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Abstract 

Stochastic algorithms are widely used in various modeling and optimization problems. 

Evolutionary algorithms are one class of population-based stochastic approaches that are inspired 

from Darwinian evolutionary theory. A population of candidate solutions is initialized at the first 

generation of the algorithm. Two variation operators, crossover and mutation, that mimic the real 

world evolutionary process, are applied on the population to produce new solutions from old 

ones. Selection based on the concept of survival of the fittest is used to preserve parent solutions 

for next generation. Examples of such algorithms include genetic algorithm (GA) and genetic 

programming (GP). Nevertheless, other stochastic algorithms may be inspired from animals’ 

behavior such as particle swarm optimization (PSO), which imitates the cooperation of a flock of 

birds. In addition, stochastic algorithms are able to address multi-objective optimization 

problems by using the concept of dominance. Accordingly, a set of solutions that do not 

dominate each other will be obtained, instead of just one best solution.  

This thesis proposes a multi-objective GP-PSO hybrid algorithm to recover gene 

regulatory network models that take environmental data as stimulus input. The algorithm infers a 

model based on both phenotypic and gene expression data. The proposed approach is able to 

simultaneously infer network structures and estimate their associated parameters, instead of 

doing one or the other iteratively as other algorithms need to. In addition, a non-dominated 

sorting approach and an adaptive histogram method based on the hypergrid strategy are adopted 

to address ‘convergence’ and ‘diversity’ issues in multi-objective optimization. 

Gene network models obtained from the proposed algorithm are compared to a synthetic 

network, which mimics key features of Arabidopsis flowering control system, visually and 

numerically. Data predicted by the model are compared to synthetic data, to verify that they are 

able to closely approximate the available phenotypic and gene expression data. At the end of this 

thesis, a novel breeding strategy, termed network assisted selection, is proposed as an extension 

of our hybrid approach and application of obtained models for plant breeding. Breeding 

simulations based on network assisted selection are compared to one common breeding strategy, 



 

marker assisted selection. The results show that NAS is better both in terms of breeding speed 

and final phenotypic level. 
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numerically. Data predicted by the model are compared to synthetic data, to verify that they are 

able to closely approximate the available phenotypic and gene expression data. At the end of this 

thesis, a novel breeding strategy, termed network assisted selection, is proposed as an extension 

of our hybrid approach and application of obtained models for plant breeding. Breeding 

simulations based on network assisted selection are compared to one common breeding strategy, 
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CHAPTER 1 - Overview of Stochastic Multi-objective Optimization 

Optimization is a popular research field with many important applications [1].  The aim 

of optimization is to find the best solutions to a given problem within a set of constraints. 

Classical optimization approaches mainly focus on single objective problems and aims to find 

the best possible solution, usually termed global optimum. Most real-world applications, 

however, involve the simultaneous optimization of more than one objective.  Furthermore, it is 

not unusual to encounter situations where those objectives are in conflict with each other. For 

example, when designing a building, the architect always would like to minimize its cost while 

having its safety maximized. In these multi-objective problems, mathematical and algorithmic 

tools that are different from those for single-objective optimization are required. In fact, the 

notion of optimality changes when dealing with multi-objective optimization problems. We need 

to find the best tradeoff among the objectives.  

Among several heuristics currently available, stochastic algorithms (SAs) such as 

evolutionary algorithms and particle swarm optimization approaches are among the most popular 

[2] [3]. These algorithms are a class of approaches that are inspired from natural metaphors. 

Stochastic algorithms have been popular in single-objective optimization and, more recently, 

also have applied to multi-objective problems. In this chapter, an overview of stochastic multi-

objective optimization (SMO) is provided. It includes the basic concepts of multi-objective 

optimization, advantages of stochastic approaches and relevant most popular algorithms. 

1.1 Basic Concepts  

1.1.1 Multi-objective Optimization 

There are three aspects that are important to note in the context of SMO. First, a multi-

objective optimization problem (MOP) always has two or more objectives that are required to be 

optimized simultaneously. Second, there may be constraints imposed on the objectives. Third, 

objectives in MOP are usually in conflict with each other; otherwise, a single solution may exist 

which may be obtained by optimizing the objectives in sequential order. A MOP can be defined 

as: 
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Definition 1: Multi-objective optimization problem 

Given a problem involving N variables N,...xx,x 21  in a search space Nℜ⊂X , we assume, 

without loss of generality, M objectives (.)(.)1 M,...,ff in objective function space Mℜ⊂Y , are to 

be minimized.  

Minimize )),...,,(),....,...,,(()( 21211 NMN xxxfxxxf=xf  

The vector function is a mapping YX f →: . 

 1.1.2 Pareto Optimality 

In a MOP, because multiple objectives are involved, it is usually not possible to find a 

single solution which is optimal for all the objectives. Instead, many good solutions may exist. 

These solutions are always “trade-offs” or good compromises among the objectives. Since the 

conventional concept of optimality does not hold, a concept of Pareto optimality is adopted. 

Before formally defining Pareto optimality, we introduce the concept of dominance.  

Definition 2: Dominance 

Let  Xyx, ∈  be two vector inputs. We say x  dominates y  (written as yx p ) iff they satisfy the 

conditions: 

)()(}{,
)()(}{,
yxXyx

yxXyx

jj

ii

ff|M1,...,j ,
ff|M1,...,i ,

<∈∃∈
≤∈∀∈

, 

On the contrary, a solution x  is considered to be a non-dominated solution iff there is no other 

solution that satisfies equation 1.1.  The set of all non-dominated solutions form a Pareto set. 

Definition 3: Pareto front 

The projection of the Pareto set P in the M dimensional objective function space Y is called 

Pareto front, F. 1 

}))()()({( 1 PxxxxF ∈= |,...f,ff M2 , 

Figure 1.1 explains the concept of dominance. Fox example, when considering a building design 

project; architects need to minimize two objectives: cost and failure rate. Four possible schemes 

– a, b, c and d exist. According to definition 2, solution a dominates solution b. However, 

                                                 
1 To distinguish from a true Pareto front, we call non-dominated solutions that are not in the true Pareto front 

discovered so far by  SAs a non-dominated front.  

Eq. 1.1 

Eq. 1.2 
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solutions a, c and d do not dominate each other.  Figure 1.2 shows a two-dimensional Pareto 

front according to definition 3.  

Figure 1.1 Dominated and non-dominated solutions in two dimensions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3 Performance Measurements for Multi-objective Optimization 

In order to test the performance of different algorithms in MOP, measures to allow a 

quantitative comparison of results are required. A variety of performance measures have been 

proposed [4][5][6]. Three goals have been summarized for a good SMO algorithm [5]: 

 

1. The size of the non-dominated front should be maximized. 

2. The non-dominated front found by the SMO algorithm should be as close as possible 

to the true front. 

3. The solutions should be as uniformly distributed as possible. 

 

The second and third goals are called convergence and diversity [7]. They are detailed in 

the following sections. 

f2   
(e.g. failure rate)

f1 (e.g. cost)

a

b
c

d

a dominates b

f1(a)

f2(a)

f2   
(e.g. failure rate)

f1 (e.g. cost)

a

b
c

d

a dominates b

f1(a)

f2(a)
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When considering MOP, the true Pareto front is usually not known beforehand in a real 

application. So test functions with known Pareto front are used to test the efficiency of the 

algorithms. ZTD functions are one class of the most popular test functions [8] [9] [10].   

 

Figure 1.2  Two-dimension Pareto front 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Stochastic Optimization 
Since the 1950s, a variety of mathematical programming techniques have been developed to 

address MOP [11] [12]. Nevertheless, they all may have one or several of the following 

limitations, (i) prior knowledge of the true Pareto front is required; (ii) they may not work when 

the Pareto front is concave or disconnected -- they require differentiability of the objective 

functions and the constraints; (iii) they can only obtain one solution from each run. 

Most stochastic algorithms are inspired from biology. For example, evolutionary algorithms 

(EAs) are inspired from biological evolution and particle swarm optimization (PSO) is inspired 

from the cooperative behavior of birds. In such algorithms, a solution candidate is sometimes 

Pareto front

f1 (e.g. cost)

f2   
(e.g. failure rate)

Pareto front

f1 (e.g. cost)

f2   
(e.g. failure rate)
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called an individual and the set of solution candidates forms a population. There are four main 

features in SAs:  

(i) an individual, e.g. decision vector, represents a solution to the given problem, 

(ii) according to objective functions, each individual is evaluated and assigned a fitness 

to reflect the quality of the solution, 

(iii) a selection process is performed on the population and 

(iv) the population is updated and new solutions are generated in each generation 

The above features enable SAs to address the limitations of classic multi-objective 

approaches. Firstly, SAs do not need any prior knowledge of the Pareto front. Secondly, being 

population-based algorithms, they are able to generate a non-dominated front in a single run.  

 

1.3 Algorithm Design Issues 

1.3.1 Convergence and Diversity 

In an evolutionary algorithm, either convergence or diversity must be used as a criterion 

to discriminate between solutions and form a non-dominated front. Convergence is a term used 

to describe how close that the set of obtained non-dominated solutions in the population is to the 

true Pareto front. In addition to good convergence, another feature, termed diversity, used to 

describe the proper space intervals between solutions in the non-dominated front or Pareto front, 

is equivalently important. Usually, it is more desirable to have the distribution of the solutions 

spread out. In other words, an evenly populated Pareto front has good diversity. Figure 1.3 (left) 

shows a Pareto front with good convergence and diversity. In comparison, Figure 1.3 (right) 

illustrates bad convergence and diversity.   
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Figure 1.3 An illustration of good convergence and diversity (left) and bad convergence and 
diversity (right)  
 

 

 

 

 

 

 

 

 

 

 

 

 1.3.2 Techniques for Convergence 

 Techniques for convergence in SMO generally consist of aggregation-based, criterion-

based and Pareto-based methods [13].  

  Aggregation-based methods turn a multi-objective function into a single parameterized 

objective function. The parameters of this function are varied to find a set of non-dominated 

solutions. Weighted-sum aggregation is a good example where the weight-parameter is changed 

during optimization process. 

  Criterion-based methods switch among objectives during the selection and variation 

process of SAs with a certain probability. Each time an individual is chosen for variation, the 

fitness value of the individual to a different objective will decide if it can be selected for 

variation. 

 The third method is based on the concept of Pareto dominance [3]. It can be divided into 

mainly two subcategories depending on how to rank population. The first ranking approach is 

usually referred to as domination counting. In this method, the rank of any solutions within a 

population of solutions is determined by the number of other solutions that dominates this 

solution. For example, in Figure 1.4, solution a is dominated by six other solutions, contained in 

dashed lines. Solutions with the counts of zero are assigned as non-dominated solutions and form 
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the non-dominated front, as shown in Figure 1.4. Dominance counting is used in both SPEA[6] 

and SPEA2[18]. The other method is called non-dominated sorting. In this method, solutions of 

the same rank are the ones that do not dominate each other and the ones that have been 

dominated are assigned to lower rank. This method is used in NSGA II [14]. Dotted grey lines in 

Figure 1.4 show different ranks after applying non-dominated sorting. Among the three grey 

dotted lines, the one closest to origin forms the non-dominated front. 

 

Figure 1.4 An illustration of domination counting and non-dominated sorting methods for 
convergence in 2-dimensional objective function space 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.3 Diversity Preservation 

Diversity preservation is critical in a SMO design because in each generation, one tries to 

avoid identical or very similar solutions in the population. Solutions in the sparser region are 

favored to control the density of solutions in the objective function space. Different techniques 

that incorporate density information into selection process have been developed. There are 
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mainly four diversity preservation strategies which are referred to as fitness sharing, crowded 

comparison, histogram and nearest neighbor, respectively.  

The fitness sharing method uses the well known sharing function [16]: 

⎪
⎩
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where ijd  is the Euclidean distance between two neighboring solutions i and j and shareσ  is a user 

defined niche radius parameter. Each solution i within others’ niche radius will have its fitness 

degraded. The degradation function is as follows: 

i

i
i c

fitnessfitness = , 

where ic is called the niche count for solution i: 

( )∑
=

=
N

dfc
1j

iji , 

 The fitness sharing method is demonstrated in Figure 1.5 (top, left). The solution niche 

count of solution i is the sum of the sharing functions to each of other solutions within the niche 

radius shareσ . The sharing function is actually one type of kernel function whose value represents 

the density estimate for the solution. In the above equations, niche count ci (the sum of the 

sharing function for solution i) represents density estimate for solution i. Also, this density 

information is integrated in the selection process by the using fitness degradation function, where 

a solution with crowded neighbors will have its fitness degraded and is less likely to be selected 

over the optimization process. Fitness sharing has been widely used in SMO, such as MOGA[17], 

NSGA[20] and NPGA[19]. 

This diversity preservation approach, however, is criticized for the requirement of 

specifying the sharing parameter shareσ  [14]. So a method based on crowded comparison for 

diversity preservation is proposed in NSGA II [14]. To estimate the density of solutions 

surrounding a particular solution in the population, the average distance of two points on either 

side of this point along each of the objectives is calculated. The value of this average distance 

contains density information, where larger value indicates the solution is located in a sparser 

region. It is worthy to note that the boundary solutions (solutions with either smallest or largest 

Eq. 1.3 

Eq. 1.4 

Eq. 1.5 
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objective function values) are usually preferred in the optimization process; this can be 

accomplished by assigning an infinite distance value to them. Figure 1.5(top, right) illustrates 

how the distance value of solution a is calculated in the crowded comparison method. 

Figure 1.5 An illustration of different diversity preservation approaches in MOP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 The histogram method divides a M dimensional objective function space into small M 

dimensional hypergrids. Naturally, the number of solutions located in each hypergrid’s cell 

determines the density of solutions in the regions. In Figure 1.5 (bottom, left), the grid where 
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generation with the population of solutions. PAES [15] and MOPSO[CJM2004] have adopted 

this approach. 

 In the last method, nearest neighbor, each solution calculates its total distance from the 

nearest K neighboring solutions, as shown in Figure 1.4 (bottom right). A larger distance value 

suggests the solution is likely to locate in a sparsely populated region. A good example of its 

application is in SPEA2 [18] where the algorithm calculates for each solution the inverse of the 

distance to Kth nearest neighbor and adds it to the raw fitness value.  

 

1.3.4 Elitism 

Elitism is another important concept in stochastic multi-objective optimization. During 

the optimization process, sometimes good solutions are lost due to random effects.  One possible 

way to cope with this problem is to use a deterministic selection operator on the combined 

population of parent and offspring, instead of replacing the parent population with the offspring. 

Another alternative is the use of archiving – a secondary population which maintains promising 

solutions. Most SMO uses the combination of both dominance and diversity information to select 

diverse non-dominated solutions to store into the archive.   

 

1.4 Motivation of Future Research 
Multi-objective optimization has been rapidly developing and expanding in recent years. 

Several interesting new approaches for optimization have been proposed in recent literature. A 

good example is the emerging of a class of artificial immune system (AIS) based multi-objective 

algorithms [22]. One of the urgent problems to be solved is to fit suitable approaches into 

different application domains. Innovation and hybridization of algorithms are also necessary 

when facing different applications. 

 

 

 

 

 

 



 11

CHAPTER 2 -  Stochastic Approaches and Stochastic Multi-

objective Optimization 

2.1 Introduction 
In Chapter 1, the concept of Pareto optimality for multi-objective optimization has been 

presented. In this chapter, we will introduce stochastic approaches, such as genetic algorithms 

(GAs), genetic programming (GP) and particle swarm optimization (PSO), all of which are 

widely used in both single objective and multi-objective optimization problems. At the end of 

this chapter, a survey of recent popular stochastic multi-objective algorithms is also provided. 

2.2 Genetic Algorithms 
Genetic algorithms are stochastic optimization approaches which mimic representation 

and variation mechanisms borrowed from biological evolution, such as selection, crossover, and 

mutation [23][24]. In this approach, a GA candidate solution is represented as a linear string 

analogous to a biological chromosome. The general scheme of GAs starts from a population of 

randomly generated candidate solutions (chromosomes). Each chromosome is then evaluated and 

given a value which corresponds to a fitness level in objective function space.  In each generation, 

chromosomes are chosen based on their fitness to reproduce offspring. Chromosomes with a high 

level of fitness are more likely to be retained while the ones with low fitness tend to be discarded. 

This process is called selection.  After selection, offspring chromosomes are constructed from 

parent chromosomes using operators that resemble crossover and mutation mechanisms in 

evolutionary biology.  The crossover operator, sometimes called recombination, produces new 

offspring chromosomes that inherit information from both sides of parents by combining partial 

sets of elements from them. The mutation operator randomly changes elements of a chromosome 

with a low probability. Over multiple generations, chromosomes with higher fitness values are 

left based on the survival of the fittest.  
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2.3 Genetic Programming  

2.3.1 Introduction  

 Genetic programming is a subclass of GAs, solutions of which are expressed as 

structures. GP has been successfully applied to system modeling and structure discovery. Within 

genetic programming, the process of problem solving is regarded as a search in the objective 

function space. Similar to GAs, basic elements in GP include representation, selection, crossover 

and mutation.  

Representation is critical in GP because the search of GP is not performed directly in the 

objective function space, but rather in a representation space. With the same objective function 

space, the selection of a different representation may result in a different search space. Thus 

representation in GP plays an important role in the effectiveness of its algorithm. Many GPs use 

a graph to represent a topology directly. In addition, such graph can be encoded as a string of 

numbers which makes it easier for an algorithm to handle. 

 The selection operator is used to determine which individuals from parent chromosomes 

and their offspring will form the new generation.  The whole search process actually implies a 

compromise between two contradictory requirements: exploitation of the best available solution 

and robust exploration of the search space. The selection operator is a critical means to maintain 

balance between exploitation and exploration. 

 Crossover and mutation operators are essential for the search process. The crossover 

operator is applied to two parent chromosomes and combine parts from each parent to create 

offspring chromosomes. The mutation operator is applied to one individual by changing parts of 

the chromosome at a very low rate.  
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2.3.2 Conventional Genetic Programming 

Genetic programming was originally devised by Koza[25]. In his original design, a 

solution consisting of functions and terminals appropriate to the problem space is represented as 

hierarchical tree. For example, a simple expression ( )
ba

cba
−
+*  is represented as shown in Figure 

2.1. In this example terminal sets { }cba ,,T = and function sets { }/'','*','',''F −+= .The internal 

nodes of the tree structure are entries from the function set and leaf nodes are input data from the 

terminal set. Also a genetic programming tree and its corresponding expression can equivalently 

be represented in prefix notation, where functions always precede their terminals. In our example, 

expression ( )
ba

cba
−
+*  is equivalent to ( )( )( )( )abbca −+*/  in prefix notation. 

Figure 2.1 Conventional hierarchical tree representation in GP 

 

 

 

 

 

 

 

 

 

 

 

 

There is a probability that crossover is used for swapping the sub-trees in two separate 

chromosomes. This probability is called crossover rate. Also, a single point mutation operator is 

usually applied to chromosomes by randomly changing parts at a certain rate, called mutation 

rate. A conventional GP representation and its crossover process are shown in Figure 2.2. 
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Figure 2.2 Tree-based representation and crossover process in conventional GP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conventional GP, however, has its shortcomings [26] [27] [25] [28] [29] [30] [31]. 

Firstly, tree structure based representation loses GP’s generality to represent other different 

computational structures. Secondly, bloat problem can be observed in conventional GP. Bloat is 

used to describe the phenomenon that solutions have the tendency to become larger and exhaust 

computational resources. When bloat problem occurs, it is nearly impossible to find a small and 

efficient solution. A lot of effort has been made to improve conventional GP [43] [33] [34] [35]. 

An improved form of genetic programming is introduced in the following section. 
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2.3.3 Cartesian Genetic Programming 

Cartesian genetic programming (CGP) [32] is an alternative graph-based form of genetic 

programming. A graph-based representation gives GP great generality so that it can represent 

neural networks, programs, circuits, networks and many other computational structures.  

Actually, we can consider tree structure as a special form of graph in which two nodes must have 

one and only one path between them (a path is a sequence of connected nodes). Also, graphs are 

more compact than the usual tree representation since subgraphs can be used more than once.  

 In CGP, chromosomes are encoded as a list of integers that represent the functions and 

connections between graph nodes and program inputs and outputs.  CGP is loosely inspired from 

FPGAs (field programmable gate arrays) to evolve digital circuits. Its original form is 

represented as a group of Cartesian grids arranged in layers, mimicking the architecture of digital 

circuits. A representation of CGP can be seen in Figure 2.3. From the figure, it is clear to see that 

there are three types of layers: input layer, output layer and main layers. The input layer is on the 

far left of the figure with M input nodes, while the output layer is on the far right of the figure 

with N output nodes iO . In between them are main layers, where each node is specified in order 

by a number of rows R and columns C. The nodes in the same column are not allowed to be 

connected, but they can connect to the nodes in the previous columns.  A parameter called levels-

back is used to define the number of columns back a node in a particular column can connect to.  

The Cartesian representation can be encoded as a string of integers. 

NCRCR OOOfff ...,,;,;...,;, 10111100 −−ccc  

ic denotes a vector of points in which the inputs of the node are connected. Each node 

also has a function; if  represents a function which is listed in predefined function table. It also 

has N output genes iO  that denote the points where the N program outputs are taken from. Inputs 

of node ic  are restricted so nodes can only have their inputs connected to either program inputs 

or nodes from a previous (left) column. Function values are restricted to those available. In CGP, 

only the mutation operator is applied to the representation. During this process, a percentage of 

integers in the representation are changed to another randomly selected value.  But restrictions 

described above must be strictly abided by.  
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Figure 2.3 An example of CGP representation and its encoded integer string form 

 

 

 

 

 

   

 

 

 

 

 

In many implementations of CGP, the number of rows is set to one. Accordingly, the 

number of columns then becomes the maximum allowed number of nodes. Also, the levels-back 

parameter theoretically can be set to be any integer from one (in which case, nodes can only 

connect to the nodes in the column just prior to the current column this node is particularly 

located) to the maximum number of nodes (in which case a node can connect to any previous 

node).  In order to give more flexibility to the CGP structure, in practice, the level-back is 

usually set to latter. 

A simple model (a + b) * c – c represented in CGP with its encoded strings is given in 

Figure 2.4. The available functions include +, -, *. Although each node must have a function and 

a set of inputs for that function, the output of the node does not have to be used by other 

downstream nodes. Node 5 in Figure 2.4 is such a node.  In other words, a node may not appear 

in the model, even though it exists in the representation. Such nodes are redundant or form 

redundancy in GP representation. These redundant nodes are inactive and have a neutral effect 

(termed neutrality) on fitness, because in later generations, they may be activated by the 

mutation operator. In Figure 2.5,  after mutation changes a part of GP representation as shown in 

Figure 2.4, the whole model has been changed accordingly. Previously redundant node 5 has 

been activated.  Similarly, formerly active nodes can be deactivated by mutation. 
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Figure 2.4 A simple model representing in CGP. The node 5 is a redundant node, since its 
output does not connect to any other downstream nodes. It also does not appear in the 
encoded strings or the model. 
 

 

 

 

 

 

 

 

 

 

Figure 2.5 The CGP representation of new model is shown after mutation from the model 
in figure 2.3. Node 5 has been activated by mutation.  

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Comparison of CGP with Conventional GP 

As described earlier, bloat is one of the most serious drawbacks of genetic programming 

[26] [27]. Contrary to the tree structure based GP, CGP does not have a bloat problem. This is 

very likely owed to its pre-determined fixed number of nodes, and also the existence of the 

redundant nodes which could be activated or deactivated by mutation operators [36].  
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Redundancy is one distinctive feature of CGP. Redundancy indicates a large number of 

components which are not active in an individual in CGP. Nevertheless, they may become active 

during the evolutionary process. The high proportion of redundant nodes contributes to good 

performance for CGP. According to previous work with regard to CGP, it is most effective when 

the level of redundancy reaches 95% [37]. Reuse of subgraphs is another prominent feature of 

CGP. It makes graph-based CGP more compact than the usual tree representation. For example, 

node 3 in Figure 2.4 and Figure 2.5 is used by both node 4 and node 5. 

CGP has been applied to a considerable number of fields: digital circuit design [38] [39], 

digital filter design [40], image processing [41], artificial life [42], bio-inspired developmental 

models [43] [44] [45] and molecular docking [46] [47]. CGP has also been adopted and 

hybridized within new evolutionary techniques such as cell-based optimization [48] and social 

programming [49]. 

 

2.4 Particle Swarm Optimization  
Particle swarm optimization (PSO) is an emerging stochastic, population based 

optimization approach [50] [51]. The techniques have evolved drastically since they were created 

and have been widely applied as a stochastic optimization approach to various fields.  

In PSO, a solution is represented as a particle. Particles fly in the search space guided by 

their individual experience and the experience of the whole population. Each particle is actually 

a vector corresponding to a unique position (solution) in the search space. In addition, each 

particle is also associated with a velocity which is responsible for the motion of the particle. At 

the beginning of the algorithm, both the particles and their associated velocities are generated 

randomly. Over each generation, each particle’s position as well as velocity is to be updated until 

satisfactory solutions are found. A detailed algorithm as to how particles and velocities are 

updated will be given in Section 4.4.6. 
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2.5 A Survey of Stochastic Multi-objective Algorithms 

2.5.1 Multi-objective GAs/GPs 

Multi-objective GAs are the most sophisticated among all sorts of stochastic multi-

objective algorithms. The most representative multi-objective GAs include NPGA [19], NSGA 

[20], NSGA II [14] and PAES [15]. All of them have adopted the techniques for convergence 

and diversity described in Chapter 1.  

Multi-objective GPs are relatively new. The inspiration for multi-objective GPs 

originates from multi-objective GAs. Another motivation of multi-objective GP is to overcome 

bloat in GPs (bloat has been detailed in previous sections), since the size of the model could be 

considered as another objective [53] [54]. The main techniques of multi-objective GPs with 

regard to achieving convergence and diversity are generally similar to those of multi-objective 

GAs. In fact, many structures of multi-objective GAs have been mapped onto GPs by 

introducing GPs representation with its associated genetic operators. However, the mainstream 

applications of multi-objective GPs are usually identifying models from huge output-input data.  

Rodriguez-Vazquez et al. applied multi-objective GPs on identifying the structure of a 

nonlinear dynamic system [55]. The Pareto based method has been used as well as a tree-based 

GPs representation in his approach. Parrott et al. designed a multi-objective GP-based classifier 

[DXV2005]. Multi-objective techniques in his algorithm are motivated from Deb et al.’s NSGA-

II [14]. In his approach, classification error and size of structure are considered to be the two 

objectives to be minimized. A similar idea of a multi-objective GP-based classifier has been 

proposed in [56]. In addition, multi-objective GPs have been used in financial predictive models 

[37] [57]. 

The use of an archive (or a repository) is becoming a trend in multi-objective GAs/GPs. 

The main motivation for this mechanism is the fact that a currently non-dominated solution may 

not necessarily be non-dominated among all the historical records. Figure 2.6 shows the flow 

charts of using an archive and without using an archive.  
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Figure 2.6 Flow charts of two methods in multi-objective GA/GP to implement elitism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.2 Survey of Multi-objective GAs/GPs 

2.5.2.1 NSGA-II 

NSGA-II [14], proposed by Deb et al., is an improved version of NSGA [20]. The 

algorithm maintains both a population and an archive with the size of N respectively. Elite 

preservation is applied in each generation after the population is merged with the archive. The N 

best-ranked solutions are preserved in the archive. NSGA-II also proposes fast non-dominated 
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solution in the merged population. When the number of non-dominated solutions exceeds the 

size of the archive, a crowded-comparison method for diversity is invoked to further discriminate 

among non-dominated solutions. Both fast non-dominated sorting and crowded comparison 

methods have been introduced in the first chapter. The total complexity of the algorithm is 

O(MN2) as opposed to O(MN3) in NSGA. The techniques used in NSGA-II have also been 

adopted in several multi-objective GP algorithms. 

 

2.5.2.2 Rodriguez-Vazquez’s MOGP 

Multi-objective genetic programming (MOGP) by Rodriguez-Vazquez et al. is designed 

for a class of problems in engineering -- system identification [55].  In such a problem, a system 

model is required to be built satisfying a number of objectives, from input-output observation 

from the system. 

 In Rodriguez-Vazquez’s MOGP, a non-dominated counting technique is used to obtain 

non-dominated solutions. The diversity issue is addressed by a fitness sharing method which 

encourages the reproduction of solutions located in sparser regions. The ‘preference information’ 

is introduced in the form of a goal vector, which specifies the favored region of search space 

over the optimization process. Accordingly, a ‘preferability operator’ takes responsibility of 

implementing objective preference based on preference information as well as keeping solutions 

within boundaries. These multi-objective optimization techniques are borrowed from MOGA 

[17]. With regard to GP, the hierarchical tree representation with both crossover and mutation 

operators is adopted. MOGP also takes GP’s well-known bloat problem into consideration by 

considering the complexity of the model as one objective to be minimized.  

 

2.5.3 Survey of Multi-objective PSO 

 Particle swarm optimization seems to be more suitable for real world MOO because of its 

high speed of convergence shown in single objective optimization [52]. In recent years, applying 

PSO to MOO has become increasingly popular. Moore and Chapman attempted to handle MOO 

by applying Pareto dominance into their approach, although it has been criticized for not 

adopting any scheme to maintain diversity [58]. The algorithm of Ray and Liew uses Pareto 

dominance for convergence and crowding comparison to maintain diversity as well as a multi-
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level sieve to handle constraints [59]. The algorithm proposed by Parsopoulos and Vrahaits 

focuses on addressing the difficulty of generating the concave portion of the Pareto front by 

using an aggregation function [60]. Hu and Eberhart [61] propose a dynamic neighborhood PSO 

which uses an approach similar to lexicographic ordering [62]. Fieldsend and Singh’s approach 

adopts an unconstrained elite archive to store the non-dominated solutions during the 

optimization process [63]. A mutation operator is also applied on the velocities to avert 

premature convergence. Li [64] proposes an approach which applies the main techniques of 

NSGA II [14] to PSO algorithm. In Coello et al.’s version of multi-objective PSO (MOPSO) 

[21], he compares his results to three highly competitive SMO algorithms: NSAG II [14], PAES 

[15] and microGA[65]. Agrawal et al. [66] proposes an interactive particle swarm optimization 

algorithm (IPSO), which is similar to Coello’s MOPOS. An incorporation of a decision maker 

gives this approach novelty and efficiency. Several attempts of adaptively optimizing the PSO 

parameters during the optimization process have also been made by researchers in the field [67] 

[68]. 

 

2.5.4 Coello’s Multi-objective PSO 

Coello’s MOPSO [21] incorporates Pareto optimality with PSO to handle multi- 

objective optimization. It uses the adaptive hypergrid method (one of the histogram methods) to 

maintain diversity and an archive (or repository) for historical records of non-dominated 

solutions and memory of the individual best of a particle.   

Besides particle population and velocities, the repository is also updated each iteration. 

The mechanism of the repository consists of two main parts: an archive controller for 

convergence and an adaptive hypergrid for diversity. All currently non-dominated solutions are 

to be inserted into the repository and dominated solutions are to be eliminated from the 

repository. Once the repository is full, a secondary criterion is applied to maintain diversity: 

particles located in less populated areas of objective space are reserved.  

Coello argues that a mutation operator is able to improve performance because the nature 

of the high convergence speed of PSO may cause the Pareto front to fall on a local optimum. In 

his MOPSO an adaptive mutation operator is applied to particles as governed by a probability 

each iteration. However this probability is decreased in the process of optimization.  
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A simple scheme to handle constraints is also adopted. Whenever two individuals are 

compared, it follows these rules: if both are feasible in constraints, apply non-dominance directly; 

if one is feasible and the other is not, the feasible dominates; if both are infeasible, then the one 

with lowest amount of constraint violation wins.   
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CHAPTER 3 - Genetic Regulatory Network Modeling 

3.1 Introduction 
With the growing demand for food in the world, crop modeling has been a popular 

research area for many years [69]. Before the exploding development of genomic science, crop 

simulation modeling was a combination of physiology and empiricism [70][75]. The most recent 

trend is to predict plant phenotype of a plant by unraveling the network of interacting genes that 

actually control plant process at the expression level. Such a network in biology is called a 

genetic regulatory network (GRN).  

Another reason for the popularity of gene modeling is the rapid advancement in the field 

of genome sequencing. As of August 2008, 843 organism genomes were completed with another 

2951 in progress1.  The genome of an organism consists of biologically coded information that 

plays an important role in control of cellular processes, its response to environmental stimuli and 

its development. Based on such circumstances, there is a major and growing gap between 

available genomic data and a functional knowledge of the networks whose operations the DNA 

encodes. This trend necessitates a great deal of work on the automated recovery of a gene 

network from the observed data, e.g. gene expression.  This type of problem is called genotype to 

phenotype mapping in biology, and is considered to be a major issue facing applied biology 

today [71].  In the meantime, physiological methods have been used in crop models to predict 

phenotypes as responses to variable environmental inputs which may include time-varying 

temperature, solar radiation and soil water balance [70][74].  

With the urgent demand of gene regulatory modeling based on input environmental and 

output phenotype data, there are a variety of challenges laid out in front of us [72]. Firstly, the 

number of variables to be considered in a gene network model, in many cases, is very high. 

Secondly, the number of gene expression profiles available may be much less than the number of 

variables. Thirdly, there is no standard model of the regulatory mechanisms for the genes, except 

for a generic cause-effect.  

                                                 
1 http://www.genomesonline.org/gold.cgi 
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In addition, noise is another factor hindering model accuracy. Noise is inevitable in both 

environmental and phenotypic data. Slight noise could be magnified by intricate interactions 

within genes and make it difficult to recover a simple mathematical model. 

In the rest of this chapter, Section 3.2 introduces basic concepts and terms of genetics. 

Section 3.3 and 3.4 present a survey of the methodology and models that are most commonly 

seen. The stochastic approach and its effort to address those challenges in gene regulatory 

modeling are explained in Section 3.5. The final section, 3.6, describes a flowering control 

model of a type of intensively studied plant Arabidopsis thaliana, which is used in the problem 

formulation of this dissertation in Chapter 4. 

 

3.2 Basic Genetics  
 In biology, genomes contain an organism’s entire hereditary information, which is 

encoded as deoxyribonucleic acid (DNA). The genome is made up of one or more extremely long 

molecules of DNA that are organized into chromosomes. DNA is a linear, double helical 

structure that looks like a molecular spiral staircase. The double helix is composed of two 

intertwined chains made up of building blocks called nucleotides. Genes are the region of 

chromosomal DNA that carry information specifying the chemical composition of proteins, 

which largely determine the structure and physiology of organisms. In the from-gene-to-protein 

process, genes specify the information on the timing as well as the amount of proteins to be 

synthesized.  The primary structure of a protein is a linear chain of amino acids. 

 There are several steps leading from an active (expressed) gene to a protein. Two of them 

are transcription and translation [73]. Transcription is a process that copies the nucleotide 

sequence in one strand of gene into a complementary single-stranded molecule called messenger 

ribonucleic acid (mRNA). Subsequently translation produces a chain of amino acids based on the 

sequence of nucleotides in the mRNA. Those chains of amino acids will ultimately form proteins.  

 Genes are inactive when the DNA wraps around complexes of modified histone 

molecules (nucleosomes) making it inaccessible to transcription mechanisms. In order to become 

active, certain molecules must attach to the promoter region, an area of DNA upstream of the 

segment coding for the protein. These attaching molecules, often protein, are known as 

transcription factors.  
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Another important concept in genetics is genetic variation, which specifies the 

phenomenon that any particular gene may exist in different forms in different individuals. The 

different forms of the same gene are called alleles. This allelic variation is the basis for 

hereditary variation. However, because there are only one or two chromosome sets per cell in 

most organisms, there are only one or two alleles per gene.  The classification of individuals by 

allelic combination is called genotype. In contrast, the characterization of organisms by their 

appearance is called phenotype. Even for the same genotype, environmental variation can cause 

distinctive phenotypes.   

3.3 Gene Regulatory Network Modeling 
Gene regulatory network modeling focuses on discovering the interaction between  genes 

from genetic, environmental, and phenotypic observations. This kind of problem is considered as 

reverse engineering from a system engineer’s standpoint, which tries to use the behavior of the 

system itself to directly infer the interactions of the system.   

However, there is no single standard modeling approach to discover the structure and 

functionality of gene regulation from a large scale phenotypic and gene expression data. The 

choice of model is more of problem dependent. Moreover, a models often have parameters. Thus 

different techniques are required to estimate these parameters. In this section, most common 

gene regulatory network (GRN) modeling approaches as well as optimization techniques are 

introduced. 

 3.3.1 Graphical Models 

In genetics, the transcription process begins with the transcription factor (attaching 

molecules) attaching to the promoter. The involvement of attaching molecules provides a means 

for gene regulation. If any needed molecules are unavailable, transcription can not begin and the 

gene is inactive. Transcription factors and mRNA degrade with time so their continuous 

production is required to sustain their action. In many cases, the transcription factors themselves 

are gene products that may be under gene regulation by others. In the opposite manner, some 

molecules (called repressor molecules) may occupy the attachment to the promoter and block 

transcription. Based on above understanding, it is straightforward and natural to use a graphical 

model to simulate the transcription process [76] [78] [79]. Graphical models generally consist of 

environmental inputs, phenotypic output(s), graphical nodes representing genes and arrows 
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indicating the interaction between them (either promotion or repression factor). A simple 

example of genetic graphical model is in Figure 3.1. In this case, protein 1 has a repressing effect 

to its own gene (marked in ‘-‘), but has a positive promotion on the transcription of gene 2 

(marked in ‘+’). 

One criticism on graphical models is the lack of quantitative estimation on the outcomes 

based on environmental inputs and gene interactions. The graphical model is straightforward and 

easy to understand but qualitative and incapable of making arithmetic predictions.  

 

Figure 3.1 An example of genetic graphical model 

 

 

 

 

 

 

 

 

 

3.3.2 Boolean Network Models 

In Boolean networks, models are presented as a directed graph where each node in the 

graph represents a gene. Different from graphical models, each node gives an output value of 

either “0” or “1”, corresponding to the active (“on”) or inactive (“off”) status of a gene.  Other 

nodes receive binary output values as their inputs.  Inputs go through the node’s internal Boolean 

function and calculate the current state of the node as output. 

Conventional Boolean network models make use of a synchronous update scheme where 

each node in the model is updated at the same time controlled by a central clock.  A sequence of 

states generated by Boolean functions is finite and may be repeated after certain number of 

updates. This is usually referred to as the state cycle or attractor. The structure of the Boolean 

network model can be validated or modified by comparing simulation results with time series 

observations. 
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Boolean network models have been used in genetic regulatory network modeling [80] 

[81] [82] and proved their analytical tractability and accuracy, although there are reports about 

the difficulties to simulate temporal dynamics of the real system [83]. 

 

3.3.3 Differential Equation Models 

Differential equation models are used to simulate the cellular production rates of 

important proteins. These protein rates are often related to the concentrations of mRNA and 

levels of gene activation (transcription).  In Baldi and Hatfield’s model [85], for example, the 

gene expression level is presented dynamically associated with mRNA and protein levels. It can 

be written in the following equation: 

pR
dt
dp λ−= g , 

where p is the biochemical level; R and pλ are the production and degradation rates of p per unit 

time and g is assumed to be a factor relating other gene products to production of p. To simulate 

genes’ on/off behavior, g is usually considered to be a transfer function instead of a parameter 

constant. We obtain the updated model after substituting g with a linear 

form NN ppp βββ +++ ...1100 , where pi  represents the levels of  gene products affected by gene 

i and iβ  is the effect strength of gene i (a negative number for promotion and positive number 

for repression). Under above circumstances, the new model can be written as: 

ppR
dt
dp

i
ii λβ −⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=0

g . 

 In general, differential equation models are suitable for modeling complex dynamic 

system such as oscillations, cyclic patterns and switch-like behaviors [84]. However, a second 

step of estimating the parameters that associate with differential equation models is inevitable, 

which may increase the complexity of modeling process.  

 

3.3.4 Linear Models 

A gene regulatory network can be represented as a discrete time 

equation ))(()1( tt xfx =+ , where ))(),...,(()( 1 txtxt N=x  is a vector of element )1( Nixi ≤≤  

Eq. 3.1 

Eq. 3.2 
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representing gene expression levels at time t and ),...,( 1 Nff=f  is a vector valued function from 

N dimensional space Nℜ to Nℜ . When function f is linear, the equation becomes a linear model. 

In general, a biological system is nonlinear, but nonlinear models may cause more difficulties in 

estimating parameters from limited number of data samples. In addition, by using linear models 

for GRN, regulatory genes’ interaction functions can be expressed as a regulation matrix. Then 

linear algebra methods such as linear regression, principal component analysis, singular value 

decomposition (SVD), Gaussian methods, etc., can be applied to solve linear models and 

estimate the strength of interactions. Examples of linear models can be found in [90] [91] [92]. 

 

3.3.5 Stochastic Models 

 The latest results in genetics demonstrate gene expression as a stochastic process [86] 

[87]. Many stochastic models are created on the basis of this new discovery, such as [88] [89].  

One typical example of this class of model is the Langevin Equation [89], which is obtained by 

adding one more term to a differential equation as noise: 

)()( tvxf
dt
dx

iii += ,  

where vi(t) is the additive noise term.  

In addition, since the stochastic models simulate a stochastic process, it uses Monte-Carlo 

algorithms, which is a class of computational algorithms that relies on repeated random sampling 

to approximate real results, to obtain solutions of the equation.  

 

3.3.6 Neural Network Model  

Neural networks were initially devised to model brain function to imitate cognitive feats 

such as the learning process and pattern recognition. A neural network model is composed of 

interlinked nodes (neurons), each of which always has a number of inputs and one output. Each 

interlink of a node is also associated with a weight value.  Each node also contains one transfer 

function (often a sigmoidal function) that incorporates non-linearity into the model. To calculate 

the output of a neuron, nodal inputs’ combinations with their associated weights are passed to the 

transfer function to obtain the output. In a word, the function of a neural network completely 

depends on four elements: i) the structure of its nodes and interlinks between them, ii) the 

Eq. 3.3 
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method of combining nodal inputs for substituting into the transfer function, iii) the transfer 

function itself and, iv) weights value associated with each link. The first three elements are 

designed in advance while the last element weights are optimized to fit output data. This process 

is termed the training process.  There have been a number of optimization techniques applied in 

neural network training, such as back propagation approach, genetic algorithms and particle 

swarm optimization.   

In Welch et al.’s genetic neural network model [70], neural network is used to simulate 

ON and OFF behavior in gene regulation. Each node existing in the neural network model 

represents a gene. When this gene is turned ON, the weight applied on this interlink corresponds 

to the effect of regulation by this gene. However, mutation can result in deactivation of a gene so 

it does not function at all.  

One of difficulties in neural network modeling is that modelers do not have preliminary 

knowledge on how large the network should be designed. Larger networks with more weights 

are presumed to retain knowledge of a more complicated nature and also cause the increasing 

complexity in modeling. A common method in neural network modeling is starting with smaller 

network and adding more nodes later when training efforts are not successful.  

 Some common approaches in GRN are reviewed in this section; however other methods 

such as Bayesian networks [93] are not discussed. The novel and emerging stochastic approach 

for GRN is revealed in the next section. 

 

3.4 Stochastic approaches in Gene Regulatory Network (GRN) 
Stochastic approaches such as genetic algorithms (GAs) and genetic programming (GPs) 

have been used in clustering of gene expression data [94] [95], inference of GRN structure [96] 

[97] and estimation of model associated parameters [70] [77]. 

In this literature, GAs are mostly used in model parameter estimation. Many GRN 

models introduced before are parametric models, e.g. differential equation and neural network 

models. Model parameter estimation can be considered as a non-linear optimization problem, 

where the objective function is the goodness-of-fit criterion. Commonly used goodness-of-fit 

criteria are least mean square (LMS).The optimizer may search the objective function space and 

converge to satisfied solution(s). One difficulty in such a problem is the estimation of solution 
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may have premature convergence and land on local optima rather than the desired global 

optimum. This challenge arises from the complexity of the search landscape that commonly 

emerges in global optimization problems. In GA-based parameter estimation methods, a solution 

(chromosome) is actually the string of parameters to be optimized associated with GRN structure 

represented as a mathematical model. Selection, crossover and mutation operators are applied on 

the population of solutions until they converge to satisfactory results.  

GP is an extension of GA, where candidate solutions are represented as certain structures 

rather than a string of numbers. This feature makes GP more suitable for estimating the structure 

or topology rather than the parameters of a network. For instance, Ando et al. [96] used GP to 

generate differential equation models, which represent genetic networks. Each GP solution is 

designed as a tree structure of mathematical operations (functions) and variables (terminals) and 

those variables represent each gene’s mRNA concentration level. An example of how a 

differential equation model is encoded into a GP solution is shown in Figure 3.2. The two tree 

structures in the figure correspond to differential models as follows: 

bxax
dt
dx

+= 2
21

1                                            

221
2 dxxcx

dt
dx

+= , 

where a, b, c, d, are model parameters. 

 The fitness of each solution is defined as the sum of the squared error and the penalty for 

the degree of the equations: 
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0t   :  the starting time 

      tΔ  :  the step size 

       n   :  the number of the observable components 

       T   :  the number of the data points 

where  )( 0 tktxi Δ+  is the given target time series (k = 0, 1, …, T-1); )( 0
' tktxi Δ+  is the time 

series acquired by calculating the a GP solution. m is the number of terms and a is the weight 

constant. This penalty term is generated to overcome the bloating problem in GP based on 

minimum description length (MDL) criterion, which has been often used in GP. In other words, 

Eq. 3.4 

Eq. 3.5 

Eq. 3.6 
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the definition of fitness in [96] indicating a solution with a smaller number of terms and closer to 

the target time series has ae higher possibility to be selected in stochastic optimization process. 

Similar work using GP for GRN structure inference can be found in [97]. 

 Besides GA and GP, particle swarm optimization is another popular and fast growing 

bio-inspired optimization algorithm. It has advantage of fast convergence and thus has been 

applied to various optimization problems in GRN [98] [99]. 

 

Figure 3.2 An example of a GP solution in [96] 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Multi-objective Approaches in Gene Regulatory Network Modeling 
To date, most algorithms developed to infer GRN are single-objective. However, 

previous work on single objective GRN showed that a network found by single objective 

algorithms can generate similar results to experimental data but they may not have structural or 

numerical resemblance to the real network [100] [101] [102]. This may occur because the 

optimization process is caught in local optima. Stochastic multi-objective approaches preserve 
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[77]: i) Multiple data types (continuous, discrete, and/or categorical) are very problematic for the 

design of a single objective function; ii) Individual data sets usually are from different sources 

and may be inconsistent; iii) Tradeoffs between solutions may reveal the magnitude of 

discrepancies.  

Based on above reasons, research on multi-objective algorithms in gene regulatory 

network modeling is relatively new but growing. Several attempts at applying multi-objective 

approaches to GRN have been made [103] [77]. 

3.6 Flowering Control in Arabidopsis thaliana 
 Studies in flowering control are very critical in crop modeling to establish the growth and 

yield generating process within temporal limits. There has been extensive research on flowering 

control in Arabidopsis due to its small genome, short generation time, self-compatibility, 

amenability to stable transformation and the availability of numerous mutants [70]. Arabidopsis 

is a long-day plant. This means the stimulus of long days promote flowering in response. Under 

short days, flowering will be much later. Flowering in Arabidopsis consists of two stages; the 

first stage is to form an inflorescence (or bolting) and the second is to produce flowers. These 

two stages can be distinguished genetically [104]. The bolting stage is hugely influenced by 

environmental signals, such as day length and temperature; while the latter stage is less affected 

by additional environmental inputs. So in most related works on flowering control modeling of 

Arabidopsis, inflorescence (or bolting time) is considered as the criterion of flowering. 

 Flowering control in Arabidopsis at the genetic level has been gradually discovered and 

revealed with the advancement of genetic biology. The gene regulation of flowering control 

system, as shown in Figure 3.3, is well understood now. Input information includes the 

photoperiodic promotion pathway that senses day lengths; verbalization pathway that responds to 

an extended period of cold; the gibberellins pathway that responds growth hormone levels and an 

autonomous pathway.  In the figure, Flowering Locus C (FLC) is a major repressive integrator 

gene which is downregulated by both the autonomous and vernalization pathways. The 

photoperiod pathway gene Constans (CO) functions to combine diurnal clock phase information 

with photoreceptor input to measure day length. Expression levels of key genes, including FLC, 

SOC1 and Flowering Locus T (FT), are altered through the input information from all the 

pathways and are fed into a three-gene-switch including the inflorescence identity gene Terminal 
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Flower 1 (TFL1) and the floral meristem identity genes LFY and Apetala1 (AP1). When this 

switch turns on, the plant is committed to flowering. The expression level of this three-gene-

switch then feeds into floral differentiation and determine the growth of reproductive plant parts 

(flower, etc.).  
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Figure 3.3 Flowering Time Control in Arabidopsis  
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CHAPTER 4 - Problem Formulation and Multi-objective GP-PSO 

Hybrid Algorithm 

4.1 Introduction 
There are a small number of model organisms whose genetic networks have been studied 

in detail including Arabidopsis, bakers yeast, nematode, the sea urchin, and the fruit fly, 

Drosophila, among others.  This research is directed at genetic models of Arabidopsis. 

The general approach to gene network modeling involves developing mathematical 

models such as Boolean networks, Bayesian models, and linear differential equations and then 

utilizing available experimental data to estimate the parameters associated with these models. 

The goal in this research, however, is to infer a gene regulatory network structure and its 

parameters directly from large amounts of both gene expression data and phenotype data 

simultaneously. Identification of genomic regions that contain key genes, plus knowledge of 

their interactions may be sufficient for some applications [105] [106].  

4.2 Data 
Environmental data were collated as part of the activities of an international consortium 

investigating the evolutionary aspects of gene network pathway signal integration1.  This project 

provided the context for a synthetic data set constructed for structure discovery.  Eighteen sites 

were selected ranging from Coimbra, Portugal (40°13’N, 8°25’W) to Jokioinen, Finland 

(60°49’N, 23°30’W).  For each day of the year from March 1 to June 30, daily average 

temperatures, (Tmax+Tmin)/2, were averaged for 25-30 years (most often 1971-1998), 

depending on the site.  Daily photoperiods were obtained for these sites and dates from the 

United States Naval Observatory2. Due to plants’ sensitivity to light, we followed a common 

plant modeling practice of using Civil Twilight, which begins/ends with the sun six degrees 

below the horizon. 

A synthesized and parameterized network, which mimics key features of the well known 

Arabidopsis thaliana flowering time control genetic network, was generated [107]. Functional 

                                                 
1 http://www.egad.ksu.edu 
2 http://aa.usno.navy.mil/data/docs/RS_OneYear.html 
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characteristics of individual genes will be described in the next section; broader discussions of 

gene computational abilities are beyond the discussion of this dissertation, but can be read in [85] 

[108] [110].  Each gene had a single parameter that was assigned one of two different values, 

representing different mutant alleles.  One hundred distinct genotypes were constructed 

representing different allelic combinations, as shown in Figure 4.1. Each genotype was described 

by 100 markers, equated for prototyping purposes to genes, among which the network genes 

were hidden. Each gene in the genome had two alleles, encoded as ‘0’ and ‘1’ accordingly, but 

only network genes influenced the phenotype. Each genotype was simulated at each site for each 

of three assumed planting dates spaced ca. one month apart. The synthetic data resulting from 

these simulations included: (i) the day of the year that the first inflorescence bud would become 

visible (bolting date, a commonly used proxy for floral initiation), and (ii) the gene expression 

time series for one gene in the actual network.  

 

Figure 4.1 Illustration of synthetic genomes 
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4.3 Synthetic Network 
The goal is to obtain a simplified genetic network that can simultaneously predict both 

the bolting dates and expression data as close to the synthetic data as possible. The performance 

measure was the Root Mean Squared (RMS) error E of the predictions of the generated models 

as compared to the synthetic data.  That is, 

( )2data mod
n

el
i i

i
D D

E
n

−
=
∑

    

where data
iD  and model

iD   are, respectively, the synthetic bolting dates (or gene expression) and 

those predicted by a particular model structure for the ith combination of genotype, geographic 

site, and planting date. The optimization routine should simultaneously minimize the RMS errors 

in prediction of both bolting dates and gene expression data, hence necessitating the use of multi-

objective optimization algorithms. 

The genes in the model genetic network are allowed to implement any of the following 

four functions: (i) gain:  1ico g ⋅=   (ii) summer: 21 iico s +⋅=   (iii) multiplier: 21 iico m ⋅⋅=  (iv) 

integrator: )()1()( 1 tictoto i ⋅+−= . In each of the cases, i1 and i2 are the inputs and o the output. 

Each gene has a single parameter associated with it (c = gc , sc , mc  or ic ). As we allowed only 

two alleles per gene, each parameter is assigned two separate numerical values, one for each 

allele. Additionally, there are two inputs to each gene which can be either the outputs from other 

genes in the network, or an environmental input – either the photoperiod (P) or the temperature 

(T). These operators were chosen because (i) genes are, in fact, able to biochemically 

approximate them [108]; (ii) the first three ground quantitative genetic equations, currently the 

dominant formalism applied to the genotype to phenotype mapping problem and to the initial 

steps in gene discovery [111]; and (iii) all four are used to synthesize simple physiological 

process models that approximate plant behavior at a higher level of biological organization 

[108]. 

 

 

 

 

Eq. 4.1 
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4.4 Multi-objective GP-PSO Hybrid Algorithm 

4.4.1 Overall Hybrid Algorithm 

A multi-objective GP-PSO hybrid algorithm is proposed to address the defined problem. 

This approach can be roughly divided into three stages, as shown in Figure 4.2.  

The first stage is for data pre-processing. It is well known that a biological system may 

contain a large number of genes and computational time grows exponentially along with the 

number of genes in the network model due to the curse of dimensionality. Therefore it is 

imperative to reduce total gene numbers in order to avoid huge computational overhead in 

modeling. The first stage, gene identification (GI), is applied to accomplish the above goal and 

identify a set of genes that are most likely to influence the flowering response.  

After this, the multi-objective GP initializes a random population of N solutions, each of 

which is a network structure comprised of M identified genes.  All the structures are evaluated 

and stored in a GP archive1 as parent solutions. The use of this archive is for elite preservation 

which can be seen in a variety of stochastic optimization approaches. A mutation operator is used 

to generate new gene network structures.  

 

Figure 4.2 A three-stage flow chart of overall hybrid algorithm 

 

 

 

 

 

 

 

 

 

 

 

 
                                                 
1 GP archive is named to distinguish PSO archive for parameter estimation. 
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For each new network structure, multi-objective particle swarm optimization is applied to 

estimate parameters. Least RMS errors are adopted as the criterion in the predictions of both 

bolting date and gene expression. After that, the PSO non-dominated front, comprised of equally 

good estimated parameter vectors under the structure, is obtained and stored in the PSO archive. 

The solutions in the PSO archive, each of which consists of a network structure and its 

associated best estimated parameter vectors, and their corresponding RMS errors (fitnesses), are 

returned to multi-objective GP.   

Multi-objective GP use returned solutions in conjunction with parent solutions to 

recalculate its new non-dominated front and then stored it in the GP archive. The solutions 

retained in the GP archive become the parent solutions for the next generation. This process is 

repeated for the maximum allowed number of generations. One critical component of algorithm 

design is that the method to form the non-dominated front in either multi-objective GP or PSO 

satisfies the definition of good dominance and diversity.  

4.4.2 Gene Identification 

 Each genotype consists of 100 genes but only a subset of unknown cardinality is actually 

present in the flowering time control regulatory network. The basic goal of the gene 

identification step is to exclude genes from network membership if their alleles do not alter 

bolting time.  

 The detailed procedure is as follows. For each of the 100 loci, genotypes are divided into 

two groups based on their alleles. F-tests are applied to the corresponding bolting dates in these 

two groups. These tests reveal if the overall bolting date sets associated with different alleles are 

different with high statistical confidence. This is a simplified form of quantitative trait locus 

mapping (QTL) [111] [109], a standard mathematical method used as part of gene discovery.  

Average p-values of F-tests are shown in Appendix B. A smaller p-value indicates its 

corresponding gene is more likely to appear in the network.  
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4.4.3 Multi-objective Optimization Issue and Archive Control 

As explained in prior section, convergence and diversity are the two criteria [13] [7] for a 

multi-objective optimization algorithm: solutions should (i) rapidly converge to the Pareto front 

and (ii) be spread out on the front with proper intervals. To aid in rapid convergence, our 

algorithm implements non-dominated sorting and a histogram method is utilized for maintaining 

diversity in the resulting non-dominated front. Each of these two components is detailed as 

follows. 

Non-dominated sorting approach [14]: In the first generation, a population of N solutions 

is ranked into different non-dominated fronts, each of which consists of solutions that do not 

dominate each other. Each solution can be compared with every other solution in the population 

to find if it is dominated. This requires O(MN) comparisons for each solution, where M is the 

number of objectives. To find the non-dominated front with the highest rank (the first non-

dominated level), the total complexity is O(MN2). The solutions of the first non-dominated front 

will then be saved as elites in an archive. In the following generations, each of offspring 

solutions is compared with every member in the archive, solutions that have been dominated in 

the archive are discarded and the ones that dominated them are inserted into the archive. Suppose 

the size of the archive is also N, archiving process also requires O(MN2). So the complexity of 

the non-dominated sorting algorithm in each generation is O(MN2).  

Adaptive Histogram method (Hypergrid) [15] [21]:  When the number of non-dominated 

solutions exceeds the archive size, the histogram method is activated for truncation and keeps the 

size of the front within that of the archive. The motivation behind this method is to produce a 

well-distributed non-dominated front. In the histogram method, the objective function space is 

divided into identically sized grid cells and more densely populated compartments are thinned. 

When the new solution is inserted into the archive, there may be two scenarios: i) If the new 

solution lies within the grid bounds, algorithm goes to archive flow control process directly 

(shown in Figure 4.3, case 1); ii) If the new solution lies outside the current grid bounds; the 

grids are restructured to include the new solution before following the archive flow control 

process (shown in Figure 4.3, case 2). 
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Figure 4.3 Graphical representation of the insertion of a new solution in the adaptive 

hypergrid when individual lies within/out current boundaries of hypergrid  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the archive control process, a fixed size archive is used to store the set of non-

dominated solutions obtained at the end of each generation. The decision whether a new solution 

should be put into archive or not is based on different scenarios as follows:  if the archive is 

empty, then new solution is accepted (case 1, Figure 4.4); if the new solution is dominated by 

any solution in the archive, it is discarded (case 2, Figure 4.4); otherwise it is accepted into the 

archive and also any solutions dominated by the newly added solutions are removed from the 

archive (case 3, Figure 4.4); lastly, if the maximum archive size is exceeded, the histogram 

method is invoked for truncation (case 4, Figure 4.4).  
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Both multi-objective GP and multi-objective PSO have their own archive but the same 

multi-objective optimization techniques and archive control strategy are applied to form a non-

dominated front in GP and PSO archives respectively. 

 

Figure 4.4 Archive flow control process 

 

 

 

 

 

 

 

 

 

 

4.4.4 Representation Using Cartesian Genetic Programming 

Cartesian genetic programming [32] is used to represent network models. Each solution 

is represented in the form of a string containing C fields, shown in Figure 4.5, where C is the 

number of putative network genes. Each field contains four entries, which designate the two gene 

inputs (either upstream network genes or environmental inputs), an entry representing gene 

function (g, gain; s, summer; m, multiplier; or i, integrator), and an index identifying the gene in 

the data that this particular field in the solution represents.  
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Figure 4.5 Representation of a solution as a string in CGP  

 

 

 

 

 

 

 

 

Figure 4.6 shows an example solution containing five genes that were identified during 

the gene identification process, along with the corresponding gene network. Bolting is predicted 

to occur at the earliest time when the output of gene 4 reaches or exceeds 1. In all the models 

there are two environmental input parameters: Photoperiod (P) and Temperature (T). Since gene 

4 obtains its inputs from genes 1 and 2 whose inputs are environmental, the functional part of 

this network consists of only three genes. The nonfunctional portion is shown with dotted lines; 

genes 3 and 5 are effectively excluded. It is worthy to note that the number of effective inputs is 

determined by the function of the gene itself. Take gene 3 for instance, its function is g: gain, 

hence it has only one effective input from upstream genes. Its second input from Temperature (T) 

is not effective and not shown in the figure. In addition, it should be noted that this scheme only 

encodes network structure. The associated parameters gc , sc , mc   and ic   are stored separately 

and used in the multi-objective PSO section. 
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Figure 4.6 Representations of a sample solution and its corresponding network topology 

 

 

 

 

 

 

 

 

4.4.5 Mutation 

The main objective of the mutation operator is to provide sufficient exploration of the 

search space. Network description elements mutate according to predefined probabilities and 

within ranges of field-specific feasible values. Additionally, mutations are subject to the 

following constraints: (i) feedback loops are not allowed, and (ii) gene indexes are unique. From 

prior knowledge, it is known that several well worked out developmental genetic networks have 

largely feed forward topologies. So loops were excluded from candidate structures in order to 

reduce mathematical computations in this prototype. In addition, gene index entries (field 4) 

must be unique within any one solution string, since markers (genes) are distinct entities. 

Figure 4.7 is an example of applying the mutation operator on encoding strings and the 

corresponding changes on the network structure.  Bold elements in the strings show the entries 

that were mutated. Index numbers in gene 2 and gene 3 switch and one input entry of gene 4 flips 

from 1 to 3, which causes a drastic change in network structure: gene 3 is included into the 

network and becomes functional. This process is called activation of redundancy as illustrated in 

Section 2.3. In the same manner, a previously functional gene may be inactivated and become a 

dysfunctional gene.  

Crossover is another commonly used variation operator in GP. According to [32], 

empirically, crossover does not show statistically significant improvement on the performance of 

CGP representation. Nevertheless, the lack of a crossover operator necessitates a high mutation 

rate. A mutation operator with a 12% mutation rate is used in our hybrid algorithm. 
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Figure 4.7 Network topology change after applying mutation operator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.6 Multi-objective PSO Based Parameter Estimation 

Multi-objective PSO as implemented here has adopted several techniques from Coello’s 

MOPSO [21]. For each regulatory network structure generated by the multi-objective GP 

algorithm, PSO is used to obtain the parameters associated with each gene. The parameters c1 

through cM are treated as a vector c and the swarm is populated initially by a random vector c(j), j 

= 1, …, P, where P is swarm size. Each vector c(j) corresponds to a position of the jth particle in 

the swarm. There is also a PSO archive that stores non-dominated parent solutions. 

Letting subscripts t and (t+1) denote iteration numbers, positions are incremented from 

the instantaneous velocity, vt(i), as follows, 

ct+1(i) = ct(i) + vt(i). Eq. 4.2 
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The velocity is updated using the particle’s own recorded previous best position, as well 

as the current location of the other particles. The update rule is 

vt+1(j) = χ×vt(j) + C1×U[0,1]×( cib(j) – ct(j)) + C2×U[0,1]×( cgb,t(h) – ct(j)). 

In the above equation, C1 and C2 are, respectively, the cognitive and social constants, and 

χ is a constriction coefficient, which helps in maintaining stability. U[0,1] is a uniformly 

distributed random number in the range of [0, 1]. The quantity cib is the individual best recorded 

position of the ith particle so far. cgb,t(h) is a value that is taken from the PSO archive; index h is 

selected in the following way: the hypergrid which contains least particles is chosen and cgb,t(h)is 

one particle randomly picked in this hypercube. cgb,t is considered as the global best position, in 

terms of diversity, of any particle in the current iteration t in our approach. 

Velocity and position corrections are applied to restrict particles to the predefined search 

space. When a particle moves beyond the specified region, it is returned to the boundary it has 

passed beyond. Additionally, its velocity is multiplied by (-1) so that the particle bounces back to 

search in the opposite direction. 

The evaluation of a solution is based on the minimum RMS errors of the objectives 

evaluated using the equation in Section 4.31. To compute the bolting date goodness-of-fit, the 

gene with the least RMS error is taken to be the network output gene and is used to score the trial 

solution. The same method is applied to evaluate gene expression error. The flow chart of our 

multi-objective PSO is shown in Figure 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. 4.3 



 48

Figure 4.8 Flow chart of multi-objective PSO for network parameters estimation 
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CHAPTER 5 - Results and Discussion 

5.1 Introduction 
This chapter explains the details of the results after extensive experiments with 

simulations of the GP-PSO hybrid algorithm. The structure of the rest of this chapter is as 

follows: Section 5.2 briefly describes the simulation setup of the hybrid approach. Section 5.3 

focuses on presenting and analyzing results obtained from the simulations.  

Root mean square error (RMS) between predicted and target data is considered as the 

‘fitness’ of the hybrid approach. Our algorithm is two-objective: one objective is to minimize 

RMS between predicted and target bolting time and the other is to minimize RMS between 

predicted and target gene expression data.  After simulation, a non-dominated front consisted of 

multiple solutions (gene networks) will be shown. One or two gene networks will be extracted 

from the non-dominated front and illustrated graphically. Parameters and functions associated 

with the gene network will also be demonstrated in tables. The synthetic network, which was 

referred to in Section 4.3, will be revealed. Predicted output from obtained networks (both 

bolting dates and gene expression) will be compared with that of the synthetic network 

(explained in Section 4.2). In addition, both obtained networks and synthetic networks will be 

compared and analyzed in mathematical equations. The last section of this chapter, Section 5.4, 

will address specific issues related to the obtained results.  
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5.2 Simulation Setup 
For the multi-objective GP, a population of N = 50 solutions was used with a fixed 

archive size of 50. The maximum number of generations was set to 60 with a mutation rate of 

12%. A population size of P = 50 was used for the PSO algorithm, and the total number of 

iterations per generation was set to 100. The PSO archive size was fixed at 50.  The cognitive 

and social constants C1, C2   were set to 2.0 and 2.1, respectively. The constriction coefficient χ 

was set to 0.4.  

From the gene identification stage, we were able to evaluate each gene’s confidence level 

how that gene is likely to affect the final phenotype. But we did not have any prior knowledge of 

the number of genes that existed in the gene network.  Thus multiple runs with different numbers 

of identified genes M = 6, 8, 10, 12, 14, 17, respectively, were carried out. Noisy phenotype data 

(STD = 2 days) were used in the genes number M = 17 run.  

Based on the simulation setups, the number of function evaluations for each objective is 

50*60*50*100 = 1.5×107. 

5.3 Results  
The synthetic network that was used to generate the problem data is shown in Figure 5.1. 

Its associated parameters and functions for each of the nodes are shown in Table 5.1. In the rest 

of this thesis, the parameters and functions table for gene networks will be presented in the 

following manner: the first column shows the gene index numbers in the network; the second 

column shows the corresponding functions; the third column indicates parameter symbols, the 

subscript parts of which imply the initial letter of the function and corresponding gene index 

number; the fourth column presents parameter values for allele marker #0; and the fifth column 

presents parameter values for allele marker #1.  

Figure 5.1 The synthetic gene regulatory network 
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Table 5.1 Parameters and functions associated with synthetic gene network shown in figure 

5.1 

Gene # function 
Parameter

Symbol 

Parameter Value  
for Allele # 

     0           1 

18 gain ,g 18C  1.2 0.8 

24 gain ,24gC  0.8 1.2 

32 summer ,32sC  0.9 1.1 

54 multiplier ,54mC  8.1e-5 8.5e-5 

80 summer ,80sC  6.2e-4 6.3e-4 

92 integrator ,92iC  0.8 1.2 

  
 

In order to assess the performance of the proposed algorithm, solutions in the initial 

population as well as those obtained at the end of the algorithm’s execution are compared. Figure 

5.2 shows the non-dominated front obtained in one of the sample runs for M = 6. The points with 

the (+) sign represent the non-dominated solutions in the initial randomly generated population 

and points with the (*) sign represent the non-dominated solutions obtained at the end of the run. 

It can be seen from the figure that the algorithm has good convergence on both objective and at 

the same time achieved an evenly distributed final non-dominated front. 

Figure 5.3 and Figure 5.4 show the network structures of two sample solutions selected 

from the final non-dominated solutions front for the run with M = 6, respectively. The predicted 

RMS errors of the sample #1 solution of the 6-gene run are 2.3 days (bolting date) and 0.0003 

(gene expression level). It has all the genes present in the synthetic network, except for gene #54. 

Similarly, the RMS errors of its counterpart non-dominated sample #2 solution in our 6-gene run 

are 1.8 days and 0.0009, respectively. 

Table 5.2 and Table 5.3 show the associated parameters and functions for each node 

illustrated in Figure 5.3 and 5.4 respectively.   
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Figure 5.2 Non-dominated solutions obtained from simulating M = 6 gene run 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Sample network #1 of a solution obtained in M = 6 gene run 

 

 

 

 

 

 

 

Figure 5.4 Sample network #2 of a solution obtained in M = 6 gene run 
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Table 5.2 Parameters and functions associated with the gene network shown in Figure 5.3 

 

Gene # function Parameter
Symbol 

Parameter Value  
for Allele # 

     0           1 
18 gain ,g 18C  0.00064 0.000441 

24 multiplier ,24mC  0.12 0.18442 

32 integrator ,32iC  0.17884 0.20027 

54 - 54C  - - 

80 summer ,80sC  0.058532 0.03856 

92 integrator ,92iC  0.49112 0.9257 
 

 

 

Table 5.3 Parameters and functions associated with the gene network shown in Figure 5.4 

Gene # function Parameter
Symbol 

Parameter Value  
for Allele # 

     0           1 
18 summer ,s 18C  0.97461 0.01078 

24 multiplier ,24mC  1.6e-5 2.3e-5 

32 summer ,32sC  0.79734 0.810017 

54 - 54C  - - 

80 - 80C  - - 

92 integrator ,92iC  1.7585 2.8781 
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Figure 5.5 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #1 of a solution obtained in M = 6 gene run) 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #2 of a solution obtained in M = 6 gene run) 

 

 

 

 

 

 

 

 

 

 

In order to give more visual and straightforward comparisons between synthetic networks 

and networks obtained by the proposed algorithm, comparisons of the predicted and actual 

bolting dates or gene expression data are shown in Figure 5.5 and Figure 5.6. In Figure 5.5/5.6 

(left), a linear regression to bolting date comparison is given in right top corner and a coefficient 

of determination R2 of linear regression is also presented.  

 

 

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g 
D

at
e

R2 = 0.9992

y = 0.999*x+0.594

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e 
E

xp
re

ss
io

n 
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g 
D

at
e

y = 0.955*x+3.03

R2 = 0.9974

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e 
E

xp
re

ss
io

n 
Le

ve
l

Actual Gene Expression
Predicted Gene Expression



 55

Figure 5.7 Non-dominated solutions obtained from simulating M = 8 gene run 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Sample network #1 of a solution obtained in M = 8 gene run 

 

 

 

 

 

 

 

Figure 5.9 Sample network #2 of a solution obtained in M = 8 gene run 
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Table 5.4 Parameters and functions associated with the gene network shown in Figure 5.8 

 

Gene # function 
Parameter

Symbol 

Parameter Value  
for Allele # 

     0           1 

18 gain ,g 18C  1.3286 0.88411 

24 multiplier ,24mC  5.6e-5 8.6e-5 

32 summer ,32sC  0.54132 0.54518 

54 summer ,54sC  2.6e-5 1.16e-4 

80 - 80C  - - 

92 integrator ,92iC  1.8867 2.9725 

  
Table 5.5 Parameters and functions associated with the gene network shown in Figure 5.9 

 

Gene # function Parameter
Symbol 

Parameter Value  
for Allele # 

     0           1 
13 summer , 3s 1C  1.7747 1.8221 

18 gain ,g 18C  2.24e-4 1.57e-4 

24 multiplier ,24mC  0.33378 0.49127 

32 summer ,32sC  0.00806 0.010978 

54 - 54C  - - 

80 - 80C  - - 

92 integrator ,92iC  1.7741 2.8085 
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Figure 5.10 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #1 of a solution obtained in M = 8 gene run) 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #2 of a solution obtained in M = 8 gene run) 

 

 

 

 

 

 

 

 

 

 

 For M = 8 gene run, Figure 5.7 demonstrates the initial (‘+’) and final (‘*’) non-

dominated front after applying our algorithm. Figures 5.8 and 5.9 present two sample networks 

of solutions from the 8 gene run, with RMS error of bolting dates 3.1 days and gene expression 

level 0.00025 in solution #1; 1.9 days and 0.0006 in solution #2. Tables 5.4 and 5.5 show the 

parameters and functions associated with the network in Figures 5.8 and 5.9 respectively. Figure 

5.10 illustrates the comparison of actual versus predicted bolting dates and gene expression level 
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generated by sample solution #1 while Figure 5.11 illustrates that of solution #2 in this 8 gene 

run.  

Figure 5.12 Non-dominated solutions obtained from simulating M = 10 gene run  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Sample network #1 of a solution obtained in M = 10 gene run 

 

 

 

 

 

 

Figure 5.14 Sample network #2 of a solution obtained in M = 10 gene run 
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Table 5.6 Parameters and functions associated with the gene network shown in Figure 5.13 

 

Gene # function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
18 gain ,g 18C  0.090229 0.059627 

24 multiplier ,24mC  0.000909 0.001338 

32 - 32C  - - 

54 integrator ,54iC  0.84275 0.74101 

80 - 80C  - - 

92 integrator ,92iC  0.11721 0.24078 

  
 

Table 5.7 Parameters and functions associated with gene network shown in Figure 5.14 

 

Gene # function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
13 gain , 3g 1C  0.009624 0.009305 

18 gain ,g 18C  0.559969 0.37422 

21 gain ,21gC  0.17868 0.1715 

24 multiplier ,24mC  0.091111 0.13009 

32 - 32C  - - 

54 - 54C  - - 

80 - 80C  - - 

92 integrator ,92iC  1.8221 2.9829 
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Figure 5.15 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #1 of a solution obtained in M = 10 gene run) 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #2 of a solution obtained in M = 10 gene run) 

 

 

 

 

 

 

 

 

 

 For the M = 10 gene run, convergence and diversity of the final non-dominated front are 

shown and compared with that of the initial non-dominated front in Figure 5.12.  Two networks 

of solutions selected from the final non-dominated front are given in Figures 5.13 and 5.14 

respectively. The former solution has RMS error 2.4 days in bolting dates and 0.0002 in gene 

expression level; the latter solution has RMS error 3.4 days in bolting dates and 0.00013 in gene 

expression level. Their associated parameters and functions are demonstrated in Tables 5.6 and 

5.7 correspondingly. Comparison of actual versus predicted bolting dates and gene expression of 

these two solutions are shown in Figures 5.15 and 5.16 respectively. 
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Figure 5.17 Non-dominated solutions obtained from simulating M = 12 gene run  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Sample network of a solution obtained in M = 12 gene run 
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Table 5.8 Parameters and functions associated with the gene network shown in Figure 5.18 

 

Gene # function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
18 gain ,g 18C  0.00472 0.003153 

24 Multiplier ,24mC  0.017231 0.02622 

26 Integrator ,26iC  1.2395 1.2737 

32 - 32C  - - 

54 - 54C  - - 

80 Integrator ,80iC  0.5056 0.48973 

92 Gain ,92gC  0.14633 0.28778 

  
 

Figure 5.19 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network of a solution obtained in M = 12 gene run) 

 

 

 

 

 

 

 

 

 

Figure 5.17 illustrates the non-dominated front obtained from the 12 gene run. One 

solution withdrawn from the front is demonstrated in Figure 5.18. Its associated parameters and 

functions are listed in Table 5.8. Figure 5.19 shows the comparison of actual versus predicted 

data for this solution. The RMS error in bolting dates and gene expression level for this solution 

are 2.3 days and 0.00025. 
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Figure 5.20 Non-dominated solutions obtained from simulating M = 14 gene run  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Sample network #1 of a solution obtained in M = 14 gene run 

 

 

 

 

 

 

 

Figure 5.22 Sample network #2 of a solution obtained in M = 14 gene run 
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Table 5.9 Parameters and functions associated with the gene network shown in Figure 5.21 

 

Gene # Function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
18 gain ,g 18C  0.00032 0.000212 

20 integrator ,20iC  0.73234 0.71198 

24 multiplier ,24mC  0.26749 0.38329 

32 multiplier ,32mC  0.038691 0.040016 

54 - 54C  - - 

80 - 80C  - - 

92 gain ,92iC  0.14811 0.36625 

  
 

Table 5.10 Parameters and functions associated with the gene network shown in Figure 

5.22 

 

Gene # function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
18 gain ,g 18C  0.75968 0.498452 

20 integrator ,20iC  4e-6 6e-6 

21 summer ,21sC  8.0e-5 7.4e-5 

24 multiplier ,24mC  1.3153 1.8698 

32 - 32C  - - 

54 - 54C  - - 

80 - 80C  - - 

92 gain ,92gC  1.6466 2.8733 
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Figure 5.23 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #1 of a solution obtained in M = 14 gene run) 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #2 of a solution obtained in M = 14 gene run) 

 

 

 

 

 

 

 

 

 

 For the M = 14 gene run, Figure 5.20 shows the final non-dominated front after applying 

the proposed approach.  Two networks of the solutions selected from the final non-dominated 

front are given in Figures 5.21 and 5.22 respectively. The former solution has RMS error 2.9 

days in bolting dates and 0.0004 in gene expression level; the latter solution has RMS error 1.5 

days in bolting dates and 0.0009 in gene expression level. Their associated parameters and 

functions are demonstrated in Tables 5.9 and 5.10 correspondingly. Comparison of actual versus 

predicted bolting dates and gene expression of these two solutions are shown in Figures 5.23 and 

5.24 respectively. 

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g 
D

at
e

y = 0.985*x-1.089

R2 = 0.9998

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time 
G

en
e 

E
xp

re
ss

io
n 

Le
ve

l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g 
D

at
e

y = 0.9655*x+2.6

R2 = 0.9987

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e 
E

xp
re

ss
io

n 
Le

ve
l

Actual Gene Expression
Predicted Gene Expression



 66

Figure 5.25 Non-dominated solutions obtained from simulating M = 17 gene run  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Sample network #1 of a solution obtained in M = 17 gene run 

 

 

 

 

 

 

 

Figure 5.27 Sample network #2 of a solution obtained in M = 17 gene run 
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Table 5.11 Parameters and functions associated with the gene network shown in Figure 

5.26 

 

Gene # function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
17 summer , 7s 1C  0.01 0.0235 

18 summer ,s 18C  1.2 0.80961 

24 multiplier ,24mC  5.2e-005 8.3e-005 

32 - 32C  - - 

54 - 54C  - - 

74 gain ,74gC  1.69e-004 1.65e-004 

80 - 80C  - - 

92 integrator ,92iC  1.7146 2.7925 

  
 

Table 5.12 Parameters and functions associated with the gene network shown in Figure 

5.27 

 

Gene # function Parameter
Symbol 

Parameter Value 
for Allele # 

0           1 
18 gain ,g 18C  0.002053 0.001403 

24 multiplier ,24mC  0.036626 0.054389 

32 - 32C  - - 

54 - 54C  - - 

80 summer ,80sC  0.05222 0.038843 

92 integrator ,92iC  1.7453 3.3096 
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Figure 5.28 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #1 of a solution obtained in M = 17 gene run) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 Comparison of actual vs. predicted bolting dates and gene expression (Sample 

network #2 of a solution obtained in M = 17 gene run) 

 

 

 

 

 

 

 

 

 

The M = 17 gene run is the run with the most potential candidate genes to form a solution. 

Figure 5.25 shows the initial non-dominated front in ‘+’ and final non-dominated front in ‘*’. 

The number of non-dominated solutions increases significantly and both good convergence and 

diversity are obtained at the end of proposed algorithm compared to initial non-dominated 

solutions.  Figures 5.26 and 5.27 show one sample solution from the final non-dominated 

solutions and Tables 5.11 and 5.12 are the parameters and functions associated with them 
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respectively. The former solution has RMS error of 3.4 days in bolting dates and 0.0001 in gene 

expression level; the latter solution has RMS error of 1.6 days in bolting dates and 0.00085 in 

gene expression level.  Both solution #1 and #2 are able to recover 4 correct genes out of 17 

candidate genes compared to the 6 gene synthetic network. Comparison of actual versus 

predicted bolting dates and gene expression are shown in Figures 5.28 and 5.29 respectively for 

these two solutions. All of these figures indicate that the generated network is able to accurately 

predict the response of the synthetic gene network. 

A more discerning numerical comparison of results for all of the runs is given in Table 

5.13 by substituting the gene functions at each of the nodes, their associated parameters and 

evaluating the mathematical equivalent expressions for each network. The raw mathematical 

expressions do not appear similar. However, after parameter substitution (allele 0 shown) 

similarities emerge in terms ‘T * P’ and ‘O92(t-1)’, which are vital components in estimating the 

bolting date. 

 

Table 5.13 Numerical formulas before and after parameter substitution 
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Sample Gene 

Network#1 from 

M=8 run 
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Sample Gene 

Network#1 from 

M=17 run 
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Table 5.14 Sensitivity analysis to numerical formulas in Table 5.13 

 

Term 

Relative 

Sensitivity 

Numerical Formula for Bolting 

Dates Prediction 
T P *T*P T2 P2 T* P2 
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Sample Gene 

Network#2 

from M=8 

run 
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Sample Gene 

Network #2 
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We carried out a sensitivity analysis to see how the variation in the bolting date outputs 

predicted by mathematical models can be apportioned, both qualitatively and quantitatively, to 

the variation in the parameters of each term in Table 5.13. The results of sensitivity analysis are 

shown in Table 5.14. The sensitivity of formulas is considered as ratio of the relative change in 

the output BD to the relative change in each term’s weightσ ,
( )
( ) 212

212

σσσ /
/

−
− BDBDBD , where 

8
1 10−=σ , 2

2 10−=σ . BD denotes average bolting dates simulated under 18 different planting 

environments. 

 From Table 5.14, it is clear that the most significant terms of the numerical equation for a 

synthetic network are ‘P’ and ‘T * P’ with condition number 7.16 and 8.6 respectively. 

Contrarily, the ‘T’ term has a condition number of 1.97 which is significantly small and can be 

neglected. Based on such simplification, the sample gene network #1 from the M = 8 run is the 

best network. Its structure and condition number of both ‘P’ and ‘T * P’ terms are very close to 

those of the synthetic network. 

5.4 Further Result Discussion  
The synthetic network consists of 6 genes with indexes #18, 24, 32, 54, 80 and 92, out of 

genomes made up of 100 gene markers.  Putting aside the factor of noise, this indicates that the 

variation of phenotype data (either bolting dates or expression data) obtained at two different 

mutant genotypes with the identical environmental inputs would be observed only when the 

alleles on one or multiple loci of these 6 genes vary within the genotype pair. In order to discover 

the degree of each allele switch that causes phenotype variation, an analysis based on phenotype 

data obtained from the synthetic network at different mutant genotypes is performed.  

Recall from Section 4.2, each gene has two mutant alleles (represented by marker ‘0’ or 

‘1’). A genotype is constructed as a string of markers, representing different allelic combination. 
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The size of the string is the number of genes in the network.  After simulating all the possible 

combinations, the genotype with allelic string ‘100001’ is found to have the latest bolting dates, 

as shown in Figure 5.30(a).  Figure 5.30(b) shows the bolting dates for allelic strings with one bit 

different from that in Figure 5.30(a) (the Manhattan distance is 1). Figure 5.30(c), (d), (e), (f) and 

(g) illustrate the bolting dates for allelic strings with two, three, four, five and six bits different 

from that in Figure 5.30(a), respectively.  

From Figure 5.30, it can be seen that genes #18, 24 and 92 have a significant effect and 

gene #80 has some impact on the phenotype prediction. On the other hand, genes #32 and 54 

have very little impact on phenotype. The gene networks obtained from the proposed algorithms 

are consistent with our discovery from phenotype analysis.  

Although different genes are contained in gene networks obtained in different runs, the 

important genes #18, 24 and 92 which have significant impact on phenotype are found in all of 

the obtained networks, indicating that our algorithm is capable of capturing the important genes 

that are significant enough to be not affected by incidental factors.  All of the inferred network 

structures are able to predict phenotype data very close to real data.  In addition, all the network 

structures acquired by the proposed approach are small networks, indicating that CGP has been 

able to reduce the known problem of bloating, which is often seen in GP. 
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Figure 5.30 Impact of 6 genes on phenotype of bolting dates 
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CHAPTER 6 - Network Assisted Selection for Breeding  

6.1 Introduction 
In the previous chapter, we showed how small plausible gene networks can be derived 

from phenotypic data, such as bolting dates and gene expression, using multi-objective stochastic 

optimization techniques. This thesis also includes a proposal for providing breeding strategies in 

plants based on computer simulation. 

Plant breeding is a process of using deliberate crosses of related individuals to produce 

desirable lines. Breeding relies on new combination of chromosomes or recombination within 

chromosomes to generate new lines and a selection strategy to keep lines with desired 

characteristics. In the commonly used selection strategies, marker assisted selection (MAS) is 

based on the allele marker(s) linked to a trait (phenotype) of an individual [112]. The technique 

has accelerated breeding and has improved the accuracy of crosses compared to selection of 

phenotypes alone and allowed breeders to produce new lines with combined traits that were 

impossible before [113]. 

Marker assisted breeding does not account for phenotypic behavior that arises from 

interaction between genes for which no single gene is individually responsible. This 

phenomenon is called epistasis. Epistasis has been modeled by Kauffman using the NK fitness 

landscape [114] [115]. 

In this chapter, we make use of the NK fitness landscape for a theoretical study on marker 

assisted breeding and we also propose an approach that considers epistasis. The remainder of this 

chapter is organized as follows.  The NK fitness landscape model will be introduced first. We 

will also illustrate the concept of applying this method in NK fitness landscape models to show 

that the proposed selection strategy may potentially produce faster improvements. Next, the 

network obtained by our GP-PSO hybrid algorithm will be applied in breeding experiments. 

Comparison of different breeding strategies by computer simulation will also be shown. 
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6.2 NK Fitness Landscape 
 Stuart Kauffman devised the ‘NK fitness landscape’ model to explore the way epistasis 

control the ruggedness of an adaptive landscape, where N indicates the number of genes in the 

model and epistasis K the interaction between genes [114][115].  

The NK model can be considered as a stochastic method for generating a fitness 

function }{ +ℜ→N10,:F , on a binary string, }{ N10,x∈ , where the genotype x consists of N loci, 

with two possible alleles at each locus xi. Kauffman conceives of each gene as contributing a 

fitness component. So the fitness function can be further generalized as the average of f fitness 

components Fi contributed by each locus i. Each fitness component Fi is determined by its own 

allele xi, and also the alleles at K other epistatic loci that affects it. Thus the fitness function can 

be written in the following form: 

( ) ( )∑
=

+
=

N

i
ijijiji K

xxxF
f

F
1

121

1
)()()( ,..,x ,  

where { } { }Nijijij K ,...,1)(),...,(),( 121 ⊂+ . The index sets { })(),...,(),( 121 ijijij K+ comprise a gene-

fitness map that can be represented as a Nf × matrix [ ] Njfimij ...1,...1, ===M , where 

{ }10,∈ijm  and ijm  indicates whether locus j contributes to fitness component i with ‘1’ 

representing yes and ‘0’ representing no. It is assumed that that each fitness component is 

affected by one gene, and vice versa. 

 Letting  ir  be the rows of M, where [ ] Njmiji ...1, ==r . The fitness component Fi can be 

obtained by using a single uniform pseudo-random function U: 
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expressed as: 
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 In Eq.6.2, any change in one of the three arguments irx •. , ir  and i  will result in a 

randomly generated new value for ( )iU ii ,,. rrx • . If we store the values for all the possible allelic 

Eq. 6.1 

Eq. 6.2 

Eq. 6.3 
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combinations (genotypes) x, it requires 2(K+1) spaces. In addition, based on the fact that one 

fitness component Fi is determined by one gene with its K epistasis, we can know the number of 

components f equals the number of loci in the genotypes N. Thus it requires storage of  2(K+1)N  

in total to implement this function. 

There are two methods of how to generate a gene fitness map: adjacent neighborhoods 

and random neighborhoods. The gene fitness map using either method requires the main 

diagonal be filled. When using the adjacent neighborhood method, the main diagonal would be 

surrounded by K filled adjacent diagonals in the gene fitness map. The random neighborhoods 

method, however, fills each row with K randomly selected units besides the diagonal unit that’s 

been filled.  These two methods and their corresponding gene fitness maps are illustrated in 

Figure 6.1(left) and Figure 6.1(right) respectively. 

 

Figure 6.1 Two gene fitness maps: adjacent neighborhoods (left) and random 

neighborhoods (right) when N = 10, f = 10 and K = 3 
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6.2.1 Breeding Simulation in NK Fitness Landscape 

 The objective of a breeding simulation is to find the largest output of each of a variety of 

NK fitness landscape models, as shown in Eq. 6.1. The ruggedness of the fitness function is 

controlled by parameter K.   Two different selection strategies, MAS and our proposed approach, 

are used in breeding simulation.  Both simulations start with a population of 45 lines that are 

randomly generated, each of which is a combination of N = 20 alleles. By using different 

selection strategies for the crossover, a population of 45 new lines will be generated. New lines 

from crossover become the parent population for the next generation. The cycle above will 

repeat over multiple generations until convergence.  

In MAS, we run a basic genetic algorithm to obtain an elite genotype which has the 

largest output value through the NK fitness landscape model. The top 10 lines are selected based 

on closeness (Manhattan distance) to the elite genotype.   The crossover on all the combinations 

of pairs in the top 10 lines will yield 10*9/2 = 45 new lines as the new population in next 

generation. 

In the proposed approach, genotypes are selected for crossover based on average 

predictions after crossover. For each pair of combinations from the 45 lines, simulate all possible 

genotypes after crossover. The average of these predicted output values in NK model is 

considered to be the expected ‘fitness’ of the corresponding pair after crossover. 

We apply breeding simulations on two scenarios of NK landscape models: the adjacent 

neighborhoods method and the random neighborhoods method, depending on how the gene 

fitness interaction map was generated. In each scenario, computer simulations were conducted by 

varying the NK fitness landscape parameter K. Apparently, there is no epistasis (gene interaction) 

when K = 0. The NK models become increasingly complex with the increase of K. Both MAS 

and our proposed approach used one point crossover. Mutation, however, was not applied. Due 

to the Monte Carlo feature of the simulation, 20 independent runs were performed for each 

model under the landscape parameters, N = 20, while K varies at 0, 1, 3, 5, 7, and 9. The results 

were averaged over 20 runs. 
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Figure 6.2 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 0. The NK model is generated by using the adjacent neighborhood method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 1. The NK model is generated by using the adjacent neighborhood method. 
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Figure  6.4 MAS vs. our proposed approach on NK model based breeding, where N = 20 

and K = 3. The NK model is generated by using the adjacent neighborhood method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 5. The NK model is generated by using the adjacent neighborhood method. 
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Figure 6.6 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 7. The NK model is generated by using the adjacent neighborhood method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 9. The NK model is generated by using the adjacent neighborhood method. 
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Table 6.1 Comparison of MAS and our proposed approach after convergence with multiple 

NK fitness landscape models generated by the  adjacent neighborhoods method. 

 

 

 

 

 

 

 

 

Comparisons of MAS and our proposed approach simulated on NK fitness models (the 

adjacent neighborhoods method) are shown in Figure 6.2 to 6.7. The straight dash line 

demonstrates the fitness value of the elite line obtained from the genetic algorithm for MAS. To 

demonstrate the statistical confidence over multiple runs, error bars, whose vertical distances 

denote 2*σ  (standard deviation), are also shown in the figures. The final converged mean 

fitnesses as well as the standard deviations over multiple runs can be found in Table 6.1. 

Simulations on NK fitness landscape models (the random neighborhoods method) are shown in 

Figure 6.8 to 6.13, respectively. The corresponding final mean fitnesses and the standard 

deviations over multiple runs are demonstrated in Table 6.2. 

As we can see in the figures and tables, our proposed approach achieves faster 

convergence, and is also able to obtain a higher mean fitness value at the end of each run. 

Another phenomenon we are particularly interested in is the smaller variations in simulations 

that applied our proposed approach, which potentially indicate better accuracy than MAS-based 

breeding. Along with the increase of the NK model complexity (increase of gene epistasis K), our 

proposed approach shows increasingly significant outperformance over MAS, as shown in Table 

6.1 and 6.2, which indicates our proposed approach is able to capture the additional gene 

interactions in the models.  

 

 

 

 

epistasis K  0 1 3 5 7 9 

elite fitness  0.7181 0.7401 0.720 0.7767 0.7578 0.7550 

mean 0.6075 0.7005 0.6687 0.7194 0.6732 0.6250 
MAS 

std 0.0169 0.0373 0.0433 0.0529 0.0668 0.0696 

mean 0.6123 0.7185 0.6948 0.7429 0.7143 0.7245 
Proposed 

std 0.0060 0.0176 0.0133 0.0280 0.0233 0.0171 
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Figure 6.8 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 0. The NK model is generated by using the random neighborhoods method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 MAS vs. our proposed approach on NK model based breeding, where N = 20 and 

K = 1. The NK model is generated by using the random neighborhoods method. 
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Figure 6.10 MAS vs. our proposed approach on NK model based breeding, where N = 20 

and K = 3. The NK model is generated by using the random neighborhoods method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 MAS vs. our proposed approach on NK model based breeding, where N = 20 

and K = 5. The NK model is generated by using the random neighborhoods method. 
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Figure 6.12 MAS vs. our proposed approach on NK model based breeding, where N = 20 

and K = 7. The NK model is generated by using the random neighborhoods method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 MAS vs. our proposed approach on NK model based breeding, where N = 20 

and K = 9. The NK model is generated by using the random neighborhoods method. 
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Table 6.2 Comparison of MAS and NAS after convergence in the random neighborhoods 

based on NK models 

 

 

 

 

 

 

6.3 Plant Breeding Simulations 
In the last section, we proposed an approach that used prediction to guide the breeding 

process. The simulation results on NK fitness landscape models show that our proposed approach 

outperforms well-known MAS because of its ability to capture the gene interactions. Based on 

the concept of the proposed approach in the last section, we propose a network assisted selection 

(NAS) that makes use of networks obtained from GP-PSO hybrid algorithms to guide the 

breeding process for plant breeding simulations. 

The simulation was set up as follows. The objective of the plant breeding simulations was 

to find the lines (genotypes) with the latest bolting dates. In each breeding simulation, lines were 

evaluated against 54 environments (3 planting sites * 18 planting dates). The average bolting 

dates after evaluation of lines through the synthetic network mimicked those in real world 

planting. Network obtained by our hybrid algorithm is used to make close prediction. 

To maintain the consistency of our proof-of-concept simulation for NAS-based breeding 

on NK fitness models, the simulation was designed as close to the breeding simulation on NK 

models as possible. The plant breeding process was conducted as follows. Forty-five lines were 

randomly generated as the initial breeding population, each being a combination of 100 alleles. 

By using different selection strategies, a population of 45 new lines was generated after applying 

the crossover. The new lines generated by the crossover became the parent population for the 

next generation. The cycle above was repeated over multiple generations until the population 

reached convergence. Because the simulations were stochastic in nature, a total of 20 breeding 

runs were conducted for each selection strategy.  

epistasis K  0 1 3 5 7 9 

elite fitness  0.6212 0.7372 0.7471 0.7400 0.7618 0.7502 

mean 0.6032 0.7077 0.6813 0.6867 0.6485 0.6356 
MAS 

std 0.0195 0.0362 0.0433 0.0669 0.0676 0.0696 

mean 0.6123 0.7147 0.7170 0.7052 0.6948 0.7263 
Proposed 

std 0.0060 0.0133 0.0209 0.0288 0.0355 0.0203 
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A randomly selected network obtained by the GP-PSO hybrid algorithm is used. The 

NAS was implemented as follows. 

NAS:  Genotypes are selected for crossover based on network assisted predictions. For each pair 

of combinations from 45 lines in the parent population, simulate all possible genotypes 

after crossover. Evaluate them through networks obtained from our hybrid algorithm. The 

average of these predicted bolting dates is considered to be the expected ‘fitness’ of the 

corresponding pair after crossover. Forty-five pairs with the best expected fitness are 

selected for crossover to generate new lines. 

Two different selection strategies were selected to compare with NAS separately: marker 

assisted elite selection (MAES) and marker assisted tournament selection (MATS). They were 

conducted respectively as follows. 

MAES: The top 10 lines are selected based on closeness (Manhattan distance) to the elite 

genotype. The elite genotype is obtained by a simple genetic algorithm. Crossover all 

the combinations of pairs, which yields 10*9/2 = 45 new lines. 

MATS: Repeat the tournament selection using closeness to elite genotype as criteria to select 10 

lines. Crossover all the combination of pairs, which yields 10*9/2 = 45 new lines. 

 

Figure 6.14 shows the comparison of average bolting dates over ten generation for MAES 

and NAS. It can be seen in the figure that NAS converges faster than MAES, and NAS and 

MAES reach almost the same bolting dates after the convergence. Figure 6.15 shows the 

comparison of average bolting dates for MATS and NAS and we can draw a similar conclusion. 

The gene regulatory network, as shown in Figure 5.1, is only controlled by 6 genes. 

Simulations on such a small network explain the fast convergence. We believe that the benefit of 

NAS will be greater if we apply it to a bigger model.  
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Figure 6.14 Comparison of MAES and NAS in Plant Breeding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Comparison of MATS and NAS in Plant Breeding 
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CHAPTER 7 - Conclusion and Future Work 

The huge amount of experimental data in molecular biology requires us to find an 

effective approach for gene regulatory modeling. A wide range of models have been used in gene 

modeling. However, almost all of them require building a model structure first and then 

optimizing associated parameters based on goodness-of-fit. 

The proposed GP-PSO hybrid algorithm is an effective and novel approach that is able to 

infer network structure and optimize associated parameters simultaneously. CGP, a special form 

of GP, is used to recover the structures and PSO is selected for parameter estimations due to its 

well-known fast convergence.  One of the greatest advantages of CGP over conventional GP is 

its lack of bloat. With CGP, solutions are not likely to contain huge but numerically meaningless 

components that exhaust computer resources.  

Moreover, the multi-objective design of our algorithm enables us to take advantage of 

different types of data, in our case, both phenotype data and gene expression. The concept of 

dominance relationships is adopted in a multi-objective optimization that provides a selection 

pressure toward a Pareto front. Convergence and diversity are two critical criteria in multi-

objective optimization. We address the former issue with non-dominated sorting and the latter 

with a histogram approach based on the concept of hypergrids.  

 The gene identification similar to QTL mapping was adopted as a preprocessing step to 

reduce the number of genes that are likely to exist in the synthetic gene network and consequent 

computational time. Based on the number of genes left after the gene identification, multiple runs 

were conducted. The non-dominated fronts at the end of our algorithm in results over multiple 

runs showed good convergence and diversity compared to initial population. Multiple networks 

and associated parameters in final non-dominated fronts over different runs were presented. The 

predicted bolting dates and gene expression level by these obtained solutions (networks and their 

associated parameters) were very close to the real data. Those solutions have also been converted 

into numerical equations and compared with the equation of the synthetic network. Our 

discovery was that although they look different at the first glance, the numerically significant 

parts of equations remain similar.  

 One application for the obtained networks is plant breeding. Thus we proposed network 

assisted selection which utilized the network predictions to guide the breeding process. First we 
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applied this concept on different NK fitness landscape models where it proved to be effective 

from simulation. Simulation of NAS breeding shows it outperforms another advanced breeding 

strategy – MAS, in terms of both convergence rate and desired phenotype. 

 Further work may include using the real phenotypic data instead of data generated by the 

synthetic network. The scope of the current thesis is restricted to find small gene regulatory 

networks that could be as good as a synthetic network for some applications. The links between 

the number of objectives and solutions are still unknown. There has been very little research in 

analysis of obtained gene network structures and estimated parameters, in both parameter space 

and fitness space.  
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Appendix A - Terms and Definitions 

Allele: One of the different forms of a gene that can exist at a single locus. 

Amino acids: The basic building block of proteins. 

Arabidopsis thaliana: A small flowering plant with a relatively short life cycle, which 

makes it popular as a model organism in plant biology and genetics.  

Aggregation-based, criterion-based and Pareto-based: Three major techniques used in 

multi-objective optimization to achieve good convergence when forming the non-dominated 

front. 

Bloat: The phenomenon that solutions have the tendency to become larger and exhaust 

computational resources in genetic programming that uses a tree structure as representation. 

Chromosome: Originally indicating an organized structure of DNA and protein that is 

found in cells, its borrowed by evolutionary algorithms to indicate a representative solution. 

Convergence and diversity: Two important metrics in a stochastic multi-objective 

algorithm design.  

Criterion-based: See Aggregation-based. 

Crossover rate: The probability that crossover operator is applied on a chromosome in 

evolutionary algorithms. 

Crowded comparison: See Fitness Sharing. 

Curse of dimensionality: The problem caused by the exponential increase in volume 

associated with adding extra dimensions to a (mathematical) space. 

Domination counting and non-dominated sorting: Two Pareto-based ranking techniques 

to achieve good convergence when forming the non-dominated front. 

Deoxyribonucleic acid (DNA): A double chain of linked nucleotides; the fundamental 

substance of which genes are composed. 

Elitism: A strategy in evolutionary algorithms where the best one or more solutions, 

called the elites, in each generation, are inserted into the next, without undergoing any change. 

This strategy usually speeds up the convergence of the algorithm. In a multi-objective 

framework, any non-dominated solution can be considered to be elite. 
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Evolutionary algorithms: A type of stochastic algorithms that’s inspired from Darwin’s 

evolutionary theory. These techniques include genetic algorithms, genetic programming, 

evolutionary programming and evolutionary strategy. 

Exploration and exploitation: Terms used in a search algorithm to indicate in-breadth 

search and in-depth search respectively. 

Fitness: A measure that is used to determine the goodness of a solution for an 

optimization problem. 

Fitness landscape: A representation of the search space of an optimization problem that 

brings out the differences in the fitness of the solutions, such that those with good fitness are 

“higher”. Optimal solutions are the maxima of the fitness landscape. 

Fitness sharing, crowded comparison, histogram and nearest neighbor: Four techniques 

used in multi-objective optimization to achieve good diversity, see Section 1.3.3 

Functions and terminals: Two basic elements in genetic programming that uses tree 

structure for representation. Terminals indicate the terminal nodes and functions indicate non-

terminal nodes in such a tree. 

Gene: The fundamental physical and functional unit of heredity, which carries 

information from one generation to the next; a segment of DNA composed of a transcribed 

region and a regulatory sequence that makes transcription possible. 

Generation: A term used in evolutionary algorithms that roughly corresponds to each 

iteration of the outermost loop. 

Genome: The entire complement of genetic material in a chromosome set. 

Genotype: The specific allelic composition of a cell. 

Genotype to phenotype mapping: A term used in biology indicating the problem of 

mapping an organism’s allelic combination (genotype) to its physical traits (phenotype).  

Genetic regulatory network: A network consisted of interacting genes that actually 

control certain processes in molecular biology. 

Global optimum: The best solution in a single objective optimization problem. 

Level-back: The number of columns back a node in a particular column can connect to in 

Cartesian genetic programming. 

Marker assisted selection (MAS): A selection strategy in plant breeding based on 

genotypes (combinations of allele markers). 
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Monte-Carlo algorithms: A class of computational algorithms that rely on repeated 

random sampling to compute their results 

Mutation rate: The probability that a mutation operator will be applied on a chromosome 

in multi-objective algorithms. 

Nearest neighbor: See Fitness Sharing. 

Network assisted selection (NAS): A proposed selection strategy based on mathematic 

networks for plant breeding in this thesis. 

Neuron: A basic element in neural network model. 

Neutrality: Used in Cartesian genetic programming. Refers to inactive components which 

may be activated in the future. 

Non-dominated sorting: See Domination Counting. 

Non-dominated front: The set of non-dominated solutions found at certain time by a 

given algorithm. 

Nucleosome: The basic unit of eukaryotic chromosome structure; a ball of eight histone 

molecules wrapped about by two coils of DNA. 

Nucleotide: A molecule composed of a nitrogen base, a sugar, and a phosphate group; the 

basic building block of nucleic acids. 

Objective function: The function to be optimized. In a minimization problem, the fitness 

varies inversely as the objective function. 

Objective function space: The corresponding values of an objective function in a search 

space. 

Optimality: Equivalent to optimization; the study of problems in which one seeks optimal 

solutions. 

Pareto-based: See aggregation-based. 

Pareto set: The set of optimal non-dominated solutions. 

Pareto front: The projection of Pareto set in objective function space. 

Particle: A basic component in particle swarm optimizations. 

Particle swarm optimization: A type of stochastic algorithms inspired from cooperative 

behavior of a flock of birds. 

Phenotype: The form taken by some character in a specific individual. 
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Population-based algorithm: An algorithm that maintains an entire set of candidate 

solutions, each solution corresponding to a unique point in the search space of the problem. 

Promoter region: A regulatory region a short distance from the  end of a gene that acts as 

the binding site for RNA polymerase. 

Quantitative trait locus mapping (QTL): The statistical study of the alleles that occur in a 

locus and the phenotypes (physical forms or traits) that they produce. 

Redundant: A term used in genetic programming to indicate components that have not 

appeared in a solution at a certain point in time. 

Reuse: A term used in Caretisan genetic programming to indicate that subgraphs can be 

used simultaneously by others. 

Reverse engineering: A process of inferring the interactions of a system from its 

behaviors. 

Search space: Set of all possible solutions for any given optimization problem. Almost 

always, a neighborhood around each solution can also be defined in the search space. 

Selection, crossover (recombination) and mutation: Three well-known mechanisms in 

biological evolution, as three important steps (operators) borrowed in evolutionary algorithms.  

 Stochastic algorithms: Methods which incorporate probabilistic (random) elements. 

 Stochastic multi-objective optimization: Stochastic algorithms that are able to deal with 

multi-objective optimization problems. 

Training process: A process to obtain weights from data based on goodness-of-fit in a 

neural network model. 

 Transcription: The synthesis of RNA from a DNA template. 

Transcription factor: A protein that binds to a cis-regulatory element (for example, an 

enhancer) and thereby, directly or indirectly, affects the initiation of transcription. 
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Appendix B - P-value of Gene Identification 

Gene # Average p-value 
92 

18 

24 

80 

32 

54 

17 

74 

13 

20 

21 

93 

95 

39 

50 

89 

6 

90 

71 

28 

25 

29 

36 

26 

48 

30 

77 

11 

0.091075 

0.091158 

0.13037 

0.14767 

0.15 

0.16448 

0.16469 

0.16642 

0.16668 

0.16721 

0.16787 

0.16798 

0.16835 

0.16839 

0.16913 

0.16925 
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0.1753 
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