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VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

School of Mathematics, Statistics and Computer Science

Computer Science

Numerical-Node Building Block
Analysis of Genetic Programming

with Simplification

Phillip Wong, Mengjie Zhang

Technical Report CS-TR-06/15
December 2006

School of Mathematics, Statistics and Computer Science
Victoria University
PO Box 600, Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research
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Abstract

This paper investigates the effects on building blocks of using simplification in a
GP system to combat the problem of code bloat. The evolved genetic programs are
simplified online during the evolutionary process using algebraic simplification rules
and hashing techniques. A simplified form of building block (numerical-nodes) are
tracked throughout several individual GP runs both when using and not using sim-
plification. The results suggest that simplification disrupts existing potential building
blocks during the evolution process. However, the results also suggest that simpli-
fication is capable of creating new building blocks which are used to form a more
accurate solution than the standard GP. The effectiveness of GP systems utilising sim-
plification can be correlated to the creation of these new building blocks.
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1 Introduction

Genetic Programming (GP) ([13], [14]) is a relatively young form of evolutionary computing de-
rived from genetic algorithms, whereupon programs are automatically constructed to perform a
specific task using processes and operators derived from genetic biology. These genetic operators
(e.g. crossover, mutation, selection, reproduction) are repeatedly invoked on an initial popula-
tion of randomly generated genetic programs until some form of termination criteria is satisfied.
The best performing program evolved in the evolutionary process (usually the best program in
the final generation) is used as the system’s solution.

One of the current problems in GP is that of code bloat ([13], [4], [21], [15]). Genetic programs
tend to grow very quickly in size, easily out-pacing the improvements in program fitness as evo-
lution progresses. This is because increasing amounts of code being formed is redundant, and
does not provide any contribution towards the programs fitness measure. As a simple example
of redundant code, consider the program (+ x (- y y)). The (- y y) subtree can be regarded
as redundant, as it provides no extra functionality than if the subtree were removed. Programs
containing a lot of these redundancies can be both inefficient in execution and harder to un-
derstand. As the programs grow exponentially, they can quickly exhaust a system’s available
resources, slowing down the evolution process and can even halt the system before a “good”
solution can be found. This may limit GP’s ability to scale to more complex problems requiring
larger-sized solutions.

Simplification is one approach to combating code bloat. Simplification works by directly pro-
cessing and removing redundant code from programs within a GP system. The editing function
proposed in [13] is an example of a simplification component, intended to improve comprehen-
sibility and execution efficiency of the final solution at the end of the evolutionary process. But,
since code bloat is a problem that occurs throughout the evolutionary process, simplification is
invoked during the evolutionary process. Simplification has been tested on several symbolic re-
gression ([10], [5], [24]) and multi-class classification ([25], [24]) tasks. These early results have
shown that simplification can significantly improve the efficiency of the GP system, producing
smaller sized programs and requiring shorter training times to find solutions. It has also been
found that GP systems are capable of producing more effective/accurate solutions when sim-
plification is employed. [24] hypothesises that the simplification may destroy potential building
blocks early on, but can also provide new building blocks at later stages of the GP process, which
allows simplification to improve in effectiveness. However, these hypotheses have not yet been
seriously examined through experimentation.

It is becoming an ever increasing thought in biology (Epigenetics [16], [12]) that there can
be changes in a gene’s phenotype (cell function) without change to its genotype (cell DNA).
Similarly, it may be that the redundant code present in genetic programs serves a purpose other
than purely functional. It has been theorised that these redundancies may shield programs from
the destructive effects of GP crossover ([17], [22]) by reducing the chances of crossover/mutation
points being selected within a critical portion of a program. The redundancies may also contain
valuable building blocks that can contribute in the future (through recombination) to form better
solutions. The removal of these redundancies may eliminate these potential building blocks
from the GP population, denying further generations access to them, and thus hindering the GP
system’s ability to find a good solution.

1.1 Goals

This paper aims to investigate and analyse the effects on GP building blocks, of using online
simplification during the evolutionary process (proposed in [24]). We will achieve this by track-
ing building blocks throughout several individual GP runs both with and without simplification,
and then examining their behaviour through these runs. More specifically, we will look to do the
following:
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• Investigate whether utilising a simplification component in a GP system disrupts potential
building blocks in the GP population.

• Determine whether simplification creates new building blocks in a GP population with
which to form better solutions.

• Determine if the creation of new building blocks can overcome the negative effects of build-
ing blocks being disrupted, and result in more accurate GP solutions.

1.2 Structure

The remainder of this paper is structured as follows. Section 2 describes the simplification
method used in the building block analysis. Section 3 discusses the brief history of building
blocks in GP and the form of building blocks analysed in this paper. It also describes the exper-
imentation tasks and GP settings used for this paper. Section 4 presents the results from these
experiments, as well as discussions. Finally, section 5 concludes the paper, as well as outlining
possible future directions.

2 Simplification

Simplification is the process of directly removing redundancy from a program, leaving behind a
smaller program which is semantically the same as the original (yields the same outputs given
the same inputs). Several different simplification approaches have been used in the past with
varying results ([10], [25], [5], [24]). Since we are investigating the effects of simplification in gen-
eral, it is beyond the scope of this paper to discuss the merits of one simplification method over
another. For the purposes of this paper, we will use an Algebraic Simplification method described
in GECCO 2006 [24]. A short overview of this simplification system is given in the following
subsection.

2.1 Overview of the Simplification Process

The algebraic simplification method of GP programs [24] is motivated by the algebraic nature
of the standard GP functions (+,−,×,÷) and uses a set of algebraic simplification rules to remove
redundancies. These rules are similar to STRIPS operators ([6]), and consist of two parts, a pre-
condition which represents the state of the surrounding nodes that must be present for the rule
to be applied, and a postcondition which represents the state that the surrounding nodes are in
after additions and deletions are made. A number of these rules make up the rule-set for the
simplification system.

The system also makes use of an Algebraic Equivalence hashing function to determine whether
two subtrees are functionally equivalent. In order to achieve this, a hash value is calculated for
each subtree of a program. If two subtrees have the same hash value, they are considered to
be equivalent and are treated as such. A hashing order (p) is used to denote the total number
of possible hash values. Terminals are allocated hash values depending on their type. Floating
point constant terminals are transformed into hash values using a constant precision parameter,
whereas variable terminals are given a random hash value (which is kept constant throughout
the evolutionary process). Hash values of child nodes can be easily combined to give the hash
value of the parent node, limiting the amount of work needed to calculate the hash value of every
subtree.

In order to simplify a program, the rule-set is applied using a “greedy” engine. It recursively
traverses the program tree in a postfix bottom-up fashion. For each node it processes in this
way, it checks the precondition of each rule in the rule-set. If any of the rules match, then it is
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applied to that portion of the tree. It continues to check preconditions until none of the rules in
the rule-set can be applied, in which case the algorithm moves on to the next node.

A simple example of the algebraic simplification on a small program is given in figure 1.

Figure 1: Simple example of the algebraic simplification using the rule: A
A → 1. The numbers de-

note example algebraic equivalence hash values in a field of order 11 (the hash order). Note how
through hashing (+ x y) and (+ y x) are deemed equivalent and so the rule can be applied.

In this example, x has been randomly assigned the hash value 6, while y has been assigned
the hash value 7. For the ‘+’ nodes, the children are added together to make 13. Since the hash
order is 11, the hash value is calculated to be 13 mod 11 = 2. For the root node ‘%’ (the same as
÷), the rule A

A → 1 is found to apply, since both left and right child nodes have the same hash
value. The rule is applied and the result is a single numerical-node, with a value of 1.

3 Building Block Analysis

The concept of building blocks can be traced back to Genetic Algorithms (GA), where it was hy-
pothesised in [8] that ”Short, low order, and highly fit schemata are sampled, recombined [crossed over],
and re-sampled to form strings of potentially higher fitness”. This hypothesis is regarded as the pro-
cess that GA utilises to solve given problems ([9], [8], [7]), and why it is so powerful in doing
so. Conceptually, building blocks are simply small components solution that can be formed into
larger, more fit components through the use of genetic operators.

From the outset, there have been several attempts to bring a similar building block theory
to the realm of GP ([13], [2], [23], [19], [18]). These have themselves spawned several ways to
describe building blocks: a subtree to a solution tree ([1]), a rooted subtree ([20]), a block of code
([11]). Needless to say, it is still difficult for one to define exactly what a “GP building block” is.

3.1 Numerical-Nodes as “Simple” Building Blocks

For this paper, we need to track building blocks throughout a GP run in order to observe their
behaviour and how they are affected by simplification. For this purpose, we narrow our focus
onto the simplest form of what has generally been considered a building block (the subtree):
Single numerical terminal nodes (which we term simply as numerical-nodes). These are single nodes
present in a program which are usually represented by a single floating point number. They
are often used in GP tasks to contribute additional numerical constants toward a GP solution.
In the standard GP, these are usually regarded as “constant” terminals. In GP systems using
simplification, these terminals are no longer constant as they can be altered by the simplification
process.

There are many reasons to focus on these numerical-nodes. Numerical-nodes may be com-
bined with other numerical-nodes to build larger subtrees that contribute to a more accurate
solution. Like other GP subtrees, numerical-nodes may either contribute towards a solution or
merely act as noise, guiding the system away from the solution. Most importantly, they can be
combined or removed by the simplification component used in a GP system and as such can
possibly be disrupted.
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Numerical-nodes are also easily individually tracked during a GP run so that their behaviour
can be monitored. While larger building blocks could also be tracked, their analysis would be far
more difficult. By considering only single-nodes, and additional complexity in analysis that can
be introduced by crossover taking place within a tracked building block is removed.

Essentially, numerical-nodes exhibit nearly all the characteristics of larger building blocks,
but with reduced complexity, allowing for easier tracking and analysis. They provide a good
“first step” into analysing the influence simplification has on GP building blocks. We will con-
sider and analyse more “general” building blocks later in future work.

3.2 Experimental Setup

For initial experimentation, we used a symbolic regression task. Symbolic regression is the pro-
cess of determining a model that fits a given set of data. In this case, given a set of data values,
what mathematical function would best fit those values. This task was chosen because it is a
commonly used task and can be tuned to be heavily reliant on numerical-nodes.

The task is made up of 200 data values, uniformly distributed between the values of −10.0
and 10.0, generated using the mathematical polynomial f (x) = 11x + 50.0. The coefficients of 11
and 50 were chosen because they are fairly distant from each other and are not multiples of each
other. This means that at least two different recombinations of the numerical-nodes are needed
to correctly regress this function. A linear (single variable) equation was selected to place more
emphasis on the numerical constants, so that the GP system would need to process numerical-
nodes more often.

In both the “standard GP” and “GP with simplification” approaches, a tree-based structure
is used to represent the genetic programs. The ramped half-and-half method was used for gen-
erating the initial programs, and also for the mutation operator ([3]). Proportional selection and
reproduction crossover and mutation were used as the genetic operators in the GP process.

The remainder of this section details the aspects and parameters used for the GP systems.
The terminal set consists of the single variable x, along with a variable number of randomly
generated floating point valued numerical-nodes. Each numerical-node is generated during the
initial program population generation, and is chosen from a range of [−1.0, 1.0]. The use of a
small range (in the context of the symbolic regression problem being used) is intentional, in order
to make it clearer if simplification is able to create new numerical-nodes. While in the standard
GP, these terminals remain untouched and thus constant throughout the evolution process, in the
GP system using simplification they may be altered by the simplification system.

Terminal Set = {x, r0, r1, ..., rn}.

The function set is simply made up of the four arithmetic functions. Addition, subtraction
and multiplication have their usual meanings. ÷ takes the form of protected division, which
removes the undefined case by defining division by 0 to be 0. Each of these functions takes two
arguments and returns a single result.

Function Set = {+,−,×,÷}.

For this symbolic regression task, the fitness of a program is determined by measuring the
mean squared error between the desired output and the actual output of the program on all
patterns of each data set. This results in GP programs with lower fitness being regarded as
“fitter”. The ideal program would therefore have a fitness of 0 (as negative mean squared errors
are unobtainable), meaning that there is no difference between the desired output and the output
given by the program for all the 200 data values.

The settings used in the Genetic Programming systems are detailed in table 1. Both the stan-
dard GP and GP with simplification share the same parameter values. No early stopping criteria
was used in order to monitor each GP system run for the full 100 generations.
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Parameter Value
Mutation 30%

Elitism 10%
Crossover 60%

Population Size 500
Generations 100

Maximum Depth Limit 6

Table 1: Settings/Parameters used for all Genetic Programming systems

Figure 2: Numerical-node value plot of a GP system run without simplification, re-plotted into
the range of [−1.0, 1.0]

In addition to the parameters in table 1, GP with simplification requires another four param-
eters. Proportion controls how many programs in the GP population are simplified each time
the simplification process is invoked. Frequency dictates how often simplification is invoked. A
frequency value of 1 means that simplification is invoked every generation, while a frequency
value of 7 would mean that simplification would be invoked every seventh generation, with 6
standard GP generations in between. Hash order (p) for the hashing process is set to 1000077157,
and the constant precision (δ) is set to 1000000.

4 Results and Discussion

For the results several aspects of the GP systems were recorded and each numerical-node was
tracked in each generation of each individual GP run. The values and quantity of these numerical-
nodes as well as the mean squared error of the “best” program in each generation, were recorded
throughout 10 individual GP runs for each simplification frequency used (without, every 1, every
5 and every 10). The full results of these recordings are given in figures 6, 7 and 8, which are lo-
cated in the appendices. For the numerical-value graphs (figure 6), each small ’+’ symbol in each
graph represents the value (y-axis) of a numerical-node within the population of programs at the
given Generation (x-axis). A small amount of Gaussian random noise has been added to each
numerical-node value for these graphs, purely for improved visualisation purposes. This is done
so that identically valued numerical-nodes (occurring in the same generation) can both been seen
on the same figure. This also allows for highly populated values to show a higher density than
lowly populated values. Graphs in figure 7 display the Mean Squared Error of the fittest program
in each GP generation, measured for each system for each GP run analysed. Graphs in figure 8
show the number of distinct numerical-nodes that are present in each generation of programs
during each GP runs.

In figure 6, the simplification frequency is quite apparent in the numerical-node value graphs,
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with changes in the numerical-nodes occurring whenever simplification occurs. The numerical-
node values in the standard GP are incapable of existing outside of the original [−1.0, 1.0] range
and so the node-values are difficult to view in the depicted graphs. A zoomed version of the
graph 0A is shown in figure 2, which shows how initially, the numerical-nodes are uniformly
distributed within the [−1.0, 1.0] range. However, during the evolution process numerical-nodes
are eliminated during GP selection and mutation, leaving only a few major clusters of numerical-
nodes at the end of evolution.

0C 4C 3B
Every 5 Every 5 Every 1

Figure 3: Selected Numerical-node value and Error plots of poorly performing GP systems for
f (x) = 11x + 50.

4.1 Analysis of the Disruption of Existing Building Blocks

Figure 3 shows numerical-node value plots and corresponding mean squared error plots from a
few selected GP system runs which use simplification. These selected runs are typical of those
which produced solutions that performed poorly compared to the standard GP system, and even
when compared to the other two GP systems using simplification (same initial seed, but different
frequencies).

As can be seen from the three numerical-value node graphs (3B, 4C and 0C) in figure 3, it can
be seen that there are no sustained clusters of newly created numerical-nodes. Many of the newly
created numerical-nodes only last a few generations before being eliminated from the genetic
population. This is because the GP evolution process does not deem programs that are using
these new numerical-nodes to be particularly fit solutions, and so eventually these programs
are discarded from the population along with the new numerical-nodes. This suggests that the
new numerical-nodes being created in these cases are not of great contribution towards the final
solution.

The fact that these particular runs perform poorly when compared to the standard GP, even
though they are both given the same initial conditions, suggests that any building blocks that are
present early on in the evolutionary process are being disrupted by the simplification procedure.
Without these building blocks, the GP systems have a harder time forming a “good” solution to
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the symbolic regression task, and so perform poorly.

4.2 Analysis of the Construction of New Building Blocks

2C 3D 6B
Every 5 Every 10 Every 1

Figure 4: Selected Numerical-node value and Error plots of well performing GP systems for
f (x) = 11x + 50.

Figure 4 show numerical-node value plots and corresponding mean squared error plots from
a few different GP system runs, again using simplification. These cases show typical GP runs
where evolved solutions were of superior fitness to those produced by the standard GP system.

As can be seen in the mean squared error graphs in figure 7, it can be seen that systems em-
ploying simplification can in most cases outperform the standard GP system. In many of the
instances where a system using simplification does produce a more accurate solution, the corre-
sponding numerical-node value graph depicts at least one or more new numerical-nodes being
formed (graphs 3D and 6B in figure 4 are examples of this). Unlike the new nodes that are cre-
ated in poorly performing cases, these nodes are sustained over many generations during the
run, and often until the end of evolution. This suggests that these new numerical-nodes are con-
tributing toward a more accurate solution, and as such are acting as new building blocks. A good
example of the correlation between the creation of these new numerical-nodes and an improve-
ment in accuracy is in graph 2C (figure 4). The error graph for this system’s run shows a sudden
reduction in error occurring just after 80 generations. This coincides with a new formation of
numerical-nodes with values of around 40, which is sustained till the end of the GP run. It is
easy to see why a new numerical-node of 40 would be of use when trying to regress the function
11x + 50, as it greatly contribute to trying to build the value 50.

This behaviour shows that even though simplification disrupts building blocks already exis-
tent in the GP population (negatively impacting the potential effectiveness of the GP system), in
a majority of cases the GP system is able to use new building blocks constructed by simplification
to evolve programs which work just as effectively, or better, than those produced by standard GP.
The effect of constructing new building blocks is able to overcome the negative effects of building
blocks being disrupted.
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Without Every 1 Every 5 Every 10

Figure 5: Selected Distinct Numerical-Node Count plots for f (x) = 11x + 50.

Figure 5 shows graphs displaying the number of distinct numerical-nodes present in each
generation of two GP runs. Each of the four graphs in each row are for each of the four systems
tested (using the same initial random seed). They show that the trend of all the GP systems is to
have a large initial number of numerical-nodes which are quickly refined to a much smaller num-
ber by the GP operators. In most of the cases which use simplification, the number of distinct
numerical-nodes present throughout the run is actually higher than in the standard GP. This is
caused by the simplification procedure’s ability to create new numerical-nodes and new building
blocks, which in turn creates a more diverse population of numerical-nodes. Even though stan-
dard GP has an overall larger pool of nodes available (as the average program size is larger in
standard GP), systems using simplification have access to more variations in genetic material. By
having a more diverse population of genetic materials available, the GP system is able to access
more parts of the of the genetic search space and discover better solutions. This helps explain
why GP systems employing simplification are often able to outperform the standard GP system.

5 Conclusions

This paper sought to achieve three goals. The first goal was to determine whether the use of
simplification resulted in the disruption of building blocks during a GP system’s run. The sec-
ond goal was to determine whether using simplification could result in new building blocks
being created. The third goal was to investigate whether the positive effects of the new con-
structed building blocks would outweigh the negative effects of having existing building blocks
disrupted.

These goals were achieved by tracking numerical-nodes during several GP system runs on
a heavily constant-dependent symbolic regression task. Both the standard GP system without
simplification and GP systems employing a form of Algebraic Simplification were tested, with
different frequencies of simplification being used. The values of the numerical-nodes at each
generation, as well as a count of distinct numerical-node values and mean squared error were
recorded and analysed.
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In line with the first goal, it was found that, in general, simplification does in fact disrupt
existing building blocks, which can make it more difficult for a system to find a highly fit solu-
tion. This can result in some GP systems using simplification performing more poorly than the
standard GP.

In investigating the second goal, we found that simplification was able to create new numerical-
nodes. While not all of these numerical-nodes were helpful towards creating a solution, there
were often clusters of nodes that did contribute. These contributing numerical-nodes constitute
new building blocks being created by the simplification system. These new building blocks can
often be used to create more accurate solutions than the standard GP.

The final goal aimed to determine whether the benefits from the construction of new building
blocks was able to overcome the negative effects of building block disruption, both caused by
simplification. The results from all individual runs suggest that in most cases, new building
blocks were able to be constructed, and GP systems using simplification were able to recover
from the disruption of building blocks and even outperform the standard GP. There were only a
few cases when new building blocks were unable to be constructed, and those systems tended to
perform poorly. This suggests that the performance of a GP system using simplification is reliant
on whether these new building blocks are created during the evolution process.

While analysis on numerical-nodes has provided some insight into the effects of simplifica-
tion on GP building blocks, it is clear that these interactions need to be further investigated. More
general and more complex forms of building blocks need to be analysed to see if trends exhibited
by the numerical-node building blocks are continued.
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Appendix A
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Figure 6: Scatter-gram plot of Numerical Constant Values vs. Generation for the symbolic regression
problem f (x) = 11x + 50. Performed for 10 individual runs using four different settings for simplification
frequency: (a) Without, (b) Every generation, (c) Every 5 generations and (d) Every 10 generations.
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Appendix B
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Figure 7: Line plot of Mean Squared Error vs. Generation for the symbolic regression problem f (x) =
11x + 50. Performed for 10 individual runs using four different settings for simplification frequency: (a)
Without, (b) Every generation, (c) Every 5 generations and (d) Every 10 generations.
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Appendix C
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Figure 8: Line plot of the Number of Distinct Numerical Constant Values vs. Generation for the symbolic
regression problem f (x) = 11x + 50. Performed for 10 individual runs using four different settings for
simplification frequency: (a) Without, (b) Every generation, (c) Every 5 generations and (d) Every 10
generations.
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