Skip to main content

Evolving Complexity is Hard

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XIX

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

Understanding the evolution of complexity is an important topic in a wide variety of academic fields. Implications of better understanding complexity include increased knowledge of major evolutionary transitions and the properties of living and technological systems. Genotype-phenotype (G-P) maps are fundamental to evolution, and biologically-oriented G-P maps have been shown to have interesting and often-universal properties that enable evolution by following phenotype-preserving walks in genotype space. Here we use a digital logic gate circuit G-P map where genotypes are represented by circuits and phenotypes by the functions that the circuits compute. We compare two mathematical definitions of circuit and phenotype complexity and show how these definitions relate to other well-known properties of evolution such as redundancy, robustness, and evolvability. Using both Cartesian and Linear genetic programming implementations, we demonstrate that the logic gate circuit shares many universal properties of biologically derived G-P maps, with the exception of the relationship between one method of computing phenotypic evolvability, robustness, and complexity. Due to the inherent structure of the G-P map, including the predominance of rare phenotypes, large interconnected neutral networks, and the high mutational load of low robustness, complex phenotypes are difficult to discover using evolution. We suggest, based on this evidence, that evolving complexity is hard and we discuss computational strategies for genetic-programming-based evolution to successfully find genotypes that map to complex phenotypes in the search space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szathmáry, E., Smith, J.M.: The major evolutionary transitions. Nature 374(6519), 227–232 (1995)

    Article  Google Scholar 

  2. Szathmáry, E., Smith, J.M.: The Major Transitions in Evolution. WH Freeman Spektrum Oxford, UK (1995)

    Google Scholar 

  3. Bedau, M.A.: The evolution of complexity. In: Mapping the Future of Biology, pp. 111–130. Springer (2009)

    Google Scholar 

  4. Li, M., Vitányi, P., et al.: An Introduction to Kolmogorov Complexity and Its Applications, vol. 3. Springer (2008)

    Google Scholar 

  5. Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends Cognit. Sci. 2(12), 474–484 (1998)

    Article  Google Scholar 

  6. Ahnert, S.E.: Structural properties of genotype-phenotype maps. J. R. Soc. Interface 14(132), 20170275 (2017)

    Article  Google Scholar 

  7. Manrubia, S., Cuesta, J.A., Aguirre, J., Ahnert, S.E., Altenberg, L., Cano, A.V., Catalán, P., Diaz-Uriarte, R., Elena, S.F., García-Martín, J.A., et al.: From genotypes to organisms: state-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys Life Rev 38, 55–106 (2021)

    Article  Google Scholar 

  8. Greenbury, S.F., Louis, A.A., Ahnert, S.E.: The structure of genotype-phenotype maps makes fitness landscapes navigable. bioRxiv (2021)

    Google Scholar 

  9. Wright, A.H., Laue, C.L.: Evolvability and complexity properties of the digital circuit genotype-phenotype map. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 840–848 (2021)

    Google Scholar 

  10. Ofria, C., Wilke, C.O.: Avida: evolution experiments with. In: Artificial Life Models in Software, p. 1 (2005)

    Google Scholar 

  11. Arthur, W.B., Polak, W.: The evolution of technology within a simple computer model. Complexity 11(5), 23–31 (2006)

    Article  Google Scholar 

  12. Macia, J., Solé, R.V.: Distributed robustness in cellular networks: insights from synthetic evolved circuits. J. R. Soc. Interface 6(33), 393–400 (2009)

    Article  Google Scholar 

  13. Miller, J.F., Harding, S.L.: Cartesian genetic programming. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 3489–3512 (2009)

    Google Scholar 

  14. Raman, K., Wagner, A.: The evolvability of programmable hardware. J. R. Soc. Interface 8(55), 269–281 (2011)

    Article  Google Scholar 

  15. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genet. Program. Evol. Mach. 13(3), 305–337 (2012)

    Article  Google Scholar 

  16. Hu, T., Banzhaf, W.: Neutrality, robustness, and evolvability in genetic programming. In: Genetic Programming Theory and Practice XIV, pp. 101–117. Springer (2018)

    Google Scholar 

  17. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits-Part I. Genet. Program. Evol. Mach. 1(1–2), 7–35 (2000)

    Article  MATH  Google Scholar 

  18. Hu, T., Tomassini, M., Banzhaf, W.: A network perspective on genotype-phenotype mapping in genetic programming. Genet. Program. Evol. Mach. 1–23 (2020)

    Google Scholar 

  19. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evolut. Comput. 10(2), 167–174 (2006)

    Article  Google Scholar 

  20. Crutchfield, J.P., van Nimwegen, E.: The evolutionary unfolding of complexity. In: Landweber, L.F., Winfree, E. (eds.) Evolution as Computation. Natural Computing Series, pp. 67–94. Springer Berlin (2002)

    Google Scholar 

  21. Nichol, D., Robertson-Tessi, M., Anderson, A.R.A., Jeavons, P.: Model genotype-phenotype mappings and the algorithmic structure of evolution. J. R. Soc. Interface 16(160), 20190332 (2019)

    Article  Google Scholar 

  22. Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B: Biol. Sci. 275(1630), 91–100 (2008)

    Article  Google Scholar 

  23. Greenbury, S.F., Johnston, I.G., Louis, A.A., Ahnert, S.E.: A tractable genotype-phenotype map modelling the self-assembly of protein quaternary structure. J. R. Soc. Interface 11(95), 20140249 (2014)

    Article  Google Scholar 

  24. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  25. Li, M., Vitanyi, P.M.B.: Kolmogorov Complexity and Its Applications. Centre for Mathematics and Computer Science (1989)

    Google Scholar 

  26. Ahnert, S.E., Johnston, I.G., Fink, T.M.A., Doye, J.P.K., Louis, A.A.: Self-assembly, modularity, and physical complexity. Phys. Rev. E 82(2), 026117 (2010)

    Article  MathSciNet  Google Scholar 

  27. Dingle, K., Camargo, C.Q., Louis, A.A.: Input-output maps are strongly biased towards simple outputs. Nat. Commun. 9(1), 1–7 (2018)

    Article  Google Scholar 

  28. Johnston, I.G., Dingle, K., Greenbury, S.F., Camargo, C.Q., Doye, J.P.K., Ahnert, S.E., Louis, A.A.: Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution. Proc. Natl. Acad. Sci. 119(11), e2113883119 (2022)

    Article  MathSciNet  Google Scholar 

  29. Wilke, C.Q., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412(6844), 331–333 (2001)

    Article  Google Scholar 

  30. Schaper, S., Louis, A.A.: The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PloS one 9(2), e86635 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The input of GPTP reviewers Stu Card and Ting Hu was very helpful. Cooper Craig produced some of the plots. And we thank Jesse Johnson for the use of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alden H. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, A.H., Laue, C.L. (2023). Evolving Complexity is Hard. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-19-8460-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8460-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8459-4

  • Online ISBN: 978-981-19-8460-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics