Skip to main content
Log in

Recovery properties of distributed cluster head election using reaction–diffusion

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Chemical reaction–diffusion is a basic component of morphogenesis, and can be used to obtain interesting and unconventional self-organizing algorithms for swarms of autonomous agents, using natural or artificial chemistries. However, the performance of these algorithms in the face of disruptions has not been sufficiently studied. In this paper we evaluate the use of reaction–diffusion for the morphogenetic engineering of distributed coordination algorithms, in particular, cluster head election in a distributed computer system. We consider variants of reaction–diffusion systems around the activator–inhibitor model, able to produce spot patterns. We evaluate the robustness of these models against the deletion of activator peaks that signal the location of cluster heads, and the destruction of large patches of chemicals. Three models are selected for evaluation: the Gierer–Meinhardt Activator–Inhibitor model, the Activator–Substrate Depleted model, and the Gray–Scott model. Our results reveal a trade-off between these models. The Gierer–Meinhardt model is more stable, with rare failures, but is slower to recover from disruptions. The Gray–Scott model is able to recover more quickly, at the expense of more frequent failures. The Activator–Substrate model lies somewhere in the middle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T., Nagpal, R., Rauch, E., Sussman, G., & Weiss, R. (2000). Amorphous computing. Communications of the ACM, 43(5), 74–82.

    Article  Google Scholar 

  • Adamatzky, A., de Lacy Costello, B., Melhuish, C., & Ratcliffe, N. (2003). Experimental reaction–diffusion chemical processors for robot path planning. Journal of Intelligent & Robotic Systems, 37(3), 233–249.

    Article  MATH  Google Scholar 

  • Adamatzky, A., de Lacy Costello, B., & Asai, T. (2005). Reaction–diffusion computers. Elsevier Science, New York.

    Google Scholar 

  • Arena, P., Fortuna, L., & Branciforte, M. (1999). Reaction–diffusion CNN algorithms to generate and control artificial locomotion. IEEE Transactions on Circuits and Systems. I, Fundamental Theory and Applications, 46(2), 253–260.

    Article  Google Scholar 

  • Atkins, P., & de Paula, J. (2002). Physical chemistry. Oxford: Oxford University Press.

    Google Scholar 

  • Bandini, S., Mauri, G., Pavesi, G., & Simone, C. (2005). Computing with a distributed reaction–diffusion model. In Lecture notes in computer science: Vol. 3354. Machines, computations, and universality (pp. 93–103). Berlin: Springer.

    Chapter  Google Scholar 

  • Bar-Yam, Y. (2003). Dynamics of complex systems. Reading: Westview Press.

    Google Scholar 

  • Basagni, S. (1999). Distributed clustering for ad hoc networks. In A. Y. Zomaya, D. F. Hsu, O. Ibarra, S. Origuchi, D. Nassimi, & M. Palis (Eds.), Proc. of I-SPAN (pp. 310–315). Washington: IEEE Computer Society.

    Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Coore, D., & Nagpal, R. (1998). Implementing reaction–diffusion on an amorphous computer. In Proc. MIT student workshop on high-performance computing in science and engineering. Boston: MIT Laboratory for Computer Science. Technical Report 737.

    Google Scholar 

  • Dale, K., & Husbands, P. (2010). The evolution of reaction–diffusion controllers for minimally cognitive agents. Artificial Life, 16(1), 1–20.

    Article  Google Scholar 

  • Deckard, A., & Sauro, H. M. (2004). Preliminary studies on the in silico evolution of biochemical networks. ChemBioChem, 5(10), 1423–1431.

    Article  Google Scholar 

  • Deutsch, A., & Dormann, S. (2005). Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Basel: Birkhauser.

    MATH  Google Scholar 

  • Dittrich, P. (2005). Chemical computing. In Lecture notes in computer science: Vol. 3566. Unconventional programming paradigms (UPP 2004) (pp. 19–32). Berlin: Springer.

    Chapter  Google Scholar 

  • Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial chemistries—a review. Artificial Life, 7(3), 225–275.

    Article  Google Scholar 

  • Dormann, S. (2000). Pattern formation in cellular automaton models. PhD thesis, University of Osnabrück, Austria, Dept. of Mathematics/Computer Science.

  • Doursat, R. (2008). Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In Organic computing (pp. 167–200). Berlin: Springer. Chap. 8.

    Chapter  Google Scholar 

  • Durvy, M., & Thiran, P. (2005). Reaction–diffusion based transmission patterns for ad hoc networks. In Proc. of IEEE INFOCOM (pp. 2195–2205). Washington: IEEE.

    Google Scholar 

  • Erciyes, K., Dagdeviren, O., Cokuslu, D., & Ozsoyeller, D. (2007). Graph theoretic clustering algorithms in mobile ad hoc networks and wireless sensor networks. Applied and Computational Mathematics, 6(2), 162–180.

    MATH  MathSciNet  Google Scholar 

  • Fatès, N. (2010). Solving the decentralised gathering problem with a reaction–diffusion-chemotaxis scheme. Swarm Intelligence, 4, 91–115.

    Article  Google Scholar 

  • Ferrández, J. M., Lorente, V., Cuadra, J. M., de la Paz, F., Álvarez Sánchez, J. R., & Fernández, E. (2010). A hybrid robotic control system using neuroblastoma cultures. In Lecture notes in computer science: Vol. 6076. Hybrid artificial intelligence systems (pp. 245–253). Berlin: Springer.

    Chapter  Google Scholar 

  • Gray, P., & Scott, S. (1990). Chemical oscillations and instabilities: nonlinear chemical kinetics. Oxford: Oxford Science.

    Google Scholar 

  • Grzybowski, B. A., Bishop, K. J. M., Campbell, C. J., Fialkowski, M., & Smoukov, S. K. (2005). Micro- and nanotechnology via reaction–diffusion. Soft Matter, 1, 114–128.

    Article  Google Scholar 

  • Henderson, T. C., Venkataraman, R., & Choikim, G. (2004). Reaction–diffusion patterns in smart sensor networks. In Proc. of IEEE international conference on robotics and automation (Vol. 1, pp. 654–658). Washington: IEEE.

    Google Scholar 

  • Hyodo, K., Wakamiya, N., & Murata, M. (2007). Reaction–diffusion based autonomous control of camera sensor networks. In Proc. 2nd international conference on bio-inspired models of network, information, and computing systems (bionetics). Gent: ICST.

    Google Scholar 

  • Koch, A. J., & Meinhardt, H. (1994). Biological pattern formation: from basic mechanisms to complex structures. Reviews of Modern Physics, 66(4), 1481–1508.

    Article  Google Scholar 

  • Lin, C., & Gerla, M. (1997). Adaptive clustering for mobile wireless networks. IEEE Journal on Selected Areas in Communications, 15(7), 1265–1275.

    Article  Google Scholar 

  • Lowe, D., Miorandi, D., & Gomez, K. (2009). Activation-inhibition-based data highways for wireless sensor networks. In Proc. 4th international conference on bio-inspired models of network, information, and computing systems (bionetics). Gent: ICST.

    Google Scholar 

  • Mazin, W., Rasmussen, KE, Mosekilde, E., Borckmans, P., & Dewel, G. (1996). Pattern formation in the bistable Gray–Scott model. Mathematics and Computers in Simulation, 40, 371–396.

    Article  Google Scholar 

  • Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press.

    Google Scholar 

  • Meyer, T., & Tschudin, C. (2009). Chemical networking protocols. In Proc. 8th ACM workshop on hot topics in networks (HotNets-VIII) (online).

    Google Scholar 

  • Molnár, F. Jr., Izsák, F., Mészáros, R., & Lagzi, I. (2010). Simulation of reaction–diffusion processes in three dimensions using CUDA. arXiv 1004.0480.

  • Murray, J. D. (2003). Mathematical biology: spatial models and biomedical applications (Vol. 2). Berlin: Springer.

    MATH  Google Scholar 

  • Neglia, G., & Reina, G. (2007). Evaluating activator–inhibitor mechanisms for sensors coordination. In Proc. 2nd international conference on bio-inspired models of network, information, and computing systems (bionetics). Gent: ICST.

    Google Scholar 

  • Pearson, J. E. (1993). Complex patterns in a simple system. Science, 261(5118), 189–192.

    Article  Google Scholar 

  • Pfeifer, R., Iida, F., & Bongard, J. (2005). New robotics: design principles for intelligent systems. Special Number of Artificial Life on New Robotics, Evolution and Embodied Cognition, 11(1–2), 99–120.

    Google Scholar 

  • Rauch, E. (2003). Discrete, amorphous physical models. International Journal of Theoretical Physics, 42(2), 329–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Rubenstein, M., Sai, Y., Choung, C. M., & Shen, W. M. (2009). Regenerative patterning in swarm robots: mutual benefits of research in robotics and stem cell biology. The International Journal of Developmental Biology, 53, 869–881.

    Article  Google Scholar 

  • Sanderson, A. R., Meyer, M. D., Kirby, R. M., & Johnson, C. R. (2009). A framework for exploring numerical solutions of advection–reaction–diffusion equations using a GPU-based approach. Computing and Visualization in Science, 12(4), 155–170.

    Article  Google Scholar 

  • Shen, W. M., Will, P., Galstyan, A., & Chuong, C. M. (2004). Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots, 17(1), 93–105.

    Article  Google Scholar 

  • Soro, S., & Heinzelman, W. B. (2009). Cluster head election techniques for coverage preservation in wireless sensor networks. Ad Hoc Networks, 7(5), 955–972.

    Article  Google Scholar 

  • Stepney, S. (2010, in press). Nonclassical computation: a dynamical systems perspective. In Handbook of natural computing (Vol. II). Berlin: Springer. Chap. 52.

  • Tsuda, S., Zauner, K. P., & Gunji, Y. P. (2007). Robot control with biological cells. Biosystems, 87, 215–223.

    Article  Google Scholar 

  • Turing, AM (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 327, 37–72.

    Article  Google Scholar 

  • Yamamoto, L., & Miorandi, D. (2010). Evaluating the robustness of activator–inhibitor models for cluster head computation. In Lecture notes in computer science: Vol. 6234. Proc. ANTS, special session on morphogenetic engineering (pp. 143–154). Berlin: Springer.

    Google Scholar 

  • Yoshida, A., Aoki, K., & Araki, S. (2005). Cooperative control based on reaction–diffusion equation for surveillance system. In Lecture notes in computer science: Vol. 3683. Knowledge-based intelligent information and engineering systems (pp. 533–539). Berlin: Springer.

    Chapter  Google Scholar 

  • Yoshida, A., Yamaguchi, T., Wakamiya, N., & Murata, M. (2008). Proposal of a reaction–diffusion based congestion control method for wireless mesh networks. In Proc. 10th international conference on advanced communication technology (ICACT) (pp. 455–460). Washington: IEEE.

    Chapter  Google Scholar 

  • Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys and Tutorials, 7(1), 32–48.

    Article  Google Scholar 

  • Ziegler, J., & Banzhaf, W. (2001). Evolving control metabolisms for a robot. Artificial Life, 7(2), 171–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, L., Miorandi, D., Collet, P. et al. Recovery properties of distributed cluster head election using reaction–diffusion. Swarm Intell 5, 225–255 (2011). https://doi.org/10.1007/s11721-011-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-011-0058-8

Keywords

Navigation