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ABSTRACT

We present, ECSELR, an ecologically-inspired approach to
software evolution that allows for environmentally driven
evolution in extant software systems at runtime without re-
lying n any offline components or management. ECSELR
embeds adaption snd evolution inside the target software
system allowing such systems to transform themselves via
darwinian evolutionary mechanisms and adapt in a self con-
tained manner. This allows such software system to bene-
fit from the useful byproducts of evolution like adaptivity,
bio-diversity without having to worry about problems in-
volved in engineering and maintaining such properties. EC-
SELR allows the software systems to address changing en-
vironments at runtime enabling benefits like mitigation of
attacks, memory-optimization among others while avoiding
time-consuming and costly maintenance and downtime. EC-
SELR differs from existing work in that, 1) adaption is em-
bedded in the target system, 2) evolution and adaptation
happens online(ie in-situ at runtime) and 3) ECSELR is able
to embed adaptation inside systems that have been already
started and are in the midst of execution. We demonstrate
the use of ECSELR and present results on an experiments in
using the ECSELR framework to slim a software system.
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1. INTRODUCTION

The field of software engineering has been straining to
deal with the exponential growth of software systems. As
computer systems get more and more complex, maintaining
them requires a huge amount of human effort. Software En-
gineering may soon hit a ”complezity wall” where our efforts
will not be able to scale up to highly complex software sys-
tems [2, 6, 14]. This has led to the rise in the amount of
research being done in automating software design, main-
tenance, with software engineers increasingly seeking to de-
sign software systems that autonomously evolve and adapt.
Designing such self-optimising adaptive systems has been
described as one of the great challenges of the software en-
gineering field [4]. The holy grail sought at the end of this
challenge by software engineers would be a system that is
self-contained and is be able to self-modify, evolving itself
autonomously at runtime with minimal or no human in-
put thereby allowing it to self- optimise and self-adapt to
its environment. One of the most promising approaches to
this challenge has been focused around the agenda of Dy-
namic Adaptive Search Based Software Engineering (DAS-
BSE). Research in DASBSE focuses on embedding adaptiv-
ity inside software systems to allow self-contained evolution
and adaption in these software systems. This is referred to
as dynamic adaptivity [4, 10]. Implementation of dynamic
adaptivity in a software system will result in the system be-
ing able to autonomously evolve and adapt in-vivo and in-
situ,(ie. in place and online at runtime) without relying on
external aids from the programmer [5]. The mechanisms for
evolution and adaptation would be in essence, self-contained
inside the application. Such systems would be able to au-
tonomously perform actions like, mitigation of virii attacks,
resources-optimization among others while avoiding time-
consuming and costly maintenance and downtime and also
reducing the amount manpower needed to supervise such
activities as compared to current systems.

Currently, one of the main focuses of DASBSE has been
Genetic Improvement(GI). Under Genetic Improvement(GI),
heuristic search based evolutionary algorithms/systems are
applied to extant software programs directly transforming
them [4]. The instructions making up the software sys-
tems are treated as the donor genetic material to be evolved
thereby genetically improving the software system. Research



into different GI methodologies is currently very young with
most work in the field currently falling short of full embed-
ded adaptivity. Current research in DASBSE in general falls
short of the fully conquering "dynamic adaptivity”. Most
approaches so far still rely on offline adaptation and offline
evolution components and steps. Adaptation is not fully
embedded inside the software system; adaptation happen-
ing outside the software system being evolved. Adaptation
also usually tackles either the non-functional or the func-
tional properties of the system and but rarely both. There
exists a need for new solutions.

We present ECSELR, a new ecologically-inspired dynamic
software evolution framework model that aims to help fill
the gap in methodologies that enable true dynamic adap-
tivity. ECSELR is a java based platform that allows extant
software systems to evolve themselves by autonomously self-
modifying their code at runtime, transforming and evolving
the target software system in-vivo and in-situ via darwinian
evolutionary mechanisms. ECSELR takes as input, the sys-
tem process of the running program and inserts itself into
the process, imbuing the software system with the ability to
monitor its actions and its environment during the program
lifecycle. Based on these observations, the system stochas-
tically effects actions on its basic computational units(e.g.
bytecode) transforming the structure and function of the
software system and thereby evolving it and allowing it to
dynamically self-adapt to its environment. The environment
of a software system is defined as the state of the software
system and the interactions between the components of the
software system. Evolution and self-adaptation is embedded
in the system, with everything happening online (in-vivo
and in-situ) without any external dependencies and/or any
human input. This makes the whole adaptation process self-
contained and fully dynamic/autonomous. A software sys-
tem running the ECSELR framework is able to evolve and
adapt autonomously online without any pauses or breaks
in system execution, thereby maintaining expected system
availability through the software systems lifecycle. ECSELR
can also be easily coupled with other frameworks to give it
new capabilities among others.

We demonstrate the ease of use of the ECSELR platform
by using it to reduce the resource footprint of an existing
software system. We show that, no domain knowledge is
needed to operate ECSELR and and that, it can be used by
both software programmers and the software endusers.

We believe that ECSELR is a major novel contribution
to DASBSE and GI and provides another avenue for future
research into the uses of dynamic adaptivity.

The paper is structured as follows. In Section 2 we present
ECSELR, describing its components and its mode of utility.
In Section 2.1, we present one(1) use scenario for ECSELR.
In Section 3, we describe our experiment in utilising EC-
SELR to evolve a system to optimise process resources and
change its attack surface, demonstrating the use of ECSELR
and presenting and discussing the results. In Section 4, we
present previous work and distinguish between ECSELR and
these previous methodologies and frameworks. In Section 5,
we reiterate our contribution and expand on possible avenues
of future work.

2. ECSELR

To implement dynamic adaptivity in a target complex
software system, the software system is first given the ability

to monitor and observe itself, its actions and environment at
runtime. This allows the system to be self aware [8] about
its functioning and its environments and the effects of the
environment on itself. Subsequently, the system is given
the mechanisms to effect stochastic transformations upon
itself. The software system applies the transformation to
itself based on its relationship to its environment and also,
its understanding of its own state garnered from its ability
to monitor itself and its environment. Just like in natural
evolution, these transformatory changes are solely based on
environmental pressure and the stochasticity of the environ-
ment.

The ECSELR framework provides all the necessary com-
ponents needed for this to happen. The framework is com-
prised of four main components, an evolution driver called
EvoAgent, an evolution utility called EvoDaemon, transfor-
mation utilities called Fvolution Operators and transforma-
tion guides called Fvolution Strategies.

Given a running target software system, EvoAgent at-
taches itself to the process, living in the same native memory
address space as the process. The attachment can be done
natively through the OS level hooks or via java language
mechanisms. EvoAgent is comprised of a series of native
system functions and data structures that allow it to moni-
tor and keep track of the state of the software system and its
environment at any point in time. Upon attachment, EvoA-
gent probes and sets up its set of functions to profile the ba-
sic computational blocks in the software system and record
relevant information about the blocks. These blocks refer
to the lowest level of instructions that comprise the system
(ie. a set of bytecode instructions in the JVM). This gives
the ECSELR platform the ability to monitor and observe
the system and its actions and interactions with its environ-
ments. ECSELR observes when blocks are called /executed,
what inputs the blocks are given and what they act on and
when they complete execution/exit. Since blocks correspond
to methods and fields in the JVM, ECSELR is thusly able
to observe the execution flow of the software system. EC-
SELR partitions the software system execution lifecycle into
discrete time periods, called epochs, representing a genera-
tion in an evolutionary timeline. At the end of each epoch,
EvoAgent appraises itself of the state changes in the lifecycle
of the software system and its environment and then invokes
EvoDaemon to evolve the system based on the changes.

EvoDaemon contains an engine for rewriting java byte-
code according to a set of given instructions/strategies. Evo-
Daemon evolves the software system according to a set of
evolutionary strategies that are supplied by EvoAgent.

The evolutionary strategies are stochastic conditions that
are created based on the history of observed system interac-
tion. They decide which parts of the system are transformed
and how they’re transformed. An evolutionary strategy
probabilistically selects which parts of the software system
it wants to evolve and an evolutionary operator is then used
to effect this evolution. An example evolutionary strategy
is one which probabilistically decides a method to remove
based on observed frequency of method usage.

The evolutionary operators are defined as the set of generic
transformatory mechanisms that modify the software blocks,
transforming them from one state to another and in essence
evolving the system over the course of the program lifecycle.
They are analogous to the evolutionary mechanisms/operators
that act on the genome of biological organisms and drive/effect



evolution. They are distinguished by their effect on the sys-
tem blocks and structure of the system as a whole. The
operators are grouped into four basic types:

Amorphic Operators which act by removing blocks from
the system.

Geomorphic Operators which act by combining blocks
in numerous ways.

Translocation Operators which change the structure and
execution flow of the program by moving blocks around.

Hypomorphic Operators which change the availability
of blocks, suppressing and inciting different function-
alities of the system.

Listed below is the set of evolutionary operators that are
currently implemented in ECSELR.

1. Merge Operator: It takes two software blocks/methods,
A and B, naively appends block B to block A and re-
places the original block A with this new version of
Block A. Block B is then deleted from the software
system.

2. Deletion Operator: This operator takes as input, a
method, and deletes the byte code of the method from
the software system, thereby removing the method from
the system.

3. Inversion Operator: This operator takes as inputs, lo-
cations for two software blocks (eg. blocks in a method)
and invertes their positions, placing the first block in
the second’s position and the second in the first’s po-
sition. This changes the execution flow of the software
system.

4. Duplication Operator: This operator takes as input, a
software block and a location. It duplicates the input
software block and inserts the generated copy of block
at the specified location.

5. Loop Perforation Operator: This operator takes as in-
put, a block of code that runs in a loop and perforates
the loop, reducing the number of times the block is
iterated.

6. PassThrough Operator: This operator returns an un-
modified clone of a given block.

Platforms that enhance software systems by providing a
measure of adaptability can be described and taxonomized
according to 4 facets/properties. These properties charac-
terise the level of adaptability and evolvability in the en-
hanced software systems, mapping adaption to evolution
and describing the degree to which adaptation is imple-
mented, governed and reasoned about via evolution. These
properties are based on similar properties widely used by
the self-adaptive systems community [11] . The properties
are presented as follows, emphasising how specifically they
can be used to describe self-adaptation:

e Temporality: Describes the temporal property of the
adaptivity, specifying when the adaptivity changes are ap-
plied. The temporality of self-adaptivity is either Online(ie.
the changes happen at runtime) or Offline(ie. changes hap-
pens before runtime).

The ECSELR platform has an online temporality. Evolu-
tion and adaption happens online at runtime.

e Locality: Describes the locality of software evolution and
adaptivity, showing where in the system evolution happens
to lead to adaptivity. The options encompass localities like
source code, binary or an AST/model of the system.

The ECSELR platform acts directly upon the binary. It
modifies and transforms the execution instructions ind the
binary.

e Artifacity: Describes the scope of evolution, showing
what about/in the system is being evolved and benefitting
from adaptation. (ie. Functional Properties vs Non-Functional
Properties).

ECSELR is able to evolve and adapt both functional and
non-functional properties of the target system. It is able
to change system functionality in addition changing the on-
functional aspects of system design.

e Dynamicity: Describes how dynamic evolution is, show-
ing how automated evolution is. It quantifies the degree of
human intervention in evolution. A system with full dy-
namicity evolves and adapts with no human input while a
system with no dynamicity has its evolution and adaptation
managed by a human programmer(ie. the hand of god).
ECSELR is able to autonomously evolve and adapt the tar-
get application with minimal human intervention needed or
required. All though the framework supports input from the
human programmer, its does not require this and is able to
function without any help. ECSELR can be said to there-
fore have full dynamicity.

2.1 ECSELR Use Case

The ECSELR platform can be used to achieve tackle many
problems that benefit from dynamic adaptivity. In this sec-
tion, we present one(1) such use case.

2.1.1 Software Slimming

Software Slimming is the removal of unused and/or under-
utilised parts of software systems at runtime for various pur-
poses.

A library is always built to serve a large number of use
cases and therefore contains a wide range of components
for each of these various use cases. The engineers of the
library can rarely fully anticipate in which combinations the
different components will be used and so ship the library
with its full complement of components. Since the rate of
utilisation of any of the components depend a lot on the
application that is built on top of it, each software engineer
is responsible for narrowing down the sets of components
that are necessary for their application and discarding the
rest. Most software engineers usually just bundle the whole
library with their application. For any given application, a
number of these components from the library will certainly
never be used at runtime and some of them can be detected
statically. However, it is not always possible or efficient to
detect before runtime, all components that will never be
used due to a number of reasons that include uncertainty
about the projected use profile, lack of access to the source
of the system, lack of familiarity with the system, lack of
time, among others. This results in software systems that



are distributed with superfluous components of libraries that
are rarely used. These components take up space and use
resources and represent unknown possible attack vectors.

Since ECSELR is able to observe the interactions of the
components in the software system, it is able to identify un-
used and superfluous packages and instructions and remove
them, thereby reducing the space and memory resources
needed for the application and also removing possible at-
tack entry points in the program. These software systems
are subsequently considered to be slimmed based on the
system use profile. ECSELR is also able to slim software
services according to other different criteria such as power
consumption, etc.

Another example of software slimming would be a soft-
ware system that is going to be used in a low-resource en-
vironment where the system engineer has no pre-conceived
knowledge about which part of the library is going to be
more utilised. When the software system is loaded and is
being executed with the ECSELR framework embedded in
it, ECSELR is able to remove unused components reduc-
ing the systems resource usage and optimizing the software
system.

Other concrete examples of software slimming can be found
in the literature here in [9] and in [7].

3. EXPERIMENTS

In order to test how capable ECSELR is at Software Slim-
ming, we designed a test platform, jEvoTester, to simu-
late a large java software system, and run ECSELR on the
jEvoTester platform. We subsequently present this platform
in the next section.

3.1 Experimental Platform

jEvoTester was designed to micmic and reproduce the in-
terdependent relations and interactions present in software
systems. It simulates a software system platform that offers
services to a set of applications. It can also be considered
as a large library or framework that offers a wide range of
services to applications that need it.

jEvoTester is composed of 360 classes each offering 1000
methods. jEvoTester provides these methods and classes as
services to applications.

To simulate the interactions between applications and the
software system /library and also in between the components
of the system, we sampled the WorldCup98 website requests
dataset ' [1]. This data captures the interactions between
users of the World Cup 98 web site. We equate the visits by
users in the dataset to interactions between the classes and
methods and the apps that request them, with each visit
being comprised of requests to objects that in turn depend
on other objects. Each user’s visit in the dataset consists of
a request for a combination of multiple objects. Each unique
user is equated to an application and the objects requested
are equated to methods.

An application therefore requests a combination of meth-
ods that it requires, with the methods considered to be inter-
dependent on each other since they all need to be available
for the request to succeed. If a method is unavailable, the ap-
plication’s request fails. The applications were implemented
in jEvoTester as agents in a multi-agent system, each with
a non-static collection of methods required over the course

"http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Table 1: Evolutionary Operators in jEvoTester
| Operator Name | Function |
Merge Methods Operator Merges two given methods
Method Deletion Operator | Deletes a method.
Passthrough Operator Return an  unmodified
clone of the object

of its lifetime. All application requests are performed asyn-
chronously and independently of other applications.

During each run of jEvoTester, ECSELR is inserted into
jEvoTester in order to evolve and adapt it. Table 1 lists the
subset of operators used by ECSELR.

jEvoTester is unaware of the applications and also works
asynchronously and independent of system functioning(i.e.
ECSELR does not pause or half any system instructions
whilst evolving the system).

3.2 Results

We chose to utilise the jEvoTester platform to test EC-
SELR on the Software Slimming use case detailed in Section
2.1.1. We tested whether ECSELR would be able to slim
jEvoTester during jEvoTester execution. Our test harness
was run 200 times with the same interaction data in order
to verify the significance of our results.

For each test, the jEvoTester platform was executed. Dur-
ing the course of execution, the ECSELR platform was in-
serted into jEvoTester. Each application recorded the re-
sponse from jEvoTester to its requests, noting if jEvoTester
was able to provide a method being requested or not. In
jEvoTester, when a deleted method is called, a runtime ex-
ception is generated which is caught and returns a negative
answer to the application. In order to test how well EC-
SELR performs at software slimming, the jEvoTester plat-
form was designed to have a whole complement of methods,
some of which are utilised by applications and some of which
aren’t. The goal of the experiment was to test if ECSELR
would be able to remove a percentage of the unused methods
while ignoring methods that were being utilised. The rate
of usage of the methods were not static with some methods
used more frequently than others during different points in
jEvoTester’s lifetime.

Our results are aggregated in Table 2.

For each test, there were 27,500 applications calling 4,907
methods. These methods were called a total of 1,522,111
times. The applications called these methods in 68,084 dif-
ferent configurations. The most popular method combina-
tion was called 15,517 times. It was called by 10,071 unique
applications.

355,093 out of 360,000 methods were never called during
the duration of our experiments. ECSELR was able to re-
move an average of 140,206 methods during the course of
each run. On average, 57 of these methods were requested
by applications after their removal resulting in errors.

3.3 Discussion

We used our results to answer three key questions which
are elucidated below.

¢ RQ1: Can ECSELR slim jEvoTester during its life-
cycle?
Our results confirmed that, yes, ECSELR is able to suc-



Table 2: jEvoTester Data

| Description | Value |
Classes 360
methods per class 1000
Total Methods 360000
Unique Applications 27500
Methods Called 4907
Number of method calls 1522111

Total method combina- | 68084
tions called
Uncalled Methods 355093
Percentage of methods | 98%
never called

Average Number of Meth-
ods slimmed

Percentage of uncalled | 39.5%
methods slimmed
Percentage of total meth- | 38.9%
ods slimmed
Methods called after re- | 57
moval
Percentage of methods re- | 0.04%
moved that were called af-
ter removal

Number of experiments 200

140206

cessfully slim jEvoTester. ECSELR was able to remove an
average of 140206 methods in the jEvoTester software sys-
tem during the runs.

e RQ2: How successful is ECSELR at slimming a
software system?

Our result show that ECSELR was able to remove approx-
imately 39% of all unused methods. This shrunk the appli-
cation reducing its footprint (ie. amount of memory needed
by the JVM to store the application byte code, class data,
etc).

e RQ3: Does software slimming through ECSELR
negatively affect the availability and usage of the soft-
ware system?

Analysis of our data showed that, during each run, approxi-
mately 57 methods that were required by applications were
slimmed and thus made unavailable to the applications re-
quiring them. A maximum of 4 applications were affected
by this problem. This represents an application request fail-
ure rate of 0.01% due to ECSELR.

Our results show and confirm that, ECSELR is able to au-
tonomously slim software systems with slimming controlled
and mediated by the state of the software system during its
lifecycle.

4. PREVIOUS WORK

Schulte, Forrest and Weimer in [13] and with DiLorenzo
in [12] presented a method of evolving assembly code and bi-
nary code to effect automatic software repair. Their method
evolved an AST of the extant program, converting that AST
back to a binary executable. Goues, Nguyen, Forrest and
Weimer in [3] presented GenProg, a platform for evolving

C source code to automatically fix bugs. Unlike ECSELR,
these approaches do not embed evolution and adaption in
the software systems being evolved. Therefore evolution and
adaptation doesn’t happen online. Also, unlike ECSELR,
these approaches are unable to evolve a software system that
already running.

Harman et al in [5] presented an outline of an approach
called Online Genetic Improvement(OGI), a methodology
in which an existing program is improved online by modify-
ing its existing code using evolutionary search mechanisms.
Their approach consists of an online and offline phase where
program execution is monitored online, this data is sent to
an offline component to learn from and expose implicit pa-
rameters that are sensitive to operational properties of inter-
est. These parameters are optimised and then deployed on-
line. Swan et al in [15], presented Gen-O-Fix, a framework
which consists of an agent that resides outside the binary
and proxies the instructions to the binaries serving as the
evolution agent. These two approaches differ from ECSELR
in that, adaptivity isn’t not embedded inside the applica-
tion. OGI also relies on an offline phase unlike ECSELR.
Although these frameworks are able to evolve running soft-
ware systems, they require the target software system to be
started with the framework. ECSELR on the other hand
is able to target software systems that have already started
execution.

5. CONCLUSION

In this paper, we presented the ECSELR platform, plat-
form for achieving dynamic adaptivity, i.e.. embedding adap-
tivity in a software system. We presented Software Slimming
as a use case for such a system and showed that, ECSELR is
able to perform admirably well in this use case. ECSELR is
demonstrated to be able to evolve and adapt already execut-
ing extant software systems with no human input. ECSELR
shows that it is infact possible to embed adaptivity in soft-
ware systems.

Although we describe the ECSELR framework in this pa-
per, we chose not to fully expand on all aspects of the frame-
works design. We aim to present a more detailed exposition
and study about the design decisions behind ECSELR in a
subsequent paper.

We hope that, with this paper, ECSELR will be seen as
a platform for more experiments and research into dynamic
adaptivity.
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