have showed that Inductive Logic Programming (ILP) can be used

to induce knowledge represented as first-order logical relations (Dzeroski and Lavrac 1993,

Dzeroski 1996). Research in ILP can be classified into empirical and interactive ILP (Lavrac

and Dzeroski 1994, De Raedt 1992) and several empirical ILP systems, such as CIGOL

(Muggleton and Buntine 1988), GOLEM (Muggleton and Feng 1990), FOIL (Quinlan 1990;

1991), and FOCL (Pazzani and Kibler 1992, Pazzani et al. 1991), have been developed recently.

For example, FOIL can efficiently learn function-free Horn clauses. It uses a top-down, divide

and conquer approach guided by information-based heuristics to produce a concept description

that covers all positive examples and excludes all negative examples. FOCL extends FOIL by

integrating inductive and analytic learning in a uniform framework and by allowing different

forms of background knowledge to be used in generating function-free Horn clauses.

Another approach of knowledge discovery is Genetic Programming (GP) that extends

traditional Genetic Algorithms (Holland 1975, Goldberg 1989, Davis 1987; 1991) to induce

automatically S-expressions in Lisp (Koza 1992; 1994, Koza et al. 1999, Kinnear 1994). Koza

(1992) demonstrated that decision trees can be represented as S-expressions in Lisp. In other

words, GP can be used to discover knowledge from databases.

The problem of discovering knowledge from databases can be reformulated as a search

for a highly fit program in the space of all possible programs (Mitchell 1982). The search space

of ILP is determined by the syntax of logic program and the background knowledge. In GP, this

space is determined by the syntax of S-expression in Lisp and the sets of terminals and

functions. Thus, the search space is fixed once these elements are decided.

In this paper, we present a flexible knowledge discovery system (LOGENPRO), a

generalization and extension of GLPS (Wong and Leung 1995), that combine ILP and GP to

induce knowledge from databases. LOGENPRO (The LOgic grammar based GENetic

PROgramming system) is based on a formalism of logic grammars and it can specify the search

space declaratively. The system is powerful enough to represent context-sensitive information

and domain-dependent knowledge used to accelerate the learning of knowledge. LOGENPRO is

also very flexible and the knowledge acquired can be represented in different knowledge

representations such as computer programs, fuzzy Petri nets, first-order logical relations, and/or

fuzzy relations (Wong 1998, Wong and Leung 2000).

Page 4

The next section presents the formalism of logic grammars and the details of

LOGENPRO. Petri nets, a directed bipartite graph with a high degree of structural parallelism

and pipelining, is an ideal knowledge representation (Peterson 1981). However, Petri nets cannot

represent imprecise (fuzzy), incomplete, and uncertain information. Consequently, Chen et al.

(1990) proposed the Fuzzy Petri Nets (FPNs) formalism that provides an effective and efficient

reasoning procedure to deduce information from inexact knowledge. In section 3, we apply

LOGENPRO to induce Fuzzy Petri Nets (FPNs) from information stored in databases.

Knowledge discovery systems should be able to induce knowledge from noisy examples. In

section 4, we employ LOGENPRO to learn knowledge represented as logic programs from noisy

datasets. Finally, the conclusion is presented in the last section.

2. The logic grammars based genetic programming system (LOGENPRO)

The LOgic grammars based GENetic PROgramming system (LOGENPRO) can induce

programs in various programming languages such as LISP, C and Prolog. Thus, LOGENPRO

must be able to accept grammars of different languages and produce programs in these

languages. Most modern programming languages are specified in the notation of BNF (Backus-

Naur form) which is a kind of context-free grammar (CFG). However, LOGENPRO is based on

logic grammars because CFG is not expressive enough to represent context-sensitive

information of the language and domain-dependent knowledge of the target program being

induced. Logic grammars are generalizations of CFG. Their expressiveness is much more

powerful than that of CFG, but equally amenable to efficient execution. In this paper, logic

grammars will be described in a notation similar to that of definite clause grammars (Pereira and

Warren 1980). The logic grammar in Table 1 will be used throughout this section.

A logic grammar differs from a CFG in that the logic grammar symbols, whether

terminal or non-terminal, may include arguments. The arguments can be any term in the

grammar. A term is either a logic variable, a function or a constant. A variable is represented by

a question mark ? followed by a string of letters and/or digits. A function is a grammar symbol

followed by a bracketed n-tuple of terms and a constant is simply a 0-arity function. Arguments

can be used in a logic grammar to enforce context-dependency. Thus, the permissible forms for

a constituent may depend on the context in which that constituent occurs in the program.

Another application of arguments is to construct tree structures in the course of parsing, such

tree structures can provide a representation of the "meaning" of the program.

Page 5

The terminal symbols, which are enclosed in square brackets, correspond to the set of

words of the language specified. For example, the terminal [(+ ?x ?y)] creates the

constituent (+ 1.0 2.0) of a program if ?x and ?y are instantiated respectively to 1.0 and

2.0. Non-terminal symbols are similar to literals in Prolog, exp-1(?x) in Table 1 is an

example of non-terminal symbol. Commas denote concatenation and each grammar rule ends

with a full stop.

1:start-> [(*], exp(X), exp(X), [)].
2:start-> {member(?x,[X, Y])}, [(*], exp-1(?x),
 exp-1(?x), [)].
3:start-> {member(?x,[X, Y])}, [(/], exp-1(?x),
 exp-1(?x), [)].
4:exp(?x)-> [(+ ?x 0)].
5:exp-1(?x)-> {random(0,1,?y)}, [(+ ?x ?y)].
6:exp-1(?x)-> {random(0,1,?y)}, [(- ?x ?y)].
7:exp-1(?x)-> [(+ (- X 11) 12)].

Table 1: A logic grammar

The right-hand side of a grammar rule may contain logic goals and grammar symbols.

The goals are pure logical predicates for which logical definitions have been given. They specify

the conditions that must be satisfied before the rule can be applied. For example, the goal

member(?x, [X, Y]) in Table 1 instantiates the variable ?x to either X or Y if ?x has not

already been instantiated, otherwise it checks whether the value of ?x is either X or Y. If the

variable ?y has not been bound, the goal random(0, 1, ?y) instantiates ?y to a random

floating point number between 0 and 1. Otherwise, the goal checks whether the value of ?y is

between 0 and 1. The special non-terminal start corresponds to a program of the language.

The problem of inducing programs can be reformulated as a search for a highly fit

program in the space of all possible programs in the language specified by the logic grammar.

In LOGENPRO, populations of programs are genetically bred (Holland 1975, Goldberg 1989,

Davis 1987; 1991) using the Darwinian principle of survival and reproduction of the fittest along

with genetic operations appropriate for processing programs. LOGENPRO starts with an initial

population of programs generated randomly, induced by other learning systems, or provided by

the user. Logic grammars provide declarative descriptions of the valid programs that can appear

in the initial population. A high-level algorithm of LOGENPRO is presented in Table 2.

Page 6

1. Generate an initial population of programs.
2. Execute each program in the current population and assign it a fitness value according to

the fitness function
3. If the termination criterion is satisfied, terminate the algorithm. The best program found

in the run of the algorithm is designated as the result.
4. Create a new population of programs from the current population by applying the

reproduction, crossover, and mutation operations. These operations are applied to
programs selected by fitness proportionate or tournament selections.

5. Rename the new population to the current population.
6. Proceed to the next generation by branching back to the step 2.

Table 2: A High Level Algorithm of LOGENPRO

The initial programs in generation 0 are normally incorrect and have poor performances.

The Darwinian principle of reproduction and survival of the fittest and the genetic operation of

sexual crossover are used to create new generation of programs from the current one. The

reproduction involves selecting a program from the current generation and allowing it to survive

by copying it into the next generation. Either fitness proportionate or tournament selection can

be used. The crossover is used to create one offspring program from the parental programs

selected. Logic grammars are used to constraint the offspring programs that can be produced by

these genetic operations. Fitness of each program in the new generation is estimated and the

above process is iterated over many generations until the termination criterion is satisfied. This

algorithm will produce populations of programs which tend to exhibit increasing average of

fitness. LOGENPRO returns the best program found in any generation of a run as the result.

One of the contributions of LOGENPRO is that it represents programs in different

programming languages appropriately so that the initial population can be generated easily, and

that the genetic operators such as reproduction, mutation and crossover can be performed

effectively. A program can be represented as a derivation tree that shows how the program has

been derived from the logic grammar. LOGENPRO applies deduction to randomly generate

programs and their derivation trees in the language declared by the given grammar. These

programs form the initial population. For example, the program (* (+ X 0) (+ X 0)) can

be generated by LOGENPRO given the logic grammar in Table 1. Its derivation tree is depicted

in Figure 1(a). Alternatively, initial programs can be induced by other learning systems such as

FOIL (Quinlan 1990) or given by the user. LOGENPRO analyzes each program and creates the

corresponding derivation tree. If the language is ambiguous, multiple derivation trees can be

Page 7

generated. LOGENPRO produces only one tree randomly. For example, the program

(* (+ X 0) (+ X 0)) has multiple derivation trees, two of them are shown in Figures 1(a)

and 1(b).

start

[(*] exp(x) exp(x) [)]

[(+ ?x 0)]
?x/X

[(+ ?x 0)]
?x/X

(a)

start

{member(?x, [X, Y])}
?x/X

[(*] exp-1(?x)
?x/X

exp-1(?x)
?x/X

[)]

{random(0,1,?y1)}
?y1/0

[(+ ?x ?y1)]
?x/X
?y1/0

{random(0,1,?y2)}
?y2/0

[(+ ?x ?y2)]
?x/X
?y2/0

(b)

Figure 1: Derivation trees of a program

The crossover is a sexual operation that starts with two parental programs and the

corresponding derivation trees. One program is designated as the primary parent and the other

one as the secondary parent. The following algorithm is used to produce an offspring program:

1. If there are sub-trees in the primary derivation tree that have not been selected previously,

select randomly a sub-tree from these sub-trees using a uniform distribution. The root of

the selected sub-tree is called the primary crossover point. Otherwise, terminate the

algorithm without generating any offspring.

2. Select another sub-tree in the secondary derivation tree under the constraint that the

offspring produced must be valid according to the grammar.

3. If a sub-tree can be found in step 2, complete the crossover algorithm and return the

offspring, which is obtained by deleting the selected sub-tree of the primary tree and then

Page 8

impregnating the selected sub-tree from the secondary tree at the primary crossover point.

Otherwise, go to step 1.

Consider two parental programs generated by the grammar in Table 1, the primary

program is (/ (- Y 0.1) (- Y 0.5)) and the secondary program is

(* (+ X 0.5) (+ (- X 11) 12)). The corresponding derivation trees are depicted in

Figures 2(a) and 2(b) respectively. In the Figures, the shadowed numbers identify sub-trees of

these derivation trees, while the underlined numbers indicate the grammar rules used in parsing

the corresponding sub-trees. For example, if the primary and secondary sub-trees are

respectively 22 and 1122. The valid offspring (* (- Y 0.1) (- Y 0.5)) is obtained and its

derivation tree is shown in Figure 3(a). It is interesting to find that the sub-tree 1199 has a label 2.

This indicates that the sub-tree is generated by the second grammar rule rather than the third rule

applied to the primary parent. The second rule must be used because the terminal symbol [(/]

is changed to [(*] and only the second rule can create the terminal [(*].

start

{member(?x, [X, Y])}
?x/Y

[(/] exp-1(?x)
?x/Y

exp-1(?x)
?x/Y

[)]

{random(0,1,?y1)}
?y1/0.1

[(- ?x ?y1)]
?x/Y

?y1/0.1

{random(0,1,?y2)}
?y2/0.5

[(- ?x ?y2)]
?x/Y

?y2/0.5

0

1 2 3

4 5

6

7 8

9

3

6 6

(a)

start

{member(?x, [X, Y])}
?x/X

[(*] exp-1(?x)
?x/X

exp-1(?x)
?x/X

[)]

{random(0,1,?y)}
?y/0.5

[(+ ?x ?y)]
?x/X

?y/0.5

[(+ (- X 11) 12)]

10

11 12 13

14 15

16

17

18

2

5 7

(b)

Figure 2: Derivation trees of the parental programs

Page 9

start

{member(?x, [X, Y])}
?x/Y

[(*] exp-1(?x)
?x/Y

exp-1(?x)
?x/Y

[)]

{random(0,1,?y1)}
?y1/0.1

[(- ?x ?y1)]
?x/Y

?y1/0.1

{random(0,1,?y2)}
?y2/0.5

[(- ?x ?y2)]
?x/Y

?y2/0.5

19

20 21 22

23 24

25

26 27

28

2

6 6

(a)

start

{member(?x, [X, Y])}
?x/Y

[(/] exp-1(?x)
?x/Y

exp-1(?x)
?x/Y

[)]

{random(0,1,?y1)}
?y1/0.5

[(+ ?x ?y1)]
?x/Y

?y1/0.5

{random(0,1,?y2)}
?y2/0.5

[(- ?x ?y2)]
?x/Y

?y2/0.5

29

30 31 32

33 34

35

36 37

38

3

5 6

(b)

Figure 3: Derivation trees of offspring programs produced by crossover

In another example, the primary and secondary sub-trees are 33 and 1133 respectively. The

valid offspring (/ (+ Y 0.5) (- Y 0.5)) is produced and the derivation tree is shown

in Figure 3(b). It should be emphasized that the constituent from the secondary parent is

changed from (+ X 0.5) to (+ Y 0.5) in the offspring. This must be modified because the

logic variable ?x in sub-tree 3322 is instantiated to Y in sub-tree 3300. This example demonstrates

the use of logic grammars to enforce contextual-dependency between different constituents of a

program.

LOGENPRO disallows the crossover between the primary sub-tree 66 and the secondary

sub-tree 1166. The sub-tree 1166 requires the variable ?x to be instantiated to X, But, ?x must be

instantiated to Y in the context of the primary parent. Since X and Y cannot be unified, these

two sub-trees cannot be crossed over.

Page 10

LOGENPRO has an efficient algorithm to check these conditions before performing any

crossover. Thus, only valid offspring programs are produced and this operation can be achieved

effectively and efficiently.

3. Learning Fuzzy Petri Nets

Knowledge-Based Systems (KBS) are definitely one of the major successes of Artificial

Intelligence. They demonstrate the value of Artificial Intelligence in terms of practical

applications. This statement is proven by many successful implementations of systems in

various domains such as MYCIN, PROSPECTOR, XCON, and DENDRAL (Buchanan and

Shortliffe 1984, Hayes-Roth et al. 1983).

Knowledge-based systems are defined as intelligent computer applications that solve

complicated problems that would normally require extensive human expertise. They simulate the

human reasoning process by applying domain knowledge and inference (Stefik 1995). Since

they exhibit performance comparable to that of human experts in specific domains, they are

employed to perform a variety of extremely complicated tasks that in the past could only be

performed by highly trained human experts. Consequently, they have high potential for

enormous development.

However, the knowledge acquisition bottleneck (Feigenbaum 1981) greatly obstructs the

development of knowledge-based systems because it is time-consuming, error-prone, and

expensive to elicit expertise from human experts. Automatic Knowledge Acquisition (AKA)

employs various learning techniques to extract knowledge from various data sources such as

reference books, documents, and databases (Leung and Wong 1991a; 1991b). It has been

demonstrated that automatic knowledge acquisition can significantly reduce the time and cost

used in developing knowledge-based systems (Buchanan and Wilkins 1993).

An ideal automatic knowledge acquisition system should be able to extract approximate

knowledge from incomplete, incorrect, inconsistent, and inexact information. There are many

researches on developing knowledge-based systems (Leung and Lam 1988) that can handle

imprecise, incomplete, and uncertain information effectively. Imprecision (fuzziness) occurs

when the boundary of a piece of information is not clear cut, e.g. John is quite tall and Mary is

very beautiful. Incomplete information means some data normally required are missing.

Uncertainty exists if one is not absolutely certain about a piece of information. Fuzzy logic and

approximate reasoning (Zimmerman 1986) provide a theoretical foundation to model

Page 11

imprecision and uncertainty in knowledge-based systems. Thus, a good automatic knowledge

acquisition system should be able to induce approximate knowledge such as fuzzy production

rules from various data sources.

In this section, we present an approach of inducing Fuzzy Petri Nets (FPNs) which

represent the fuzzy production rules of knowledge-based systems. We employ LOGENPRO to

evolve cellular encodings representing various FPNs (Gruau 1994). The formalism of FPNs is

presented in sub-section 3.1. Cellular encodings for FPNs are discussed in the next sub-section.

To evaluate the performance of LOGENPRO in producing good FPNs, we compare the

classification accuracy of the FPN generated by LOGENPRO and the accuracy of the decision

tree induced by C4.5 in sub-section 3.3.

3.1. Fuzzy Petri Nets

A fuzzy knowledge base contains a number of fuzzy production rules that describe knowledge of

a specific domain. A fuzzy production rule is a rule that describes the fuzzy relation between

two or more propositions. There is a certainty factor (CF) attached to each rule for describing the

degree of confidence in the rule. If the value of the certainty factor is larger, there is more

confidence that the rule is correct. Some examples of fuzzy production rules are given as

follows:

IF Height is tall THEN Weight is heavy WITH CF= 0.7

IF Sex is Male and Age is 20 to 30 and Height is tall

THEN Weight is heave WITH CF = 0.95

Four different types of fuzzy production rules have been identified by Chen et at. (1990):

• Type 1: IF Dj1 and … and Djn THEN Dk WITH CF = µj

• Type 2: IF Dj THEN Dk1 and … and Dkn WITH CF = µj

• Type 3: IF Dj1 or … or Djn THEN Dk WITH CF = µj

• Type 4: IF Dj THEN Dk1 or … or Dkn WITH CF = µj

where

Dj, Dk,Dj1, …, Djn, Dk1, …, and Dkn are propositions which may contain some fuzzy

concepts such as “Height is tall”, “Weight is heavy”, “Temperature is high”, etc. The

truth value of each proposition is a real number between zero and one describing the

degree of belief of the proposition. µj is a real value between zero and one. It

represents the certainty factor of the rule.

Page 12

Since rules of type 4 are not suitable for deduction, they are not allowed to appear in a fuzzy

knowledge base.

A Fuzzy Petri Net (FPN) can be used to represent fuzzy production rules of a knowledge

base. A FPN contains a finite set of places (P) and a finite set of transitions (T), where circles

represent places, and bars represent transitions. A FPN is a finite bipartite graph where places

are linked with transitions which in turn are connected to the output places. Similarly, there are

input and output sets of transitions defined for a given place. A source transition is a transition

that has no input places. A transition that has no output places is called a sink transition. Each

transition is associated with a certainty factor taking values between zero and one. Each place

may or may not contain a token associated with a truth value of a proposition. The relationships

from places to transitions and from transitions to places are modeled by directed edges. A FPN

can be formally defined as an 8-tuple (Chen et al. 1990):

FPN = (P, T, D, I, O, cf, α, β)

where

• P = {P1, P2, …, Pn} is a finite set of places,

• T = {T1, T2, …, Tnm} is a finite set of transitions,

• D = {D1, D2, …, Dn} is a finite set of propositions,

• P ∩ T ∩ D = ∅,

• I: T → P∞ is the input function, a mapping from transitions to bags of places,

• O: T → P∞ is the output function, a mapping from transitions to bags of places,

• cf: T → [0, 1] is an association function, a mapping from transitions to real

values between zero and one,

• α: P → [0, 1] is an association function, a mapping from places to real values

between zero and one,

• β: P → D is an association function, a mapping from places to propositions.

If Pi ∈ I(Tj), then there is a directed edge from Pi to the transition Tj. If Pk ∈ O(Tj), then there is

a directed edge from the transition Tj to the place Pk. If cf(Tj) is µj , then the transition Tj is said

to be associated with a real value µj. If β(Pi) = Di, then the place Pi is said to be associated with

the proposition Di. The four types of fuzzy production rules can be represented by the fuzzy petri

nets depicted in Figures 4(a), 4(b), 4(c), and 4(d) respectively (Chen et al. 1990).

Page 13

Dj1

Djn

Dk

µ j

.

.

.

Pj1

Pjn

Pk

Tj

µ j

.

.

.

Tj1
Dk

Pk

µ j

Tjn

Dj1

Pj1

Djn

Pjn

(a) (c)

µ j

.

.

.

.

Tj1

Dj

Pj µ j

Tjn

Dk1

Pk1

Dkn

Pkn

µ j
.
.
.

Tj

Dj

Pj

Dk1

Pk1

Dkn

Pkn

(b) (d)

Figure 4: Fuzzy Petri net representations of (a) type 1 rules, (b) type 2 rules, (c) type 3

types, and (d) type 4 rules

Consider the following fuzzy production rules:

IF D1 and D2 THEN D3 WITH CF = 0.9

IF D3 and D4 THEN D5 WITH CF = 0.8

IF D3 and D6 THEN D7 WITH CF = 0.7

Page 14

Since these rules are type 1 rules, they are modeled by the fuzzy petri nets given in Figures 5(a),

5(b), and 5(c), respectively. By combining these fuzzy petri nets, the FPN in Figure 5(d) can be

obtained.

D1

D2

D3
0.9

P1

P2

P3T1

D3

P3

D6

P6

T3

0.7 D7

P7

(a) (c)

D3

P3

D4

P4

T2

0.8

P5

D5

D1

D2

D3
0.9

P1

P2

P3T1

D6

P6

D4

P4

T3

T2

0.7

0.8

D7

P7

P5

D5

(b) (d)

Figure 5: Fuzzy Petri net representations of (a) the first rule, (b) the second rule, (c)

the third rule, and (d) the three rules

The FPN represents a knowledge base containing the three fuzzy production rules. In the

FPN,

• P = {P1, P2, P3, P4, P5, P6},

• T = {T1, T2, T3},

• D = {D1, D2, D3, D4, D5, D6, D7},

• I(T1) = {P1, P2}, I(T2) = {P3, P4}, I(T3) = {P3, P6}

Page 15

• O(T1) = {P3}, O(T2) = {P5}, O(T3) = {P7}

• cf(T1) = 0.9, cf(T2) = 0.8, cf(T3) = 0.7

• β(P1) = D1, β(P2) = D2, β(P3) = D3, β(P4) = D4, β(P5) = D5, β(P6) = D6, β(P7) = D7

3.2. Cellular Encoding for Fuzzy Petri Nets

Cellular encoding is a technique that uses genetic programming to concurrently evolve the

architecture of a neural network, together with the weights, thresholds, and biases of the neurons

in the neural network (Gruau 1994). In this technique, each individual program in the population

is a specification for developing a neural network from a simple embryonic neural network that

contains only a single neuron. Genetic programming is applied to evolve programs that create

neural networks capable of solving a problem. Since the structure of a FPN is similar to that of a

neural network, genetic programming can be used to evolve programs that create complete FPNs

from embryonic FPNs.

It can be observed from Figure 5(d) that the places of a FPN can be classified into:

• Input places. For example, the places P1, P2, P4, and P6 are input places. The

propositions associated with input places are attribute value pairs such as ‘Height is

Tall’, ‘Weight is heavy’, etc.

• Intermediate places. For example, the place P3 is an intermediate place. There is not

restriction on the format of propositions associated with intermediate places.

• Output places. For example, the places P5 and P7 are output places. They represent

the various conclusions that can be reached from the FPN.

Since the overall objective of the learning system is to obtain a FPN representing fuzzy

production rules for a particular problem, the structure of the obtained FPNs must be restricted,

so that only FPNs containing the appropriate numbers of output places can be induced. If there

are n different conclusions in the set of production rules, where n > 2, the corresponding FPN

must contain n output places. Otherwise, only one output place is required if the number of

different conclusions is 1 or 2. This constraint can be fulfilled by initializing the embryonic FPN

with a specific structure. For example, the embryonic FPN for a complete FPN with one output

place is given in Figure 6. The place P1 and the transition T1 are modifiable while the output

place P1
’ is fixed.

Page 16

P1
T1 P1

'

Figure 6: An embryonic FPN for a complete FPN with one output place

The corresponding FPN-constructing program contains two component programs (Table

3):

• the place-manipulating program which specifies how to process the input place P1,

• the transition-manipulating program which specifies how to process the transition T1.

(progn
 <place-manipulating program>
 <transition-manipulating program>
)

Table 3: The structure of a FPN-constructing program

For a complete FPN with n output places, the embryonic FPN has n input places, n

transitions, and n output places (Figure 7). The modifiable components are P1, P2, …, Pn, T1, T2,

…, and Tn. On the other hand, the output places P1
’, P2

’, and Pn
’ are fixed. The corresponding

FPN-constructing program contains 2*n component programs (Table 4).

Page 17

P1
T1 P1

'

P2
T2 P2

'

Pn
Tn Pn

'

.

.

.

.

.

.

Figure 7: An embryonic FPN for a complete FPN with n output places

(progn
 <place-manipulating program 1>
 <transition-manipulating program 1>
 <place-manipulating program 2>
 <transition-manipulating program 2>
 …
 …
 <place-manipulating program n>
 <transition-manipulating program n>
)

Table 4: The structure of a FPN-constructing program

3.2.1. Place-manipulating functions

A place-manipulating function initializes the attribute value pair of an input place or inserts

additional places and/or transitions in the developing FPN. Since there are two kinds of

modifiable places: input and intermediate places, the functions can be classified into two kinds

as shown in Table 5.

Page 18

 Name Description Number of arguments

Input place sp1 Sequential division 3

 pp1 Parallel division 2

 init Initialize the attribute value pair 2

Intermediate place sp2 Sequential division 3

 pp2 Parallel division 3

 stop Terminate the modification 0

Table 5: Place-manipulating functions

Consider the developing FPN depicted in Figure 8, the sp1 function applies on the input

place P1 will create the new FPN given in Figure 9. It inserts a new transition T4 and a new

intermediate place P1
’ into the FPN. The first argument of the sp1 function is a place-

manipulating program that applies on the place P1. The second argument is a transition-

manipulating program that modifies the transition T4. The third argument is a place-

manipulating program that handles the intermediate place P1
’.

P1

P2

P3T1 T2 P4

T3

Figure 8: A developing FPN

The pp1 function applies on the input place P1 of Figure 8 will create the new FPN

depicted in Figure 10. It adds a new input place P1
’ into the FPN. The first and the second

arguments of the function are place-manipulating programs that apply on the input places P1 and

P1
’ respectively.

Page 19

P1
'

P2

P3T1 T2 P4

T3

P1 T4

Figure 9: A new FPN created by the sp1 function

P1
'

P2

P3T1 T2 P4

T3

P1

Figure 10: A new FPN created by the pp1 function

The init function initializes the attribute value pair of an input place. The first and the

second arguments of the function are respectively the attribute and the value of the pair.

The sp2 function applies on the intermediate place P3 of Figure 8 will produce the new

FPN shown in Figure 11. It adds a new transition T4 and a new intermediate place P3
’. The first

argument of the function is a place-manipulating program that handles the intermediate place P3.

The second argument is a transition-manipulating program that modifies the transition T4. The

last argument is a place-manipulating program that changes the intermediate place P3
’

Page 20

P1

P2

P3T1 T2 P4

T3

P3
'T4

Figure 11: A new FPN created by the sp2 function

The pp2 function applies on the intermediate place P3 of Figure 8 will create the new

FPN depicted in Figure 12. The function first generates a new intermediate place P3
’ and a new

transition T1
’. Subsequently, it connects the places P1 and P2 to T1

’. Finally, the function

connects T1
’ to P3

’ and attaches P3
’ to T2. The first argument of the function is a place-

manipulating program that modifies P3. The second one is a transition-manipulating program

that operates on T1
’. The last one is a place-manipulating program that handles the intermediate

place P3
’.

Finally, the stop function specifies that the corresponding intermediate place will not be

modified any more.

P1

P2

P3T1 T2 P4

T3

T1
' P3

'

Figure 12: A new FPN created by the pp2 function

Page 21

3.2.2. Transition-manipulating functions

The five transition-manipulating functions are summarized in Table 6.

Name Description Number of arguments

st sequential division 3

pt parallel division 2

cut remove one of the incoming edges 2

setcf set the certainty factor 1

Table 6: Transition-manipulating functions

Consider the developing FPN shown in Figure 8. The st function will produce the new

FPN depicted in Figure 13 when applied on the transition T2. It creates a new intermediate place

P5 and a new transition T2
’. The first argument of the function is a transition-manipulating

program that operates on the transition T2. The second one is a place-manipulating program that

modifies the intermediate place P5. The last one is a transition-manipulating program that

changes the transition T2
’.

P1

P2

P3T1 T2 P5

T3

P4T2
'

Figure 13: A new FPN created by the st function

A new FPN (Figure 14) will be produced if the function pt operates on the transition T2

of Figure 8. A new transition T2
’ is inserted. The first and the second arguments of the function

are transition-manipulating programs applying on the transitions T2 and T2
’ respectively.

Page 22

P1

P2

P3T1 T2 P4

T3 T2
'

Figure 14: A new FPN created by the pt function

The cut function removes one of the incoming edges of a transition if there are more than

one incoming edge. Otherwise, it does not modify the FPN. The first argument of the function is

a transition-manipulating program that operates on the transition and the second argument

identifies the incoming edge to be removed. Assume that the number of incoming edges of the

transition is I and the second argument of the function is N where N > 1. The function first

calculates the value (I mod N). The first incoming edge is removed if the calculated value is 0..

Otherwise, the corresponding incoming edge is removed. For example, the new FPN (Figure 15)

will be produced if the cut function operates on the transition T1 of Figure 8 with the value of the

second argument equal to 5.

Finally, the setcf function takes one argument cf and initializes the certainty factor of the

transition to cf.

P1

P2

P3T1 T2 P4

T3

Figure 15: A new FPN created by the cut function

Page 23

3.2.3. Generate Fuzzy Petri Nets

In the previous two sub-sections, we discussed the place-manipulating and transition-

manipulating functions that operate on a developing FPN. In this sub-section, we give an

example to demonstrate the procedure of generating a complete FPN from an embryonic FPN as

shown in Figure 6.

Assume that we expect to develop a knowledge-based system which can help medical

doctors to determine whether a patient should be observed by considering their height, weight,

and age. The knowledge base of this system is composed of a number of fuzzy production rules

which are represented as a FPN. This FPN can be obtained by executing the following FPN-

constructing program on the embryonic FPN given in Figure 16,
(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall) (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)
The place-manipulating program,
 (pp1 (pp1 (sp1 (pp1 (init height tall) (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
specifies how to process the place P1 of Figure 16, and the transition-manipulating program,
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
specifies how to process the transition T1 of Figure 16.

P1
T1 P1

'

observe is yes

Figure 16: The embryonic FPN for the problem

The place-manipulating program is executed first. The pp1 function creates the new FPN

depicted in Figure 17. The first argument of the function is the place-manipulating program,

Page 24

 (pp1 (sp1 (pp1 (init height tall) (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
that will be applied on the input place P1. The second argument is another place-manipulating

program (init age young) that will be applied on the input place P2.

P1
T1 P1

'

observe is yes

P2

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 17: The developing FPN (on the left) generated by apply the pp1 function (the

shaded program fragment on the right) on the place P1 of Figure 16

The place manipulating function pp1 is then operated on the place P1 of Figure 17. It

generates the FPN shown in Figure 18. The first argument of the function is the place-

manipulating program
 (sp1 (pp1 (init height tall) (init weight heavy))
 (setcf 0.8) (stop))
that will be applied on the input place P1. The second argument is another place-manipulating

program (init age old) that will be applied on the input place P3.

P1
T1

P1
'

observe is yes

P3

P2

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 18: The developing FPN (on the left) generated by apply the pp1 function (the

underlined program fragment on the right) on the place P1 of Figure 17

Page 25

The place manipulating function sp1 is then operated on the place P1 of Figure 18. It

produces the FPN shown in Figure 19. The first argument of the function is the place-

manipulating program (pp1 (init height tall) (init weight heavy)) that

will be applied on the input place P1. The second argument is a transition-manipulating program

(setcf 0.8) that will be applied on the new transition T2. The third argument is a place-

manipulating program (stop) that will be applied on the place P4.

P1

T1

P1
'

observe is yes

P3

P2

P4
T2

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 19: The developing FPN (on the left) generated by apply the sp1 function (the

underlined program fragment on the right) on the place P1 of Figure 18

The place manipulating function pp1 is then operated on the place P1 of Figure 19 and a

new FPN is generated (Figure 20). The first argument of the function is the place-manipulating

program (init height tall) that will be applied on the input place P1. The second

argument is a place-manipulating program (init weight heavy) that will be applied on

the new input place P5.

Page 26

P1

T1

P1
'

observe is yes

P3

P2

P4

P5

T2

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 20: The developing FPN (on the left) generated by apply the pp1 function (the

underlined program fragment on the right) on the place P1 of Figure 19

The program (init height tall) is applied on the input place P1 and then the

program (init weight heavy) is operated on the place P5. A new FPN is generated

(Figure 21).

P1

T1

P1
'

observe is yes

P3

P2

P4

P5

T2

height is tall

weight is heavy

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 21: The developing FPN (on the left) generated by apply the init function (the

underlined program fragments on the right) on the places P1 and P5 of

Figure 20

The program (setcf 0.8) is applied on the transition T2 and then the program

(stop) is operated on the place P4. A new FPN is generated (Figure 22).

Page 27

P1

T1

P1
'

observe is yes

P3

P2

P4

P5

T2

height is tall

weight is heavy

0.8

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 22: The developing FPN (on the left) generated by apply the setcf function on

the transition T2 and the stop function on the place P4 (the underlined

program fragments on the right) of Figure 21

The program (init age old) is applied on the place P3 and then the program

(init age young) is operated on the place P2. These programs produce a new FPN

depicted in Figure 23.

P1

T1

P1
'

observe is yes

P3

P2

P4

P5

T2

height is tall

weight is heavy

0.8

age is old

age is young

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 23: The developing FPN (on the left) generated by apply the init function on the

places P3 and P2 (the underlined program fragments on the right) of Figure

22

The transition-manipulating program,
(pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))

Page 28

is then operated on the transition T1 of Figure 23. The pt function creates the new FPN

illustrated in Figure 24. The first argument of the function is the transition-manipulating

program

(cut (setcf 0.9) 2) that will be applied on the transition T1. The second argument is

another transition-manipulating program (cut (setcf 0.4) 1) that will be applied on the

new transition T3.

P1

T1

P1
'

observe is yes

P3

P2

P4

P5

T2

height is tall

weight is heavy

0.8

age is old

age is young

T3

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 24: The developing FPN (on the left) generated by apply the pt function on the

transition T1 (the underlined program fragment on the right) of Figure 23

When the program (cut (setcf 0.9) 2) is operated on the transition T1, the arc

from the place P2 is deleted first, and then the certainty factor of the transition T1 is set to 0.9.

After that the program (cut (setcf 0.4) 1) is applied on the transition T3. The arc from

the place P4 is removed, and then the certainty factor of the transition T3 is set to 0.4. Since the

FPN-constructing program finishes, the final FPN is generated and is illustrated in Figure 25.

This FPN represents the following fuzzy production rules:

IF Height is tall and Weight is heavy THEN D4 WITH CF= 0.8

IF Age is old and D4 THEN Observe is yes WITH CF = 0.9

IF Age is young and D4 THEN Observe is yes WITH CF = 0.4

where

D4 is a proposition associated with the place P4. This proposition contains new fuzzy

concepts.

One interesting feature of this approach for generating fuzzy Petri nets is that new intermediate

fuzzy concepts can be produced. These concepts can improve the comprehensibility and the

Page 29

reasoning efficiency of the whole knowledge base by arranging the rules in the knowledge base

in a hierarchical structure.

P1

T1

P1
'

observe is yes

P3

P2

P4

P5

T2

height is tall

weight is heavy

0.8

age is old

age is young

T3

0.9

0.4

(prong
 (pp1 (pp1 (sp1 (pp1 (init height tall)
 (init weight heavy))
 (setcf 0.8) (stop))
 (init age old))
 (init age young))
 (pt (cut (setcf 0.9) 2)
 (cut (setcf 0.4) 1))
)

Figure 25: The complete FPN (on the left) generated by apply the cut and setcf

functions on the transitions T1 and T3 (the underlined program fragment on

the right) of Figure 24

3.3. Experiment

In this experiment, the performance of LOGENPRO in inducing FPN from training examples is

evaluated using the malignant tumor classification program. The domain includes a set of 699

breast cancer patients, of which 458 have no malignancy and the remainder have confirmed

malignancies. Each patient is described by nine features with real-values between 1 and 10. The

features are classified into two categories:

• features that describe fuzzy concepts with 3 fuzzy terms ‘High’, ‘Moderate’, and

‘Low’,

• features that specify fuzzy concepts with 2 fuzzy terms ‘yes’ and ‘no’.

The membership functions of these fuzzy terms are depicted in Figure 26. The features,

the attribute names, and the corresponding numbers of fuzzy terms are summarized in Table 7.

The problem is to determine whether the tumors are benign or malignant from these cancer

patients.

Page 30

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

D
eg

re
e

of
 m

em
be

rs
hi

p
High Moderate Low

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

D
eg

re
e

of
 m

em
be

rs
hi

p

Yes No

(a) (b)

Figure 26: Membership functions of (a) ‘High’, ‘Moderate’, and ‘Low’, (b) ‘Yes’ and

‘No’

feature attribute name number

clump thickness clump 3

uniformity of cell size cell-size 3

uniformity of cell shape cell-shape 3

marginal adhesion marginal-adhesion 3

single epithelial cell size SE-cell-size 3

bare nuclei nuclei-bare 2

bland chromatin chromatin-bland 2

normal nucleoli nucleoli 2

mitoses mitoses 2

Table 7: Features and attribute names

To induce a program using LOGENPRO, we have to determine the logic grammar,

fitness cases, fitness function, and termination criterion. The logic grammar for this problem is

given in Table 8.

Page 31

1:start -> [(progn], place1, tran, [)].
2:place1 -> [(sp1], place1, tran, place2, [)].
3:place1 -> [(pp1], place1, place1, [)].
4:place1 -> [(init], attribute(?t), value(?t), [)].
5:place2 -> [(], [sp2], place2, tran, place2, [)].
6:place2 -> [(], [pp2], place2, tran, place2, [)].
7:place2 -> [(stop)].
8:tran -> [(st], tran, place2, tran, [)].
9:tran -> [(pt], tran, tran, [)].
10:tran -> [(cut], tran, no, [)].
11:tran -> [(setcf], cf, [)].
12:cf -> {generate-cf(?x)}, [?x].
13:no -> { member(?x, [0, 1, 2, 3, 4]) }, [?x].
14:attribute(three) -> { member(?x,[clump, cell-size, cell-shape,
 marginal-adhesion, SE-cell-size]) }, [?x].
15:attribute(two) -> { member(?x, [nuclei-bare, chromatin-bland,
 nucleoli, mitoses])}, [?x].
16:value(three) -> { member(?x, [High, Moderate, Low]) }, [?x].
17:value(two) -> { member(?x, [Yes, No]) }, [?x].

Table 8: A logic grammar for the malignant tumor classification problem

The first rule of this grammar specifies that a FPN-constructing program has two

components: a input-place-manipulating program and a transition-manipulating program. Rules

2, 3, and 4 specify the structures of input-place-manipulating programs. Rules 5, 6, and 7 declare

the structures of intermediate-place-manipulating programs. The syntax of transition-

manipulating programs is defined in rules 8, 9, 10, and 11. The logical goal generate-

cf(?x) in rule 12 instantiates the variable ?x to a random floating point number between 0

and 1. The goal member(?x, [0, 1, 2, 3, 4]) in rule 13 instantiates ?x to an integer

between 0 and 4. Rules 14 and 15 specify the two categories of attributes while rules 16 and 17

define the different fuzzy terms.

The set of patients is divided into the training fitness cases and the testing example.

There are 300 fitness cases (200 benign patients and 100 malignant patients). During each

generation, 500 individual FPN-constructing programs of the population are executed to create

500 FPNs. Each FPN is used to classify the fitness cases. A fitness case is classified as benign if

the FPN returns a degree of belief greater than 0.5. Otherwise, the case is classified as

malignant. The fitness value of a FPN-constructing program is the number of misclassified

fitness cases for the corresponding FPN. LOGENPRO terminates and returns the best program

found during the run if the maximum number of generations (which is 50 in this experiment) is

Page 32

reached or a good FPN-constructing program is found. A program is good if it generates a FPN

that classifies correctly all fitness cases.

The FPN generated by the best program is further evaluated by using the 399 testing

examples (258 benign patients and 141 malignant patients). The classification accuracy is

94.98%. The same training set is given to C4.5 (Quinlan 1992) to induce a decision tree. The

accuracy of the induced decision tree, 93.2%, is obtained by using the same testing set. This

experiment shows that the induced fuzzy Petri net performs better than the decision tree induced

by C4.5.

4. Learning logic program

In knowledge discovery from databases, we emphasize the need for learning from huge,

incomplete, and imperfect datasets (Piatetsky-Shapiro and Frawley 1991). The various kinds of

imperfections in data are:

1) random noise in training examples and background knowledge;

2) the number of training examples is too small;

3) the distribution of training examples fails to reflect the underlying distribution of

instances of the concept being learned;

4) an inappropriate example description language is used: some important

characteristics of examples are not represented, and/or irrelevant properties of

examples are provided;

5) an inappropriate concept description language is used: it does not contain an exact

description of the target concept; and

6) there are missing values in the training examples.

Existing inductive learning systems employ noise-handling mechanisms to cope with the

first five kinds of data imperfections. Missing values are usually handled by a separate

mechanism. These noise-handling mechanisms are designed to prevent the induced concept from

overfitting the imperfect training examples by excluding insignificant patterns (Lavrac and

Dzeroski 1994). They include tree pruning in CART (Breiman et al. 1984), rule truncation in

AQ15 (Michalski et al. 1986) and significant test in CN2 (Clark and Niblett 1989). However,

these mechanisms may ignore some important patterns because they are statistically

insignificant.

Page 33

Moreover, these learning systems use a limiting attribute-value language for representing

the training examples and the induced knowledge. This representation limits them to learn only

propositional descriptions in which concepts are described in terms of values of a fixed number

of attributes. Currently, only a few relation learning systems such as FOIL (Quinlan 1990; 1991)

and mFOIL (Lavrac and Dzeroski 1994) address the issue of learning from imperfect data.

In this section, we describe the application of LOGENPRO to learn logic programs from

noisy and imperfect training examples. Empirical comparisons of LOGENPRO with FOIL (a

system that induces logic programs) in the domain of learning illegal chess endgame positions

from noisy examples are presented.

In this domain, the target predicate

illegal(WKf, WKr, WRf, WRr, BKf, BKr) states whether the position where the

white king is at (WKf, WKr), the white rook is at (WRf, WRr) and the black king is at

(BKf, BKr), is an illegal white-to-move position. The background knowledge is represented by

two predicates, adjacent(X, Y) and less_than(W, Z), indicating that rank/file X is

adjacent to rank/file Y and rank/file W is less than rank/file Z respectively. LOGENPRO uses the

logic grammar in Table 9 for this problem. In this grammar, [adjacent(?X, ?Y)] and

[less_than(?X, ?Y)] are terminal symbols. The logic goal

member(?X, [WKf, WKr, WRf, WRr, BKf, BKr]) will instantiate ?X to either WKf,

WKr, WRf, WRr, BKf, or BKr. The logic variables of the target logic program are WKf, WKr,

WRf, WRr, BKf, and BKr.

start -> clauses.
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-], antes, [.].
consq -> [illegal(WKf, WKr, WRf, WRf, BKf, BKr)].
Antes -> antes, [,], antes.
Antes -> ante.
Ante -> {member(?X,[WKf, WKr, WRf, WRf, BKf, BKr])},
 {member(?Y,[WKf, WKr, WRf, WRf, BKf, BKr])},
 literal(?X, ?Y).
literal(?X, ?Y) -> [?X = ?Y].
literal(?X, ?Y) -> [~ ?X = ?Y].
literal(?X, ?Y) -> [adjacent(?X, ?Y)].
literal(?X, ?Y) -> [~adjacent(?X, ?Y)].
literal(?X, ?Y) -> [less_than(?X, ?Y)].
literal(?X, ?Y) -> [~less_than(?X, ?Y)].

Table 9: The logic grammar for the chess endgame problem

Page 34

The training set contains 1000 examples (336 positive and 664 negative examples). The

testing set has 10000 examples (3240 positive and 6760 negative examples). Different amount of

noise is introduced into the training examples in order to study the performances of both systems

in learning programs from noisy environment. To introduce n% of noise into argument X of the

examples, the value of argument X is replaced by a random value of the same type from a

uniform distribution, independent to noise in other arguments. For the class variable, n%

positive examples are labeled as negative ones while n% negatives examples are labeled as

positive ones. Thus, the probability for an example to be incorrect is

1 −{[(1 − n%) + n% *
1
8

]6 * (1 − n%)}. In this experiment, the percentages of noise introduced are

5%, 10%, 15%, 20%, 30% and 40%. Thus, the probabilities for an example to be noisy are

respectively 27.36%, 48.04%, 63.46%, 74.78%, 88.74% and 95.47%. Background knowledge

and testing examples are not corrupted with noise.

A chosen level of noise is first introduced in the training set. Logic programs are then

induced from the training set using LOGENPRO and FOIL. Finally, the classification accuracy

of the learned programs is estimated on the testing set. For LOGENPRO, the initial population

of programs are induced by a variation of FOIL using a portion of the training examples. The

population size is 10 and the maximum number of generations for each experiment is 50. Since

LOGENPRO is a non-deterministic learning system, the process is repeated for five times on the

same training set and the average of the five results is reported as the classification accuracy of

LOGENPRO.

Many runs of the above experiments are performed on different training examples. The

average results of ten runs are summarized in Figure 27. The performances of both systems are

compared using paired t-test. From this experiment, the classification accuracy of both systems

degrades seriously as the noise level increases. Nevertheless, the classification accuracy of

LOGENPRO is better than that of FOIL by at least 5% at the 99.995% confidence interval at all

noise levels (except the noise level of 0%). The largest difference reaches 24% at the 20% noise

level. One possible explanation of the better performance of LOGENPRO is that the Darwinian

principle of survival and reproduction of the fittest is a good noise handling method. It avoids

overfitting noisy examples, but at the same time, it can finds interesting and useful patterns from

these noisy examples. The experiments demonstrate that LOGENPRO is a promising alternative

to other famous inductive logic programming systems and sometimes is superior for handling

noisy data.

Page 35

0 0.05 0.1 0.15 0.2 0.3 0.4
Noise Level

0.5
0.6

0.7
0.8

0.9
1

1.1

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y FOIL

Logenpro

Figure 27: Comparison between LOGENPRO and FOIL

5. Conclusion

In this paper, we have presented a flexible knowledge discovery system called LOGENPRO

(The LOgic grammar based GENetic PROgramming system) that combines Genetic

Programming and Inductive Logic Programming. It is based on a formalism of logic grammars.

The system can learn programs in various programming languages and represent context-

sensitive information and domain-dependent knowledge.

An experiment is performed to demonstrate that LOGENPRO can induce appropriate

Fuzzy Petri Nets (FPN) representing a number of fuzzy production rules from information stored

in databases. The performance of the FPN induced by LOGENPRO and the decision tree

produced by C4.5 is compared using the malignant tumor classification problem.

The performance of LOGENPRO in inducing logic programs from imperfect training

examples is evaluated using the chess endgame problem. A detailed comparison to FOIL has

been conducted. This experiment demonstrates that LOGENPRO is a promising alternative to

other inductive logic programming systems and sometimes is superior for handling noisy data.

These experiments show that LOGENPRO is a flexible knowledge discovery system

because it can induce knowledge represented in various knowledge representation formalisms

such as fuzzy Petri nets and logic programs. For future work, we plan to perform experiments on

other learning problems to demonstrate that the system is applicable in different domains.

Page 36

Acknowledgments

The research is sponsored by the direct research grant (reference number RES-001/199) of

Lingnan University, Hong Kong.

Page 37

References

Breimen, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and
Regression Trees. Belmont: Wadsworth.

Buchanan, B. G. and Shortliffe, E. H., Eds. (1984). Rule-based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Reading, MA: Addison-Wesley.

Buchanan, B. G. and Wilkins, D. C., Eds. (1993). Readings in Knowledge Acquisition and
Learning: automating the construction and improvement of expert systems. CA: Morgan
Kaufmann

Chen, S. M., Ke, J. S., and Chang, J. F. (1990). Knowledge Representation Using Fuzzy Petri
Nets. IEEE Transactions on Knowledge and Data Engineering, 2, pp. 311-319.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning; 3, 261-283.

Davis, L. (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.

Davis, L. (1987). Genetic Algorithms and Simulated Annealing. London: Pitman.

De Raedt, L. (1992). Interactive Theory Revision: An Inductive Logic Programming Approach.
London: Academic Press

Dzeroski, S. (1996). Inductive Logic Programming and Knowledge Discovery in Databases. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.), Advances in
Knowledge Discovery in Data Mining, pp. 117-152. Menlo Park, CA: AAAI Press.

Dzeroski, S. and Lavrac, N. (1993). Inductive Learning in Deductive Databases. IEEE
Transactions on Knowledge and Data Engineering, 5, 939-949.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge
Discovery: An Overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy
(eds.), Advances in Knowledge Discovery in Data Mining, pp. 1-34. Menlo Park, CA: AAAI
Press.

Feigenbaum, E. A. (1981). Expert systems in the 1980's. In A. Bond (ed.), State of the Art
Report on Machine Intelligent. Maidenhead: Pergamon-Infotech.

Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. (1991). Knowledge Discovery in
Databases: an Overview. In G. Piatetsky-Shapiro and W. Frawley (eds.), Knowledge Discovery
in Databases, pp. 1-27. Menlo Park, CA: AAAI Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

Gruau, F. (1994). Genetic Micro Programming of Neural Networks. In K. E. Kinnear, Jr. (Ed.)
Advances in Genetic Programming. MA: MIT Press.

Page 38

Hayes-Roth, F., Waterman, D. A. and Lenat, D. B. Eds. (1983). Building Expert Systems.
Reading, MA: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems. MI: The University of
Michigan Press.

Kinnear, K. E. Jr., editor (1994). Advances in Genetic Programming. Cambridge, MA: MIT
Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Koza, J. R., Bennett, F. H. III, Andre, D., and Keane, M. A. (1999). Genetic Programming III:
Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann.

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. London: Ellis Horword.

Leung, K. S. and Lam, W. (1988). Fuzzy concepts in expert systems. IEEE Computer, 21, pp.
43-56.

Leung, K. S. and Wong, M. L. (1991a). Inducing and refining rule-based knowledge from
inexact examples, Knowledge Acquisition. 3, pp. 291-315.

Leung, K. S. and Wong, M. L. (1991b). Automatic refinement of Knowledge Bases with Fuzzy
Rules. Knowledge-Based Systems, 4, pp. 231-246.

Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N. (1986). The multi-purpose incremental
learning system AQ15 and its testing application on tree medical domains. In Proceedings of the
National Conference on Artificial Intelligence, 1041-1045. San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. (1982). Generalization as Search, Artificial Intelligence, 18, 203-226.

Muggleton, S. and Buntine, W. (1988). Machine invention of first-order predicates by inverting
resolution. In Proceedings of the Fifth International Conference on Machine Learning, 339-352.
CA: Morgan Kaufmann

Muggleton, S. and Feng, C. (1990), Efficient induction of logic programs, In Proceedings of the
First Conference on Algorithmic Learning Theory, 1-14.

Pazzani, M., Brunk, C. A. and Silverstein, G. (1991). A Knowledge-Intensive Approach to
Learning Relational Concepts, in Proceedings of the Eighth International Workshop on Machine
Learning, 432-436, CA: Morgan Kaufmann.

Page 39

Pazzani, M. and Kibler, D. (1992). The utility of knowledge in Inductive learning. Machine
Learning, 9, 57-94.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a Comparison with Augmented Transition Networks
Artificial Intelligence, 13, 231-278.

Peterson, J. L. (1981). Petri Net Theory and Modeling of Systems. NJ: Prentice Hall.

Piatetsky-Shapiro, G. and Frawley, W. J. (1991). Knowledge Discovery in Databases. Menlo
Park, CA: AAAI Press.

Quinlan, J. R. (1992). C4.5: Programs for Machine Learning. CA: Morgan Kaufmann.

Quinlan, J. R. (1991). Determinate Literals in Inductive Logic Programming, In Proceedings of
the Eighth International Workshop on Machine Learning, 442-446. CA: Morgan Kaufmann.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-
266.

Stefik, M. (1995). Introduction to Knowledge Systems. San Francisco, CA: Morgan Kaufmann.

Wong, M. L. (1998). An Adaptive Knowledge Acquisition System using Generic Genetic
Programming. Expert Systems with Applications, 15, no. 1, pp.47-58.

Wong, M. L. and Leung, K. S. (2000). Data Mining Using Grammar Based Genetic
Programming and Applications. Kluwer Academic Publishers.

Wong, M. L. and Leung, K. S. (1995). Inducing Logic Programs with Genetic Algorithms: The
Genetic Logic Programming System, IEEE Expert, 9, no. 5. pp. 68-76.

Zimmermann, H. J. (1986). Fuzzy Set Theory and its Applications. Dordrecht: Kluwer-Nijhoff.

