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Tuning Selection Pressure in Tournament Selection
Huayang Xie and Mengjie Zhang

Abstract—Selection pressure controls the selection of individ-
uals from the current population to produce a new population
in the next generation. It gives individuals of higher quality a
higher probability of being used to create the next generation
so that Evolutionary Algorithms (EAs) can focus on promising
regions in the search space. An evolutionary learning process is
dynamic and requires different selection pressures at different
learning stages in order to speed up convergence or avoid
local optima. Therefore, it desires selection mechanisms being
able to automatically tune selection pressure during evolution.
Tournament selection is a popular selection method in EAs.
This paper focuses on tournament selection and shows that
standard tournament selection is unaware of the dynamics in
the evolutionary process thus is unable to tune selection pressure
automatically. This paper then presents a novel approach which
integrates the knowledge of the Fitness Rank Distribution (FRD)
of a population into tournament selection. Through mathematical
modelling, simulations and experimental study, this papershows
that the new approach is effective and using the knowledge of
FRD is a promising way to modify the standard tournament
selection method for tuning the selection pressure dynamically
and automatically along evolution.

Index Terms—Tournament Selection, Selection Pressure, Tun-
ing Strategy

I. I NTRODUCTION

Evolutionary Algorithms (EAs) are inspired by biological
evolution such as reproduction, mutation, recombination,nat-
ural selection and survival of the fittest, that is, the Dar-
winian natural selection theory. An instance of EAs can be
abstracted as searching solutions by applying genetic opera-
tors to populations of individuals iteratively and often ina
parallel manner. Therefore, there are many factors that can
affect the evolutionary search performance of an instance of
EAs for given problems. These factors include the size of a
population, the representation of individuals in a population,
the fitness evaluation of individuals, the selection mechanisms
for reproduction and for survival, the genetic operations for
modifying individuals, and many more. Amongst these factors,
selection mechanisms play an extremely important role.

A selection mechanism consists of a selection scheme and
a selection pressure control strategy. The latter is critical in
designing a selection mechanism and has been widely studied
in EAs [1], [2], [3], [4], [5], [6], [7]. According to the
configuration of selection pressure, the search in EAs can
have two extremes. One extreme, when there is no selection
pressure, is completely stochastic so that the search acts just
like the Monte Carlo method [8], randomly sampling the space
of feasible solutions. The other extreme, when the selection
pressure is very high, is minimally stochastic so that the search
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acts like a local hill-climbing search method. It is clear that in
general the drawback of the former extreme is its inefficiency
and the drawback of the latter extreme is its possible confine-
ment to local optima or “premature convergence”. Therefore,
an effective and efficient evolutionary search algorithm must
balance between these two extremes. In order to obtain the
balanced situation, selection pressure, the key element inthe
selection mechanism, must be properly tuned so that the
stochastic elements are maintained at an optimal level.

A common view of tuning selection pressure is that the
selection pressure should be adapted during an EA run. For
instance, the selection pressure should be weak at first to
allow for more exploration and then stronger towards the end
as an EA converges [9]. However, the evolutionary learning
process itself is actually more dynamic than that. At some
stages, it requires a fast convergence rate (i.e., high selection
pressure) to find a solution quickly; at other stages, it requires
a slow convergence rate (i.e., low selection pressure) to avoid
being confined to a local optimum or converging prematurely.
More importantly, these stages seem to appear in a mixed
order rather than ones are always predecessors of the others.
Although selection has been studied for several decades, due
to the existence of the dynamic requirements, tuning selection
pressure is still difficult, not as easy to parameterise as other
factors (i.e., population size) [9], and remains an important
open problem in EAs’ research.

Since the 1970s, there have been many selection schemes
developed in EAs for selecting parents. Commonly used
selection schemes include fitness proportionate selection[10],
ranking selection [11], and tournament selection [12].

Standard tournament selection randomly draws/samplesk
individuals with replacement from the current population of
size N into a tournament of sizek and selects the one
with the best fitness as a parent from the tournament into
the mating pool [13], [14]. In general, selection pressure in
tournament selection can be easily changed by using different
tournament sizes; the larger the tournament size, the higher the
selection pressure. Drawing individuals with replacementinto
a tournament makes the population remain unchanged, which
in turn allows tournament selection to easily support parallel
architectures. Selecting the winner involves simply ranking
individuals partially (as the best one is only concerned) ina
tournament of sizek, thus the time complexity of asingletour-
nament isO(k). If the total number of tournaments required to
generate the entire next generation isN1, the time complexity
of tournament selection isO(kN). The ease of changing
selection pressure, the support of parallel architectures, and the
linear time complexity have made tournament selection very

1This assumption commonly holds in EAs when two-offspring crossover
operators and one-offspring mutation operators are used, and the population
size remains fixed during evolution.



2

attractive in EAs, especially in Genetic Algorithms (GAs) and
Genetic Programming (GP) [1], [2], [15], [16], [17], [18]. This
paper, therefore, focuses on tournament selection to investigate
the selection pressure tuning problem.

Although tuning selection pressure in tournament selection
seems to fall in the parameter setting research field [19]
as the selection pressure can be influenced by changing the
tournament size parameter in tournament selection, performing
this tuning is not as straightforward as being expected. During
evolution, typically after a few generations, some individuals
in the population would have the same or very similar fit-
ness values. These individuals with the same/similar fitness
values can be considered a ”group”, and a population can
be considered having different groups of individuals. When
this happens, the selection pressure between these ”groups”
increases, resulting in “better” groups dominating the next
population and possibly causing premature convergence. We
refer this as thehigh between-group selection pressureissue.
This issue is actually part of the general dynamic issue
in EAs. In other words, the tournament size itself is not
always adequate for controlling the selection pressure during
evolution.

A. Goals

To avoid the above issue (or improve the situation), this
paper aims to develop a new selection method to dynamically
tune selection pressure along evolution. To achieve this goal,
we will firstly analyse the standard tournament selection mech-
anism via mathematical modelling and simulations to reveal
why this mechanism is not aware of the evolution dynamics
and can not automatically adjust the selection pressure during
evolution. According to the findings of the theoretical analysis
and simulations, we will develop a new selection method
based on population clustering to address how the issue
can be resolved. We will further analyse the method and
compare it with the standard tournament selection method
via mathematical modelling and simulations, and finally via
empirically experiments on three typically data sets usingGP, a
common evolutionary algorithm. We expect the mathematical
modelling, simulation analysis and the empirical experiments
to reveal whether and/or how the proposed new method can
resolve the above issue, whether and/or how the new selec-
tion method can automatically tune/adjust selection pressure
during evolution, and whether and/or how the new method
outperforms the standard tournament selection mechanism on
different kinds of problems.

B. Organisation

Section II introduces background. Section III investigates
the awareness of evolution dynamics of standard tournament
selection. Sections IV and V present and analyse a novel
approach to solving the selection pressure tuning problem.
Section VI further investigates the effectiveness of the ap-
proach via experiments. Section VII concludes this paper.

II. L ITERATURE REVIEW

This section gives a review of tournament selection alterna-
tives, selection pressure measurements and selection behaviour
modelling for standard tournament selection.

A. Alternative tournament selections for controlling selection
pressure

Since tournament sizes are integer numbers, the selection
pressure is controlled only at a coarse level originally. In
order to control selection pressure at a fine level, Goldberg
and Deb developed the probabilistic tournament selection [1].
In the form of tournament selection, an extra probabilityp
is introduced. When conducting a tournament between two
individuals, the individual with higher fitness value can be
selected as a parent with the probabilityp, while the other has
the probability1 − p. By settingp between 0.5 and 1, it is
possible to control the selection pressure continuously between
the random selection and the tournament selection with a
tournament size of two. Later, Julstrom and Robinson intro-
duced a weighted k-tournament which extends the probability
tournament selection from two contestants tok contestants
[20]. The weighted k-tournament assigns fixed probabilities
to the ranks of its k contestants, and selects one to be a parent
according to those probabilities. Recently, Hingee and Hutter
[21] showed that every probabilistic tournament is equivalent
to a unique polynomial ranking selection scheme.

Huber and Schell argued that the probabilistic tournament
selection enabled a fine scaling of selection pressure but at
an expense of increased complexity and reduced efficiency
[22]. They introduced a mixed size tournament selection to
fine-control the selection pressure at the cost of a minimal
increase of the complexity and with almost no loss of effi-
ciency. The mixed size tournament selection is implemented
by introducing tournaments of varying size during a parent
selection phase.

Filipović et al. [23] investigated a fine-grained tournament
selection method for a simple plant location problem in GAs.
They argued that standard tournament selection does not
allow precise setting of the balance between exploration and
exploitation [2]. In their fine grained tournament selection
method, the tournament size is not fixed but close to a pre-set
value. They claimed that the fine grained tournament selection
makes the ratio between exploration and exploitation able to
be set precisely, and that the method solves the simple plant
location problem successfully.

Sokolov and Whitley developed an unbiased tournament
selection in order to reduce selection pressure by ensuring
every individual in a population be sampled in tournaments
[18]. They believed that the uniformly random sampling
process is a bias present in standard tournament selection.
The bias can cause a potential for better individuals not to
be selected for recombination. Therefore, they developed the
unbiased tournament selection that “lines up two different
permutations of the population and performs a pairwise com-
parison” with a constraint, which forces compared individuals
to be distinct. As a consequence, every individual is sampled at
least once. A tournament size 2 was used to test the unbiased
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tournament selection on three problems, one with permutation-
based solution representation and two under bit encoding.
Although the advantage of a generational genetic algorithm
using the unbiased tournament selection varied for different
population sizes on the three problems, the authors concluded
that the impact of the bias is significant, and the unbiased
tournament selection provides better performance than other
selection methods, including standard tournament selection, a
rank based selection and fitness proportionate selection.

B. Selection pressure measurements

Selection pressure controls the selection of individuals from
the current population to produce a new population in the
next generation. It gives individuals of higher quality a higher
probability of being used to create the next generation so that
EAs can focus on promising regions in the search space [2].

In tournament selection, the mating pool consists of tour-
nament winners. The average fitness in the mating pool is
usually higher than that in the population. The fitness differ-
ence between the mating pool and the population reflects the
selection pressure, which is expected to improve the fitnessof
each subsequent generation [3].

In biology, the effectiveness of selection pressure can be
measured in terms of differential survival and reproduction,
and consequently in change in the frequency of alleles in
a population. In EAs, there are several measurements for
selection pressure in different contexts, includingtakeover
time, selection intensity, loss of diversity, reproduction rate,
andselection probability distribution.

Takeover time is defined as the number of generations
required to completely fill a population with just copies of the
best individual in the initial generation when only selection
and copy operators are used [1]. For a given fixed-sized pop-
ulation, the longer the takeover time, the lower the selection
pressure. Goldberg and Deb [1] estimated the takeover time
for standard tournament selection as

1

ln k
(lnN + ln(ln N)) (1)

where N is the population size andk is the tournament
size (these two notations will be used through out this paper
unless otherwise noted). The approximation improves when
N → ∞. However, this measure is static and constrained and
therefore does not reflect the selection behaviour dynamics
from generation to generation in EAs.

Selection intensity was firstly introduced in the context of
population genetics to obtain a normalised and dimensionless
measure [24], and, later was adopted and applied to GAs
[25]. Blickle and Thiele [2], [26] measured it using the
expected change of the average fitness of the population. As
the measurement is dependent of the fitness distribution in the
initial generation, they assumed the fitness distribution fol-
lowed the normalised Gaussian distribution and introducedan
integral equation for modelling selection intensity in standard
tournament selection.

For their model, analytical evaluation can be done only for
small tournament sizes and numerical integration is needed
for large tournament sizes. The model is not valid in the case

of discrete fitness distributions. In addition to these limita-
tions, the assumption that the fitness distribution followed the
normalised Gaussian distribution is not valid in general [27].
Furthermore, because the actual fitness values are ignored but
the relative rankings are used in tournament selection, the
model is of limited use.

Loss of diversity is defined as the proportion of individuals
in a population that are not selected during a parent selection
phase [2], [26]. Blickle and Thiele [2], [26] estimated the loss
of diversity in the standard tournament selection as:

k− 1

k−1 − k− k
k−1 (2)

However, Motoki [4] pointed out that Blickle and Thiele’s
estimation of the loss of diversity in tournament selection
does not follow their definition, and indeed their estimation
is of loss offitnessdiversity. Motoki recalculated the loss of
individual diversity in awholly diversepopulation , i.e., every
individual has a distinct fitness value, on the assumption that
the worst individual is ranked 1st, as:

1

N

N
∑

j=1

(1 − P (Wj))
N (3)

whereP (Wj) = jk−(j−1)k

Nk is the probability that an individual
of rank j is selected in a tournament.

“Reproduction rate” is defined as the ratio of the number of
individuals with a certain fitnessf after and before selection
[2], [26]. A reasonable selection method should favour good
individuals by giving them a high ratio and penalise bad indi-
viduals by giving a low ratio. Brankeet al. [28] introduced a
similar measure which is the expected number of selections of
an individual. It is calculated by multiplying the total number
of tournaments conducted in a parent selection phase by the
selection probability of the individual in a single tournament.
They also provided a model to calculate the measure for a
single individual of rankj in standard tournament selection in
a wholly diverse population on the assumption that the worst
individual is ranked 1st, as:

N × P (Wj) = N
jk − (j − 1)k

Nk
(4)

This measure is termedselection frequencyin this paper
hereafter as “reproduction” has another meaning in GP and this
new term can better reflect its real meanings in this situation.

Selection probability distribution of a population at a gen-
eration is defined as consisting of the probabilities of each
individual in the population being selected at least once in
a parent selection phase [29]. Although tournaments indeed
can be implemented in a parallel manner, in [29] they are
assumed to be conducted sequentially so that the number of
tournaments conducted reflects the progress of generating the
next generation. As a result, the selection probability distri-
bution can be illustrated in a three dimensional graph, where
the x-axis shows every individual in the population ranked by
fitness (the worst individual is ranked 1st), the y-axis shows
the number of tournaments conducted in the selection phase
(from 1 toN ), and the z-axis is the selection probability which
shows how likely a given individual marked on x-axis can be
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selected at least once after a given number of tournaments
marked on y-axis. The selection probability is calculated by
Equation 9, which is to be described in the next sub section.
The measure somehow provides a full picture of the selection
behaviour over the population during a parent selection phase.
Figure 1 shows the selection probability distribution measure
for standard tournament selection of tournament size 4 on a
wholly diverse population of size 40.
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Fig. 1. An example of the selection probability distribution measure.

C. Sampling and Selection Behaviour Modelling

Based on the concept of takeover time [1], Bäck [30]
compared several selection schemes, including tournamentse-
lection. He presented the selection probability of an individual
of rank j in one tournament for a minimisation task (the best
individual is ranked 1st), with an implicit assumption thatthe
population is wholly diverse as:

N−k((N − j + 1)k − (N − j)k) (5)

In order to model the expected fitness distribution after
performing tournament selection in a population with a more
general form, Blickle and Thiele [2] extended the selection
probability model in [30] to describe the selection probability
of individuals with the same fitness. They defined the worst
individual to be ranked 1st and introduced thecumulative
fitness distribution, S(fj), which denotes the number of in-
dividuals with fitness valuefj or worse. They then calculated
the selection probability of individuals with rankj as:

(

S(fj)

N

)k

−
(

S(fj−1)

N

)k

(6)

In order to show the computational savings in backward-
chaining evolutionary algorithms, Poli and Langdon [31] cal-
culated the probability that one individual is not sampled in
one tournament as1 − 1

N
, then consequently the expected

number of individuals not sampled in any tournament as:

N

(

N

N − 1

)−ky

(7)

wherey is the total number of tournaments required to form
an entire new generation.

In order to illustrate that selection pressure is insensitive
to population size in standard tournament selection in a
population with a more general situation (i.e., some individuals
have the same fitness value and therefore have the same rank),
Xie et al. [29] presented a sampling probability model that
any individualp is sampled at least once iny ∈ {1, ..., N}
tournaments as:

1 −
(

(

N − 1

N

)N
)

y

N
k

(8)

and a selection probability model that an individualp of rank
j is selected at least once iny ∈ {1, ..., N} tournaments as:

1 −











1 −

(
∑

j

i=1
|Si|

N

)k

−
(
∑

j−1

i=1
|Si|

N

)k

|Sj |











y

(9)

where |Sj | is the number of individuals of the same rankj
and the worst individual is ranked 1st.

In the literature, a variety of selection pressure measure-
ments have been developed; and many mathematical models
have been introduced forstandardtournament selection. How-
ever, few of researches analysed the awareness of evolution
dynamics in tournament selection. In the next section, we
will utilise some of the selection pressure measurements and
mathematical models to investigate whether standard tourna-
ment selection is aware of the evolution dynamics through
simulations.

III. A NALYSIS OF AWARENESS OFEVOLUTION DYNAMICS

OF STANDARD TOURNAMENT SELECTION

This section analyses why the standard tournament selection
mechanism is not aware of evolution dynamics and can not
automatically adjust the selection pressure during evolution.

A. Methodology

We assume that population sizes are of a fixed size during
evolution and the individual with the worst fitness is ranked
1st. Since a population can be seen as a collection of different
sized bags which consists of individuals with equal fitness,and
each “fitness bag” is associated with a distinct fitness rank,
we characterise a population by the number of distinct fitness
ranks and the size of each corresponding fitness bag, which
we termfitness rank distribution(FRD).

We use four populations with four different FRDs, namely
uniform, reversed quadratic, random, and quadratic, in our
simulations. The four FRDs are designed to mimic the four
stages of evolution (but they do not necessarily model all
the real situations happening in a true run of evolution). The
uniform FRD represents the initialisation stage, where each
fitness bag has a roughly equal number of individuals. A
typical case of the uniform fitness rank distribution can be
found in a wholly diverse population. The reversed quadratic
FRD represents the early evolving stage, where commonly
very few individuals have good fitness values. The random
FRD represents the middle stage of evolution, where better
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD

Fig. 2. Four populations with different fitness rank distributions.

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
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Fig. 3. Loss of individual diversity in the standard tournament selection scheme on four populations with different FRDs. Note that the tournament size is
discrete but the plots show curves to aid interpretation.

and worse individuals are possibly randomly distributed. The
quadratic FRD represents the later stage of evolution, where
a large number of individuals have converged to better fitness
values.

We follow the standard breeding operations, that is, two-
offspring crossover operations and one-offspring mutation
operations, so that the total number of tournaments is the same
as the population sizeN at the end of generating all individuals
in the next generation. In order to make the results of the
selection behaviour analysis easily understandable, we assume
that tournaments are conducted sequentially. We choose only
the loss of individual diversity, the selection frequency,and
the selection probability distribution measures for the selection
behaviour analysis and ignore the takeover time and the
selection intensity due to their limitations.

Since the impact of population size on selection behaviour
is unclear, we test several different commonly used population
sizes, ranging from small to large. This paper illustrates only
the results for three population sizes, namely 40, 400, and
2000, for the uniform FRD, the random FRD, and the reversed
quadratic and quadratic FRDs respectively. Note that although
the populations with different FRDs are of different sizes,we
design the number of distinct fitness ranks to be the same
value (i.e. 40) for easy visualisation and comparison purposes
(see Figure 2). We also studied and analysed other population
sizes with different numbers of distinct fitness ranks (100,500
and 1000), and obtained similar results (so these results are
not shown in the paper).

B. Simulation Results and Analysis

From [29], the probability of an eventWj that an individual
p ∈ Sj is selected from a tournament is:

P (Wj) =

(
∑

j

i=1
|Si|

N

)k

−
(
∑

j−1

i=1
|Si|

N

)k

|Sj |
(10)

We calculate the total loss of individual diversity using
Equation 3 in whichP (Wj) is replaced by Equation 10. We
also split the total loss of individual diversity into two parts.
One part is from the fraction of the population that isnot
sampledat all during the selection phase. We calculate it also
using Equation 3 by replacing1−P (Wj) with

(

N−1
N

)k
, which

is the probability that an individual has not been sampled in
a tournament of sizek. The other part is from the fraction of
population that is sampled butnot selected. We calculate it
by taking the difference between the total loss of individual
diversity and the contribution from not-sampled individuals.

Figure 3 shows the three loss of individual diversity mea-
sures, namely thetotal loss of individual diversity and the
contributions fromnot-sampledand not-selectedindividuals
for standard tournament selection on the four populations with
different FRDs. Overall there were no noticeable differences
for the three loss of individual diversity measures on the four
different populations with different FRDs between the two
selection schemes. The loss of individual diversity measure
in standard tournament selection depends almost entirely on
the tournament size, and is almost independent of the FRD.
This might be because that: 1) the loss of individual diversity
measure is not an adequate measure; and/or 2) standard
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
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Fig. 4. Selection frequency in the standard tournament selection scheme on four populations with different FRDs.

tournament selection itself blinds the differences between these
FRDs.

Based on Equation 4, we calculate the expected selection
frequency of each individual in the selection phase for eachof
the four populations with different FRDs using the probability
model of an individual being selected in a tournament (Equa-
tion 10). Figure 4 shows the selection frequency in standard
tournament selection on the four populations with different
FRDs. Instead of plotting the expected selection frequency
for every individual, we plot it only for an individual in each
of the 40 unique fitness ranks so that plots in different-sized
populations have the same scale and it is easy to identify what
fitness ranks may be lost. We chose three different tournament
sizes (2, 4, and 7) commonly used in the literature to illustrate
how tournament size affects the expected selection frequency.

From the figure, overall the standard tournament selection
scheme favours better-ranked individuals for all tournament
sizes, and the selection pressure is biased towards better
individuals as the tournament size increases. Furthermore,
skewed FRDs (reversed quadratic and quadratic) aggravate
selection bias quite significantly. For the reversed quadratic
FRD, there are more individuals of worse-ranked fitness that
received selection preference, indicating that the searchstill
wanders around without paying sufficient attention to the small
number of outstanding individuals. Ideally, in this situation, a
good selection mechanism should focus on the small number
of good individuals to speed up evolution. For the quadratic
FRD, the selection frequencies are strongly biased towards
individuals with better ranks, indicating that the population
diversity is quickly lost, the convergence speeds up, and
the search may be confined to local optima. Ideally, in this
situation, a good selection scheme should slow down the
convergence. Unfortunately, the simulation results show that
standard tournament selection does not know the dynamic re-
quests thus is unable to change selection pressure accordingly
to meet the expectations.

For the random FRD, we expect to see differences when
comparing with the uniform FRD. However, the selection
frequency shapes look very similar. Ideally, in this situation,
a good selection mechanism should be able to adjust the
selection pressure distinguishably according to the changes
in the fitness rank distribution. For instance, it should give

a relatively higher selection preference to an individual in a
fitness bag with a smaller size in order to increase the chance
of propagating this genetic material and a relatively lower
selection preference to an individual in another fitness bagwith
a larger size in order to reduce the chance of propagating the
same or similar materials. However, only slight fluctuations
and differences can be found in the random FRD under
very close inspection. This implies that standard tournament
selection may tolerate the difference between the uniform and
random FRDs, and therefore sometimes take long time to
converge. To interpret this finding, we provide the following
analysis.

Assumeµ is the average number of individuals for eachSj .
In the uniform FRD, for allj ∈ {1, ..., |S|} where|S| is the
number of distinct fitness bags in the populations,|Sj | = µ.
While in the random FRD, it has

∑j

i=1 |Si|
j

≈ µ (11)

and the approximation becomes more precise whenj is close
to |S|. As the selection frequency for an individualp of rank
j is N × P (Wj), we simplify P (Wj) for the uniform FRD
as:

P (Wj) =

(

jµ
|S|µ

)k

−
(

(j−1)µ
|S|µ

)k

µ
(12)

=
1

µ|S|k
(

jk − (j − 1)k
)

For the random FRD, theP (Wj) is:

P (Wj) ≈

(

jµ
|S|µ

)k

−
(

(j−1)µ
|S|µ

)k

|Sj |
(13)

=
1

|Sj ||S|k
(

jk − (j − 1)k
)

From Equation 12, in the uniform FRD, the selection
frequency for an individual of rankj will be just

1

|S|k−1

(

jk − (j − 1)k
)

(14)

which is independent of the actual number of individuals of
the same rank.
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From Equation 13, the selection frequency of an individual
of rank j in the random FRD is approximately:

1

|Sj ||S|k
(

jk − (j − 1)k
)

× |S|µ (15)

=
µ

|Sj |
× 1

|S|k−1

(

jk − (j − 1)k
)

which differs from that (Equation 14) in the uniform FRD
by a factor of µ

|Sj |
. For a random FRD, µ

|Sj |
could be small.

Therefore, only slight fluctuations and differences can be
found in Figure 4 under very close inspection when comparing
the random FRD with the uniform FRD.

We also calculate the selection probability distribution based
on Equation 9. The simulations of the selection probability
distribution are consistent with that of the selection frequency
so the figures are omitted in this paper.

In summary, through the simulation analysis, this section
showed that the standard tournament selection method is
unaware of the evolution dynamics and is unable to apply
different selection pressures at different learning stages ac-
cordingly to meet the expectations.

IV. A N EW APPROACH TOTUNING SELECTION PRESSURE

The standard tournament selection method has the high
between-group selection pressure issue and cannot adjust
selection bias in response to the FRD of a population. To
address these issues, we need to modify standard tournament
selection to become aware of the dynamics along evolution
and to be able to adjust selection pressure accordingly. In
generational EAs, the population at each generation can be
seen as an abstract carrier holding the evolution dynamics.
The number of fitness bags and the size of each bag, namely
the FRD of a population, can reflect the dynamic evolutionary
process, especially the degree of convergence of the popula-
tion. Therefore, this section proposes an automatic selection
pressure tuning strategy for tournament selection which uses
the knowledge of the population FRD.

A. The approach

Figure 5 gives an overview of the proposed approach and
shows the relationships between the major components: pop-
ulation clustering and clustering tournament selection. Other
standard components are not detailed in the figure.

          Clustering 
tournament selection

P
o
p
u
l
a
t
i
o
n

Population
 clustering

offspring

1)

2)

Fig. 5. Overview and relationship between the major components.

In the approach, the first component is population clustering.
Populations can be partitioned into a set of clusters according
to some criteria, including fitness values, individual structures
and context, and each cluster is then assigned a distinct fitness
value. In this paper, we cluster a population based on fitness
values so that each fitness bag in a population becomes a
cluster of the population.

The second component is a new tournament selection
method calledclustering tournament selection. Instead of
sampling individuals as tournament candidates, the clusters
are treated as the tournament candidates in the clustering
tournament selection method: the best fitness cluster wins
the tournament, and an individual in the cluster is randomly
selected as a parent to participate in the recombination process.
For a populationS (of sizeN ), which has been clustered into
a set of |S| clusters based on fitness values, the clustering
tournament selection algorithm is as follows:

1: for y = 1 to N do
2: Samplek clusters from the|S| clusters with replace-

ment
3: Select the winning cluster from the tournament using

fitness values
4: Return an individual randomly chosen from the winning

cluster
5: end for

Therefore, this clustering tournament selection mechanism
gets aware of the evolution dynamics by integrating the
knowledge of the population FRD. We expect that the clus-
tering tournament selection can automatically adjust selection
pressure along evolution accordingly.

B. Modelling selection behaviour of the clustering tournament
selection

Lemma 1. Let Sj be the cluster of individuals of rankj in the
population. The probability of the eventD that an individual
p ∈ Sj is sampled at least once in a tournament of sizek is

P (D) = 1 − (1 − 1

|S||Sj |
)k (16)

Proof: In contrast to standard tournament selection, the
sampling behaviour in clustering tournament selection is in-
fluenced by the number clusters and the actual size of a
given cluster instead of the population size. It is clear that
each cluster has the same probability1/|S| to be sampled,
and individuals in a cluster also have equal probability of
being sampled,1/|Sj|. Therefore, the probability thatp is
sampled is 1

|S||Sj|
. The probability thatp is never sampled

into a tournament of sizek is (1− 1
|S||Sj|

)k. Thus, we obtain
Equation 16.

Lemma 2. Let Sj be the cluster of individuals of rankj in the
population, the probability of the eventEj that an individual
p ∈ Sj is selected in a single tournament is

P (Ej) =
(j)k − (j − 1)k

|S|k × |Sj |
(17)
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Fig. 6. Loss of individual diversity in the clustering tournament selection scheme on four different FRDs. Note that tournament size is discrete but the plots
show curves to aid interpretation.

Proof: According to the algorithm, the number of tour-
nament candidates is effectively reduced from the whole pop-
ulation sizeN to the number of clusters|S|. The probability
that a cluster rankedj wins a tournament is simply:

(j)k − (j − 1)k

|S|k (18)

Since all individuals in the winning cluster have the same
probability to be chosen as a parent, we divide Equation (18)
by the size of thejth cluster|Sj | and obtain Equation (17).

V. A NALYSES OFCLUSTERING TOURNAMENT SELECTION

VIA SIMULATIONS

We follow the method explained in Section III and used
Equations 16 and 17 to calculate the three loss of indi-
vidual diversity measures, the selection frequency and the
selection probability distribution. The next subsectionsanalyse
the simulation results to investigate the clustering tournament
selection in detail.

A. The loss of individual diversity analysis

Figure 6 illustrates the loss of individual diversity of the
clustering tournament selection on four populations with dif-
ferent FRDs.

In the clustering tournament selection, for the uniform FRD,
the three loss of individual diversity measures are identical
to those of the standard tournament selection (see Figure 3).
This is because each cluster contains the same number of
individuals (in this case the number is one) so that the
clustering tournament selection is effectively acting thesame
as standard tournament selection.

For the reversed quadratic FRD, the total loss of individual
diversity is considerably higher compared with that of standard
tournament selection and compared with those for other FRDs.
We expect that the lost individuals are mainly the worse-
ranked individuals. By ignoring most of the worse-ranked
individuals at this stage, the search will be able to concentrate
on the promising region so that the evolution will speed up
to save unnecessary cost. The next subsection will verify the
expectation when analysing the selection frequency.

For the quadratic FRD, the total loss of individual diversity
in the clustering tournament selection is greater than thatin
the standard one when the tournament size is one, but is
considerably lower for other tournament sizes. The reduction
quickly reaches by about 20% (60%− 40% = 20%) when the
tournament size increases to five. Also we observed that when
the tournament size is 3, the total loss of individual diversity
becomes the lowest. The figure indicates that the individual
diversity is maintained in a better manner than that in standard
tournament selection. This is we expected for this type of FRD,
as it may slow down the population convergence to avoid the
confinement to local optima.

For the random FRD, there are some slight differences when
comparing with that in the standard tournament selection. The
total loss of individual diversity is about 5% higher than that
in standard tournament selection for small tournament sizes
1 and 2, but gradually becomes lower for large tournament
sizes.

Although the analysis of the loss of individual diversity
showed a different selection behaviour in the clustering tourna-
ment selection, it only provided information at a coarse level
and sometimes at a limited level, especially for the random
FRD. Therefore, we need to further investigate the different
selection behaviour in the clustering tournament selection
using other measures.

B. The selection frequency and the selection probability dis-
tribution analyses

The simulation results of the selection frequency and the
selection probability distribution are consistent again in the
clustering tournament selection. Therefore, we only reported
the selection frequency of the clustering tournament selection
on the four populations with different FRDs (see Figure 7).
Recall that the tournament size 3 provides the lowest total
loss of individual diversity for the quadratic FRD, therefore in
addition to the commonly three tournament sizes (2, 4, and 7),
the tournament size 3 is added in this analysis and its impact
is presented in a dash line in the figure.

The selection frequency trends on the uniform FRD in the
clustering tournament selection are identical to those of the
standard tournament selection for the reason given in Section
V-A.
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Fig. 7. Selection frequency of the clustering tournament selection scheme on four populations with different FRDs. Note that the extra dash line represents
tournament size 3.

The other three FRDs reveal significant differences when
compared with the standard tournament selection (see Fig-
ure 4).

For the reversed quadratic FRD (representing the early stage
of evolution), most of the low fitness ranks have very low
selection frequencies so that they are effectively discarded.
This observation supports our expectation in the analysis of
the loss of individual diversity in the previous sub sectionthat
the lost individuals are mainly those worse-ranked ones, and
meets the desiderata of a good selection scheme that can pay
attention to small number of outstanding individuals to speed
up evolution other than wandering around in unpromising
regions.

For the random FRD (representing the middle stage of evo-
lution), the selection frequency trends are very ragged instead
of the smooth trends we usually saw in standard tournament
selections. There is some interesting selection behaviourhere.
For instance, for the tournament size 4, the expected selection
frequency for an individual of rank33 is above 7, while the
expected selection frequencies for individuals of better ranks
are much lower; even one of the best-ranked individuals in
the population is below 4. From Figure 2, we can see that
|S33| is only 3 while |Sj |j>33 are much higher. The results
show that apart from being governed by the tournament size,
the clustering tournament selection is aware of the random
changes in the FRD and can adjust the selection pressure
automatically. It gives a relatively high selection preference to
an individual in a fitness bag with a smaller size to increase
the chance of propagating its genetic material. It then gives
relatively low selection preferences to other better individuals
in fitness bags with larger sizes to restrict their propagation.
This kind of selection behaviour is unique to the clustering
tournament selection and appears to again meet the desiderata
expectation of a good selection scheme that can adjust the
selection pressure distinguishably.

For the quadratic FRD (representing a converged stage of
evolution), the clustering tournament selection significantly
reduces the selection frequency of better-ranked individuals,
while increasing the frequency of middle-ranked individuals.
Therefore, the clustering tournament selection can reducethe
chance that groups of better-ranked individuals dominate the

next generation and it is able to maintain the population
diversity better than the standard one.

Note that for the quadratic FRD, tournament size 2 resulted
in a strong bias to worse-ranked individuals, especially the
third-ranked ones2; this may be undesirable. On the other hand,
tournament size 3 provided almost even selection frequen-
cies on all fitness ranks. This observation may explain why
tournament size 3 provided the lowest total loss of individual
diversity.

In summary, the analysis results showed that in addition to
the usual selection preference for better individuals governed
by tournament size, the clustering tournament selection tends
to give additional selection preference to individuals in small
sized clusters. Furthermore, when most individuals of the
population are of worse fitness ranks and evolution encounters
a danger of missing good individuals, it tends to increase
selection bias to better individuals, hoping to quickly drive the
population to promising regions. When the population tends
to converge to local optima and evolution encounters a danger
of losing genetic material, it tends to decrease selection bias
to better individuals, hoping to keep the population diverse.
Therefore, the clustering tournament selection is an selection
mechanism that can automatically adjust the selection pressure
for the dynamic evolutionary process.

VI. A NALYSES OFCLUSTERING TOURNAMENT

SELECTION VIA EXPERIMENTS

The simulations above suggest that the clustering tourna-
ment selection can be aware of the dynamics in evolution,
and adjust the selection pressure accordingly. This section
further analyses the effectiveness of the clustering tournament
selection empirically through experiments. The instance of
EAs used in the experiments is the commonly used tree-based
generational GP [32].

A. Data Sets

The experiments involve three different problem domains
with different difficulties: an Even-n-Parity problem (EvePar),

2This is because the ranks 1 to 3 have the same smallest number of
individuals (Figure 2).
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a Symbolic Regression problem (SymReg), and a Binary
Classification problem (BinCla). We chose these three type of
problems in particular because they have received considerable
attention as examples in the literature of GP.

1) EvePar: An even-n-parity problem has an input of a
string ofn Boolean values. It outputstrue if there are an even
number of true’s, and otherwisefalse. The most characteristic
aspect of this problem is the requirement to use all inputs inan
optimal solution and a random solution could lead to a score
of 50% accuracy [33]. Furthermore, optimal solutions could
be dense in the search space as an optimal solution generally
does not require a specific order of then inputs presented.
EvePar considers the case ofn = 6. Therefore, there are26

combinations of unique 6-bit length strings as fitness cases.
2) SymReg:SymReg is shown in Equation 19 and visu-

alised in Figure 8. We generated 100 fitness cases by choosing
100 values forx from [-5,5] with equal steps.

f(x) = exp(1 − x) × sin(2πx) + 50sin(x) (19)

−5 0 5
−200

−100

0

100

200

300

400

x

f(
x)

Fig. 8. The symbolic regression problem.

3) BinCla: BinCla involves determining whether examples
represent amalignantor abenignbreast cancer. The dataset is
the Wisconsin Diagnostic Breast Cancer dataset chosen from
the UCI Machine Learning repository [34]. BinCla consists
of 569 data examples, where 357 are benign and 212 are
malignant. It has 10 numeric measures (see Table I) computed
from a digitised image of a fine needle aspirate of a breast mass
and are designed to describe characteristics of the cell nuclei
present in the image. The mean, standard error, and “worst”
of these measures are computed, resulting in 30 features [34].
The whole original data set is split randomly and equally into
a training data set, a validation data set, and a test data set
with class labellings being evenly distributed across the three
data sets for each individual GP run.

B. Function sets and terminal sets

The function set used for EvePar consists of the standard
Boolean operators{and, or, not} and if function. The if
function takes three arguments and returns its second argument
if the first argument istrue, and otherwise returns its third
argument. In order to increase the problem difficulty, we do
not include thexor function in the function set.

The function set used for SymReg includes the standard
arithmetic binary operators{+, -, *, / } and unary operators
{abs, sin, exp}. The / function returns zero if it is given
invalid arguments.

The function set used for BinCla includes the standard
arithmetic binary operators{+, -, *, / }. We hypothesised that
convergence might be quicker if using only the four arithmetic
operators, and more functions might lead to better results.
Therefore, the function set also includes unary operators{abs,
sqrt, sin} and if function. Thesqrt function automatically
converts a negative argument to a positive one before operating
on it. The if function takes three arguments and returns its
second argument if the first argument is positive, and returns
its third argument otherwise. Theif function allows a program
to contain a different expression in different regions of the
feature space, and allows discontinuous programs, rather than
insisting on smooth functions.

The terminal set for EvePar consists ofn Boolean variables.
The terminal set for SymReg and BinCla includes a single
variablex and 30 terminals, respectively. Real valued constants
in the range [-5.0, 5.0] are also included in the terminal sets
for SymReg and BinCla. The probability mass assigned to the
whole range of constants when constructing programs is set
to 5%.

TABLE I
TEN FEATURES IN THE DATASET OFBINCLA

a radius f compactness
b texture g concavity
c perimeter h concave points
d area i symmetry
e smoothness j fractal dimension

C. Fitness function

For even-n-parity problems, the standard fitness function
counts the number of wrong outputs (misses) for the2n

combinations ofn-bit strings and treats zero misses as the best
raw fitness [32]. There is an issue with this fitness function:the
worst program according to this fitness function is the one that
has2n misses. However, this program actually captures most
of the structure of the problem and can be easily converted to
a program of zero misses by adding anot function node to
the root of the program. Therefore, programs with a very large
number of misses are, in a sense, just as good as programs
with very few misses.

In this paper, we used a new fitness function for EvePar:

fitness =

{

m , if m < 2n−1

2n − m , otherwise
(20)

wherem is the number of misses.
The fitness function in SymReg is the root-mean-square

(RMS) error of the outputs of a program relative to the
expected outputs. Because neither class is weighted over the
other, the fitness function for BinCla is the classification error
rate on the training data set (the fraction of fitness cases that
are incorrectly classified by a program as a proportion of
the total number of fitness cases in the training data set). A
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program classifies the fitness case asbenignif the output of the
program is positive, andmalignantotherwise. Note that class
imbalance design in fitness function for BinCla is beyond the
scope of this paper. All three problems have an ideal fitness
of zero.

D. Parameter setting and configurations

The genetic parameters are the same for all three problems.
The ramped half-and-half method is used to create new pro-
grams and the maximum depth of creation is four (counted
from zero). To prevent code bloat, the maximum size of a
program is set to 50 nodes during evolution based on some
initial experimental results. The standard subtree crossover
and mutation operators are used [32]. The crossover rate, the
mutation rate, and the copy rate are 85%, 10% and 5% respec-
tively. The best individual in the current generation is explicitly
copied into the next generation, ensuring that the population
does not lose its previous best solution3. The population size
is 500. A run is terminated when the number of generations
reaches the pre-defined maximum of 101 (including the initial
generation), or the problem has been solved (there is a program
with a fitness of zero on the training data set), or the error
rate on the validation set starts increasing (for BinCla). Four
tournament sizes 2, 3, 4, and 7 are used.

We ran experiments comparing two GP systems using the
standard and the clustering tournament selection methods re-
spectively for each of the three problems. In each experiment,
we repeated the whole evolutionary process 500 times inde-
pendently. In each pair of the 500 runs, an initial population
is generated randomly and is provided to both GP systems in
order to reduce the performance variance caused by different
initial populations.

E. Impact on population diversity analysis
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Fig. 9. Comparison of population diversity maintenance between the
clustering tournament selection and the standard tournament selection for
EvePar for four tournament sizes.

3This is referred to as elitism [35].
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Fig. 10. Comparison of population diversity maintenance between the
clustering tournament selection and the standard tournament selection for
SymReg for four tournament sizes.

20 40 60 80 100
0

50

100

150
k=2

Generation

N
um

be
r 

of
 D

is
tin

ct
F

itn
es

s 
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(a) clustering tournament selection for BinCla

20 40 60 80 100
0

50

100

150
k=2

Generation

N
um

be
r 

of
 D

is
tin

ct
F

itn
es

s 
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation
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Fig. 11. Comparison of population diversity maintenance between the
clustering tournament selection and the standard tournament selection for
BinCla for four tournament sizes.

While it is possible to visualise the loss of individual
diversity, the selection frequency, and the selection probability
distribution of an arbitrary population in a run, it is very
likely that the FRD at a generation in an experiment run using
one selection method differs from that using another selection
method. Therefore, comparing these measures on populations
in different runs using different selection schemes could not
provide much useful information. As a result, we used another
measure — the number of distinct fitness values — in the
experimental result analysis.

Figures 9, 10 and 11 compare the clustering tournament
selection and the standard tournament selection in terms of
population diversity measured by the number of distinct fitness
values generation by generation using each of the four tour-
nament sizes for EvePar, SymReg, and BinCla, respectively.
The dark line in each chart represents the mean value over the
500 runs.
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It is clear that the clustering tournament selection can
quickly increase the population diversity to a certain level and
maintain it stably. The four different tournament sizes have
only small impact on the population diversity: for EvePar the
four trends of the average numbers of distinct fitness values
are almost identical, and for SymReg and BinCla there are
only slight drops when the tournament size increases.

In contrast, standard tournament selection performs differ-
ently, especially for SymReg and BinCla (chart (b) in Figures
10 and 11). The population diversity fluctuates along evolution
and has a larger variation in the 500 runs. It is also sensitive to
tournament size. This comparison demonstrates the advantage
of the clustering tournament selection in maintaining popula-
tion diversity in terms of the number of distinct fitness values.

F. Overall GP performance analysis

Table II compares the performances of GP systems using
the standard and the clustering tournament selections. The
measure for EvePar is the average number of misses over
the 500 runs. The measures for SymReg and BinCla are the
averages of the RMS error and the classification error rate on
test data over the 500 runs respectively. Therefore, the smaller
the value, the better the performance. Note that the standard
deviation is shown after the± sign.

TABLE II
PERFORMANCE COMPARISON BETWEEN THE CLUSTERING AND THE

STANDARD TOURNAMENT SELECTION SCHEMES.

Tournament Selection EvePar SymReg BinCla
Scheme Size Miss RMS Error Test Error (%)

2 14.2± 6.5 47.6± 5.9 7.4 ± 2.3
3 13.2± 7.1 39.7± 7.6 7.5 ± 2.3

clustering 4 13.1± 6.9 36.8± 7.9 7.7 ± 2.5
7 12.9± 6.9 33.5± 8.3 7.9 ± 2.5
2 20.7± 3.8 48.2± 5.2 9.2 ± 2.9
3 13.1± 6.7 39.9± 6.6 8.7 ± 2.7

standard 4 11.4± 7.2 37.6± 8.3 8.7 ± 2.7
7 10.6± 6.6 40.9± 11.3 8.7 ± 2.7

The results suggest that the GP system using the cluster-
ing tournament selection generally has advantages over the
GP system using standard tournament selection. In order to
provide statistically sound comparison results for the advan-
tage of the clustering tournament selection, we calculated
the confidence intervals at 99% levels (two-sided) for their
differences in misses, in RMS errors, and in error rates for
EvePar, SymReg and BinCla respectively.

We firstly calculated the difference of the measures between
a pair of runs using the same initial population for each of the
500 pairs of runs, then used the formula

x̄ ± Z
s√
500

(21)

to calculate the confidence interval, wherex̄ is the average
difference over 500 values,s is the standard deviation, andZ
is 2.58 for 99% confidence. If zero is not included in the con-
fidence interval, then the difference is statistically significant.
Since the smaller the measure, the better the performance, the
clustering tournament selection is significantly better than the
standard one when the confidence interval is less than zero.

Table III shows the results with significant differences (either
better or worse) shown in bold.

TABLE III
CONFIDENCE INTERVALS AT 99%LEVEL FOR THE DIFFERENCES BETWEEN

THE CLUSTERING AND THE STANDARD TOURNAMENT SELECTION

SCHEMES.

Tournament size EvePar SymReg BinCla

2 (-7.2,-5.7) (-1.5, 0.3) (-2.1, -1.3)
3 (-0.9, 1.1) (-1.3, 0.9) (-1.6, -0.8)
4 ( 0.6,2.6) (-2.0, 0.5) (-1.4, -0.7)
7 ( 1.5,3.3) (-8.9, -5.9) (-1.3, -0.5)

For BinCla (the hardest problem), the clustering tournament
selection is consistently significantly better than the standard
one for all four tournament sizes.

For SymReg, the clustering tournament selection is slightly
better than the standard one using tournament sizes 2, 3,
and 4, but significantly better for tournament size 7. A large
tournament size represents a strong selection bias towards
better individuals and therefore there is a great potentialfor
losing diversity. The clustering tournament selection appears
to be able to counteract this potential effectively.

For EvePar (the simplest problem), when the tournament
size is 2, the clustering tournament selection is significantly
better than the standard tournament selection. However, when
the tournament size is 4 or 7, it is significantly worse than the
standard tournament selection.

The performance reported here shows that when the se-
lection pressure is adjusted according to the dynamics in
evolution and the population diversity is well maintained by
the clustering tournament selection, the overall GP search
performance is improved in most problems, but not every case.
Possible explanations for the exceptions include:

• Easy problems can be solved easily using high selection
pressure so that it is not necessary to adjust the selection
pressure.

• The way to cluster population (by fitness values in this
case) may not work well for EvePar or possibly other
Boolean problems because of the limited number of
possible distinct fitness values.

• Although good parents may be selected, the probability
of finding better offspring in a large offspring space is
small so that the advantage of the clustering tournament
selection cannot be properly illustrated.

Although in theory tournament size 3 was shown to have
the lowest total loss of individual diversity for the quadratic
FRD in the clustering tournament selection, the experimental
results did not show that tournament size 3 is significantly
better than others. This might be because the quadratic FRD
will not appear if the clustering tournament selection is applied
from the beginning of a GP search.

VII. C ONCLUSIONS ANDFUTURE WORK

Due to the dynamics in EAs, it is necessary to have a
selection mechanism that can tune selection pressure along
evolution. This paper used the loss of individual diversity, the
selection frequency, and the selection probability distribution
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on four simulated populations with different FRDs to analyse
the selection behaviour in standard tournament selection.It
showed that the standard tournament selection method is
unaware of the dynamics in evolution, thus is unable to tune
selection pressure accordingly during evolution.

This paper then presented a novel approach to the selec-
tion pressure tuning problem by integrating the population
FRDs into tournament selection. Through both simulated and
empirical analyses, this paper showed that the approach can
tune selection pressure automatically and dynamically along
evolution.

The simulations and experimental analyses in this paper
provided additional insight into the control of the selection
pressure in tournament selection and the outcomes are as
follows:

• The high between-group selection pressure issue has a
strong interaction with the FRD of a population. FRDs
change generation by generation and can be seen as
the analogue of the dynamics in evolution. Using the
knowledge of FRD is a promising way to modify the
standard tournament selection in order to tune the selec-
tion pressure dynamically and automatically.

• The clustering tournament selection is an automatic se-
lection pressure tuning strategy and is worth further
investigation. It can significantly improve GP search
performance for relatively difficult problems, although
may not be required for easy problems (i.e. EvePar).

• There are likely to be other, more effective population
clustering methods other than merely using the fitness
values, for instance by genotype, which may be suitable
for solving EvePar [36]. Nonetheless, in light of the
results presented in Sections V, VI-E, and VI-F, we hope
that researchers will be encouraged to experiment with
the simple population clustering method in the initial
stages of the development of their alternative parent
selection algorithms.

This paper investigated the research questions in the context
of generational EAs under some assumptions. The empirical
study was conducted only on tree-based generational GP
systems. In the future, we will extend the empirical study to
other generational EA paradigms, as well as investigate the
selection pressure tuning problem for non-generational EAs.
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