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ABSTRACT

Standard tournament selection samples individuals with re-
placement. The sampling-with-replacement strategy has its
advantages but also has issues. One of the commonly recog-
nised issues is that it is possible to have the same individual
sampled multiple times in a tournament. Although the im-
pact of this multi-sampled issue on genetic programming is
not clear, some researchers believe that it may lower the
probability of some good individuals being sampled or se-
lected. One solution is to use an alternative tournament se-
lection (no-replacement tournament selection), which sam-
ples individuals in a tournament without replacement. This
paper analyses no-replacement tournament selection to in-
vestigate the impact of the scheme and the importance of
the issue. Theoretical simulations show that when com-
mon tournament sizes and population sizes are used, no-
replacement tournament selection does not make the selec-
tion behaviour significantly different from that in the stan-
dard one and that the multi-sampled issue seldom occurs.
In general, the issue is not crucial to the selection behaviour
of standard tournament selection.

Categories and Subject Descriptors

I.6 [Simulation and Modelling]: Model Validation and
Analysis

General Terms

Theory

Keywords

Tournament Selection, Multi-Sampled Issue, Modelling, Sim-
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1. INTRODUCTION
Tournament selection is one of the commonly used parent

selection schemes in Evolutionary Algorithms (EAs) and is
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very popular in Genetic Programming (GP) [10]. Accord-
ing to the description given by Goldberg and Deb [8], the
initial study of tournament selection can be traced back to
the early 1980s [5]. One form of the conventional tourna-
ment selections introduced in [5] has became the standard.
Standard tournament selection randomly samples k individ-
uals with replacement from the current population of size
N into a tournament of size k and selects the one with the
best fitness from the tournament. Because individuals in a
tournament are sampled from the population with replace-
ment, standard tournament selection is simple to code and
efficient for both non-parallel and parallel architectures [14].
Standard tournament selection has been widely studied the-
oretically since the 1990s [1, 2, 3, 14, 17], while many alter-
native implementations have been developed [7, 9, 11, 12,
19].

One commonly recognised issue in standard tournament
selection is that it is possible to have the same individual
sampled multiple times in a single tournament (the multi-

sampled issue). Although the impact of this multi-sampled
issue on GP is not clear, some researchers believe that it
may lower the probability of some good individuals being
sampled or selected. One solution is to use an alternative
tournament selection in which individuals are sampled with-
out replacement into a tournament, then, after the winner is
determined, all individuals in the tournament are returned
to the population. According to [8], tournament selection us-
ing the sampling-without-replacement strategy is the other
conventional tournament selection. We abbreviate it as no-

replacement tournament selection. It is not clear why no-
replacement tournament selection is less commonly used in
EAs.

From the literature, it is not clear whether the sampling-
without-replacement strategy makes the selection behaviour
significantly different from that in the standard one and
whether the multi-sampled issue is crucial to the selection
behaviour in standard tournament selection. Although re-
searchers may have an intuition that the two methods are
not significantly different, this view has not yet been well
proved.

1.1 Goals
This paper theoretically analyses no-replacement tourna-

ment selection to investigate the following questions:

• Does the selection behaviour in no-replacement tour-
nament selection differ significantly from that in stan-
dard tournament selection?

• Does the multi-sampled issue significantly influence
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the selection behaviour in standard tournament selec-
tion?

In order to answer these questions, we need to model no-
replacement tournament selection, measure its selection be-
haviour, and compare it with the standard one.

2. BACKGROUND

2.1 Measurement of Selection Pressure in
Tournament Selection

Selection pressure is defined as the degree to which the
better individuals are favoured [13]. It gives individuals of
higher quality a higher probability of being used to create
the next generation so that EAs can focus on promising
regions in the search space [2].

In tournament selection, the mating pool consists of tour-
nament winners. It has a higher average fitness than the av-
erage population fitness. The fitness difference reflects the
selection pressure, which is expected to improve the fitness
of each succeeding generation [13].

There are several measurements for selection pressure in
different contexts, including takeover time, selection inten-

sity, loss of diversity, reproduction rate, and selection prob-

ability distribution.
Takeover time is introduced by Goldberg and Deb [8] to

quantify the selection pressure. It is defined as the num-
ber of generations required to completely fill a population
with just copies of the best individual in the initial genera-
tion when only selection and copy operators are used. The
larger the takeover time, the lower the selection pressure.
Goldberg and Deb estimated the takeover time for standard
tournament selection using the asymptotic expression

1

ln k
(ln N + ln(ln N)) (1)

where N is the population size and k is the tournament
size. The approximation improves as N → ∞. However,
this measure is static and constrained and therefore does not
reflect the selection behaviour dynamics from generation to
generation in EAs.

Selection intensity is another measure for selection pres-
sure. It was first introduced in the context of population
genetics to obtain a normalised and dimensionless measure
[6], and, later was adopted and applied to GAs [16]. Blickle
and Thiele [2, 3] used it in the same way as Bulmer [6]. They
measured selection intensity using the expected change of
the average fitness of the population. As the measurement
is dependent on the fitness distribution in the initial gen-
eration, they assumed the fitness distribution followed the
normalised Gaussian distribution and introduced an integral
equation for modelling selection intensity in standard tour-
nament selection. For their model, analytical evaluation can
be done only for smaller tournament sizes and numerical in-
tegration is needed for larger tournament size. Also the
model is not valid in the case of discrete fitness distribu-
tions. Another limitation is the assumption of the fitness
distribution followed the normalised Gaussian distribution,
which is not valid in general [18]. Further, because the ac-
tual fitness values are ignored and only relative rankings are
used in tournament selection, the model is of limited use.

Loss of diversity is defined as the proportion of individuals
in a population that are not selected during the selection

phase [2, 3]. Blickle and Thiele estimated the loss of diversity
in standard tournament selection as:

k− 1

k−1 − k− k
k−1 (2)

However, Motoki [15] pointed out that Blickle and Thiele’s
estimation of the loss of diversity in tournament selection
does not follow their definition, and indeed Blickle and Thiele’s
estimation is of loss of fitness diversity. Motoki recalculated
the loss of program diversity in a wholly diverse population,
i.e., every individual has distinct fitness value, on the as-
sumption that the worst individual is ranked 1st, as:

1

N

N
X

j=1

„

1 −
jk − (j − 1)k

Nk

«N

(3)

where j is the individual rank and
“

1 − jk−(j−1)k

Nk

”N

is the

probability that the individual has never been selected in N
tournaments.

Reproduction rate is defined as the ratio of the number
of individuals with a certain fitness f after and before se-
lection [2, 3]. A reasonable selection method should favour
good individuals by giving them a high ratio and punish
bad individuals by giving a low ratio. Branke et al. [4] in-
troduced a similar concept which is the expected number of
copies of an individual selected in the selection phase. It
is calculated by the selection probability of the individual
in a single tournament multiplied by the total number of
tournaments. The concept is termed selection frequency in
this study instead of using reproduction rate that has an-
other meaning in GP. They provided a model to calculate
the selection frequency for an individual of rank j in stan-
dard tournament selection in a wholly diverse population on
the assumption that the worst individual is ranked 1st, as:

N
jk − (j − 1)k

Nk
(4)

Selection probability distribution of a population is de-
fined to consist of the probabilities of each individual in the
population being selected at least once in the selection phase
[20]. It is illustrated in [20] as a three dimensional graph,
providing a thorough picture of the selection behaviour over
the population during the whole selection phase.

2.2 Models of Sampling Behaviour and Selec-
tion Behaviour in Tournament Selection

There are a number of papers modelling and comparing
the selection behaviour of a variety of selection schemes [1,
3, 4, 8, 14, 15]. Dedicated studies on standard tournament
selection include [2, 13, 17, 20].

Based on the concept of takeover time [8], Bäck [1] com-
pared several selection schemes, including tournament selec-
tion. He presented the selection probability of an individual
of rank j in one tournament for a minimisation task1, with
an implicit assumption that the population is wholly diverse,
as:

N−k((N − j + 1)k − (N − j)k) (5)

In order to model the expected fitness distribution af-
ter performing tournament selection in a population with
a more general form, Blickle and Thiele [2] extended the
selection probability model in [1] to describe the selection

1Therefore the best individual is ranked 1st.
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
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Figure 1: Four populations with different fitness rank distributions.

probability of individuals with the same fitness. The model
is quite abstract although it is quite elegant. Their model
ranks the worst individual 1st, and introduces the cumula-

tive fitness distribution, S(fj), which denotes the number of
individuals with fitness value fj or worse. They showed the
selection probability of individuals with rank j as:

„

S(fj)

N

«k

−

„

S(fj−1)

N

«k

(6)

In order to demonstrate the computational savings in the
Backward-chaining Evolutionary Algorithms, Poli and Lang-
don [17] calculated the probability that one individual is not
sampled in one tournament as 1− 1

N
, then consequently the

expected number of individuals not sampled in any tourna-
ment as:

N

„

N

N − 1

«−ky

(7)

where y is the total number of tournaments required to form
an entire new generation.

In order to illustrate that selection pressure is insensi-
tive to population size in standard tournament selection in
a population with a more general form, we [20] presented a
sampling probability model that any program p is sampled
at least once in y ∈ {1, ..., N} tournaments as:

1 −

 

„

N − 1

N

«N
!

y
N

k

(8)

and a selection probability model that a program p of rank
j is selected at least once in y ∈ {1, ..., N} tournaments as:

1 −

0

B

B

B

@

1 −

„

Pj
i=1

|Si|

N

«k

−

„

Pj−1

i=1
|Si|

N

«k

|Sj |

1

C

C

C

A

y

(9)

where |Sj | is the number of programs of the same rank j.

3. ASSUMPTIONS AND DEFINITIONS
In general, a population can be partitioned into bags con-

sisting of programs with equal fitness. These “fitness bags”
may have different sizes. As each fitness bag is associated
with a distinct fitness rank, we can characterise a popula-
tion by the number of distinct fitness ranks and the size of
each corresponding fitness bag, which we term fitness rank

distribution (FRD). If S is the population, then we use the
notation N to be the size of the population, Sj to be the
bag of programs with the fitness rank j and |Sj | to be its

size. We denote tournament size by k and rank the program
with the worst fitness 1st. We follow the standard breeding
process, that is, one parent produces one offspring after mu-
tation and two parents produce two offspring via crossover.
Therefore N tournaments are required to generate all indi-
viduals in the next generation.

To theoretically analyse the selection behaviour, this pa-
per uses the loss of program diversity [15], the selection fre-
quency [4], and the selection probability distribution [20]
on four populations with different FRDs: uniform, reversed

quadratic, random, and quadratic.
The four FRDs are designed to simulate the four stages

of evolution. The uniform FRD represents the initialisa-
tion stage, where each fitness bag has an equal number of
programs. A typical case of the uniform fitness rank distri-
bution can be found in a wholly diverse population. The
reversed quadratic FRD represents the early evolving stage,
where commonly only a small number of individuals have
better fitness values. The random FRD represents the mid-
dle stage of evolution, where better and worse individuals
are possibly randomly distributed. The quadratic FRD rep-
resents the later stage of evolution, where a large number of
individuals converge to better fitness values.

Since the impact of population size on selection behaviour
is unclear, we tested several different commonly used popu-
lation sizes, ranging from small to large. Due to space con-
straints and for reporting convenience, we only illustrate the
results for three population sizes, namely 40, 400, and 2000,
for the uniform FRD, the random FRD, and the reversed
quadratic and quadratic FRDs respectively. Note that al-
though the populations with different FRDs are of different
sizes, the number of distinct fitness ranks is designed to be
the same value 40 for easy visualisation and comparison pur-
poses (see Figure 1).

We also studied other different numbers of distinct fitness
ranks, including 100, 500 and 1000. Since the results were
consistent, we omitted them due to space constraints.

4. MODELLING NO-REPLACEMENT TOUR-

NAMENT SELECTION
This section describes the probabilities that a program is

first sampled, and then selected in a series of tournaments.
The only factor making no-replacement tournament selec-

tion different from the standard one is that any individual in
a population will be sampled at most once in a single tour-
nament. Therefore, let D be the event that an arbitrary
program p is drawn or sampled in a tournament of size k.
The probability of the event D is:
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P (D) =
k

N

The probability of the event Iy that p is drawn or sampled
at least once in y ∈ {1, ..., N} tournaments is:

P (Iy) = 1 − (1 − P (D))y (10)

= 1 −

„

1 −
k

N

«y

= 1 −

 

„

N − k

N

«N
!

y
N

Lemma 1. For a particular program p ∈ Sj, the proba-

bility of the event Ej,y that p is selected at least once in

y ∈ {1, ..., N} tournaments is:

P (Ej,y) = 1 −

0

B

B

B

B

B

B

B

B

B

B

B

@

1 −

0

@

Pj

i=1 |Si|
k

1

A

0

@

N
k

1

A

−

0

@

Pj−1
i=1 |Si|

k

1

A

0

@

N
k

1

A

|Sj |

1

C

C

C

C

C

C

C

C

C

C

C

A

y

(11)

Proof. The probability that all the programs sampled
for a tournament have a fitness rank between 1 and j (i.e.
are from S1, . . . , Sj) is given by

„
Pj

i=1 |Si|
k

«

„

N
k

«

Let Tj be the event that the best ranked program in a tour-
nament is from Sj . Therefore, the probability that the se-
lected program will have rank j is:

P (Tj) =

„
Pj

i=1 |Si|
k

«

„

N
k

« −

„
Pj−1

i=1 |Si|
k

«

„

N
k

« (12)

Let Wj be the event that the program p ∈ Sj wins or is
selected in a tournament. As each element of Sj has equal
probability of being selected in a tournament, the probabil-
ity of the event Wj is:

P (Wj) =
P (Tj)

|Sj |
(13)

Therefore the probability that p is selected at least once in
y tournaments is:

P (Ej,y) = 1 − (1 − P (Wj))
y

Replacing P (Wj) we obtain Equation (11) as required.

For the simple situation that all individuals have distinct
fitness values, |Sj | becomes 1. Therefore, by replacing and
simplifying Equations (12) and (13), we obtain the following

equation, which confirms the model presented in [4].

P (Wj) =

„

j
k

«

−

„

j − 1
k

«

„

N
k

« (14)

Following the main concern in the paper, the next section
compares and analyses the selection behaviour in the two
tournament selection schemes.

5. SELECTION BEHAVIOUR

COMPARISON AND ANALYSIS
Inspired by [17], we split the loss of program diversity

into two parts. One contribution is from the fraction of the
population that are not sampled at all during the selection
phase. The other contribution is from the fraction of pop-
ulation that never win any tournament. Based on the sam-
pling probability models and the selection probability mod-
els (Equations 8 and 9 for standard tournament selection
and Equations 10 and 11 for no-replacement tournament se-
lection), we calculated the three loss of program diversity
measures, namely total loss of program diversity and the
contributions from not-sampled and not-selected individu-
als, for standard and no-replacement tournament selections
on each of the four populations with different fitness rank
distributions (see Figure 2).

When the tournament size is 1, causing tournament se-
lection be equivalent to random selection, the figure shows
that total loss of program diversity is the result of the not-
sampled individuals only. This is because once an individual
is sampled, it must be selected as a parent as there are no
other competitors in the tournament. However, the contri-
bution from not-sampled individuals reduces as the tourna-
ment size increases, while the contribution from not-selected
individuals becomes larger and clearly dominates the total
loss of program diversity when the tournament size is greater
than five.

With all three of the loss of program diversity measures,
there are no noticeable differences between the two tourna-
ment selection schemes or between the four populations with
different FRDs (except one slight difference for the uniform
FRD case). In all cases, the loss of program diversity is
determined almost entirely by the tournament size.

Although it is difficult to prove the finding mathemati-
cally, the following brief analysis of the contribution from
not-sampled individuals may help to explain the finding.

For standard tournament selection, according to Equation
8, the probability that a program has never been sampled
in y = N tournaments is:

 

„

N − 1

N

«N
!N

N
k

=

„

N − 1

N

«N k

≈ e−k (15)

for large N . The loss of program diversity contributed from
not-sampled individuals can be calculated approximately by:

1

N

N
X

i=1

e−k = e−k (16)

which is just a function of the tournament size k. There-
fore, the trends of the loss of program diversity contributed
from not-sampled individuals are almost the same in the
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
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Figure 2: Loss of program diversity comparison. Note that the tournament size is discrete but the plots show
curves to aid interpretation only.
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Figure 3: Selection frequency comparison.

four different sized populations with different fitness rank
distributions. For the total loss of program diversity, we
may obtain a function of a similar form after simplifying or
approximating Equation 9.

For no-replacement tournament selection, according to
Equation 10, the probability that a program has never been
sampled in y = N tournaments is:

„

N − k

N

«N

=

 

N
k
− 1
N
k

!N
k

k

≈ e−k (17)

for large N/k, which is approximately the same as that in
standard tournament selection. This may explain why there
is only a slight difference in no-replacement tournament se-
lection on the smaller sized population when larger tourna-
ment sizes are used.

The simulations together with the above analyses imply
that there is no noticeable difference between standard and
no-replacement tournament selections in terms of the loss of
program diversity when the size of a population is large.

Figure 3 shows the selection frequency for an individual
at each rank for the two tournament selection schemes on
the four populations with different FRDs.

Instead of plotting the expected selection frequency for
each individual, we only plotted it for each of the 40 unique
fitness ranks so that plots in different sized populations are
in the same scale and it is easy to identify what fitness ranks
may be lost. Further, we chose three different tournament
sizes, namely 2, 4, and 7 as they are mostly commonly used
in the literature, to illustrate how tournament size affects
the selection behaviour.
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Figure 4: Selection probability distributions in no-replacement tournament selection scheme with tournament
sizes 2, 4 and 7 on four different fitness rank distributions. The tournament axis reflects the corresponding
population size as the total number of tournaments required is the same as the population size (see Section 3).

The figure shows that both selection schemes favour bet-
ter ranked individuals for all the tournament sizes. The
selection pressure is more biased toward better ranked in-
dividuals as the tournament size increases. Overall, there
is no noticeable difference between the corresponding selec-
tion frequencies in the two tournament selection schemes. A
slight difference is observable in the leftmost graphs for the
top ranked individuals when the tournament size is larger
and the population size is smaller.

Additional visualisations of the loss of program diversity
and the selection frequency on other sized populations with
the four given fitness rank distributions support the findings
consistently (figures are omitted due to the space limit).

We also calculated and plotted (see Figure 4) the selec-
tion probability distributions of the two tournament selec-
tion schemes using the three different tournament sizes on
the four populations with different fitness rank distributions.
Again, there is no noticeable difference between the cor-
responding selection probability distributions for standard
and no-replacement tournament selection schemes (only no-
replacement tournament selection scheme has been reported
in Figure 4 due to the space limit).

All the results show that under the situation that com-
mon tournament sizes and population sizes are used, no sig-
nificant difference in selection behaviour has been observed
between the two tournament selection schemes. Therefore,

1328



5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

b
a
b
ili

ty

Population size: 40

Tournament size: 1

Tournament size: 2

Tournament size: 4

Tournament size: 7

Tournament size: 20

Tournament size: 40

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

b
a
b
ili

ty

Population size: 400

Tournament size: 1

Tournament size: 2

Tournament size: 4

Tournament size: 7

Tournament size: 20

Tournament size: 40

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

b
a
b
ili

ty

Population size: 2000

Tournament size: 1

Tournament size: 2

Tournament size: 4

Tournament size: 7

Tournament size: 20

Tournament size: 40

(a) standard

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

b
a
b
ili

ty

Population size: 40

Tournament size: 1

Tournament size: 2

Tournament size: 4

Tournament size: 7

Tournament size: 20

Tournament size: 40

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

b
a
b
ili

ty

Population size: 400

Tournament size: 1

Tournament size: 2

Tournament size: 4

Tournament size: 7

Tournament size: 20

Tournament size: 40

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

b
a
b
ili

ty

Population size: 2000

Tournament size: 1

Tournament size: 2

Tournament size: 4

Tournament size: 7

Tournament size: 20

Tournament size: 40

(b) no-replacement

Figure 5: Probability that a program is sampled at least once during the selection phase. (Note that the
scales on the x-axes differ.)

the next section examines the sampling behaviour to explore
the underlying reasons.

6. SAMPLING BEHAVIOUR

COMPARISON AND ANALYSIS
Figure 5 shows the sampling behaviour in the two schemes

via the probabilities of a program having been sampled using
six tournament sizes in three populations of sizes 40, 400,
and 2000 as the number of tournaments increases up to the
corresponding population size.

Apart from the special case of population size 40 and tour-
nament size 40, which produces a 100% sampling probability
in no-replacement tournament selection, there is no notice-
able difference between corresponding schemes. The results
are somehow surprising but are understandable since both

Equations (8) and (10) can be simplified to 1 − e−
y
N

k for
large N and N/k.

6.1 Significance in Similarity or Difference
Analysis

To further investigate the similarity or the difference be-
tween the sampling behaviour in the two tournament se-
lection schemes, we ask the following question: for a given
population of size N , if we keep sampling individuals with
replacement, then after how many sampling events, will we
have a certain level of confidence that there will be dupli-
cates amongst the sampled individuals?

The answer is the minimum k for which

N !

Nk (N − k)!
< α. (18)

where Nk is the total number of different sampling results
when sampling k individuals with replacement, N !

(N−k)!
is the

number of sampling events such that no duplicate is in the
k sampled individuals, and (1 − α) is the confidence level.

Figure 6 illustrates the relationship between population
size N , minimum tournament size k, and the confidence level
1 − α. For instance, sampling individuals with replacement
will sample duplicates in 7 sampled individuals with 99%
confidence when the population size is about 2000, and 95%
confidence when the population size is about 400, but only
90% confidence when the population size is about 200. We
also calculated that when the population size is 40, the con-
fidence level is only about 57% for k = 7. These results
explained why we have only observed slight differences in
the loss of program diversity and the selection frequency be-
tween the two schemes on the small population using larger
tournament sizes.

90%

95%
96%

97%

98%

99%

tournament size
0 2 4 6 8 10

po
pu

la
tio

n 
si

ze

0

1,000

2,000

3,000

4,000

Figure 6: Confidence level, population size and min-
imum tournament size. Note that tournament size
is discrete but the plot shows curves to aid interpre-
tation only.
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The results show that for common tournament sizes 4 or
less, we would not to expect to see any duplicates in any-
thing except very small populations. Even for tournament
size 7, we would expect to see some number of duplicates for
populations less than 200. Therefore, for most common and
reasonable settings of tournament sizes and population sizes,
the multi-sampled issue seldom occurs in standard tourna-
ment selection. Eliminating the multi-sampled issue in stan-
dard tournament selection is very unlikely to significantly
change the selection performance. Further, it is worth not-
ing that duplicated individuals do not necessarily influence
the result of a tournament when the duplicates have worse
fitness values than other sampled individuals. Therefore, the
probability of significant difference between standard tour-
nament selection and no-replacement tournament selection
will be even smaller. As a result the multi-sampled issue
generally is not crucial to the selection behaviour in stan-
dard tournament selection.

Given the difficulty of implementing sampling-without-
replacement in a parallel architecture, most researchers have
abandoned the sampling-without-replacement, and used the
simpler sampling-with-replacement scheme, hoping that the
multi-sampled issue is not important. Our analysis results
justified this choice.

7. CONCLUSIONS
Standard tournament selection samples individuals with

replacement, which causes the multi-sampled issue. The
multi-sampled issue can be overcame by no-replacement tour-
nament selection. Through theoretical analyses and simu-
lations of the two tournament selection schemes, the paper
showed that when common tournament sizes and population
sizes are used, the sampling-without-replacement strategy
does not make the selection behaviour significantly differ-
ent from that in standard tournament selection. The multi-
sampled issue seldom occurs in standard tournament selec-
tion. Therefore, in general, the issue is not crucial to the
selection behaviour in standard tournament selection.

This work was conducted with intention for GP, however
the theoretical analyses are very general so that the results
could be applied to any other EAs.
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