
Connecting automatic parameter tuning, genetic
programming as a hyper-heuristic, and genetic

improvement programming.

John R. Woodward
University of Stirling

Stirling
Scotland, United Kingdom

jrw@cs.stir.ac.uk

Colin G.Johnson
University of Kent

Kent
England, United Kingdom

C.G.Johnson@kent.ac.uk

Alexander E.I. Brownlee
University of Stirling

Stirling
Scotland, United Kingdom

sbr@cs.stir.ac.uk

ABSTRACT
Automatically designing algorithms has long been a dream 
of computer scientists. Early attempts which generate com-
puter programs from scratch, have failed to meet this goal. 
However, in recent years there have been a number of differ-
ent technologies with an alternative goal of taking existing 
programs and attempting to improvement them.

These methods form a continuum of methodologies, from 
the “limited” ability to change (for example only the parame-
ters) to the “complete” ability to change the whole program. 
These include; automatic parameter tuning (APT), using 
GP as a hyper-heuristic (GPHH) to automatically design 
algorithms, and GI, which we will now briefly review. Part 
of research is building links between existing work, and the 
aim of this paper is to bring together these currently sepa-
rate approaches.

Keywords
Genetic Improvement (GI), Genetic Programming (GP)

This paper will first examine a number of approaches 
(APT, GPHH, and GI), and consider these as a spectrum. 
It will then point out that there are common issues with 
all of these methods, such as the pitfall of overtuning, and 
the ability to specialize to a probability distribtion of input 
data. These current methods typically only contribute a 
small change to the resulting program, but are a step toward 
automatic programming which does not start from scratch.

APT automatically searches the space of parameters for a 
given program [9]. Different parameter settings compete in 
a race towards the optimal parameter setting. Deep param-
eter tuning [13] distinguishes between surface parameters, 
which are intended for the user to change, and deep param-
eters, which sit within the program, and are not typically 
exposed to the user. “Programming by Optimisation” [5], 
is the philosophy which encourages the programmer not to 
make premature design decisions and hard code them, but

allow them to be delayed and exposed as parameters (which
could be tuned automatically [9]). This moves the onus of
design choices from the programmer to the APT tool, effec-
tively making the program more flexible. This philosophy,
of course, raises an interesting question about how much of
the internal workings of a program should be exposed to a
novice or expert user.

GPHH [10, 4, 11] defines a fixed template which is con-
sidered to be hard coded, and variations are generated by
GP and treated as a parameter [12]. GPHH takes an ex-
isting program, and evolves variations on a component of
the program, given the type signature of the component. It
does not alter other parts of the program (i.e. the template).
GPHH treats a function as a parameter which can be passed
in, as is normal in functional programming. GPHH makes
use of the template method design pattern [12].

GI evolves edits to a program, potentially changing any
part of it. GI has successes [6] and can explore non-functional
trade-offs [3]. An overarching view of these approaches, is
not to think of a program as a single program, but as a set
of programs. This defines a parato-front of programs which
APT can can move across, depending on the environment
in which the program operates [4].

APT, GPHH and GI form a spectrum of technologies to
improve an existing program. In the extreme case we can
view APT as automatic programming by considering the
following example. A bit-string is fed into a program where
the bits are the parameters of the program. However, a
looking at it differently, we can think of the bit-strings as
programs being fed into a Universal Turing Machine. In
the remainder of this paper, we look at APT as a machine
learning problem, and then overfitting and specialization.

Optimisation is typically considered as a one stage pro-
cess, and machine learning as a two stage process (i.e. train-
ing and validation). However, automatically constructing
an optimisation algorithm for a probability distribution of
problem instances is a two stage process consisting of train-
ing and validation, and therefore employs a machine learning
methodology. Approaching the construction of an optimiza-
tion algorithm as a machine learning problem makes explicit
the separation of a training and test set. To manually tune
a metaheuristic on a problem instance, and then claim it
has good performance on that instance is not the correct
approach [1].

In early GP papers, quality of a program was judged by
how well it performed on the training cases. However, to



demonstrate that a program generalises, its functionality
should be demonstrated on an independent set of test cases,
as is practiced in supervised machine learning. It is also a
case with the methods discussed here: they are trained on
one set of test cases and their behaviour is validated on a
second set of independence test cases drawn from the same
probability distribution [2]. In the case of parameter tuning,
we wish to find a set of parameters which perform well on
the training set, but also perform well on a second set of in-
dependent problems. We can say the parameters are tuned
to that probability distribution. Over-fitting has been recog-
nized as an issue by the GI community [8]. When evaluating
the correctness of a repair, in the same test set, programs
which pass most test cases are just a likely to fail test as
pass them. Therefore, we should employ a second set of test
cases to validate any claimed fixes.

Conversely, the phenomenon of over-fitting is connected
with specialization. There are a number of papers which
use automatic tuning or programming techniques to align
the program with the probability distribution of data it will
be expected to see. [7] specialize SAT solvers to classes of
problems from Combinatorial Interaction Testing. Similarly
[4] specialize optimizers to particular classes of functions.

Automatically tuning “parameters” whether they be plain
numerical, or components of a program, does a number of
things. When we compare two metaheuristics we allow them
the same number of evaluations of the objective function.
This may seem fair; however, one metaheuristic may have
been tuned more than another metaheuristic before the com-
parison began. Employing APT ensures metaheuristics re-
ceived the same amount of tuning prior to the validation.

Often authors do not claim optimality of parameters which
have only been tuned using a trial and error process. How-
ever, this is unsystematic, and lacks reproducibility (i.e.
manually retuning may involve a different number of trial
and error evaluations). Automatically tuning parameters
obviously replaces manual tuning, but is more explicit (i.e.
it is an algorithm), and is therefore more transparent .

The contribution of this paper is placing APT, deep pa-
rameter tuning, GPHH and GI in relation to one another.
We are not claiming that one method is better than another.
Indeed, there may be a sweet spot where one method is bet-
ter for one type of application than another. With all of
these methods, the resulting program is part human-made,
and part machine made. As we move toward the original
goal of automatically designing algorithms from scratch, as
our methods become more successful, the amount of code
generated automatically will increase in proportion to the
amount of human-generated code.

1. REFERENCES
[1] M. Birattari. Tuning metaheuristics: a machine

learning perspective, volume 197. Springer, 2009.

[2] C. Giraud-Carrier and F. Provost. Toward a
Justification of Meta-learning: Is the No Free Lunch
Theorem a Show-stopper? In Proceedings of the
ICML-2005 Workshop on Meta-learning, pages 12–19,
2005.

[3] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The gismoe challenge:
Constructing the pareto program surface using genetic
programming to find better programs (keynote paper).
In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, ASE
2012, pages 1–14, New York, NY, USA, 2012. ACM.

[4] L. Hong, J. Woodward, J. Li, and E. Ozcan.
Automated design of probability distributions as
mutation operators for evolutionary programming
using genetic programming. In K. Krawiec,
A. Moraglio, T. Hu, A. S. Uyar, and B. Hu, editors,
Proceedings of the 16th European Conference on
Genetic Programming, EuroGP 2013, volume 7831 of
LNCS, pages 85–96, Vienna, Austria, 3-5 Apr. 2013.
Springer Verlag.

[5] H. H. Hoos. Programming by optimization. Commun.
ACM, 55(2):70–80, Feb. 2012.

[6] W. B. Langdon and M. Harman. Genetically
improving 50000 lines of C++. Research Note
RN/12/09, Department of Computer Science,
University College London, Gower Street, London
WC1E 6BT, UK, 19 Sept. 2012.

[7] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using genetic improvement and code
transplants to specialise a C++ program to a problem
class. In M. Nicolau, K. Krawiec, M. I. Heywood,
M. Castelli, P. Garcia-Sanchez, J. J. Merelo, V. M.
Rivas Santos, and K. Sim, editors, 17th European
Conference on Genetic Programming, volume 8599 of
LNCS, pages 137–149, Granada, Spain, 23-25 Apr.
2014. Springer.

[8] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is
the cure worse than the disease? overfitting in
automated program repair. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 532–543, New
York, NY, USA, 2015. ACM.

[9] T. Stützle and M. López-Ibáñez. Automatic (offline)
configuration of algorithms. In Proceedings of the 15th
Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ’13 Companion,
pages 893–918, New York, NY, USA, 2013. ACM.

[10] J. R. Woodward and J. Swan. Automatically
designing selection heuristics. In G. L. Pappa, A. A.
Freitas, J. Swan, and J. Woodward, editors, GECCO
2011 1st workshop on evolutionary computation for
designing generic algorithms, pages 583–590, Dublin,
Ireland, 12-16 July 2011. ACM.

[11] J. R. Woodward and J. Swan. The automatic
generation of mutation operators for genetic
algorithms. In G. L. Pappa, J. Woodward, M. R.
Hyde, and J. Swan, editors, GECCO 2012 2nd
Workshop on Evolutionary Computation for the
Automated Design of Algorithms, pages 67–74,
Philadelphia, Pennsylvania, USA, 7-11 July 2012.
ACM.

[12] J. R. Woodward and J. Swan. Template method
hyper-heuristics. In J. Swan, K. Krawiec,
J. Woodward, C. Simons, and J. Clark, editors,
GECCO 2014 Workshop on Metaheuristic Design
Patterns (MetaDeeP), pages 1437–1438, Vancouver,
BC, Canada, 12-16 July 2014. ACM.

[13] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke.
Deep parameter optimisation. In Proceedings of the
2015 on Genetic and Evolutionary Computation
Conference, pages 1375–1382. ACM, 2015.


