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Abstract—Selection pressure controls the selection of individ- acts like a local hill-climbing search method. It is cleaattin
uals from the current population to produce a new population general the drawback of the former extreme is its ineffiglenc
in the next generation. It gives individuals of higher qualty a 54 the drawback of the latter extreme is its possible confine
higher probability of being used to create the next generatn .
so that Evolutionary Algorithms (EAs) can focus on promisirg ment to I_Ocal Opt'm"_i _ormematu_re convergenteTher_efore,
regions in the search space. An evolutionary learning proas is an effective and efficient evolutionary search algorithmstu
dynamic and requires different selection pressures at diffrent balance between these two extremes. In order to obtain the
learning stages in order to speed up convergence or avoid palanced situation, selection pressure, the key elemeifiein
local optima. Therefore, it desires selection mechanismseing selection mechanism, must be properly tuned so that the

able to automatically tune selection pressure during evoliion. tochastic el t intained at timal | |
Tournament selection is a popular selection method in EAs. Stochastic elements are maintained at an optumal level.

This paper focuses on tournament selection and shows that A common view of tuning selection pressure is that the
standard tournament selection is unaware of the dynamics in selection pressure should be adapted during an EA run. For

the evolutionary process thus is unable to tune selection pssure instance, the selection pressure should be weak at first to
automatically. This paper then presents a novel approach with 516y for more exploration and then stronger towards the end

integrates the knowledge of the Fitness Rank Distribution FRD) EA 91 H th luti | -
of a population into tournament selection. Through matheméical as an converges [9]. However, the evolutionary learning

modelling, simulations and experimental study, this papesshows Process itself is actually more dynamic than that. At some
that the new approach is effective and using the knowledge of stages, it requires a fast convergence rate (i.e., higlctgmte

FRD is a promising way to modify the standard tournament pressure) to find a solution quickly; at other stages, it iregu
selection method for tuning the selection pressure dynamitly 5 slow convergence rate (i.e., low selection pressure) didav
and automatically along evolution. being confined to a local optimum or converging prematurely.
_ Index Terms—Tournament Selection, Selection Pressure, Tun- More importantly, these stages seem to appear in a mixed
ing Strategy order rather than ones are always predecessors of the .others
Although selection has been studied for several decades, du
I. INTRODUCTION to the existence of the dynamic requirements, tuning select
pressure is still difficult, not as easy to parameterise herot
Evolutionary Algorithms (EAs) are inspired by biologicakyctors (i.e., population size) [9], and remains an impurta
evolution such as reproduction, mutation, recombinatiat; open problem in EAs’ research.
ural selection and survival of the fittest, that is, the Dar- gjnce the 1970s, there have been many selection schemes
winian natural selection theory. An instance of EAs can ttf'eveloped in EAs for selecting parents. Commonly used
abstracted as searching solutions by applying geneticaopeg|ection schemes include fitness proportionate seleft@in
tors to populations of individuals iteratively and often an ranking selection [11], and tournament selection [12].
parallel manner. Therefore, there are many factors that cansiandard tournament selection randomly draws/samiples
affect the evolutionary search performance of an instarice jggividuals with replacement from the current populatidn o
EAs for given problems. These factors include the size ofgye N into a tournament of sizé: and selects the one
population, the representation of individuals in a popafat \ith the best fitness as a parent from the tournament into
the fitness evaluation of individuals, the selection medma pe mating pool [13], [14]. In general, selection pressure i
for reproduction and for survival, the genetic operatioos ftoyrnament selection can be easily changed by using differe
modifying individuals, and many more. Amongst these fa&torigyrnament sizes: the larger the tournament size, the higae
selection mechanisms play an extremely important role.  gelection pressure. Drawing individuals with replacenietut
A selection mechanism consists of a selection scheme &{¢byrnament makes the population remain unchanged, which
a selection pressure control strategy. The latter is efiti¢ jn turn allows tournament selection to easily support pelral
designing a selection mechanism and has been widely studigehitectures. Selecting the winner involves simply ragki
in EAs [1], [2], [3], [4], [5], [6], [7]. According to the individuals partially (as the best one is only concernedyin
configuration of selection pressure, the search in EAS c@flrnament of sizé, thus the time complexity of singletour-
have two extremes. One extreme, when there is no selectidment isO(k). If the total number of tournaments required to
pressure, is completely stochastic so that the search @slts fjenerate the entire next generatiorVi$, the time complexity
like the Monte Carlo method [8], randomly sampling the spaest tournament selection i€)(kN). The ease of changing
of feasible solutions. The other eXtreme, when the Sebcti§e|ection pressure, the Support of para”e' architeclmthe
pressure is very high, is minimally stochastic so that tieed® |inear time complexity have made tournament selection very
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attractive in EAs, especially in Genetic Algorithms (GAs)da Il. LITERATURE REVIEW

Genetic Programming (GP) [1], [2], [15], [16], [17], [18]h g section gives a review of tournament selection alterna
paper, therefore, focuses on tournament selection totigaes e, selection pressure measurements and selectionibeha
the selection pressure tuning problem. modelling for standard tournament selection.

Although tuning selection pressure in tournament selactio
seems to fall in the parameter setting research field [19] . . . .
as the selection pressure can be influenced by changing eAlternatlve tournament selections for controlling stilen
tournament size parameter in tournament selection, panfigr pressure
this tuning is not as straightforward as being expectedirgur ~ Since tournament sizes are integer numbers, the selection
evolution, typically after a few generations, some indits Ppressure is controlled only at a coarse level originally. In
in the population would have the same or very similar fiorder to control selection pressure at a fine level, Goldberg
ness values. These individuals with the same/similar fitnegnd Deb developed the probabilistic tournament selectipn [
values can be considered a "group”, and a population chhthe form of tournament selection, an extra probabifity
be considered having different groups of individuals. Whef introduced. When conducting a tournament between two
this happens, the selection pressure between these "grOljpgividuals, the individual with higher fitness value can be
increases, resulting in “better” groups dominating thetnesgelected as a parent with the probabifitywhile the other has
population and possibly causing premature convergence. e probabilityl — p. By settingp between 0.5 and 1, it is
refer this as théigh between-group selection pressissue. Possible to control the selection pressure continuoudiyésen
This issue is actually part of the general dynamic issie random selection and the tournament selection with a
in EAs. In other words, the tournament size itself is ndpurnament size of two. Later, Julstrom and Robinson intro-
always adequate for controlling the selection pressuringur duced a weighted k-tournament which extends the probgbilit
evolution. tournament selection from two contestantskiaontestants

[20]. The weighted k-tournament assigns fixed probabdlitie

to the ranks of its k contestants, and selects one to be atparen
A. Goals according to those probabilities. Recently, Hingee andéfut

[21] showed that every probabilistic tournament is eqeimal

To avoid the above issue (or improve the situation), thte a unique polynomial ranking selection scheme.
paper aims to develop a new selection method to dynamicallyHuber and Schell argued that the probabilistic tournament
tune selection pressure along evolution. To achieve thig, goselection enabled a fine scaling of selection pressure but at
we will firstly analyse the standard tournament selectioslme an expense of increased complexity and reduced efficiency
anism via mathematical modelling and simulations to reve@2]. They introduced a mixed size tournament selection to
why this mechanism is not aware of the evolution dynamidie-control the selection pressure at the cost of a minimal
and can not automatically adjust the selection pressureglurincrease of the complexity and with almost no loss of effi-
evolution. According to the findings of the theoretical aysid  ciency. The mixed size tournament selection is implemented
and simulations, we will develop a new selection methday introducing tournaments of varying size during a parent
based on population clustering to address how the isssglection phase.
can be resolved. We will further analyse the method andFilipovié¢ et al. [23] investigated a fine-grained tournament
compare it with the standard tournament selection methselection method for a simple plant location problem in GAs.
via mathematical modelling and simulations, and finally vikhey argued that standard tournament selection does not
empirically experiments on three typically data sets ugiga allow precise setting of the balance between exploratiah an
common evolutionary algorithm. We expect the mathematicgkploitation [2]. In their fine grained tournament selegtio
modelling, simulation analysis and the empirical experitee method, the tournament size is not fixed but close to a pre-set
to reveal whether and/or how the proposed new method cealue. They claimed that the fine grained tournament selecti
resolve the above issue, whether and/or how the new selgwkes the ratio between exploration and exploitation atble t
tion method can automatically tune/adjust selection pmess be set precisely, and that the method solves the simple plant
during evolution, and whether and/or how the new methddcation problem successfully.
outperforms the standard tournament selection mechanism oSokolov and Whitley developed an unbiased tournament
different kinds of problems. selection in order to reduce selection pressure by ensuring

every individual in a population be sampled in tournaments

[18]. They believed that the uniformly random sampling
B. Organisation process is a bias present in standard tournament selection.

The bias can cause a potential for better individuals not to

Section Il introduces background. Section Il investigatebe selected for recombination. Therefore, they developed t
the awareness of evolution dynamics of standard tournamenbiased tournament selection that “lines up two different
selection. Sections IV and V present and analyse a nopslrmutations of the population and performs a pairwise com-
approach to solving the selection pressure tuning probleparison” with a constraint, which forces compared inditdu
Section VI further investigates the effectiveness of the afp be distinct. As a consequence, every individual is sachate
proach via experiments. Section VII concludes this paper. least once. A tournament size 2 was used to test the unbiased



tournament selection on three problems, one with pernmutati of discrete fitness distributions. In addition to these fami
based solution representation and two under bit encoditigns, the assumption that the fithess distribution folldwee
Although the advantage of a generational genetic algorithmermalised Gaussian distribution is not valid in generdl [2
using the unbiased tournament selection varied for differeFurthermore, because the actual fithess values are ignated b
population sizes on the three problems, the authors coedludhe relative rankings are used in tournament selection, the
that the impact of the bias is significant, and the unbiaseabdel is of limited use.
tournament selection provides better performance thaaroth Loss of diversity is defined as the proportion of individuals
selection methods, including standard tournament selecé in a population that are not selected during a parent setecti
rank based selection and fitness proportionate selection. phase [2], [26]. Blickle and Thiele [2], [26] estimated thues$

of diversity in the standard tournament selection as:

B. Selection pressure measurements T 2)

Selection pressure controls the selection of individualmf
the current population to produce a new population in t
next generation. It gives individuals of higher quality gliner

Hdowever, Motoki [4] pointed out that Blickle and Thiele’s
estimation of the loss of diversity in tournament selection

probability of being used to create the next generation ap ttfl0€S not follow their definition, and indeed their estimatio
EAs can focus on promising regions in the search space [2§. qflloss offltn§SSQ|verS|ty. Mqtokl recalculgted Fhe loss of
In tournament selection, the mating pool consists of todfidividual diversity in awholly diversepopulation , i.e., every
nament winners. The average fitness in the mating poolfgividual has a distinct fitness value, on the assumptiai th
usually higher than that in the population. The fitness diffeth® worst individual is ranked 1st, as:
ence between the mating pool and the population reflects the 1 &
selection pressure, which is expected to improve the fitokss N Z (1- P(Wj))N 3)
each subsequent generation [3]. j=1
In biology, the effectiveness of selection pressure can be D)t . o
measured in terms of differential survival and reproductioWNereP(W;) = ~—xz—— is the probability that an individual
and consequently in change in the frequency of alleles @ rank is selected in a tournament.

a population. In EAs, there are several measurements fo;‘Reproducnon rate” is defined as the ratio of the number of

selection pressure in different contexts, includitakeover individuals with a certain fitnesg after and before selection

time, selection intensity, loss of diversity, reproductiate, [2], [26]. A reasonable selection method should favour good
andselection probability distribution individuals by giving them a high ratio and penalise bad-indi

Takeover time is defined as the number of generatiofdu@!s by giving a low ratio. Branket al. [28] introduced a
required to completely fill a population with just copies bét similar measure which is the expected number of selectibns o

best individual in the initial generation when only selenti @n individual. It is calculated by multiplying the total nber
and copy operators are used [1]. For a given fixed-sized pdjj-tournaments conducted in a parent selection phase by the
ulation, the longer the takeover time, the lower the sedecti selection probability of the individual in a single tournam.

pressure. Goldberg and Deb [1] estimated the takeover tiig€y &ls0 provided a model to calculate the measure for a
for standard tournament selection as single individual of rankj in standard tournament selection in

a wholly diverse population on the assumption that the worst

ﬁ (In N + In(In N)) (1) individual is ranked 1st, as:

n

where N is the population size and is the tournament N x P(W;) = Njk - (jk_ D (4)
size (these two notations will be used through out this paper N

unless otherwise noted). The approximation improves wh&his measure is termedelection frequencyn this paper
N — oo. However, this measure is static and constrained ahdreafter as “reproduction” has another meaning in GP &ad th
therefore does not reflect the selection behaviour dynamimaw term can better reflect its real meanings in this sitnatio
from generation to generation in EAs. Selection probability distribution of a population at a gen
Selection intensity was firstly introduced in the context ofration is defined as consisting of the probabilities of each
population genetics to obtain a normalised and dimensssnléndividual in the population being selected at least once in
measure [24], and, later was adopted and applied to GAsparent selection phase [29]. Although tournaments indeed
[25]. Blickle and Thiele [2], [26] measured it using thecan be implemented in a parallel manner, in [29] they are
expected change of the average fithess of the population. #ssumed to be conducted sequentially so that the number of
the measurement is dependent of the fitness distributidmein tournaments conducted reflects the progress of generding t
initial generation, they assumed the fithness distribution f next generation. As a result, the selection probabilityridis
lowed the normalised Gaussian distribution and introdwsed bution can be illustrated in a three dimensional graph, eher
integral equation for modelling selection intensity inrstard the x-axis shows every individual in the population rankgd b
tournament selection. fitness (the worst individual is ranked 1st), the y-axis shiow
For their model, analytical evaluation can be done only fahe number of tournaments conducted in the selection phase
small tournament sizes and numerical integration is needgm 1 to N), and the z-axis is the selection probability which
for large tournament sizes. The model is not valid in the casbows how likely a given individual marked on x-axis can be



selected at least once after a given number of tournamentén order to illustrate that selection pressure is inseresiti
marked on y-axis. The selection probability is calculatgd o population size in standard tournament selection in a
Equation 9, which is to be described in the next sub sectiggopulation with a more general situation (i.e., some irdirails
The measure somehow provides a full picture of the selectibave the same fithess value and therefore have the same rank),
behaviour over the population during a parent selectios@haXie et al. [29] presented a sampling probability model that
Figure 1 shows the selection probability distribution meas any individualp is sampled at least once in€ {1,..., N}
for standard tournament selection of tournament size 4 ortcairnaments as:
N_1\Y Xk
| ( - ) ®)

wholly diverse population of size 40.
and a selection probability model that an individpadf rank
j is selected at least once ine {1, ..., N} tournaments as:

j k i1 kN Y
( i=1 ISZ) _ ( i=1 ISZ)
N N
- |1- )

1551

oprobability

where|S;| is the number of individuals of the same rank
and the worst individual is ranked 1st.

In the literature, a variety of selection pressure measure-
ments have been developed; and many mathematical models
have been introduced fetandardtournament selection. How-
ever, few of researches analysed the awareness of evolution
dynamics in tournament selection. In the next section, we
will utilise some of the selection pressure measuremerds an
C. Sampling and Selection Behaviour Modelling mathematical models to investigate whether standard #urn

Based on the concept of takeover time [1], Back [30]ent selection is aware of the evolution dynamics through
compared several selection schemes, including tournaseentsimulations.
lection. He presented the selection probability of an imtlial
of rank j in one tournament for a minimisation task (the bestll. A NALYSIS OF AWARENESS OFEVOLUTION DYNAMICS
individual is ranked 1st), with an implicit assumption thia¢ OF STANDARD TOURNAMENT SELECTION
population is wholly diverse as:

30

Fig. 1. An example of the selection probability distributicmeasure.

This section analyses why the standard tournament setectio

N—k((N i+ 1)k (N _j)k) (5) mechanism is not aware of evolution dynamics and can not
automatically adjust the selection pressure during eiaiut
In order to model the expected fitness distribution after

performing tourn_ament select!on in a population with a MOg Methodology

general form, Blickle and Thiele [2] extended the selection

probability model in [30] to describe the selection proligbi

of individuals with the same fitness. They defined the wor%

individual to be ranked 1st and introduced tbemulative

fitness distribution S(f;), which denotes the number of in-

dividuals with fitness valug; or worse. They then calculated

We assume that population sizes are of a fixed size during
%/olution and the individual with the worst fithess is ranked
st. Since a population can be seen as a collection of differe
sized bags which consists of individuals with equal fithass],
each “fitness bag” is associated with a distinct fithess rank,
. o e . . we characterise a population by the number of distinct fg¢nes
the selection probability of individuals with rankas: ranks and the size of each corresponding fithess bag, which
S(f)\" S(fi-)\” we termfitness rank distributioffFRD).
(T) - (T) 6 We use four populations with four different FRDs, namely
) ) ) uniform, reversed quadraticrandom and quadratig in our
In order to show the computational savings in backwardimyations. The four FRDs are designed to mimic the four
chaining evolutionary algorithms, Poli and Langdon [31} castages of evolution (but they do not necessarily model all
culated the probability that one individual is not samplad ihe real situations happening in a true run of evolution)e Th
one tournament ag — ., then consequently the expecteiniform FRD represents the initialisation stage, whereheac
number of individuals not sampled in any tournament as: fjtness bag has a roughly equal number of individuals. A
N O\ kv typical case of the uniform fitness rank distribution can be
N <—> (7) found in a wholly diverse population. The reversed quadrati
N-1 FRD represents the early evolving stage, where commonly
wherey is the total number of tournaments required to formery few individuals have good fitness values. The random
an entire new generation. FRD represents the middle stage of evolution, where better
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Fig. 3.

Loss of individual diversity in the standard tourrarnselection scheme on four populations with different ERBote that the tournament size is

discrete but the plots show curves to aid interpretation.

and worse individuals are possibly randomly distributede T B. Simulation Results and Analysis
quadratic FRD represents the later stage of evolution, &her From [29], the probability of an eveit’; that an individual
\E/lalﬁjgs_ number of individuals have converged to better fiines ¢ S, is selected fromja tournkament is: )
(E) (=)
N

We follow the standard breeding operations, that is, two- (10)
offspring crossover operations and one-offspring mutatio 1551
operations, so that the total number of tournaments is tnesa We calculate the total loss of individual diversity using
as the population siz&  at the end of generating all individualsEquation 3 in whichP(1W;) is replaced by Equation 10. We
in the next generation. In order to make the results of tiaso split the total loss of individual diversity into two nt&
selection behaviour analysis easily understandable, senzs One part is from the fraction of the population thatrist
that tournaments are conducted sequentially. We choose osampledat all during the selection phase. We calculate it also
the loss of individual diversity, the selection frequenapd using Equation 3 by replacing— P(W;) with (%)k which
the selection probability distribution measures for tHea#n is the probability that an individual has not been sampled in
behaviour analysis and ignore the takeover time and theournament of sizé. The other part is from the fraction of
selection intensity due to their limitations. population that is sampled buiot selectedWe calculate it

by taking the difference between the total loss of individua

Since the impact of population size on selection behaviodiversity and the contribution from not-sampled indivittua
is unclear, we test several different commonly used pojmat Figure 3 shows the three loss of individual diversity mea-
sizes, ranging from small to large. This paper illustrately o sures, namely théotal loss of individual diversity and the
the results for three population sizes, namely 40, 400, andntributions fromnot-sampledand not-selectedndividuals
2000, for the uniform FRD, the random FRD, and the reverséal standard tournament selection on the four populatiatis w
guadratic and quadratic FRDs respectively. Note that attho different FRDs. Overall there were no noticeable diffeesnc
the populations with different FRDs are of different sizeg, for the three loss of individual diversity measures on ther fo
design the number of distinct fitness ranks to be the samiiéferent populations with different FRDs between the two
value (i.e. 40) for easy visualisation and comparison psgpo selection schemes. The loss of individual diversity measur
(see Figure 2). We also studied and analysed other populatio standard tournament selection depends almost entirely o
sizes with different numbers of distinct fithess ranks (13@) the tournament size, and is almost independent of the FRD.

and 1000), and obtained similar results (so these resudts @his might be because that: 1) the loss of individual ditgrsi
not shown in the paper). measure is not an adequate measure; and/or 2) standard

j—1
iy |5l
N

P(W;) =



N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
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Fig. 4. Selection frequency in the standard tournamentsetescheme on four populations with different FRDs.

tournament selection itself blinds the differences betwtbese a relatively higher selection preference to an individuaki

FRDs. fitness bag with a smaller size in order to increase the chance
Based on Equation 4, we calculate the expected select@npropagating this genetic material and a relatively lower

frequency of each individual in the selection phase for esch Selection preference to an individual in another fitnessviitty

the four populations with different FRDs using the probisil @ larger size in order to reduce the chance of propagating the

model of an individual being selected in a tournament (Equ&me or similar materials. However, only slight fluctuasion

tion 10). Figure 4 shows the selection frequency in standa@gd differences can be found in the random FRD under

tournament selection on the four populations with difféereiery close inspection. This implies that standard tourmgme

FRDs. Instead of plotting the expected selection frequengglection may tolerate the difference between the unifaich a

for every individual, we plot it only for an individual in eac random FRDs, and therefore sometimes take long time to

of the 40 unique fitness ranks so that plots in differentesiz€onverge. To interpret this finding, we provide the follogin

populations have the same scale and it is easy to identify wiaaalysis.

fitness ranks may be lost. We chose three different tournamenAssumey. is the average number of individuals for eath

sizes (2, 4, and 7) commonly used in the literature to ilatstr In the uniform FRD, for allj € {1,...,|S|} where|S| is the

how tournament size affects the expected selection fraquernumber of distinct fitness bags in the populatioffs,| = u.
From the figure, overall the standard tournament selecti¥#hile in the random FRD, it has

scheme favours better-ranked individuals for all tournaime i 18]

sizes, and the selection pressure is biased towards better =

individuals as the tournament size increases. Furthermore J

skewed FRDs (reversed quadratic and quadratic) aggravafél the approximation becomes more precise whinclose

selection bias quite significantly. For the reversed quaﬂrat9.|5|- As the selection frequency for an individyabf rank
FRD, there are more individuals of worse-ranked fitness thatS IV P(W;), we simplify P(W;) for the uniform FRD
received selection preference, indicating that the seatitih 2S-

A (11)

wanders around without paying sufficient attention to thalsm (M)’“ B ((jq)u)’“

number of outstanding individuals. Ideally, in this siioat a P(W,) = 514 |51u (12)
good selection mechanism should focus on the small number ! %

of good individuals to speed up evolution. For the quadratic _ (" = (j — 1)F)

FRD, the selection frequencies are strongly biased towards — plS) J J

individuals with better ranks, indicating that the popidat For the random FRD, th@ (W) is:
diversity is quickly lost, the convergence speeds up, an ’ 7

the search may be confined to local optima. Ideally, in this (M)’“ _ ((jq)u)’“

situation, a good selection scheme should slow down the P(W;) ~ Bl B (13)
convergence. Unfortunately, the simulation results shioat t 1551

standard tournament selection does not know the dynamic re- _ 1 ( k(- 1)k)

quests thus is unable to change selection pressure acglyrdin |S;|| S|k J J

to meet the expectations. From Equation 12, in the uniform FRD, the selection

For the random FRD, we expect to see differences wh@@quency for an individual of rank will be just
comparing with the uniform FRD. However, the selection 1
frequency shapes look very similar. Ideally, in this sitomt S (j’C —(j— 1)’“) (14)
. . ; |S]k—1
a good selection mechanism should be able to adjust the
selection pressure distinguishably according to the chsngvhich is independent of the actual number of individuals of
in the fitness rank distribution. For instance, it shouldegithe same rank.



From Equation 13, the selection frequency of an individual In the approach, the first component is population clusgerin

of rank j in the random FRD is approximately: Populations can be partitioned into a set of clusters adaogrd
to some criteria, including fitness values, individual stawes
STIST ("= (G -1 x |S|p (15) and context, and each cluster is then assigned a distinessitn
J 1 value. In this paper, we cluster a population based on fithess
= |£f_| X |5|? (j’C - (- 1)’“) values so that each fitness bag in a population becomes a
J

cluster of the population.

which differs from that (Equation 14) in the uniform FRD The second component is a new tournament selection

by a factor ofﬁ. For a random FRDﬁ could be small. method calledclustering tournament selectiorinstead of

Therefore, only slight fluctuations and differences can t@mpling individuals as tournament candidates, the afiste

found in Figure 4 under very close inspection when comparirge treated as the tournament candidates in the clustering

the random FRD with the uniform FRD. tournament selection method: the best fitness cluster wins
We also calculate the selection probability distributi@séd the tournament, and an individual in the cluster is randomly

on Equation 9. The simulations of the selection probabiliselected as a parent to participate in the recombinaticregso

distribution are consistent with that of the selection freqcy For a populatiorS (of size N), which has been clustered into

so the figures are omitted in this paper. a set of|S| clusters based on fitness values, the clustering
In summary, through the simulation analysis, this sectidnurnament selection algorithm is as follows:

showed that the standard tournament selection method is for y =1 to N do

unaware of the evolution dynamics and is unable to apply: Samplek clusters from theS| clusters with replace-

different selection pressures at different learning stage- ment

cordingly to meet the expectations. 3. Select the winning cluster from the tournament using

fitness values
IV. ANEW APPROACH TOTUNING SELECTION PRESSURE  4:  Return an individual randomly chosen from the winning
cluster

The standard tournament selection method has the higg] end for

between-group selection pressure issue and cannot adjust _ ) ) _
selection bias in response to the FRD of a population. To Therefore, this clusterlng tournament selec’qon meplrmms
address these issues, we need to modify standard tournar@étt aware of the evolution dynamics by integrating the
selection to become aware of the dynamics along evolutisRowledge of the population FRD. We expect that the clus-
and to be able to adjust selection pressure accordingly. {ffing tournament selection can automatically adjustcsieie
generational EAs, the population at each generation can Rjgssure along evolution accordingly.

seen as an abstract carrier holding the evolution dynamics.

The number of fithess bags and the size of each bag, nam\gl
the FRD of a population, can reflect the dynamic evolutionary , =
process, especially the degree of convergence of the poplﬁéllectlon

tion. Therefore, this section proposes an automatic sefectLemma 1. Let.S; be the cluster of individuals of rankin the
pressure tuning strategy for tournament selection whias ugpopulation. The probability of the eveft that an individual

yModelling selection behaviour of the clustering tourresatn

the knowledge of the population FRD. p € S; is sampled at least once in a tournament of sizis
[ Y
A. The approach P(D)=1-(1- |S||Sj|) (16)

Figure 5 gives an overview of the proposed approach and _ _
shows the relationships between the major components: pop- Proof: In contrast to standard tournament selection, the

ulation clustering and clustering tournament selectiothe® SaMPling behaviour in clustering tournament selectiomis i
standard components are not detailed in the figure. fluenced by the number clusters and the actual size of a

given cluster instead of the population size. It is cleart tha

Lemma 2. Let S; be the cluster of individuals of rankin the
population, the probability of the ever; that an individual

4_ p € S; is selected in a single tournament is

Fig. 5. Overview and relationship between the major comptme |S| X |Sj|

TN D each cluster has the same probabilit}{S| to be sampled,
P Pffpulatﬁm and individuals in a cluster also have equal probability of
0 clustering being sampled;/|S;|. Therefore, the probability that is
p sampled iswls_‘. The probability thatp is never sampled
u . i o .
1 2 ' into a tournament of sizé is (1 — Wlsjl)k' Thus, we obtain

Clustering ;

a tournament selection Equatlon 16. u
t
i
(6]
n

—
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Fig. 6. Loss of individual diversity in the clustering toament selection scheme on four different FRDs. Note thantouent size is discrete but the plots
show curves to aid interpretation.

Proof: According to the algorithm, the number of tour- For the quadratic FRD, the total loss of individual diversit
nament candidates is effectively reduced from the whole pap the clustering tournament selection is greater than ithat
ulation sizeN to the number of clustersS|. The probability the standard one when the tournament size is one, but is
that a cluster ranked wins a tournament is simply: considerably lower for other tournament sizes. The reducti

quickly reaches by about 20%0% — 40% = 20%) when the
Nk _ (i 1)k tournament size increases to five. Also we observed that when
UW"-0G-1 il RO )
o the tournament size is 3, the total loss of individual diitgrs
151 becomes the lowest. The fi indi indivi
. gure indicates that the individual
Since all individuals in the winning cluster have the samgversity is maintained in a better manner than that in stashd
probability to be chosen as a parent, we divide Equation (1lrnament selection. This is we expected for this type dFR
by the size of thejth cluster|S;| and obtain Equation (17). as it may slow down the population convergence to avoid the
B confinement to local optima.
For the random FRD, there are some slight differences when
V. ANALYSES OF CLUSTERING TOURNAMENT SELECTION  comparing with that in the standard tournament selectiwe. T
VIA SIMULATIONS total loss of individual diversity is about 5% higher thamtth
We follow the method explained in Section Il and use#l Standard tournament selection for small tournamentssize
Equations 16 and 17 to calculate the three loss of indi-and 2, but gradually becomes lower for large tournament
vidual diversity measures, the selection frequency and tR&E€S-
selection probability distribution. The next subsectianalyse ~ Although the analysis of the loss of individual diversity
the simulation results to investigate the clustering taurant Showed a different selection behaviour in the clusteringrte-
selection in detail. ment selection, it only provided information at a coarseslev
and sometimes at a limited level, especially for the random
FRD. Therefore, we need to further investigate the differen

selection behaviour in the clustering tournament selactio
Figure 6 illustrates the loss of individual diversity of theusing other measures.

clustering tournament selection on four populations with d
ferent FRDs. . . . .
In the clustering tournament selection, for the uniform ERE?_‘ Tr_'e selection frequency and the selection probabilisy di
the three loss of individual diversity measures are idah'[ictrIbUtlon analyses
to those of the standard tournament selection (see Figure 3)The simulation results of the selection frequency and the
This is because each cluster contains the same numbersection probability distribution are consistent againttie
individuals (in this case the number is one) so that thBustering tournament selection. Therefore, we only regubr
clustering tournament selection is effectively acting siane the selection frequency of the clustering tournament selec
as standard tournament selection. on the four populations with different FRDs (see Figure 7).
For the reversed quadratic FRD, the total loss of individu&ecall that the tournament size 3 provides the lowest total
diversity is considerably higher compared with that of dend  loss of individual diversity for the quadratic FRD, therefan
tournament selection and compared with those for other FRBsldition to the commonly three tournament sizes (2, 4, and 7)
We expect that the lost individuals are mainly the worsdhe tournament size 3 is added in this analysis and its impact
ranked individuals. By ignoring most of the worse-rankei$ presented in a dash line in the figure.
individuals at this stage, the search will be able to corme¢mt  The selection frequency trends on the uniform FRD in the
on the promising region so that the evolution will speed ugustering tournament selection are identical to thosehef t
to save unnecessary cost. The next subsection will verdy thtandard tournament selection for the reason given in @ecti
expectation when analysing the selection frequency. V-A.

(18)

A. The loss of individual diversity analysis



N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
.

0
I
0
I

3001 f

o =
o
—o—
o =
1 !

-t

o =
e

w
I

w
I 1

200

w
o

expected selection frequency
IS
expected selection frequency
expected selection frequency
IS
+
expected selection frequency
IS
—
e

5 ot I |
3 4F I 3 i [T/\ (A 34 N‘t
[ 100 # A NVA | X
i 4 1] i U Y I
? T /77/ : i i ! N 2 e &
| %9?ﬁ? i 14 o AN NV n &,,iibéwgg&ﬁ
%ﬁﬁf:**’k ‘s 1\ 1K\’/\J‘r‘/ﬂ‘ wod’ Fa| R Y LR
0 #ﬁﬁfiﬁ/ /g;f.; 0 A«ﬂg 0 ida “u V** L4 0 ;:«**M** 009%™

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
rank rank rank rank

l+ tournament size: 2 tournament size:4 o tournament size: 7 l

Fig. 7. Selection frequency of the clustering tournametecsien scheme on four populations with different FRDs. éNtitat the extra dash line represents
tournament size 3.

The other three FRDs reveal significant differences whemxt generation and it is able to maintain the population
compared with the standard tournament selection (see Fdversity better than the standard one.
ure 4). Note that for the quadratic FRD, tournament size 2 resulted

For the reversed quadratic FRD (representing the earlgstdd @ strong bias to worse-ranked individuals, especially th
of evolution), most of the low fitness ranks have very lowhird-ranked ope?sthis may be undesirable. On the pther hand,
selection frequencies so that they are effectively disadrd tournament size 3 provided almost even selection frequen-
This observation supports our expectation in the analysis @€S on all fitness ranks. This observation may explain why
the loss of individual diversity in the previous sub sectibat tournament size 3 provided the lowest total loss of indigidu
the lost individuals are mainly those worse-ranked oned, afiiversity.
meets the desiderata of a good selection scheme that can pdf) summary, the analysis results showed that in addition to
attention to small number of outstanding individuals toespe the usual selection preference for better individuals guse

up evolution other than wandering around in unpromisirlgy tournament size, the clustering tournament selectindste
regions. to give additional selection preference to individuals mad

. . sized clusters. Furthermore, when most individuals of the

For the random FRD (representing the middle stage of evo- : , :

. . . population are of worse fitness ranks and evolution encesinte
lution), the selection frequency trends are very raggetbats

) a danger of missing good individuals, it tends to increase
of the smooth trends we usually saw in standard tournament” . : S . )

. . . ; : . Selection bias to better individuals, hoping to quicklyerthe
selections. There is some interesting selection behaviere.

For instance, for the tournament size 4, the expected smlec opulation to promising regions. Whe_n the population tends
L . ) 0 converge to local optima and evolution encounters a dange
frequency for an individual of rank3 is above 7, while the

. . L of losing genetic material, it tends to decrease selectian b
expected selection frequencies for individuals of betteks N ; . )

) L to better individuals, hoping to keep the population dieers
are much lower; even one of the best-ranked individuals

the population is below 4. From Figure 2, we can see tha erefore, the clustering tournament selection is an sefec

|S33 is only 3 while [S;];~33 are much higher. The resylts echanism that can automatically adjust the selectiorspres

show that apart from being governed by the tournament siégf the dynamic evolutionary process.

the clustering tournament selection is aware of the random

changes in the FRD and can adjust the selection pressure V!- ANALYSES OFCLUSTERING TOURNAMENT
automatically. It gives a relatively high selection prefece to SELECTION VIA EXPERIMENTS

an individual in a fithess bag with a smaller size to increaseThe simulations above suggest that the clustering tourna-
the chance of propagating its genetic material. It thengyivenent selection can be aware of the dynamics in evolution,
relatively low selection preferences to other better iittlials and adjust the selection pressure accordingly. This sectio
in fitness bags with larger sizes to restrict their propagati further analyses the effectiveness of the clustering tament
This kind of selection behaviour is unique to the clusteringelection empirically through experiments. The instante o
tournament selection and appears to again meet the ddsideFAs used in the experiments is the commonly used tree-based
expectation of a good selection scheme that can adjust tienerational GP [32].

selection pressure distinguishably.

For the quadratic FRD (representing a converged stage f pata Sets
evolution), the clustering tournament selection signiftba
reduces the selection frequency of better-ranked indat&ju
while increasing the frequency of middle-ranked individua
Therefore, the clustering tournament selection can rethie 21y is pecause the ranks 1 to 3 have the same smallest nurhber o
chance that groups of better-ranked individuals dominage tindividuals (Figure 2).

The experiments involve three different problem domains
with different difficulties: an Evem-Parity problem (EvePar),
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a Symbolic Regression problem (SymReg), and a BinaryThe function set used for SymReg includes the standard
Classification problem (BinCla). We chose these three tfpe arithmetic binary operator§+, -, *, /} and unary operators
problems in particular because they have received corahitier { abs sin, exp}. The / function returns zero if it is given
attention as examples in the literature of GP. invalid arguments.

1) EvePar: An evenn-parity problem has an input of a The function set used for BinCla includes the standard
string ofn Boolean values. It outputsue if there are an even arithmetic binary operators+, -, *, / }. We hypothesised that
number of true’s, and otherwidalse The most characteristic convergence might be quicker if using only the four arithimet
aspect of this problem is the requirement to use all inpuénin operators, and more functions might lead to better results.
optimal solution and a random solution could lead to a scofderefore, the function set also includes unary operdtats
of 50% accuracy [33]. Furthermore, optimal solutions coulsqrt, sin} and if function. Thesqrt function automatically
be dense in the search space as an optimal solution generedigverts a negative argument to a positive one before dpgrat
does not require a specific order of theinputs presented. on it. Theif function takes three arguments and returns its
EvePar considers the case of= 6. Therefore, there arg® second argument if the first argument is positive, and return
combinations of unique 6-bit length strings as fitness casests third argument otherwise. Thifunction allows a program

2) SymReg:SymReg is shown in Equation 19 and visuto contain a different expression in different regions of th
alised in Figure 8. We generated 100 fitness cases by choodimfure space, and allows discontinuous programs, rdtler t
100 values forz from [-5,5] with equal steps. insisting on smooth functions.

The terminal set for EvePar consistsroBoolean variables.
The terminal set for SymReg and BinCla includes a single
variablexr and 30 terminals, respectively. Real valued constants
in the range [-5.0, 5.0] are also included in the terminas set
for SymReg and BinCla. The probability mass assigned to the
whole range of constants when constructing programs is set
to 5%.

f(z) = exp(1 — x) x sin(2wzx) + 50sin(z) (19)

400

300

TABLE |
TEN FEATURES IN THE DATASET OFBINCLA

200

f(x)

100

a radius f  compactness
or b texture g concavity
c perimeter h  concave points
~100¢ d area i symmetry
e smoothnesy j fractal dimension

-200
-5 0 5
X

Fig. 8. The symbolic regression problem. C. Fitness function

3) BinCla: BinCla involves determining whether examples For evenn-parity problems, the standard fitness function
represent analignantor abenignbreast cancer. The dataset i§ounts the number of wrong outputs (misses) for te
the Wisconsin Diagnostic Breast Cancer dataset chosen fréfinbinations of:-bit strings and treats zero misses as the best
the UCI Machine Learning repository [34]. BinCla consist&aWw fitness [32]. There is an issue with this fitness functibe:
of 569 data examples, where 357 are benign and 212 ¥f@rst program according to this fitness function is the o th
malignant. It has 10 numeric measures (see Table 1) compul@$2” misses. However, this program actually captures most
from a digitised image of a fine needle aspirate of a breass m&%$ the structure of the problem and can be easily converted to
and are designed to describe characteristics of the celéinu@ Program of zero misses by addingnat function node to
present in the image. The mean, standard error, and “wortte root of the program. Therefore, programs with a verydarg
of these measures are computed, resulting in 30 featurgs [$4/mber of misses are, in a sense, just as good as programs
The whole original data set is split randomly and equallp intwvith very few misses.
a training data set, a validation data set, and a test data sdf this paper, we used a new fitness function for EvePar:
with class labellings being evenly distributed across tired { m  if m< 2t

data sets for each individual GP run. fitness = on _ (20)

, otherwise

) ) wherem is the number of misses.

B. Function sets and terminal sets The fitness function in SymReg is the root-mean-square
The function set used for EvePar consists of the standdRMS) error of the outputs of a program relative to the
Boolean operator§ and or, not} and if function. Theif expected outputs. Because neither class is weighted oger th

function takes three arguments and returns its second a&mgurnrother, the fitness function for BinCla is the classificatioroe

if the first argument idrue, and otherwise returns its thirdrate on the training data set (the fraction of fithess casas th
argument. In order to increase the problem difficulty, we dare incorrectly classified by a program as a proportion of
not include thexor function in the function set. the total number of fitness cases in the training data set). A
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k=2 k=3 k=4 k=7
500 |

-

200 ’ ’ ’

program classifies the fithess casdanrignif the output of the
program is positive, anthalignantotherwise. Note that class
imbalance design in fitness function for BinCla is beyond the
scope of this paper. All three problems have an ideal fithes
of zero.

istinct

400

300

Number of D
Fitness Values
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Generation Generation Generation Generation

D. Parameter setting and configurations . .
(a) clustering tournament selection for SymReg

The genetic parameters are the same for all three problem<
The ramped half-and-half method is used to create new prc
grams and the maximum depth of creation is four (countec
from zero). To prevent code bloat, the maximum size of &
program is set to 50 nodes during evolution based on som
initial experimental results. The standard subtree cresso
and mutation operators are used [32]. The crossover rate, t
mutation rate, and the copy rate are 85%, 10% and 5% respec-
tively. The best individual in the current generation is leity
copied into the next generation, ensuring that the pomnatiFlig-tlQ- tcompafiston f|>f EODU'atgflhdiVirSité’ Ea:nter:‘lgfr;‘fdwﬁfen tfhe
does not lose its previous best solufiofihe population size custering tournament selection and e standard fou ection for

. . . ~ SymReg for four tournament sizes.
is 500. A run is terminated when the number of generations

k=4 k=7

50

k=2 k=3
0 . :
400 |
300
200 ’

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Generation Generation Generation Generation

(b) standard tournament selection for SymReg

istinct

tness Values

Fi

Number of D

reaches the pre-defined maximum of 101 (including the initia
generation), or the problem has been solved (there is agqrogr
with a fitness of zero on the training data set), or the erro
rate on the validation set starts increasing (for BinClajur~

tournament sizes 2, 3, 4, and 7 are used.

We ran experiments comparing two GP systems using th
standard and the clustering tournament selection metresds r

k=2 k=7

150

istinct

i
o
o

3
o

Fitness Values

Number of D

l

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

. . Generation Generation Generation Generation
spectively for each of the three problems. In each experimen i . _
we repeated the whole evolutionary process 500 times inde- (@) clustering tournament selection for BinCla
k=2 k=3 k=4 k=7

pendently. In each pair of the 500 runs, an initial populatio

is generated randomly and is provided to both GP systems i£ 4 1 |
B . 0w > 1
order to reduce the performance variance caused by differecs ! |
initial populations. 58 \ ‘ \
3
4
E. Impact on population diversity analysis 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Generation Generation Generation Generation
(b) standard tournament selection for BinCla
k=2 k=3 k=4 k=7
50 Fig. 11.  Comparison of population diversity maintenancéwben the
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(a) clustering tournament selection for EvePar
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(b) standard tournament selection for EvePar

Comparison of population diversity maintenancewkeen the

clustering tournament selection and the standard toumaselection for
EvePar for four tournament sizes.

3This is referred to as elitism [35].

clustering tournament selection and the standard toumgammelection for
BinCla for four tournament sizes.

While it is possible to visualise the loss of individual
diversity, the selection frequency, and the selection glodly
distribution of an arbitrary population in a run, it is very
likely that the FRD at a generation in an experiment run using
one selection method differs from that using another select
method. Therefore, comparing these measures on popudation
in different runs using different selection schemes couwt n
provide much useful information. As a result, we used arothe
measure — the number of distinct fithess values — in the
experimental result analysis.

Figures 9, 10 and 11 compare the clustering tournament
selection and the standard tournament selection in terms of
population diversity measured by the number of distinceis
values generation by generation using each of the four tour-
nament sizes for EvePar, SymReg, and BinCla, respectively.
The dark line in each chart represents the mean value over the
500 runs.
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It is clear that the clustering tournament selection carable Ill shows the results with significant differencesher
quickly increase the population diversity to a certain lare better or worse) shown in bold.
maintain it stably. The four different tournament sizes eénav

only small impact on the population dlver§|ty: for_ EvePae thCONFIDENCE INTERVALS AT99%LEVEL FOR THE DIFFERENCES BETWEEN
four trends of the average numbers of distinct fithness values tHe cLUSTERING AND THE STANDARD TOURNAMENT SELECTION

TABLE Il

are almost identical, and for SymReg and BinCla there are SCHEMES
only slight drops when the tournament size increases.

In contrast, standard tournament selection performsrdiffe | Tournament size] EvePar [ SymReg | BinCla |
ently, especially for SymReg and BinCla (chart (b) in Figure 2 (-72-57) | (-1503) | (21 -13)

3 (09, 1.1) | (-1.3,09) | (-1.6, 0.8)
4 (06,26) | (-20,05) | (-1.4, -0.7)
7 (1533) | (-89, 5.9) | (-1.3, -05)

10 and 11). The population diversity fluctuates along evmtut
and has a larger variation in the 500 runs. It is also seesitiv
tournament size. This comparison demonstrates the ady@nta

of the clustering tournament selection in maintaining papu oy BinCla (the hardest problem), the clustering tournamen
tion diversity in terms of the number of distinct fitness \&du gojection is consistently significantly better than thengzad
one for all four tournament sizes.
F. Overall GP performance analysis For SymReg, the clustering tournament selection is skghtl
Table Il compares the performances of GP systems usipgtter than the standard one using tournament sizes 2, 3,
the standard and the clustering tournament selections. Tl 4, but significantly better for tournament size 7. A large
measure for EvePar is the average number of misses ot@frnament size represents a strong selection bias towards
the 500 runs. The measures for SymReg and BinCla are teiter individuals and therefore there is a great poteifial
averages of the RMS error and the classification error rate l@sing diversity. The clustering tournament selection esyp
test data over the 500 runs respectively. Therefore, théleamato be able to counteract this potential effectively.
the value, the better the performance. Note that the stdndarFor EvePar (the simplest problem), when the tournament
deviation is shown after the- sign. size is 2, the clustering tournament selection is signifigan
better than the standard tournament selection. Howevaenwh

TABLE Il the tournament size is 4 or 7, it is significantly worse than th
PERFORMANCE COMPARISON BETWEEN THE CLUSTERING AND THE .
STANDARD TOURNAMENT SELECTION SCHEMES standard tournament selection.
The performance reported here shows that when the se-
Tourmament Selectiol EvePar SymReg BinCla lection pressure is adjusted according to the dynamics in
Scheme | Size Miss RMS Error | Test Error (%)| evolution and the population diversity is well maintained b
2 142£65] 476+ 59 74+23 the clustering tournament selection, the overall GP search
3 132+ 7.1 39.7f 76 75+ 23 ic i i
clustering 3 T ao seEr o e perfo_rmance is |mproved in most proplem; but not every.case
v 129169 335F 83 79F 75 Possible explanations for the exceptions include:
g igzi g-g gg-gi g-é g-?i 3579 « Easy problems can be solved easily using high selection
standard 7 TT4T 77 3761 83 87T 07 pressure so that it is not necessary to adjust the selection
7 10.6F 6.6 | 40.9F 11.3 87 2.7 pressure.

« The way to cluster population (by fitness values in this
The results suggest that the GP system using the cluster- case) may not work well for EvePar or possibly other
ing tournament selection generally has advantages over the Boolean problems because of the limited number of
GP system using standard tournament selection. In order to possible distinct fitness values.
provide statistically sound comparison results for theamdv ~ « Although good parents may be selected, the probability
tage of the clustering tournament selection, we calculated of finding better offspring in a large offspring space is
the confidence intervals at 99% levels (two-sided) for their ~small so that the advantage of the clustering tournament
differences in misses, in RMS errors, and in error rates for selection cannot be properly illustrated.
EvePar, SymReg and BinCla respectively. Although in theory tournament size 3 was shown to have
We firstly calculated the difference of the measures betwegtie lowest total loss of individual diversity for the quatita
a pair of runs using the same initial population for each ef ttFRD in the clustering tournament selection, the experialent
500 pairs of runs, then used the formula results did not show that tournament size 3 is significantly
_ s better than others. This might be because the quadratic FRD
T+ 7——— e - . : jHadte
/500 will not appear if the clustering tournament selection iplagul

to calculate the confidence interval, whetes the average from the beginning of a GP search.

difference over 500 values,is the standard deviation, aril

is 2.58 for 99% confidence. If zero is not included in the con- VII. CONCLUSIONS ANDFUTURE WORK

fidence interval, then the difference is statistically #igant. Due to the dynamics in EAs, it is necessary to have a
Since the smaller the measure, the better the performaree,delection mechanism that can tune selection pressure along
clustering tournament selection is significantly bettemtithe evolution. This paper used the loss of individual diversite
standard one when the confidence interval is less than zeselection frequency, and the selection probability distibn



on four simulated populations with different FRDs to analys [3]
the selection behaviour in standard tournament selectton.
showed that the standard tournament selection method |
unaware of the dynamics in evolution, thus is unable to tune
selection pressure accordingly during evolution. (5]
This paper then presented a novel approach to the selec-
tion pressure tuning problem by integrating the population
FRDs into tournament selection. Through both simulated anid]
empirical analyses, this paper showed that the approach can
tune selection pressure automatically and dynamicallpglo
evolution. [71
The simulations and experimental analyses in this paper
provided additional insight into the control of the selenti g
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B. L. Miller and D. E. Goldberg, “Genetic algorithms, tmament
selection, and the effects of noise,” University of lllisoat Urbana-
Champaign, Tech. Rep. 95006, July 1995.

Lﬁ T. Motoki, “Calculating the expected loss of diversityf selection

schemes,Evolutionary Computatianvol. 10, no. 4, pp. 397-422, 2002.
M. Affenzeller, S. Wagner, and S. Winkler, “GA-seledticevisited from
an ES-driven point of view,” inArtificial Intelligence and Knowledge
Engineering Applications: A Bioinspired Approacer. Lecture Notes
in Computer Science. Springer, 2005, vol. 3562, pp. 262-271

H. Xie, M. Zhang, and P. Andreae, “An analysis of constiugcrossover
and selection pressure in genetic programming,”Proceedings of
Genetic and Evolutionary Computation Conferen2€07, pp. 1739—
1746.

S. Winkler, M. Affenzeller, and S. Wagner, “Offspringleetion and its
effects on genetic propagation in genetic programming dagestem
identification,” Cybernetics and Systemsl. 2, pp. 549-554, 2008.

R. Rubinstein and D. Kroes&imulation and the Monte Carlo Method

pressure in tournament selection and the outcomes are as2nd ed. John Wiley and Sons, 2007.

follows: [°]

« The high between-group selection pressure issue has a
strong interaction with the FRD of a population. FRD$L0]
change generation by generation and can be seen ﬁ?
the analogue of the dynamics in evolution. Using th[e
knowledge of FRD is a promising way to modify the
standard tournament selection in order to tune the sel?lz-]
tion pressure dynamically and automatically.

The clustering tournament selection is an automatic ges]
lection pressure tuning strategy and is worth further
investigation. It can significantly improve GP search ,
performance for relatively difficult problems, although
may not be required for easy problems (i.e. EvePar).
There are likely to be other, more effective populatiop
clustering methods other than merely using the fitness
values, for instance by genotype, which may be suitable
for solving EvePar [36]. Nonetheless, in light of thd®!
results presented in Sections V, VI-E, and VI-F, we hope
that researchers will be encouraged to experiment with
the simple population clustering method in the initialt”
stages of the development of their alternative parepg;
selection algorithms.

This paper investigated the research questions in thexdonte
of generational EAs under some assumptions. The empirical]
study was conducted only on tree-based generational GP
systems. In the future, we will extend the empirical study #6°
other generational EA paradigms, as well as investigate the
selection pressure tuning problem for non-generationad.EA[
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