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Abstract

Image classification is an important and fundamental task in computer vi-
sion and machine learning. The task is to classify images into one of some
pre-defined groups based on the content in the images. However, image
classification is a challenging task due to high variations across images,
such as illumination, viewpoint, scale variations, deformation, and occlu-
sion. To effectively solve image classification, it is necessary to extract or
learn a set of meaningful features from raw pixels or images. The effec-
tiveness of these features significantly affects classification performance.
Feature learning aims to automatically learn effective features from images
for classification. However, feature learning is difficult due to the high
variations of images and the large search space.

Genetic Programming (GP) as an Evolutionary Computation (EC) tech-
nique is known for its powerful global search ability and high interpretabil-
ity of the evolved solutions. Compared with other EC methods, GP has a
flexible representation of variable length and can search the solution space
without any assumptions on the solution structure. The potential of GP
in feature learning for image classification has not been comprehensively
investigated due to the use of simple representations, e.g., functions and
program structures.

The overall goal of this thesis is to further investigate and explore the
potential of GP for image classification by developing a new GP-based ap-
proach with a new representation to automatically learning effective fea-
tures for different types of image classification tasks.

Firstly, this thesis proposes a new GP-based approach with image de-
scriptors to learning global and/or local features for image classification



by developing a new program structure, a new function set, a new termi-
nal set, and a new fitness function. These new designs allow GP to detect
small regions from the relatively large input image, extract features us-
ing image descriptors from the detected regions or the input image, and
combine the extracted features for classification. The results show that
the new approach significantly outperforms five GP-based methods, eight
traditional methods, and three convolutional neural network methods in
almost all the comparisons on eight different datasets.

Secondly, this thesis proposes a new GP-based approach with a flexible
program structure and image-related operators for feature learning in im-
age classification. The new approach learns effective features transformed
by multiple layers, i.e., a filtering layer, a pooling layer, a feature extraction
layer, and a feature concatenation layer, in a flexible way. The results show
that the new approach achieves better performance than a large number
of effective methods on 12 benchmark datasets. The solutions and features
learned by the new approach provide high interpretability.

Thirdly, this thesis proposes the first GP-based approach to automati-
cally and simultaneously learning features and evolving ensembles for im-
age classification. The new approach can learn high-level features through
multiple transformations, select effective classification algorithms and op-
timise the parameters for these classification algorithms to build effective
ensembles. The new approach outperforms a large number of benchmark
methods on 12 different image classification datasets.

Finally, this thesis proposes a multi-population GP-based approach with
knowledge transfer and ensembles to improving both the generalisation
performance and computational efficiency of GP-based feature learning
algorithms for image classification. The new approach can achieve bet-
ter generalisation performance and computational efficiency than baseline
GP-based feature learning method. The new approach can achieve better
performance on 11 datasets than a large number of benchmark methods,
including many neural network-based methods.
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Chapter 1

Introduction

This chapter presents the introduction of the thesis, including the problem
statement, the motivations, the research goals, the major contributions,
and the overall organisation of the thesis.

1.1 Problem Statement

In computer vision and machine learning, image classification is an im-
portant and fundamental task of assigning images to one of pre-defined
groups based on the content in the images. Image classification has a wide
range of applications in various fields, such as biological images [166], fa-
cial images [104], remote sensing images [148], and medical images [23].
Image classification is also a key component of other visual tasks, such
as object detection, object recognition, video annotation, and image re-
trieval [27, 173]. However, image classification is a challenging task due
to high variations across images, such as background, illumination, view-
point, scale, deformation, and occlusion variations.

Feature extraction is an important step of an image classification sys-
tem. Feature extraction is the process of extracting important and repre-
sentative information from an image that describes the image data and
reduces the dimensionality of the image data. The effectiveness of the

1



2 CHAPTER 1. INTRODUCTION

image features significantly affects the performance of the classification
system [99]. However, due to the high image variations, it is difficult to
obtain a set of effective features for classification. Many image descriptors
have been developed to describe images or keypoints of images as fea-
tures, e.g., Grey-Level Co-occurrence Matrix (GLCM) [96, 97], Histogram
of Oriented Gradients (HOG) [60], Local Binary Patterns (LBP) [169], and
Scale-Invariant Feature Transform (SIFT) [147]. However, domain knowl-
edge are often required to design such an effective method for feature ex-
traction when solving a new task.

Feature learning, also known as representation learning, aims to learn
effective representations that capture useful and underlying information
of the data to build classifiers or other predictors for solving a task [33].
The representation of the data often refers to raw data or a number of fea-
tures that describe the domain. Feature learning is a general term that
emphasises the change/optimisation of the representation of the data us-
ing a learning algorithm to solve a task. During the feature learning pro-
cess, a number of operations related to features, e.g., feature extraction,
feature construction and feature selection, may be involved to find the op-
timal representation of the data for a task. In image classification, fea-
ture learning techniques can identify and extract effective features from
raw images via a learning process without domain knowledge. Figure 1.1
shows the overall process of feature learning for image classification. The
feature space search may include the feature extraction, feature selection
or feature construction process that is able to find the best representation
(feature set). A measure, e.g., the classification performance, is used to
evaluate the effectiveness (goodness) of the learned features and guide
the search in the feature learning process. After finding the best features
(the feature learning process is terminated), a classifier can be trained and
used to classify images in the test set.

Feature learning is a difficult task due to the high variations across im-
ages and the large search space. Many algorithms have been developed
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Figure 1.1: Overall process of feature learning for image classification.

for image classification with simultaneous and automatic feature learning.
Representative methods are Neural Network (NN)-based methods, e.g.,
Convolutional Neural Networks (CNNs), [100, 180], Auto-Encoders (AEs)
[183], and Restricted Boltzmann Machine (RBM) [69]. However, most of
these methods have limitations, i.e., they require a large number of train-
ing instances, have fixed model complexity or need rich expertise to de-
sign the architectures. In addition, the learned solutions/models/features
are often difficult to understand and interpret.

Genetic Programming (GP) is an Evolutionary Computation (EC) tech-
nique that is able to automatically evolve computer programs for solving
a problem without using extensive domain knowledge [121]. Compared
with other EC techniques, e.g., Particle Swarm Optimisation (PSO), Ge-
netic Algorithms (GAs) and Differential Evolution (DE), GP has a more
flexible representation of variable length and can search the solution space
without any assumptions on the solution structure. In addition, the tree-
based solutions of GP often have high interpretability and understandabil-
ity, providing insights into why it can achieve good performance. Existing
GP-based algorithms have achieved promising results in image classifica-
tion [11, 16, 138, 197] and many other image-related tasks, such as image
segmentation [141, 142], edge detection [90] and salient object detection
[3]. However, the potential of GP has not been systematically investi-
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gated in feature learning for image classification. The majority of exist-
ing GP methods use very simple functions and program structures, thus
their performance is limited [8, 164, 190, 200, 241, 242]. These limitations
require further investigation and development of individual representa-
tions, program structures and functions in GP to explore its potential in
feature learning for various types of image classification tasks.

1.2 Motivations

1.2.1 Challenges of Image Classification

Image classification is a fundamental task in computer vision. However, it
is very difficult due to the following challenges:

1. High-dimensional data. Image data often have very high dimen-
sionality, which causes the classification based on the pixel values
to be very challenging. For instance, a 100×100 grey-scale image
has 10,000 pixel values with integers between [0, 255], which is high-
dimensional data. This raises an important and challenging problem
of how important information is learned/extracted to represent the
image data and reduce its dimensionality. Another potential chal-
lenge is that dealing with high-dimensional data may lead to high
computational cost, which needs to be addressed.

2. Image variations. In the real world, images are often sampled in dif-
ferent environments under various conditions, which contain a large
number of variations, including viewpoint, scale, illumination vari-
ations, as well as deformations and occlusions. The large variations
require the image classification system to have high generalisation
ability and robustness. In addition, image variations vary with the
datasets and the types of image classification tasks. For solving dif-
ferent image classification tasks, it is often necessary to develop a
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method that can deal with various types of variations, which is chal-
lenging.

3. Domain knowledge requirement. To effectively solve image clas-
sification, a number of processes/operations may be needed, e.g.,
image processing, keypoint detection, feature extraction, and feature
selection. Many of these operations require domain knowledge in or-
der to obtain a set of effective features for classification. The classifi-
cation performance relies highly on the quality of the extracted/selected
features. However, domain experts are not always at hand. It takes
time to find the experts and they are costly to employ [15].

4. Flexibility and adaptability. Most existing methods are only effec-
tive for particular problems (domains), leading to image classifica-
tion system that lack flexibility and adaptability. For example, a
face classification system may not be effective for other object im-
age classification tasks. With poor flexibility and adaptability, it is
often necessary to develop a new method for solving a new task. To
address this, it is necessary to develop a method with high flexibil-
ity and adaptability that can achieve good performance in different
types of image classification tasks. However, different types of image
classification tasks often involve a wide range of image variations
and are more difficult to solve than a single type of image classifi-
cation task. This challenge requires a feature learning method that
can adaptively and dynamically extract different types of domain-
specific and effective features for image classification.

1.2.2 Why Genetic Programming (GP)

GP is an EC technique that automatically evolves computer programs to
solve problems without extensive domain knowledge. GP has been suc-
cessfully applied to image analysis, including edge detection [90], feature-
ground segmentation [142], texture analysis [11], and image feature ex-
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traction/description [15]. The following aspects demonstrate why GP is
good for image classification.

1. Flexible representation. Compared with other EC techniques, such
as PSO, GAs and DE, where the lengths of the representation/genotype
are usually fixed, the tree-based GP method has a more flexible rep-
resentation. The flexible representation allows GP to evolve solu-
tions with variable lengths/depths for solving a problem. Com-
pared with other well-known image classification algorithms, such
as CNN-based methods [126, 239, 199, 100], where the model ar-
chitecture/complexity is pre-defined, GP can evolve solutions with
variable sizes/depths.

2. Constraints and different data types. As a commonly used and en-
hanced version of GP, Strongly Typed GP (STGP) [161] or Grammatically-
based GP [225] is able to evolve programs with functions or termi-
nals that operate on appropriate data types. These GP methods are
easy to implement and can manipulate multiple data types, which is
very suitable for solving a relatively complex problem by employing
different types of functions/operators, such as arithmetic functions,
logic functions, filtering operators, and edge detectors, in their func-
tion sets.

3. Integration of multiple tasks. GP is able to simultaneously deal
with multiple tasks using a single tree representation. For instance,
GP is able to simultaneously deal with region detection, feature ex-
traction, feature construction, and image classification [13, 14, 27,
138]. Instead of dealing with each task independently and separately,
GP has the potential to find solutions for each task and automatically
assemble these solutions into a solution to the original problem [122].

4. Learning ability. Compared with traditional image feature extrac-
tion methods, GP has the capability to learn features from raw im-
ages and automatically adjust the learned features to the classifiers
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to achieve better classification performance [11, 16]. GP is able to
effectively find the best solution from a large search space to a prob-
lem/task.

5. Interpretability (understandability). The solutions evolved by GP
have potentially high interpretability. Unlike other image classifica-
tion techniques, such as deep NNs and CNNs, where the mapping
from inputs to outputs looks like a “black-box”, the programs/solutions
of GP are usually expressed as syntax trees with functions and vari-
ables and can often be translated into a set of symbolic rules. A GP
tree can be interpreted and analysed to provide valuable insights into
how it solves the problem and why it achieves good performance.

6. Building blocks/knowledge discovery. GP is able to automatically
form building blocks during the evolutionary process. The build-
ing blocks represent the knowledge discovered from the problem by
learning. The interrelationships among the relevant variables and
operators are often included in the building blocks. Such build-
ing blocks can be extracted and transferred as useful knowledge to
improve the learning performance of solving other related/similar
problems.

1.2.3 Limitations of Existing Work

In recent decades, many image classification tasks have been successfully
solved by deep learning methods. Among all the deep learning methods,
CNNs have become the leading method for image classification with im-
pressive performance [100, 126, 199, 239]. Deep CNNs have hundreds or
thousands of layers of non-linear transformation processors to learn an
effective representation of the input data to perform image classification
[134, 180]. However, deep CNN methods have the following limitations.
First, deep models with a huge number of trainable parameters require
a large number of labelled training instances/images to train. In many
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domains, such as medicine, biology and remote sensing, the number of
labelled instances is often limited due to the high cost of collecting data.
Second, deep models often have poor interpretability due to the “black-
box” mapping from inputs to outputs. It is difficult to explain and under-
stand what features are extracted/learned and why they are effective for
classification. Third, rich domain expertise is often required to design an
effective architecture for CNN [248]. The architecture of CNN is a key fac-
tor to achieve promising results as it can be found from [100, 126, 199, 239]
that CNNs with different architectures perform differently. Fourth, the
model complexity of CNNs is fixed, indicating that flexibility and adapt-
ability is limited. Due to these limitations, it is still necessary to explore
and develop new approaches to image classification.

GP has been successfully applied to learn features from images for clas-
sification [13, 14, 16, 27, 138, 197]. Based on the number of learned features,
existing GP-based feature learning methods can be broadly classified into
two groups, i.e., learning one feature [13, 14, 27, 138] and learning multiple
features [10, 16, 197]. It is also noted that GP has been applied to evolve
CNNs for image classification, such as in [64, 206, 250], but these methods
use CNNs for feature learning rather than GP. Therefore, these methods
are not included in any of these two groups. The methods in the first group
can integrate multiple tasks, i.e., region detection, feature extraction and
feature construction, into a single tree to produce one high-level feature
[13, 14, 27, 138]. The learned single feature is often used to build a simple
classifier to perform a binary classification task. The limitation is that these
methods cannot be directly employed to solve a multi-class classification
problem, which many image classification tasks belong to. The methods
in the second group often learn a number of features from images and use
traditional classification algorithms, e.g., k-Nearest Neighbour (KNN) and
Support Vector Machines (SVMs), to perform classification based on the
learned features [10, 16, 197]. However, most of these methods have sim-
ple functions and program structures and have only been examined on a
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limited number of image classification tasks. Due to these limitations, the
potential of GP in image feature learning has not been extensively and sys-
tematically investigated. In addition, the GP-based feature learning meth-
ods have seldom been examined on large benchmark image classification
datasets and compared with state-of-the-art algorithms. These limitations
motivate this thesis to develop and further explore a new GP-based ap-
proach to feature learning for image classification.

Existing image-related operators, such as filtering operators (e.g., Gaus-
sian filter, derivatives of Gaussian, Laplacian filter, Laplacian of Gaussian
filter, Gabor filter, and Sobel edge detector), pooling operators (e.g., max-
pooling) and image descriptors (e.g., GLCM, LBP, HOG, and SIFT), are
able to transform image pixels and/or detect/describe informative fea-
tures from images. These operators have been widely used in image pre-
processing and feature extraction. Employing image-related operators in
GP is effective for learning domain-specific features to achieve promising
classification performance [138, 197]. GP has a flexible representation, en-
abling it to have many possible ways to combine/employ these operators
to achieve effective feature learning [27, 138, 197]. Existing works have
not comprehensively and systematically investigated the use of different
image-operators in GP to achieve effective image feature learning. To ad-
dress this, it is necessary to investigate a new individual representation, a
new function set, a new terminal set, and a new fitness function for GP.

Ensemble methods have been widely used for classification and can
achieve better generalisation performance than using a single classifier
[91, 237]. Traditional ensemble methods for image classification often in-
clude the processes of feature extraction, base learners/classifier selection,
training and combination [65]. The key process is to extract a set of infor-
mative features from the images, but domain knowledge is often required.
In addition, traditional methods often separately perform these processes,
which may limit the performance of the constructed ensemble. Automat-
ing the processes of feature learning and ensemble learning is able to ad-
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dresses these limitations. GP has been applied to construct ensembles for
classification [75] or automatically learn features for image classification
[197]. However, no existing work combines both in GP to achieve au-
tomatically and simultaneously learn features and evolve ensembles for
image classification.

When the number of training instances is large, the computational cost
of GP-based feature learning algorithms is often very high. However,
many well-known image classification tasks have a large number of train-
ing instances, e.g., MNIST [136] has 60,000 training images. To allow GP
to achieve feature learning on such large datasets, improving its efficiency
is very important. However, very few works have successfully addressed
this issue. Using a small number of instances intuitively reduces the com-
putational cost. However, unless the used small dataset can cover a wide
range of image variations, this may lead to poor generalisation perfor-
mance on unseen data. To improve both computational efficiency and gen-
eralisation performance, it is necessary to develop a new GP-based feature
learning approach for image classification by addressing this limitation.

1.3 Goals

The overall goal of this thesis is to investigate the potential capability of GP
for feature learning in image classification by developing a new GP-based
approach to automatically learning effective features for different types of
image classification tasks. To achieve this overall goal, the following four
objectives have been established to guide the research.

1. Develop a new feature learning approach using GP to automatically
select and combine existing image descriptors to extract rich and dis-
criminative global and/or local features for different image classifica-
tion tasks. This approach is expected to evolve solutions with high
interpretability that can extract effective features to achieve better
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classification performance than other GP-based methods, traditional
methods and CNN-based methods.

Existing image descriptors, such as HOG [60], SIFT [147] and LBP
[167, 168], are well-developed and quite effective for dealing with
certain image variations. With a flexible tree-based representation,
it is possible to employ them in GP to be automatically selected and
combined/integrated to learn high-level features. However, this use
of these effective descriptors in GP to achieve feature learning has
not been fully investigated. In general, there are two types of fea-
tures, i.e., global features extracted from the whole image and local
features extracted from the regions of interest. Most of the existing
methods extract one type of features, i.e., global features or local fea-
tures, which are not flexible and effective for solving different types
of image classification tasks.

2. Develop a new GP-based approach with a flexible program structure
and image-related operators for feature learning in image classifica-
tion. This approach is expected to learn various types and numbers
of image features that can achieve better classification performance
than a large number of competitive methods on different benchmark
datasets, including large benchmark datasets.

Existing image-related operators have been employed as GP func-
tions to evolve solutions that extract high-level features from im-
ages, including filtering operators [197]. However, the filtering oper-
ators and the image descriptors have not been simultaneously inves-
tigated in GP to effectively use them to achieve feature learning. To
effectively use these operators in GP, a program structure is typically
required to integrate different functions and terminals into a single
tree. Existing GP program structures, e.g., multi-tier [27], two-tier
[14] and multi-layer [197], are often restricted in a certain way and
cannot be used when new image-related operators are introduced in
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GP.

3. Develop a GP-based approach with a new representation to auto-
matically and simultaneously learn features and evolve ensembles for
image classification. This approach is the first approach that uses
GP to automatically construct ensembles from raw images for clas-
sification. This approach is expected to extract informative features,
select effective classification algorithms and optimise key parame-
ters of the classification algorithms to construct an effective ensemble
with high diversity that is able to achieve better image classification
performance than existing methods and the GP method proposed in
the second objective.

Ensemble methods have been widely used for solving classification
problems [91, 237]. An ensemble of classifiers often achieves better
generalisation performance than a single classifier in classification
problems [247]. Using ensemble methods to solve image classifica-
tion, a key process is to extract a set of informative features to build
a set of classifiers that are individually good and diverse overall. GP
has been used to evolve ensembles for classification [75] or automat-
ically learn features for image classification [11, 197]. However, no
existing work combines both in GP to automatically and simultane-
ously learn features and evolve ensembles for image classification.
With a flexible tree-based representation, it is possible to integrate
the processes of feature learning and ensemble learning into a single
GP tree to automatically evolve effective solutions for image classifi-
cation from raw images.

4. Develop a multi-population GP-based approach with knowledge trans-
fer and ensembles to achieve fast feature learning for effective image
classification. This approach is expected to improve both the effec-
tiveness and efficiency of the GP-based feature learning algorithm
proposed in the second objective on different types of image classifi-
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cation tasks. This approach is also expected to achieve better classi-
fication performance than a large number of existing algorithms and
the GP methods proposed in the second and third objectives.

Many well-known image classification tasks have a large number
of training instances, e.g., MNIST [136] has 60,000 training images.
Learning features from such a large dataset using GP-based feature
learning algorithms is computationally expensive. Therefore, im-
proving the efficiency of the GP-based feature learning algorithms
is important and necessary. However, very few works have suc-
cessfully addressed this issue. A multi-population algorithm frame-
work is expected to use multiple small populations to perform fea-
ture learning from small subsets of the original training set, respec-
tively, which is able to reduce the computational cost. Knowledge
transfer can be used to extract and reuse useful knowledge across
populations to improve the learning performance of the algorithm.
However, very few works of knowledge transfer in GP-based feature
learning algorithms have been proposed. The generalisation perfor-
mance can be further improved by creating an ensemble for image
classification.

1.4 Major Contributions

This thesis makes the following contributions.

1. This thesis shows how existing effective image descriptors are inte-
grated into GP to achieve automatic and simultaneous global and/or
local feature learning for image classification. This thesis develops
a new GP-based approach with a new program structure, a new
function set, including five representative image descriptors in the
global and local scenarios, and a new terminal set. The new ap-
proach can achieve region detection, feature extraction and feature
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combination, simultaneously and automatically. A new fitness eval-
uation process is developed to improve the generalisation ability of
the learned features. The results demonstrate that the proposed ap-
proach achieves significantly better performance than the other GP-
based methods, traditional methods using effective features and the
CNN-based methods on different types of image classification tasks.

Part of this contribution has been published in:

• [40] Ying Bi, Bing Xue, and Mengjie Zhang. “An Effective Fea-
ture Learning Approach Using Genetic Programming with Im-
age Descriptors for Image Classification”. IEEE Computational
Intelligence Magazine, vol. 15 , no. 2, 2020. pp. 65-77.

• [44] Ying Bi, Mengjie Zhang, and Bing Xue. “Genetic Program-
ming for Automatic Global and Local Feature Extraction to Im-
age Classification”. In Proceedings of IEEE Congress on Evolution-
ary Computation. IEEE Press. Rio de Janeiro, Brazil. 8-13 July
2018. pp. 1-8. (Nominated for the Best Student Paper Award).

2. This thesis demonstrates how different types of image-related op-
erators, i.e., filtering, pooling, and image descriptors, can be inte-
grated into GP to achieve feature learning for image classification.
This thesis develops a new GP-based approach with a new flexible
program structure, a new function set and a new terminal set. The
flexible program structure is constructed by an input layer, filtering
layers, pooling layers, a feature extraction layer, a feature concate-
nation layer, and an output layer. The new function set has a large
number of image-related operators. With these designs, the new ap-
proach can learn three types of features, i.e., features from filtering
and pooling, features from feature extraction (by image descriptors),
and the combination of features from filtering/pooling and feature
extraction. The proposed approach can be easily applied to solve dif-
ferent image classification tasks by learning effective features. The
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experimental results on 12 benchmark datasets of varying difficulty
show that the proposed approach achieves better performance than
a number of effective algorithms.

Part of this contribution has been published in:

• [43] Ying Bi, Bing Xue, and Mengjie Zhang. “Genetic Program-
ming with Image-Related Operators and a Flexible Program Struc-
ture for Feature Learning in Image Classification”. IEEE Trans-
actions on Evolutionary Computation. 15pp, 2020. DOI: 10.1109/TEVC.
2020.3002229 (15 June 2020 published online).

• [35] Ying Bi, Bing Xue, Mengjie Zhang. “An Automatic Fea-
ture Extraction Approach to Image Classification Using Genetic
Programming”. In Proceeding of the 21st European Conference on
Applications of Evolutionary Computation (EvoApplications 2018).
Lecture Notes in Computer Science. Parma, Italy. 4-6 April
2018. pp. 421- 438.

• [36] Ying Bi, Bing Xue, Mengjie Zhang. “A Gaussian Filter-
Based Feature Learning Approach Using Genetic Programming
to Image Classification”. In Proceedings of the 31st Australasian
Joint Conference on Artificial Intelligence (AI2018), Lecture Notes
in Computer Science. vol. 11320. Springer. Wellington, New
Zealand. 11-14 December 2018. pp. 251-257.

• [39] Ying Bi, Bing Xue, and Mengjie Zhang. “An Evolution-
ary Deep Learning Approach Using Genetic Programming with
Convolution Operators for Image Classification”. In Proceedings
of 2019 IEEE Congress on Evolutionary Computation (CEC 2019).
IEEE Press. Wellington, New Zealand. 10-13 June 2019. pp.
3197-3204.

3. This thesis develops a GP-based approach with a new representa-
tion to automatically and simultaneously learn features and evolve
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ensembles for image classification. A new individual representa-
tion, a new function set, including image-related operators, classifi-
cation functions and combination functions, and a new terminal set,
including key parameters for the classification functions, are devel-
oped. The new approach can automatically learn high-level features
through multiple transformations, and select various classification
algorithms and their corresponding parameters to construct an ef-
fective ensemble. The diversity issue when building the ensembles
can be automatically addressed by the proposed approach using the
strategies of input feature manipulation and learning parameter ma-
nipulation. The proposed approach significantly outperforms a large
number of benchmark methods, including deep learning methods,
on many image classification datasets of varying difficulty. This is
the first work using GP to construct ensembles for classification from
raw images.

Part of this contribution has been published in:

• [42] Ying Bi, Bing Xue, and Mengjie Zhang. “Genetic Program-
ming with A New Representation to Automatically Learn Fea-
tures and Evolve Ensembles for Image Classification”. IEEE
Transactions on Cybernetics. 15pp, 2020, DOI: 10.1109/ TCYB.2020.2964566.
(30 Jan 2020 published online).

• [38] Ying Bi, Bing Xue, and Mengjie Zhang. “An Automated En-
semble Learning Framework Using Genetic Programming for
Image Classification”. In Proceedings of 2019 Genetic and Evo-
lutionary Computation Conference (GECCO 2019). ACM Press.
Prague, Czech Republic. 13-17 July 2019. pp. 365-373.

• [41] Ying Bi, Bing Xue, Mengjie Zhang. “Evolving Deep Forest
with Automatic Feature Extraction for Image Classification Us-
ing Genetic Programming”. In Proceedings of The Sixteenth Inter-
national Conference on Parallel Problem Solving from Nature (PPSN
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2020), Lecture Notes in Computer Science. Vol. 12269. Springer.
Leiden, The Netherlands, 5-9 September 2020. pp. 3-18.

4. This thesis develops a new GP-based feature learning algorithm with
multiple populations, knowledge transfer and ensembles to improve
both the effectiveness and efficiency for image classification. A new
multi-population algorithm framework is developed to use multiple
small populations to learn features from small subsets of the train-
ing set, respectively. With this design, this computational cost is
reduced theoretically and empirically. A new knowledge transfer
method is developed to improve the learning performance of multi-
ple small populations. A new fitness function is proposed to evalu-
ate the individuals by providing more accurate information on how
the classifier performs using the learned features. A new combina-
tion strategy is introduced to combine the best solutions found by the
proposed approach to create an effective ensemble for classification.
Experimental results show that the proposed approach achieves bet-
ter classification results and reduces the computational cost than the
baseline GP-based feature learning algorithm. The comparisons with
state-of-the-art algorithms show that the proposed approach achieves
better or comparable performance in almost all the comparisons.

Part of this contribution has been published in:

• Ying Bi, Bing Xue, and Mengjie Zhang. A Fast Genetic Programming-
Based Feature Learning Approach with Knowledge Transfer and
Ensembles for Image Classification. Submitted to IEEE Transac-
tions on Evolutionary Computation. June 2020.

1.5 Organisation of Thesis

The structure of the rest of this thesis is illustrated in Figure 1.2. Chapter
2 introduces the background and related work. The main contributions
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Conclusions (Chapter 7)

GP for Feature Learning in Image Classification

Figure 1.2: The overall structure of the contributions.

of this thesis are presented in Chapters 3-6. Each of the four chapters ad-
dresses one of the objectives and produces one major contribution. Chap-
ter 7 concludes this thesis and points out future research directions.

Chapter 2 presents essential background concepts of this thesis, includ-
ing computer vision, machine learning, classification, ensemble learning,
transfer learning, feature learning, evolutionary computation, and genetic
programming. It also reviews recent literature related to this thesis and
summarises the limitations that this thesis aims to address.

Chapter 3 proposes a new GP-based approach to automatically select
and combine existing image descriptors to extract rich and discrimina-
tive global and/or local features for different image classification tasks.
A novel program structure (individual representation), a new function set
with image descriptors and a new terminal set are proposed. To effec-
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tively learn discriminative features, a new feature learning process and a
new fitness evaluation process are developed. The new approach is exam-
ined on eight different image classification datasets, including multi-class
classification datasets. Further analysis of computational cost and exam-
ple solutions is conducted to provide deep insights into the new approach.

Chapter 4 proposes a new GP-based approach with image-related op-
erators and a flexible program structure to feature learning for different
image classification tasks. A flexible program structure, a new function
set with many image-related operators, and a new terminal set are devel-
oped. The new approach is evaluated on 12 benchmark datasets of varying
difficulty and compared with a large number of existing methods. Further
analysis is conducted to provide an in-depth understanding of the new
approach.

Chapter 5 develops a new GP-based approach to automatically learn-
ing effective features and evolving ensembles for image classification. A
new representation with an input layer, filtering & pooling layers, a fea-
ture extraction layer, a concatenation layer, a classification layer, a com-
bination layer, and an output layer is developed. Each functional layer,
except for the input and output layers, has a number of different func-
tions. The new approach is evaluated on 12 datasets of varying difficulty,
including large datasets with noisy images. The performance of the new
approach is compared with a large number of benchmark methods. Fur-
ther analysis is conducted to analyse the effectiveness and diversity of the
evolved ensembles.

Chapter 6 proposes a new GP-based feature learning approach with
high generalisation performance and low computational cost for image
classification. A new feature learning approach, including a new knowl-
edge transfer method, a new fitness function, and a new combination strat-
egy for constructing ensembles, is proposed. The new approach is exam-
ined on 11 different image classification datasets of varying difficulty and
compared with the baseline GP-based feature learning method and a large
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number of other existing methods. The results are presented and analysed
in detail. Further analysis is conducted to show the effectiveness of the
ensembles and the knowledge transfer method.

Chapter 7 summarises the work and concludes this thesis. The main
contributions and key findings of this thesis are highlighted. A number of
future research directions are pointed out.



Chapter 2

Literature Survey

2.1 Computer Vision

2.1.1 Overview

As a human, it is easy to describe the objects that we see from the world
as our human vision system can perceive a 3D structure with enough in-
formation, such as the shape, appearance and colour of the objects. The
perceptual psychologists have investigated the human vision system for
decades to figure out how it works [213]. However, using a computer to
simulate the human vision system is very complicated. For example, hu-
mans can easily track an object in a moving environment with a complex
background, but it is difficult to achieve this using a computer. The task in-
volves an inverse problem of vision [213], where human vision system has
the ability to recover the unknowns when the information is insufficient,
but computers cannot do this easily.

Researchers in computer vision try to use computers to reconstruct or
describe the objects in images or videos as the human vision system can do
[30, 113, 213]. A definition of computer vision from The British Machine
Vision Association and Society for Pattern Recognition (BMVA) [1] quoted
as follows:

21
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“It is concerned with the automatic extraction, analysis and un-
derstanding of useful information from a single image or a se-
quence of images”.

Computer vision is a broad research field with different disciplines in-
volved, such as geometry, mathematics, engineering, and physics. The
research on computer vision not only focuses on theoretical development
but also attempts to solve real-world problems about vision using com-
puters, such as face recognition, motion capture and remote sensing.

A large number of computer vision applications have been developed
in different fields, including autonomous navigation, medical imaging,
surveillance, fingerprint recognition, and biometrics [113, 213]. However,
the majority of applications consist of several typical computer vision tasks,
such as object classification, object detection and object recognition.

Object classification is the task of assigning a class label to an object in
the image [22, 63]. It is a challenging task due to the wide range of vari-
ations of images/objects in colour, shape, scale, illumination, orientation,
and occlusions [219]. Object detection means to detect objects in an im-
age against the background without considering the classes of the objects
[22, 63]. The main purpose of object detection is to find the locations of
the objects in an image [10]. Object recognition means to recognise the
class labels and the locations of the objects from an image [22, 63]. Object
recognition actually performs both object detection and object classifica-
tion, which is more difficult.

Figure 2.1 shows a commonly used scheme of an object recognition
system [22, 63]. Typically, an object recognition system has four key mod-
ules. The input of the system is an image and the output is the recog-
nised object(s). The first important module is feature extraction, where
image features, such as edge features, are extracted from the input im-
age. A grouping method is then used to group all the extracted features
into meaningful collections, such as the collection of edge features, which
are called indexing primitives [63]. A matching algorithm is employed
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Figure 2.1: General object recognition system [22, 63].

to determine the candidate objects by using the grouped collections and
the objects from the databases. Finally, a score is given to each candidate
object and the best candidates with the highest scores are labelled as the
recognised objects.

Besides the three typical tasks, i.e., object classification, object detection
and object recognition, computer vision also contains other well-known
tasks, including image segmentation, object tracking, edge detection, and
content-based image retrieval. Among these tasks, the most general com-
ponents are image classification, image preprocessing and feature extrac-
tion, which will be described in the following sections.

2.1.2 Image Classification

Image classification is the task of assigning images with one of the pre-
defined class labels based on the content in the images. For example, an
image classification algorithm/system can classify the images with a cat
into the cat category and the images with a dog into the dog category, as
shown in Figure 2.2 (the images in this figure are from [74]). Image clas-
sification includes a wide range of tasks according to the type of images,
such as medical image classification, remote sensing image classification,
face classification, texture classification, and biological image classifica-
tion. Due to the high variations of background, illumination, viewpoint,
scale, deformation, and occlusion across images, image classification is a
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Cat Category

Dog Category

Figure 2.2: An example of cat and dog image classification. The example
images are from [74].

challenging task.

2.1.3 Image Preprocessing Operators

Image operators are usually used in the image preprocessing process to
obtain images with high equality or to satisfy certain requirements. Gen-
erally, images are collected from different conditions. The raw images may
contain noise or have poor contrast, which is not suitable for direct analy-
sis. Image preprocessing aims to deal with these images in order to obtain
better quality or performance. Commonly used image preprocessing op-
erators are briefly described as follows.

1. Histogram equalisation: Histogram equalisation aims to equalise
the distribution of the intensities of an image [2]. It spreads the large
values or small values of intensities out over a larger range, which
increases the contrast of the overall image.

2. Gaussian filter: The Gaussian filter is known as a blurring/smoothing
filter, which can be used to reduce the noise of an image [2]. In the fil-
tering process, each pixel is transformed according to its neighbour
pixels and the filter kernel. In Gaussian filter, the kernel is generated
based on a 2D Gaussian function, where the standard deviation and
the kernel size need to be set.
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3. Edge filters/detectors: There are many edge filters in the literature to
detect edges in an image [2]. A simple example is the F = [−1 0 1]

operator. In this filtering process, if the left neighbour pixel value is
bigger than the right neighbour pixel value, it will return a negative
value to replace the current pixel value. Otherwise, it will return a
positive value. Edge filters are designed to find discontinuities along
with different directions, e.g., horizontal and vertical. Two represen-
tative edge filters are Prewitt and Sobel edge detectors [2].

4. Laplacian filter: The Laplacian filter is designed for detecting the flat
area or the area where has significant edges in an image [2]. The filter
is generated by discretising and approximating the Laplacian opera-
tor. Compared with other edge filters, e.g., the Sobel edge detector,
the Laplacian filters cannot detect edges from different directions.

5. Laplacian of Gaussian (LoG) filter : The Laplacian filter might pro-
duce noisy results [2]. A LoG filter is used to reduce the noise to
obtain better results than the Laplacian filter. The results produced
by the LoG filter is similar to that of performing a Laplacian filter on
the results produced by a Gaussian filter.

6. Difference of Gaussian (DoG) filter: The DoG filter is designed
for finding regions in an image where they are changes in different
scales [2]. The DoG filter is created using two Gaussian filters with
different but nearby scales.

7. Gabor filter: The Gabor filter is used to find elements in an image at
a certain frequency and orientation with a certain phase [2]. A Ga-
bor filter is created by using the product of a 2D Gaussian function
with a 2D sinusoid function. To select a Gabor filter, it is necessary
to determine the parameters, including phase, orientation and wave-
length.
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2.1.4 Image Descriptors and Feature Extraction

Image descriptors are developed by domain experts to extract/describe
effective image features for particular tasks. An image descriptor may
consist of a set of different operations or a number of mathematical equa-
tions/rules that are able to detect keypoints and describe informative im-
age features. The process of transforming images into features using im-
age descriptors and/or other operators is known as feature extraction.
Image feature extraction aims to extract informative and discriminative
information from an image that is helpful for the task as well as reducing
the dimensionality of the image data. The image features can be broadly
classified into two categories, global (holistic) features and local features
[99]. Global features are the features extracted from the whole image based
on all the pixel values, which can be considered as properties of an im-
age, such as texture, colour and shape. Local features are the features
extracted from keypoints or regions of interest, which are often detected
from an image. In the process of global or local feature extraction, different
image descriptors may be employed. Representative image descriptors
include Histogram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), Scale Invariant Feature Transform (SIFT), Speeded Up Robust Fea-
tures (SURF) and so on [99].

This section overviews several well-known image descriptors that can
be used to extract global and/or local features from the images.

1. Histogram: The histogram method is a very simple and fast fea-
ture extraction method [2], which quantises the distribution of all
the pixel values in an image as a feature vector. This method is com-
monly used for generating histogram vector according to the results
produced by filters, descriptors or other operators.

2. Grey-Level Co-occurrence Matrix (GLCM): The GLCM method is
designed by Haralick [96, 97] to characterise the texture of images by
calculating the occurrences of the adjacent grey levels according to
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the pre-defined distance and orientation. After obtaining the GLCM
images, fourteen texture statistics are calculated as features for clas-
sification. The fourteen features are Angular Second Moment, Con-
trast, Correlation, Sum of Squares, Inverse Difference Moment, Sum
Average, Sum Variance, Sum Entropy, Entropy, Difference Variance,
Difference Entropy, two Information Measures of Correlation, and
Maximal Correlation Coefficient [97].

3. Local Binary Patterns (LBP): The LBP descriptor [169] is a simple
but effective texture description method. LBP compares each cen-
tral pixel with its neighbour pixels in a sliding window to generate
binary codes. Then the value of the central pixel is replaced by the
sum of all the products of the binary code and pre-defined weights.
The histograms of the generated LBP image are used as features for
image analysis. Different versions of LBP can be found in [111, 169],
where the rotation-invariant LBP (i.e., uniform LBP) is the widely
used version.

4. Histogram of Oriented Gradients (HOG): The HOG method is a
well-known shape and appearance feature extraction/description ap-
proach to human detection [60]. It contains a number of steps, in-
cluding gamma and colour normalisation, gradient computation, weighted
voting into spatial and orientation cells, and contrast normalisation
over overlapping spatial blocks [60]. To simplify, the main idea of
HOG is to extract locally normalised histogram features of gradi-
ent orientations (cell) in a densely overlapping grid (block). By us-
ing this approach, the local object appearance and shape are well-
characterised and finally generate a feature vector.

5. Scale Invariant Feature Transform (SIFT): The SIFT method [147] is
the most popular keypoint detection and description method for im-
age matching or object detection. In this approach, local extreme
points are detected by using the DoG filters with different scales
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firstly. Then the Taylor function is used to optimise and eliminate
low-contrast keypoints and the Hessian matrix is used to eliminate
edge responses. For each keypoint, SIFT produces 128 histogram
features of gradient magnitudes and orientations. Without detect-
ing keypoints, a dense SIFT method is developed to extract features
from images with less computational complexity [220]. This method
is rotation, illumination and scale-invariant.

6. Speeded Up Robust Features (SURF): The SURF method [32] is an
effective scale and rotation-invariant keypoint detector that is sim-
ilar to SIFT but faster and more robust. Instead of using DoG and
Gaussian derivatives in SIFT, the Hessian blob detector is used in
SURF. The SURF descriptor generates a 64D feature vector for each
detected keypoint rather than 128D by SIFT.

7. Others: Other image descriptors include Binary Robust Invariant
Scalable Keypoints (BRISK) [139], Gradient Location-Orientation His-
togram (GLOH) [157], and Fast Retina Keypoint (FREAK) [18].

2.2 Machine Learning and Classification

2.2.1 Overview of Machine Learning

Machine learning as a research field under the big umbrella of Artificial
Intelligence (AI) [154] has received remarkable attention over the world
in recent years. Machine learning aims to design computer programs that
are able to automatically learn from data/experiences to solve problems
[20, 159]. One famous definition of machine learning by Mitchell [159]
quoted as follows:

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
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its performance at tasks in T, as measured by P, improves with
experience E.”

According to this definition, there are three main components in a ma-
chine learning system, i.e. experience E (data), task T and performance
measure P. The performance measure is related to the task and the com-
puter program. Thus machine learning is also defined as “Machine learn-
ing is programming computers to optimise a performance criterion using
example data or past experience” by Alpaydin [20].

Machine learning is a big research area, involving a large number of al-
gorithms and applications in various fields, such as engineering, finance,
medical diagnosis, biometrics, automatics, and game playing. Depending
on different types of feedback provided for learning, machine learning al-
gorithms can be categorised into three main groups: supervised learning,
unsupervised learning and reinforcement learning [189].

• In supervised learning, the input and the desired output are pro-
vided for the learning system, where the task is to learn models/functions
that map the input to the target output [20]. Two well-known super-
vised learning tasks are regression and classification. In regression,
the desired continuous output of each instance is known in advance,
where one feedback of this learning may be the error such as mean
squared error. In classification, the class labels of the input data are
provided. The goal of this task is to learn models that can predict
class labels given unseen data. Thus the feedback or measure may
be classification accuracy or error rates. Typical supervised learning
algorithms are Decision Trees, Naı̈ve Bayes, Artificial Neural Net-
works, and Support Vector Machines.

• In unsupervised learning, only the input data is provided for the
learning system, whose task is to find regularities/structures in the
input data [20]. One representative example task is clustering, which
aims to find clusters of inputs or group inputs into different groups.
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The k-means clustering algorithm [98] is a widely used method for
clustering, where a distance measure is often employed to guide the
learning.

• In reinforcement learning, a learning agent is to explore the envi-
ronment by taking actions. Each action has different impacts on the
environment. The feedback in a form of rewards or punishments of
the action is used to guide the learning. The output of a reinforce-
ment learning system is a sequence of actions. Two well-recognised
reinforcement learning algorithms are Temporal Difference learning
and Q-learning [210].

Other well-known machine learning types include semi-supervised learn-
ing, transductive inference, transfer learning, on-line learning, and active
learning [160]. More details can be seen from [160].

2.2.2 Classification

As classification (i.e., image classification) is the main task to be solved
in this thesis, this section introduces the basic concepts of classification.
Classification is a typical supervised learning task in machine learning.
Classification is the process of classifying a set of instances/examples to
pre-defined classes. An instance is typically an observation of the prob-
lem domain, consisting of variables/features and class labels. The overall
process of classification consists of two phases. The first phase that learns
a classifier is called Training and the latter phase that predicts class labels
using the learned classifier to unseen data is called Testing.

During the training process, a classifier is trained or learned from in-
stances with class labels. This collection of instances used in this phase
is called the training set. The training process discovers important knowl-
edge and rules in the training set via building models and/or adjusting
parameters. The overall goal of training is to obtain a classifier (model)
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and/or parameters of a classifier which can achieve the best performance
(e.g., classification accuracy) on the training set. During the testing pro-
cess, the learned classifier is used to predict the class labels for the data
(instances), which are unseen to the training phase. This collection of in-
stances is called the test set, which is from the same problem domain as
the training set and often used to measure the performance of the learned
classifier.

A common issue in classification is overfitting. It indicates that the
learned models can perfectly fit the training data but poorly fit the un-
seen data. One possible reason is the training data contains noise and the
learned models also learn the knowledge/rules from the noise [20]. To
address this problem, another dataset called the validation set is employed
in the training phase to determine when to stop training or to select the
best model in the training phase. The validation set is independent of the
training set and the test set. In classification, if the performance (accuracy)
of the learned model on the validation set starts/keeps decreasing, the
training process (cycles) will stop no matter whether the accuracy on the
training set is increasing or not. Alternatively, the best model that achieves
the highest performance on the validation set among the learned models
at each training cycle is selected after completing all the training process.

The performance of learning algorithms is often examined on bench-
mark problems, where the performance/effectiveness of different algo-
rithms can be compared. The problems are often formed by selecting
datasets from public resources to researchers, such as the UCI Machine
Learning Repository 1 [26] and Kaggle 2. The learning algorithms can be
directly applied to a dataset that has the publicly separated training, vali-
dation and test sets. However, many benchmark datasets only have a set
of instances without being split or have a small number of instances. In
these cases, different methods that split the data into different (i.e., train-

1http://mlr.cs.umass.edu/ml/datasets.html
2https://www.kaggle.com
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ing, validation, test) sets can be employed to evaluate the performance of
learning algorithms. These methods include hold-out and cross-validation
[24, 119].

In the hold-out method, a dataset is split into two non-overlapping
groups according to a specific percentage to form the training set and the
test set. The test set keeps unseen to the training phase and is used to
test the performance of the model/classifier learned by a learning algo-
rithm. There are different cross-validation approaches, e.g., k-fold cross-
validation, leave-one-out cross-validation (LOOCV) and leave-p-out cross-
validation (LOPCV). The cross-validation methods average several hold-
out estimators to different data splits as the final evaluation results of the
model [24]. In the k-fold cross-validation method, the dataset is randomly
partitioned into k folds with an approximately equal number of instances.
Each time, k-1 folds are used as training samples and the left one fold is
used as the test set. The evaluation process repeats k times, with each
fold used exactly once as the test set. LOOCV is an extreme case of k-fold
cross-validation, where the value of k is equal to the number of instances.
LOPCV is similar to LOOCV but it keeps p instances in the test set rather
than one. Both LOOCV and LOPCV are exhaustive methods that are com-
putationally expensive [24]. k-fold cross-validation is usually employed
when the dataset is small.

Classification Algorithms

A number of classification algorithms (classifiers) have been developed to
tackle classification in machine learning, including k-nearest Neighbours,
Bayesian classifiers, Decision Tree classifiers, Support Vector Machines,
and Logistic Regression. This section will give a brief introduction to these
classification algorithms and other classification algorithms.

1. k-Nearest Neighbours classifier (KNN): KNN is the simplest non-
parametric machine learning method [59]. When using KNN to solve
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classification problems, a training set is given in advance. KNN cal-
culates the distances of an instance in the test set to each instance in
the training set. Then all the distances are compared and the k near-
est neighbours are found. KNN classifies the instance in the test set
to the class that is most represented by its k neighbours. One simple
version is KNN with k = 1 where the class label of the instance in
the test set is assigned as that of the nearest neighbour in the train-
ing set. Different distance measurements and different settings of k
have impacts on the classification results. The most commonly used
distance measurements are Euclidean distance, Minkowski distance
and Manhattan distance.

KNN does not require assumptions about the feature space or distri-
bution of the data, which leads it to work well in practice. KNN is
very simple and easy to implement. However, since for each instance
in the test set, a number of calculations of distance are required, it is
expensive when the training set is large [80].

2. Bayesian classifiers: Bayesian classifiers are probabilistic methods
for classification [159]. These classifiers are based on the well-known
Bayes’ rules to estimate the probability of each class given the at-
tributes [205]. One assumption is the behaviour of the problem do-
main can be captured by using probability distributions given the
training data. According to the Bayes theorem, the posterior proba-
bility used to predict the class label can be transformed to multiply
the prior probability and a likelihood [205], which can be calculated
and stored for the given training data.

The Naı̈ve Bayes classifier (NB) is the simplest and a commonly used
classifier among the Bayesian classifiers. It is based on the assump-
tion that all the features are conditionally independent, which makes
the computation easier and requires less memory. In this method,
only the prior probability and a number of conditional probabilities
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of each feature given the class are required for calculating the poste-
rior probability [205]. The advantages of NB include requiring few
parameters, saving memory, and low computational cost. However,
the drawback is that it is based on the above assumption, which may
be invalid in some domains [205].

3. Decision Tree classifiers (DT): DT is a widely used non-parametric
machine learning method [20, 159]. In classification, DT uses a tree to
represent the learned discrete-valued function/relationships among
the attributes and the class labels. A learned tree (which is also a clas-
sifier) consists of a root node, internal nodes and leaf nodes, where
root node and internal nodes are attributes, and the leaf nodes are
class labels. The learning process starts from choosing an attribute
from the attribute set of the training data as the root node. A condi-
tion (the “if-then” rule) based on the chosen attribute is set to split
the training data into subsets. This process of choosing attributes
and building “if-then” rules to split data into smaller groups repeats.
When the termination criterion is satisfied, a class label is selected as
the leaf node. When all the branches of the tree have leaf nodes, the
decision tree is learned. Using the learned tree to classify an unseen
instance is very simple, as it simply makes decisions from the root
node to the internal nodes until reaching the leaf node.

During the learning process, the main problem is which attribute
should be selected to form the internal node or the root node [159].
In the well-known Iterative Dichotomiser 3 (ID3) method, an infor-
mation gain measure is employed to evaluate how well the candidate
attribute splits the instances [159]. ID3 performs a greedy search to
select the best attribute at each step. The growing of a decision tree
stops when a homogeneous set of instances is obtained, which leads
to a significant issue, i.e., overfitting. Two commonly used methods
for avoiding overfitting are setting a good stopping criterion and per-
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forming post-pruning on the learned decision tree.

A learned decision tree has very good interpretability and under-
standability, which provides insights in which features/attributes
are important for classification. However, the decision tree might
not perform well in separating non-rectangular regions [178].

4. Support Vector Machines (SVMs): SVMs are a set of popular ma-
chine learning methods [46]. SVMs employ a kernel function to trans-
form the training data into a higher dimension. In the higher dimen-
sion, the main goal of SVMs learning is to find the optimal separat-
ing hyperplane or a set of optimal separating hyperplanes that can
linearly and easily separate the instances of different classes. The op-
timal hyperplane is found by maximising the distances between the
hyperplane and the nearest training instances (called support vec-
tors) of different classes. The optimal hyperplane can be used as a
decision boundary for a binary classification problem in the higher
dimension.

Kernel functions are important in SVMs. The most popular kernel
functions are linear function, radial-basis function, sigmoid function,
and polynomials. If the data are not linearly separable, the soft mar-
gin hyperplane that incurs the least error is expected to be found for
classification [20].

SVMs were primarily developed for binary classification. To deal
with multiple classes classification, the commonly used methods for
SVMs are to build one-vs-all (also called one-vs-rest) classifiers or to
build one-vs-one classifiers [193, 224, 233]. These classifiers are then
combined together for solving multi-class classification problems.

By maximising the margin of the classification decision boundary,
SVMs often obtain good generalisation performance. SVM is one of
the most effective methods for classification and has been widely ap-
plied in computer vision tasks, including image classification [197].
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5. Logistic Regression (LR): LR, known as softmax regression, is a pop-
ular classification algorithm and is widely used in the final layer of
neural networks for classification. For a binary classification prob-
lem, LR assumes that there is a linear relationship between the vari-
ables and the log-odds of the probabilities of the positive (p = P (Y =

1)) and negative (p = P (Y = 0)) classes. The relationship can be for-
mulated as ln p

1−p = wTx+ b, where w represents a weight vector and
b is the bias of the linear model. Given a set of training data, the opti-
mal weights can be estimated using maximum likelihood estimation
[124]. With the optimised weights and bias, the probability of an
instance to belong to class 1 is P (y = 1|x) = ew

T x+β

1+ewT x+β
and the proba-

bility of an instance to belong to class 0 is P (y = 0|x) = 1

1+ewT x+β
.

For multi-class classification problems, multinomial LRs that are able
to build multiple linear models have been developed [103].

LR is a special case of the generalised linear model for classification.
LR has high interpretability and is often easy to train. Different from
SVMs, KNN, and the other algorithms, LR builds soft classifier that
predicts the probabilities of instances to belong to each class. How-
ever, LR makes the assumption that the dependent variables and in-
dependent variables have a linear relationship, which may not hold
in many real-world problems.

6. Others: Other well-known classifiers are Random Forests (RFs), Adap-
tive Boosting (AdaBoost), and Multilayer Perceptron (MLP). RF and
AdaBoost are ensemble learning methods, which will be introduced
in the following section. MLP is a type of feedforward Artificial Neu-
ral Network (ANNs), which consists of at least three layers and a
number of neurons [92].
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Figure 2.3: A general ensemble method/architecture [247].

2.2.3 Ensemble Learning

Ensemble learning is an active research field in recent years. Ensemble
learning aims to build multiple base learners to solve problems [247]. Each
base learner can be trained using a machine learning algorithm. Ensemble
learning is also known as committee-based learning and learning multiple
classifier systems [247].

A common architecture of an ensemble [247] is shown in Figure 2.3. In
an ensemble, multiple base learners are employed. If the base learners are
trained using the same machine learning algorithm, the constructed en-
semble is called homogeneous ensemble. If the base learners in the ensemble
are trained using different machine learning algorithms, the constructed
ensemble is called heterogeneous ensemble. With multiple base learners, a
combination method such as voting and averaging is often used to com-
bine the outputs of classifiers to make a good prediction.

Typically, there are two well-known types of ensemble methods, i.e.,
boosting and bagging. A brief introduction of these two methods is de-
scribed as follows.

1. Boosting: Boosting is the method that builds multiple base learn-
ers sequentially using training instances with different weights and
combines the trained learners for solving a task. A general boosting
procedure starts with training one base learner using the training in-
stances with initial weights. The error or the misclassified instances
by this trained learner (i.e., classifier for a classification task) can be
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found. Based on this, the weights of the training instances can be
updated by putting high weights to the misclassified instances and
the data distributions can be changed. In the second training cycle,
a new base learner is trained using the training instances with new
weights. With a different data distribution, this base learner focuses
more on correctly classifying the instances that have been misclassi-
fied by the previous base learner. This process repeats until all the
training cycles are completed. Finally, a weighted ensemble of mul-
tiple trained learners can be constructed to solve the problem.

A commonly used boosting method for classification is the AdaBoost
algorithm [87]. The AdaBoost algorithm defines how the training
set s changed for building the next base learner and how multiple
trained base learners are combined at the final step to construct an
effective ensemble with high generalisation performance. More de-
tails of AdaBoost can be found in [247].

2. Bagging: Bagging is the method that builds multiple base learners
in parallel using different training instances and combines them for
prediction. Different from boosting, bagging can build or train mul-
tiple base learners simultaneously and each base learner is indepen-
dent of the other base learners. Bagging uses bootstrap sampling [72]
to create multiple data subsets with different distributions from the
original training set. Bootstrap sampling generates samples with re-
placement, which indicates that an instance may appear more than
once in a data subset. Then each sampled data subset can be used to
build a base learner. Then an ensemble of multiple trained learners
can be created using a combination/aggregation method, i.e., voting
for classification and averaging for regression [247].

A representative example of the bagging methods is Random Forest
(RF) [48]. RF uses the idea of bagging to build an ensemble of deci-
sion trees. Besides, it uses randomised feature selection to introduce
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high diversity to the ensemble. In RF, a subset of features are ran-
domly selected and the corresponding data subset with the selected
features is used to build the decision tree. It is noted that the ran-
domised feature selection is different from that in building the deci-
sion tree. In other words, RF uses different datasets with different
feature subsets to build the decision trees, which increases diversity.
Therefore, RF often obtains a better generalisation performance than
the other ensemble methods [247].

Combination methods can combine multiple trained learners for pre-
diction, which are also important in ensemble learning. Two typical com-
bination methods are averaging and voting. Averaging is used for com-
bining numeric outputs, e.g., probabilities or predicted values for a regres-
sion task. The averaging methods include simple averaging and weighted
averaging, which considers the weights of each base learner. In contrast,
voting aims to combine trained learners that produce nominal outputs,
e.g., class labels for a classification problem. The voting methods include
majority voting, plurality voting, weighted voting, and soft voting.

An ensemble often achieves a better generalisation performance than a
single base learner on unseen data [249]. The performance of an ensemble
can be defined as E = E − A, where E denotes the average of the gen-
eralisation errors of the base learner and A denotes the average ensemble
ambiguity (diversity) [127, 247]. As indicated by this equation, to obtain
a good ensemble, the base learners should be accurate and diverse. In the
ensemble building process, the diversity of classifiers is often considered
as a key factor affecting the performance of ensembles [129]. The diversity
indicates that the errors achieved by the base learner in the ensemble are
uncorrelated, which is not straightforward to measure. The diversity issue
is still an open issue in ensemble learning. Typical methods to enhance the
diversity of ensemble are data sample manipulation, input feature manip-
ulation, learning parameter manipulation, and output representation ma-
nipulation [247].
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2.2.4 Transfer Learning

Many traditional machine learning methods assume that the training data
and the test data have the same feature space and distributions [170].
When the distribution or feature space of the data is changed, a new model
is required to be built on these new data. In many cases, the training data
with labels in one task/domain may not be sufficient or available, but the
training data in a similar/related domain can be easily obtained. Moti-
vated by these, transfer learning or knowledge transfer has been proposed
and investigated [223].

A simple transfer learning task may include four main components,
i.e., source domain (Ds), source task (Ts), target domain (Dt) , and target
task (Tt). A domain, D(X,P (X)), can be expressed by a feature space X
and a marginal distribution P (X). A learning task aims to learn a predic-
tion function f(·) that maps from the feature space X to the label space
Y . For example, f(·) for a classification task can be expressed as a condi-
tional distributionQ(Y |X). The source domain (Ds) and the target domain
(Dt) are different if they have different feature spaces and/or marginal
distribution. The source task (Ts) and the target task (Tt) are different if
they have different label spaces and/or conditional distributions. Given a
source task Ts and a source domain Ds, the purpose of transfer learning is
to extract knowledge learned from the source domain and to use the ex-
tracted knowledge to improve the learning performance of the target task
Tt on a target domain Dt. It is noted that multiple source domains can be
used in transfer learning [170]

According to Pan et al. [170], there are three main research issues in
this field: 1) what to transfer, 2) how to transfer, and 3) when to transfer.
The first question asks what knowledge learned from the source domain
can be transferred to the target domain or task. For different tasks or do-
mains, not all the knowledge is useful and has positive effects on solving
target tasks. It is necessary to discover some common or general knowl-
edge crossing different domains that can be transferred. The second issue
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is about the learning algorithms/methods that can be developed to per-
form transfer learning based on the extracted knowledge. The final issue
determines in which situations the knowledge transfer should or should
not be done. A bad situation occurs when the source domain and the task
domain are not related or less related, which might lead to a significant is-
sue called negative transfer in transfer learning. Negative transfer means
knowledge transfer, which decreases the performance of learning in the
target domain [170, 216].

Typically, transfer learning can be divided into the following three cat-
egories [170].

1. Inductive transfer learning: In an inductive learning task, the target
task and the source task are different, but the target domain and the
source domain can be the same or different. According to whether
the labelled data in the source domain is available or not, the induc-
tive transfer learning can be classified into two cases. The first case,
where the labelled data of the source domain and the target domain
is available, is similar to multi-task learning [52]. In the second case,
the labelled data of the source domain are unavailable, while the la-
belled data of the target domain is available. This case is similar to
self-taught learning [179].

2. Transductive transfer learning: In a transductive transfer learning
task, the target task and the source task are the same, while the
source domain and the target domain are different but related. In
this case, the labelled data is available in the source domain but not
available in the target domain. The transductive transfer learning
can be divided into two cases according to whether the feature space
across different domains is the same or not. The first case is the fea-
ture spaces of the source domain and the target domain are different.
The second case is the feature spaces of the source and target do-
mains are the same. This case is similar to domain adaptation [61].
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3. Unsupervised transfer learning: In an unsupervised transfer learn-
ing task, the source task/domain and the target task/domain are
different but related to each other, while no labelled data is avail-
able in both domains. Unsupervised transfer learning aims to solve
problems in an unsupervised way without labelled data. This task
includes clustering, dimensionality reduction and so on.

Many approaches have been proposed to address different transfer
learning tasks [149, 170, 216, 223]. These most common approaches are
instance-transfer, feature-representation-transfer, parameter-transfer, and
relational-knowledge-transfer [170]. Instance-transfer aims to reuse parts
of the data (instances) in the source domain for learning in the target do-
main. Two approaches, i.e., instance reweighting under inductive transfer
learning scenarios and importance sampling under transductive scenarios
can be used for instance-transfer. Feature-representation-transfer means
discovering a good feature representation that could have positive impacts
on learning in the target domain. Learning a good feature representation
from the source domain can be in a supervised way or an unsupervised
way. Parameter-transfer aims to extract some common parameters of the
model learned from the source tasks and reuse them when learning in the
target domain. This approach is based on the assumption that there are
shared or common parameters cross source domains and target domains.
The final approach is relational-knowledge-transfer, which is to transfer
the relationship among the data from the source domain to the target do-
main.

2.3 Feature Learning

Feature learning, also known as representation learning, aims to learn ef-
fective representations that capture useful and underlying information of
the data to build classifiers or other predictors for solving a task [33]. The
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representation of the data often refers to raw data or a number of features
that describe the domain. Feature learning is a general term that empha-
sises the change/optimisation of the representation of the data using a
learning algorithm to solve a task. During the feature learning process, a
number of operations related to features, e.g., feature extraction, feature
construction and feature selection, may be involved to find the optimal
representation of data for a task.

1. Feature Selection: Feature selection is also known as variable selec-
tion or attribute selection. The task of feature selection is to select
a subset of relevant features from the original large set of features
[165]. A large set of features are often employed to represent the
data/domain. But these features may include irrelevant and redun-
dant features, which are not useful for representing the data or solv-
ing a task, e.g., classification. Feature selection can address this issue
by selecting a subset of relevant features. Ideally, the smallest sub-
set that is necessary and sufficient to represent the data should be
selected [120]. Feature selection has the advantage of reducing the
dimensionality of the data, speeding up the learning process, simpli-
fying the learned model, and/or increasing the performance [234].

2. Feature Extraction: Feature extraction is the task of extracting new
informative features to represent the raw data via some functional
mapping [145]. In some domains, such as image, video, and text, the
original/raw data are not informative and cannot well represent the
domain. When solving a task in these domains, e.g., image classi-
fication, a set of features are often extracted to represent an image
and the task can be performed using the extracted features. The ex-
traction of features may use or discover some equations or rules to
transform the raw data into a set of features, such as calculating the
histogram of an image and use the histogram as features. Feature
extraction can change the representation of the data by introducing a
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new feature space, while feature selection aims to narrow the current
feature space. By extracting a small set of features, feature extraction
can also reduce the dimensionality of the data.

3. Feature Construction: Feature construction aims to construct new
high-level features from the original features to represent the data
[145]. Feature construction typically creates new features by finding
relationships among the current features using mathematical expres-
sions. In general, the constructed features can be used to replace the
original features or added to the original features to represent the
data. In the former case, feature construction can also be a dimen-
sionality reduction technique. In the latter case, feature construction
expands the feature space, which is different from feature extraction.
It is also noted that feature extraction and feature construction are
often used interchangeably in some literature and application sce-
narios, such as in [163].

2.3.1 A Typical Feature Learning System for Classification

The aim of learning a set of features is to effectively solve a task. Thus, fea-
ture learning is highly related to the task. Fig. 2.4 shows a general system
of feature learning for solving a classification problem. In this system, the
features are learned from a training set. How to learn features from the
data or how to search the feature space is often related to the algorithm(s)
employed. There are many algorithms that can learn features in various
ways. A typical example is the neural network-based method, which has
different types of architectures to learn features/representation for solving
a task. More details about these methods can be found in [123].

During the feature learning process, the performance of the learned
features is evaluated using a measure. For a classification problem, the
measure can be the performance of a classification algorithm using these
learned features. The measure is important to guide the feature learning
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Figure 2.4: Overall process of feature learning for classification.

algorithm to find/search for the optimal feature set. The feature learning
process is terminated when a pre-defined stopping criterion is satisfied.

After the feature learning process, the learned features are used to solve
the task. In this process, the original data of the test set are transformed
to obtain a new set of features. Then a learning algorithm is used to train
a classifier using the transformed training set and the trained classifier is
applied to classify each instance in the test set.

2.4 Evolutionary Computation

Evolutionary Computation (EC) is an area under the umbrella of Artificial
Intelligence (AI) and machine learning (to a lesser extent). EC is the family
of algorithms/techniques that are driven from the principles of biological
evolution and social intelligence. The origins of EC can date back to the
late 1950s, when the earliest EC paradigms were proposed [29, 28]. With
the development of several decades, EC became a hot research area with
significant attention received over the world. The EC techniques have
been successfully applied to various problems, including planning, de-
sign, control, and classification [29].

The key idea of EC techniques is to search for the optimal solution from
a population of individuals during the evolutionary process. A fitness
function is set to guide the search in EC techniques. During the evolution-
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ary process, genetic material or individuals are recombined or updated
according to different rules. However, an individual with a better fitness
value has a higher chance to be selected for the next generation, which
simulates the principle of the “survival of the fittest”.

Many EC techniques have been proposed and studied. Typically, these
techniques can be classified into three groups, i.e., Evolutionary Algo-
rithms (EAs), Swarm Intelligence (SI), and other techniques.

1. Evolutionary Algorithms: There are four well-known EAs in this
field: Genetic Algorithms (GAs) [106, 107], Genetic Programming
(GP) [121], Evolutionary Programming (EP) [82, 83], and Evolution-
ary Strategies (ES) [34, 182]. These algorithms simulate the biological
evolution process, where a selection method and genetic operators,
i.e., reproduction, crossover and mutation, are employed to gener-
ate new genetic material/populations. In GAs, each individual is
typically encoded by a fixed-length (binary) string, which is called a
chromosome. The selection method, and the reproduction, crossover
and mutation operators are used to improve the population. GP has
the same operations for updating the population, but the individ-
ual representation is different from that of GAs. More details of GP
will be described in the following section. In EP, the population up-
date relies on the mutation operation, which increases the diversity
of the population. In ES, the recombination (crossover) and muta-
tion operators are used to generate new populations. However, the
selection operation for the recombination process is random-based
[182], which is in contrast to that in GAs and GP. More details about
EAs can be found in [81, 222].

2. Swarm Intelligence: SI is a collection of algorithms inspired by so-
cial behaviours of animals. Typical algorithms in this field include
Particle Swarm Optimisation (PSO) [71, 118] and Ant Colony Opti-
misation (ACO) [66, 68]. PSO as one of the most popular algorithms
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in SI was proposed by Kennedy and Eberhart in 1995 [71, 118]. PSO
simulates the social behaviour of bird flocking or fish schooling. In
PSO, the population is called a swarm, which consists of a number
of particles (candidate solutions). PSO searches for the optimal so-
lution by updating the position and the velocity of each particle in
the search space through a number of iterations. It has been widely
applied to job shop scheduling [195], electric power systems [21],
feature selection [233], and parameter optimisation [110, 238]. ACO
is inspired by foraging behaviours of ants, and the typical research
works on ACO have been proposed by Dorigo and his co-workers
[66, 68]. In ACO, there are three algorithmic components, i.e., con-
structing ant solutions, daemon actions, and updating pheromones,
where new solutions are generated and the pheromone values of so-
lutions are updated. Typically, good solutions with high pheromone
values attract more ants to select these paths in the solution con-
struction process. ACO has been widely applied to find optimal
solutions for combinatorial optimisation problems [67]. Other tech-
niques of SI include Bacterial Foraging Optimisation (BFO) [171],
which inspired by the foraging behaviours of bacteria, and Artificial
Bee Colony (ABC) [117], which simulates the foraging behaviours of
a bee swarm.

3. Other Techniques: Other techniques have been proposed to find
optimal solutions for problems according to different rules. In this
field, the typical examples are Differential Evolution (DE) [203, 204],
Memetic Algorithms (MAs) [56, 162], Evolutionary Multi-Objective
(EMO) [58], Learning Classifier System (LCS) [108], and Estimation
of Distribution Algorithm (EDA) [133]. In DE, each individual is en-
coded by a vector with real numbers. The population is updated
using selection, mutation and crossover operators but in a different
way in contrast to EAs. A MA is typically a combination of an EC
technique used as a global search method and a local search method.
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The global search method can explore the search space and the local
search method can exploit the local region [214]. In MAs, the pop-
ulation is updated based on the global search method, such as GAs,
DE and PSO, and individuals are often improved by a local search
method, such as Tabu search and Simulated Annealing.

2.5 Genetic Programming

GP is an EC technique, aiming to automatically evolve computer pro-
grams to solve problems without the structure of the solution. During
the past decades, GP has attracted much attention in various fields [174].
As GP is the main EC technique to be used in this thesis, this section intro-
duces the basic concepts of GP.

The same as the other EAs, GP is driven from the biological evolution
principles. GP is a population-based algorithm, where each individual in
the population represents a solution. Unlike GAs, where a fixed-length
string is used to encode a chromosome, the individual in GP is a computer
program. The evolutionary process of GP is similar to that of GAs, where
the selection method, the reproduction, crossover, and mutation operators
are often employed to update the population during the evolutionary pro-
cess. Simulating the principle of the “survival of the fittest”, individuals
with better fitness have higher chances to be selected to generate new in-
dividuals using genetic operators. The overall goal of the GP method is
to evolve/find the best solution/program to the problem through a num-
ber of generations. A fitness function is used to evaluate individuals and
guide the search of GP. The overall process of GP is shown in Algorithm 1.

2.5.1 Representation

There are several well-known GP variants with typically different repre-
sentations, e.g., Linear GP [31, 47], Tree-based GP (GP) [121], Grammatically-
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Algorithm 1: GP
Input : Pc: crossover rate, Pm: mutation rate, Pr: reproduction

rate, F : function set, T : terminal set, P : population size,
G: maximum number of generations.

Output: Best F itness: the best fitness value;
Best Tree: the best program tree.

1 begin
2 Select a tree generation method (i.e. full, grow, or

ramped half -and-half );
3 Randomly initialise P individuals/trees according to F and T ;
4 while the termination criterion is not satisfied do
5 Evaluate the fitness of each invididual in the population;
6 Update Best F itness and Best Tree;
7 begin Population updating

// Selection
8 Select P individuals from the current population;

// Reproduction
9 Copy P ∗ Pr individuals to the new population;

// Crossover
10 Generate P ∗ Pc offspring by swapping the branches of

parents according to the randomly selected nodes;
// Mutation

11 Generate P ∗ Pm new individuals by replacing the
selected mutation points with new randomly generated
branches;

12 end
13 end
14 Return Best F itness and Best Tree.
15 end

based GP (or Grammar guided GP, GGGP) [155, 225], and Cartesian GP
(CGP) [158]. Among these versions, the most commonly used one is per-
haps the tree-based GP [174]. In this thesis, the tree-based GP is used. For
simplification, the term GP is employed to indicate the tree-based GP.

In the tree-based GP, each individual/computer program is represented
as a syntax tree. This tree is constructed by a number of primitives, i.e.,
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Figure 2.5: An example of GP tree.

functions and terminals. The functions can be used as the root node and
the internal nodes, and the terminals can be used as the leaf nodes of a
GP tree. Figure 2.5 shows an example of a GP tree, where x1, x2, x3, and
x4 represent four features/variables/terminals used as the leaf nodes, ∗ is
the root node, and +, ∗ are arithmetic functions used as the internal nodes.
In Lisp S-expression, this tree is (∗(+ x1 x2)(∗(+ x3 x3) x4)), which can be
formulated as ((x1 + x2) ∗ ((x3 + x3) ∗ x4)).

2.5.2 Functions and Terminals

To represent a GP tree, a function set and a terminal set must be pre-
defined. A terminal set typically consists of attributes/features, which
are related to the target problem/task, and Ephemeral Random Constants
(ERCs). ERCs are a number of randomly generated constants that form
the leaf nodes of a GP tree. These terminals represent the inputs of a GP
system. For example, for a feature selection task, the terminal set includes
all the features and ERCs. GP is able to select a subset of these features
and ERCs to form the leaf nodes of the evolved trees.

A function set consists of a number of functions or operators. The
functions can be categorised into general functions and domain-specific
functions. General functions include arithmetic functions, i.e., +, −, ∗,
and protected division %, logical functions, e.g., IF , AND, and OR, and
other functions, e.g., cos, sin, log, and exp. These functions are commonly
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used to solve relatively simple problems, e.g., feature selection, feature
construction, classification, and symbolic regression [12]. For complex
problems, such as image analysis, domain-specific functions are often re-
quired/employed to facilitate the solution representation.

Sufficiency and closure are two main criteria to construct/choose the
function set and the terminal set for GP [121, 174]. Sufficiency means that
all the pre-defined functions and terminals are sufficient to express a solu-
tion to the problem at hand. Closure includes type consistency and evalu-
ation safety [174]. Type consistency means that the input and output types
of functions are consistent. Evaluation safety avoids failures or errors gen-
erated by functions at run time.

2.5.3 Population Initialisation

Similar to other EC techniques, the initial population of GP is randomly
generated. There are three main methods to generate a GP tree/population,
i.e., full, grow, and ramped half -and-half [121]. The maximum program
size or the tree depth must be defined before population initialisation. The
full method generates a tree by randomly selecting functions from the
function set as internal nodes or root node until it reaches the maximum
tree depth. Then terminals are randomly selected to form the leaf nodes.
All the leaf nodes in the tree generated by the full method are at the same
depth. In the grow method, functions or terminals are randomly selected
as nodes to form a tree. The tree stops growing when all the branches have
terminal nodes or the maximum depth has been reached. Thus all the leaf
nodes in the tree generated by the grow method are at various tree depths.
In the ramped half -and-half method, a half population is generated by the
full method and the remaining half is generated by the grow method. This
method ensures a wider range of sizes and shapes of the generated trees.
The ramped half -and-half method is the most commonly used method for
population initialisation in GP.
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2.5.4 Fitness Evaluation

Fitness evaluation is an important component of the evolutionary process
as it guides the search of GP to find better individuals. A fitness func-
tion is used to evaluate the fitness of each individual in the population.
However, in most cases, choosing a fitness function is not easy. A good
fitness function will lead the search smoothly towards the best solution,
while a bad fitness function will mislead the search. Typically, the fitness
function is related to the problem being tackled. For example, for a classi-
fication problem, the commonly used fitness function is classification ac-
curacy [75].

2.5.5 Selection

In the evolutionary process, a selection method is employed to select in-
dividuals from the current population for genetic operations. Typically,
the better the individual is, the larger chance it will have to be selected.
There are a variety of selection methods proposed and used, such as rank
selection, fitness-proportionate selection and tournament selection [93, 94,
121]. The tournament selection method is the most widely used selection
method in GP [174]. This method selects the best individual from a num-
ber of randomly selected individuals by comparing their fitness values.
The number of randomly selected individuals each time is determined by
a parameter called tournament size in this selection method.

2.5.6 Genetic Operators

There are three main genetic operators used in GP, i.e., reproduction, crossover
and mutation.

1. Reproduction: The reproduction operation is based on the selection
method. It copies the selected individuals to the new generation.
Since the majority of the selection methods are related to fitness, the
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reproduction operation allows the population to keep good individ-
uals in the new generation. Elitism is another strategy commonly
used in GP for copying individuals to the new generation. In elitism,
a small proportion of the best individuals in the population is copied
to the new generation.

2. Crossover: The crossover operation is based on two selected individ-
uals (parents) to generate two new individuals (offspring). In GP, the
most commonly used form of crossover is subtree crossover [174]. Fig-
ure 2.6 shows an example of the subtree crossover operation, where
the two trees on the left are parents and the two trees on the right are
offspring. The crossover operation starts by randomly selecting two
points in the parent trees and then swapping the subtrees according
to the selected points to generate two new individuals. The crossover
operation attempts to generate good individuals by recombination of
the current genetic materials (trees).

Figure 2.6: An example to show the subtree crossover operation.

3. Mutation: The mutation operation generates a new individual based
on one selected individual. In GP, the subtree mutation method is used
to randomly select a point of a tree and then replace this point with a
randomly generated subtree to generate a new tree. Figure 2.7 shows
an example of the subtree mutation operation, where the tree on the
right is the newly generated tree. In GP, the mutation operation is
very important to maintain the diversity of the population by intro-
ducing new genetic material into the population.
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Figure 2.7: An example to show the subtree mutation operation.

2.5.7 Strongly Typed Genetic Programming

According to the closure criteria of functions, the traditional tree-based GP
method only deals with one type of data, which limits the applicability
of GP on complex problems that require multiple data types. To address
this issue, Strongly Typed GP (STGP) was proposed as an enhanced ver-
sion of GP by Montana in 1995 [161] to handle data type constraints. In
STGP, each terminal, variable or constant parameter, specifies a data type.
For each non-terminal (function), the input data type(s) and output data
type are specified. These data types might be Integer, Float, and Array,
which are often defined according to the requirements of the functions or
problems. By these definitions, an internal node only takes particular non-
terminals or terminals as its children nodes. The data type of the root node
is the same as the final output data type of the STGP system.

In STGP, it is possible to define several functions for special purposes
according to the problem [11]. In general, specific program structures are
often developed to integrate functions or terminals with different data
types into a single GP tree. STGP is also able to integrate different types
of domain-specific functions, such as image preprocessing operators or fil-
ters, and general functions such as +, −, ∗, and %, into a single tree [138].
STGP is commonly used in image analysis, including feature extraction
[11, 16], edge detection [89] and image classification [14, 27, 138].
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2.6 GP for Image Classification

This section reviews the closely related work on GP for image classification
and the GP-based feature learning algorithms for other tasks.

Existing GP-based algorithms for image classification can be broadly
classified into three groups: 1) learning features from pre-extracted image
features for classification, 2) learning features from raw pixels/images for
classification, 3) evolving neural networks for image classification. The
first two groups are pure GP-based methods for feature learning in image
classification, while the third group are neural network-based methods for
image classification. This section will review the typical work on GP for
image classification based on these three groups.

2.6.1 Learning from Pre-extracted Image Features

Nandi et al. [164] introduced GP for classifying breast mass into the benign
and malignant categories based on the selected features. In the classifica-
tion system, a number of Regions Of Interest (ROIs) were manually identi-
fied. Twenty-two features, i.e., four edge-sharpness measures, four shape
factors and fourteen GLCM features were extracted from each ROI. Tradi-
tional feature selection methods were used to select a subset of features.
Based on these selected features, GP was used to construct high-level fea-
tures for classification. This method has achieved promising classification
results. However, this method required domain experts to perform ROI
identification and estimate shape factors in feature extraction.

Ryan et al. [190] developed a system to detect the first stage of can-
cer, where GP was employed for mammographic image classification. A
set of preprocessing operations, i.e., background suppression, image seg-
mentation, feature detection, and feature selection, were conducted in the
classification system. Only two GLCM features, i.e., contrast and differ-
ence entropy of each segment, were manually selected to form the inputs
of the GP system. This system has gained 100% accuracy on one dataset.
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The limitation of this approach is clear, i.e., requiring human intervention
and domain knowledge to extract or select effective features. The per-
formance of this method relies on the performance of the extracted and
selected features.

Ain et al. [7] developed a multi-tree GP algorithm for skin cancer image
classification. First, four different sets of features were extracted from the
skin cancer images, i.e., LBP features from the grey channel, LBP features
from three colour channels, colour variation features of the lesion regions,
and shape features of the lesion regions. Each individual of the multi-tree
GP method had four trees and each tree could construct one high-level
feature from a different set of features using a classic GP tree. Then the
four features were fed into different classification algorithms, i.e., KNN,
DT, MLP, RF, NB, and SVM, to perform classification, respectively. The re-
sults showed that the wrapper GP methods achieved better classification
performance than different GP methods, i.e., single-tree GP wrapper and
embedded methods, and multi-tree GP embedded method, and classical
classification algorithms on binary classification datasets. The effective-
ness of these wrapper GP methods has also been verified on two multi-
class skin cancer image classification datasets.

Ain et al. [9] further extended the multi-tree GP method to construct
multiple features for skin cancer image classification. This method used
five GP trees to independently construct features from five different types
of pre-extracted features and then used a classification algorithm for classi-
fication. This method has achieved better performance than the GP meth-
ods constructing one high-level feature and the other classification meth-
ods using different types of features on two skin cancer image classifica-
tion datasets. Although these two methods in [7, 9] have achieved promis-
ing results and showed high interpretability, they have a limitation that
requires domain knowledge and human intervention to extract effective
features from images.

In summary, the aforementioned methods typically use a simple repre-
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sentation of GP and different features/inputs, i.e., different terminal sets.
These GP-based methods are easy to implement. However, the classi-
fication performance of these GP-based methods on image classification
highly relies on the performance of the pre-extracted features. Generally,
it is important to extract a number of task-specific features to improve the
classification performance, such as the texture features for mammographic
or dermoscopic images. Domain experts or human intervention is typi-
cally needed in these processes, e.g., to perform image preprocessing and
feature extraction.

2.6.2 Learning from Raw Pixels/Images

Learning A Single Feature

Atkins et al. [27] developed a multi-tier GP method (simplified as 3TGP
in [13]) to perform automatic feature extraction and image classification.
Based on STGP, this method has three tiers, i.e., an image filtering tier, an
aggregation tier and a classification tier, to process the input image, ex-
tract and construct high-level features for classification. Simultaneously,
the evolved GP tree can be a classifier for binary classification. In the ag-
gregation tier, small regions were detected and important pixel statistics
were extracted. The classification tier was able to construct a high-level
feature for classification. This method has achieved better results on bi-
nary image classification datasets over the methods using manually ex-
tracted features.

Al-Sahaf et al. [13] proposed a two-tier GP (2TGP) method to fea-
ture extraction and image classification from raw images. Compared with
3TGP, the representation of 2TGP was simplified by only having the aggre-
gation tier and the classification tier. Therefore, 2TGP could be faster than
3TGP. The results showed that 2TGP could achieve better or comparable
results in different image classification datasets. Two variants of 2TGP
were proposed in [14] to automatically detect regions with more flexible
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shapes and sizes. However, the performance of the 3TGP and 2TGP meth-
ods was only evaluated on binary image classification datasets.

A GP-HoG method was proposed by Lenson et al. [138] to employ the
HOG descriptor as a function in 2TGP to achieve automatic region de-
tection, feature construction, feature extraction, and image classification
using raw images. From the automatically detected regions, this method
extracted the histogram features or distance features of HOG. The ex-
tracted features were further constructed for classification. The GP-HoG
method showed how the advanced HOG descriptor was integrated into
GP to achieve high-level feature extraction for effective image classifica-
tion. Compared to the 2TGP method in [13], the GP-HoG method has
obtained better results on all the three datasets.

Evans et al. [76] proposed a GP method (ConvGP) with a convolution
layer, an aggregation layer and a classification layer for image classifica-
tion. The convolution layer has convolution and pooling operators. The
parameters of the filters can be automatically selected by ConvGP. A single
tree of ConvGP can simultaneously perform convolution, pooling, region
detection, feature extraction, feature construction, and classification. The
results showed ConvGP achieved better classification performance than
the other classification algorithms but worse classification performance
than Convolutional Neural Networks (CNNs) on four binary image clas-
sification datasets.

Evans et al. [78] extended the ConvGP method [76] by developing a
memetic algorithm based on GP and gradient descent for image classifi-
cation. This method had the same representation as ConvGP, but it used
gradient descent to search for the best filters in the convolutional layer.
With this local search operator, this method achieved better classification
performance than ConvGP but used much longer training time on four
image classification datasets.

In summary, GP has been developed to learn/construct one high-level
feature for classification from raw images. These GP methods typically
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have a specific representation to perform multiple tasks using a single tree.
The GP tree can also be employed as a classifier for binary image classifi-
cation. The methods benefited from the flexible representation of GP and
showed a promise in image classification. However, these methods may
not be effective for difficult image classification tasks by only learning one
feature. In addition, these methods have only been examined for binary
image classification tasks. However, many image classification tasks are
multi-class classification tasks.

Learning Multiple Features

Shao et al. [197] proposed a multi-objective GP (MOGP) method to auto-
matically learn features from images for classification. MOGP has four lay-
ers, i.e., a data input layer, a filtering layer, a max-pooling layer, and a con-
catenate layer. Each layer employs different types of functions for different
purposes. MOGP simultaneously optimised two objectives, i.e., classifi-
cation accuracy and tree size. In MOGP, Principal Component Analysis
(PCA) was employed to reduce the dimension of the learned features and
a linear SVM was used to perform classification based on the selected fea-
tures. The results showed that MOGP obtained better performance than
several traditional feature extraction methods and a five-layer CNNs on
four different image classification datasets. However, MOGP could pro-
duce a large number of features from an input image. Additionally, this
method has a very complex feature learning process, which is computa-
tionally expensive.

Liu et al. [146] proposed a GP method to learn spatio-temporal motion
features for action recognition. The idea behind this method was similar
to that in [197], while this method used 3D sequence as inputs and em-
ployed a number of functions/operators for video processing in its func-
tion set. In addition, this method only employed max pooling function
in the pooling layer. The results showed that this method obtained bet-
ter performance than CNNs and Deep Belief Networks (DBNs) on several
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well-known datasets. This method also showed good interpretability.

Agapitos et al. [5] developed a greedy layer-wise GP method for hand-
written digits recognition. This method has a filter bank layer, a transfor-
mation layer, an average pooling layer, and a classification layer. Specif-
ically, the filter bank layer has a collection of filters to convolve the in-
put image. Similar to this method, Suganuma et al. [207] developed a GP
method by using more layers with filters for feature learning. This method
has two stages of feature learning, where the first stage uses a combina-
tion of image processing filters and the second stage uses a combination
of evolved filters. The structures of these two methods are very similar to
CNNs, but their performance has not been compared with CNNs.

Al-Sahaf et al. [11] proposed a GP method to automatically evolve
rotation-invariant texture descriptors for texture classification with a small
number of training instances. This method used a procedure similar to
LBP to generate a feature vector from an image using a sliding window.
The evolved GP descriptor is a classical GP tree with a specific root node.
The GP tree consists of the arithmetic functions as internal nodes and the
pixel statistics of the sliding window as leaf nodes. The employed pixel
statistics are the mean, max, standard deviation, and min values of a slid-
ing window, which allows the learned features to be rotation-invariant.
With a distance-based fitness function, this method could learn effective
features from a small number of training instances. The results showed
that this method achieved better performance than the methods using ex-
isting texture descriptors (e.g., LBP, GLCM and other LBP variants) for
texture image classification. However, this method learned a fixed num-
ber of features from the images, which is not efficient and flexible.

Al-Sahaf et al. [16] developed a dynamic GP method to generate a flex-
ible number of texture features for classification, which addressed the lim-
itation of the method in [11]. Several root nodes with a flexible number
of children nodes were developed in this approach to allow it to produce
variable lengths of features. The results showed that this method achieved
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better performance than the method in [11] by learning a flexible length of
features. However, these two GP descriptors inspired by the LBP descrip-
tor were originally proposed for describing texture features, which might
not be effective for the other types of image classification tasks.

Price and Anderson [175] designed a GP method for image descrip-
tor learning and applied multiple kernel-learning SVM for classification.
This method employed a set of image-related operators, such as Canny,
Hough Circle and Harris Corner Detector, as functions to learn image de-
scriptors. The results demonstrated that this method achieved promising
performance in image classification on one dataset. However, this method
should be examined on more image classification datasets to show its ef-
fectiveness. In addition, many other image-related operators can be em-
ployed in GP to learn effective features, which has not been comprehen-
sively investigated.

Price et al. [176] further improved the method in [175] by developing
a new GP method that could have a better search ability to learn effec-
tive features for image classification. This method had a set of image-
related operators as functions and grey, red, blue, and green images as
terminals. New crossover and mutation operators were introduced in this
method to control the bloat of GP and improve the diversity of the popu-
lation. The results showed that this method achieved better classification
performance on a difficult scene classification dataset than a CNN-based
method.

Iqbal et al. [114] developed a GP method with transfer learning for
complex image classification tasks. The building blocks of GP trees evolved
from a source task were extracted and reused in GP to solve another sim-
ilar or different task. This method investigated the use of the extracted
knowledge in the process of individual initialisation and mutation opera-
tion. The extensive results showed that transfer learning can be effectively
employed to improve the performance of GP crossing different image clas-
sification tasks, i.e., texture classification and object classification.
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Almeida and Torres [19] proposed a GP method to evolve effective sim-
ilarity functions from a set of existing functions in remote sensing image
classification. The evolved GP tree transformed time series raw pixels into
a set of features to form the dissimilarity matrix, which was fed into KNN
for classification. Compared with the commonly used methods that used
existing similarity functions, the GP method achieved better performance
in remote sensing image classification.

To summarise, several GP-based methods have been proposed to auto-
matically learn multiple features for image classification from raw images.
These methods have specific GP representations (i.e., program structures,
function sets and terminal sets) that define how features are learned from
the images. These methods could automatically extract informative and
discriminative features from raw images and achieve promising perfor-
mance in image classification. GP has a flexible representation, indicating
that there are many possible ways to learn effective features. However,
this has not been systematically investigated. In addition, most of these
methods have only addressed very limited image classification tasks. The
potential of GP in feature learning for different image classification tasks
has not been comprehensively investigated. Therefore, it is necessary to
further explore the potential of GP in feature learning for image classifica-
tion.

2.6.3 Evolving Neural Networks for Image Classification

Suganuma et al. [206] proposed a GP method to automatically evolve ar-
chitecture of CNNs (CGP-CNNs) for image classification. This method
was based on Cartesian GP (CGP). A set of commonly used functional
models of CNNs, e.g., convblock, resblock, max pooling, average pooling,
summation, and concatenation, were designed as GP functions. In CGP-
CNNs, each GP individual represents a CNN with a specific architecture,
which can be trained using backpropagation for image classification. The
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results showed that CGP-CNNs achieved better classification performance
and found models with relatively fewer parameters compared with the
state-of-the-art CNNs. However, this method is computationally expen-
sive.

Zhu et al. [250] proposed a tree-based GP method for evolving architec-
tures of CNNs for image classification. The leaf nodes of a GP tree were the
resblocks and the internal or root nodes were normal functions for block
assembling. This approach benefits from the flexible representation of GP
to evolve solutions with a variable length/depth. A dynamic crossover
operator was developed in this method. The results showed that this
method achieved results competitive with the state-of-the-art automatic or
semi-automatic neural architecture search algorithms on the well-known
CIFAR10 dataset. Compared with CGP-CNNs, this method has achieved
better classification but found models with more parameters.

Diniz et al. [64] designed grammar-based GP to find the architectures
of CNNs for image classification. This method used simple grammar to
encode an architecture of CNN, i.e., the convolutional layer, the pooling
layer and the fully-connected layer. This method has been examined on
the CIFAR10 dataset and compared with another automatic neural archi-
tecture search method. However, this method only searched very simple
connections of the different layers and cannot search for important param-
eters of the layers, e.g., the number of filters and the kernel sizes.

To sum up, these existing works showed the success of using GP to
evolving CNNs for image classification. However, there are very limited
works in this field, which may be due to the high computational cost. In
addition, these methods focused mainly on the object classification bench-
mark datasets, i.e., CIFAR10 and CIFAR100 [125]. However, there are
many other image classification tasks in the real world. It is necessary
to develop new GP-based approaches for different types of image classifi-
cation tasks.
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2.6.4 GP for Feature Learning in Other Tasks

Rodriguez-Coayahuitl et al. [186] developed a GP method to learn effec-
tive and deep representations of data in a way that is similar to neural
networks. This method employed GP forests of standard trees to learn a
set of features from raw images. This method has multiple structured lay-
ers to learn deep representation. Importantly, this GP method can have an
encoder forest and a decoder forest to learn a representation in a way that
is similar to auto-encoder. The GP auto-encoder was further investigated
in [188], where a GP auto-encoder with an online learning method using
different population dynamics and genetic operators was proposed. The
reconstruction performance of this method has been extensively investi-
gated on image datasets. However, these methods could be employed to
solve many other tasks, such as image classification and object detection,
to further demonstrate its effectiveness on representation learning.

Rodriguez-Coayahuitl et al. [187] proposed a convolutional GP to au-
tomatically evolve filters for image denoising, where each GP tree can be
employed as a filter to convolve the image. This method can have one
layer to construct one filter or have multiple layers to generate multiple
filters to convolve the image sequentially. The idea of this method is sim-
ilar to CNNs, but the filters generated by this method are different from
those in CNNs. However, the performance of this method has only been
examined on image denoising tasks, while CNNs can achieve promising
results in many other image-related tasks.

Liang et al. [142] applied GP to construct high-level features for figure-
ground segmentation from seven different types of features, respectively.
The GP tree could be used as a classifier to classify the pixels of an image
into the object and non-object classes. The effectiveness of the GP methods
with different terminal sets was investigated and compared. The results
showed the GP methods could achieve better results than four conven-
tional segmentation techniques on different datasets.

Tran et al. [217] proposed GP methods to automatically construct multi-
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ple class-dependent and class-independent features from high-dimensional
data. The main difference of GP for class-dependent feature construction
and class-independent feature construction is the fitness function, which
uses the class labels or does not. Multi-tree GP was employed to construct
multiple features for classification. The results showed the effectiveness of
GP-based feature construction for high-dimensional classification. How-
ever, these methods only learned a fixed number of features, which may
not be effective for classification.

La Cava et al. [131] developed a multidimensional GP method with
Lexicase selection and age-fitness Pareto survival to automatically learn
multiple features using a stack-based representation. In the stack-based
GP, each individual produced multiple features. Based on the learned fea-
tures, a distance-based metric was employed for classification. The results
showed that this method achieved better performance than many classifi-
cation algorithms. However, this method could learn a small number of
features from the data.

Wu et al. [228] applied GP to automatically evolve image descriptors
that can extract features from various images for image registration. This
GP method employed a set of simple arithmetic operators as functions and
the statistics of the region as terminals to evolve descriptors, which can
reduce noise interference of images. The results showed that this method
achieved better performance than the other four descriptors and one GP
method on five datasets.

La Cava and Moore [130] proposed a multi-objective multidimensional
GP method to learn effective features for symbolic regression. In the mul-
tidimensional GP, each individual produced a set of features. Then the
learned features were weighted to form a linear model for symbolic re-
gression. In this method, new genetic operators were developed to im-
prove learning performance. The results showed the effectiveness of this
method over the other baseline methods on a large number of regression
problems.
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Fu et al. [88] developed several GP methods to automatically extract
edge features from the images. Based on raw pixels, GP was able to con-
struct low-level, Gaussian-based and Bayesian-based edge detectors, re-
spectively. The results showed the effectiveness and high interpretability
of the GP methods on edge detection.

Besides, GP has also been successfully applied to many other tasks,
some of which can be found in [4, 6, 12, 37]

2.7 Other Algorithms for Image Classification

2.7.1 Traditional Methods

Traditional image classification methods often use existing feature extrac-
tion methods, e.g., LBP [169], SIFT [147] and HOG [60], to manually extract
features from the images. Then the traditional classification algorithms,
e.g., SVM, KNN, NB, DT, and RF, can be used to perform classification
using the extracted features.

Chapelle et al. [55] extracted colour histogram features from images
and investigated the use of SVM with a new kernel function for image
classification. The results verified the effectiveness of SVM with a heavy-
tailed RBF kernel over SVM with traditional polynomial or Gaussian ra-
dial basis function for image classification. However, this method needs
much effort to tune the parameters for the RBF kernel.

Bosch et al. [45] developed an image classification method that was
able to extract shape and appearance features from the detected regions
of interests. Based on the extracted features, RF is employed to perform
classification. Compared with the SVM classifier, RF achieved better clas-
sification results on a large object image classification dataset.

Lu and Weng [148] discussed existing image classification methods
from different perspectives and the methods for improving classification
performance. However, the majority of the existing traditional methods
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require image preprocessing and feature extraction, which are time-consuming
and need domain expertise. In addition, it is often difficult to extract infor-
mative features for effective image classification due to the high variations
across the images.

Recently, Sparse Representation-based Classification (SRC) has been
popular for image classification, specifically face classification. Wright et
al. [227] proposed SRC for face classification. This method used a set of
pre-extracted face features and aimed to find a representation of each test
instance using the training set. Based on the residuals, the classification
decision can be made by assigning an instance to the class with the small-
est residual. One clear advantage of this method is its robustness to oc-
clusion and uniform corruption. The SRC method has been extended to
many other image classification tasks, e.g., hyperspectral image classifica-
tion [240] and ship classification [231].

To sum up, image classification is a big research field with many ap-
plications, e.g., face classification, object classification, and remote sensing
image classification. More recent reviews on image classification can be
found in [151, 198, 232, 244]. Although many traditional methods have
been developed for image classification, most of these methods require
domain knowledge to determine what features are extracted and how fea-
tures are extracted from the images to effectively solve this task. The man-
ually extracted features may not be the optimal set for solving the task,
which limits the image classification performance.

2.7.2 Neural Network-based Methods

In recent decades, Neural Network (NN)-based methods have achieved
impressive results in image classification, including Auto-Encoder (AE),
CNNs, DBNs, and Deep Boltzmann Machines (DBMs). The NN-based
methods directly learn distinctive and compact representations from raw
pixels through layer-by-layer non-linear transformations for image classi-
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fication. Among these methods, CNN is the most commonly used method
for feature learning and image classification. A typical CNN is constructed
by a number of layers, including an input layer, convolutional layers, pool-
ing (sub-sampling) layers, fully-connected layers, and an output layer.
CNNs are able to handle a number of image variations, such as scale, shift
and distortion, and have been widely applied to image classification in
recent years.

Krizhevsky et al. [126] proposed a deep CNN (AlexNet) to deal with
the 1,000-class classification task of the well-known ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). AlexNet consists of five convo-
lutional layers, three max-pooling layers and three fully connected layers.
This method achieved a top-1 error rate of 37.5% and a top-5 error rate
of 15.3% on the ILSVRC2010 test set, which was better than many meth-
ods. In ILSVRC2012, AlexNet achieved a top-5 error rate of 15.3%, which
was significantly better than that achieved by the second-best entry with
an error rate of 26.2%. However, AlexNet has 60 million parameters and
650,000 neurons, which require huge computing resources.

Szegedy et al. [212] designed a deep CNN called GoogLeNet for image
classification and detection in ILSVRC2014. In GoogLeNet, an inception
module was developed, which can concatenate the feature maps from sev-
eral convolutional layers and max-pooling layers. By using the inception
module, the parameters of each layer dramatically decreased. In partic-
ular layers of this method, averaging pooling was used rather than max-
pooling. The GoogLeNet ranked the first in ILSVRC2014 on image classi-
fication and detection tasks. The advanced version of GoogLeNet can be
found in [211], which is called Inception-v4.

Another famous CNN is the VGGNet, which was the runner-up in
ILSVRC2014, proposed by Simonyan and Zisserman [199]. The effect of
CNNs’ depth on the classification accuracy was investigated. Based on
the analysis, very deep CNNs architecture (up to 19 weight layers) was
developed for image classification. This work demonstrated that increas-
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ing depth of CNNs was good for classification accuracy improvement. In
VGGNet, only 3×3 convolutional filter and 2×2 pooling were used. How-
ever, this model requires large memory and computing resources due to a
large number of parameters (138 million parameters).

He et al. [100] developed a residual CNN (ResNet) for image classi-
fication and detection. A deep residual learning framework with resid-
ual representation and shortcut connection was introduced to address the
degradation problem with increasing depth. The ResNet was easy to be
optimised due to a smaller number of parameters compared to VGGNet,
and was able to increase its performance when the depth was increased.
The performance of ResNet has been verified on two image classification
datasets i.e. CIFAR-10 and ILSVRC2015, and other tasks. ResNet has won
first place in the ILSVRC2015 classification task with 3.57% top-5 error
rate. An extremely deep CNN achieved by the ResNet method can be
found in [101] for image classification, which reaches over 1,000 layers.

Shao et al. [196] proposed a new method based on existing CNN mod-
els for object localisation, object classification, object detection, and scene
classification. In the object classification task, different kinds of deep mod-
els were trained, including Inception-V3, Inception-V4, Residual Network,
Inception-ResNet-v2, and Wide Residual Network. The ten most difficult
categories were chosen from the 1,000 classes to compare the performance
of these models. This designed method achieved a 2.99% top-5 error rate
in the ILSVRC2016 classification task.

Hu et al. [109] designed a Sequeeze-and-Excitation (SE) block in CNNs
(SENet) for image classification. The SE block aims to enhance the infor-
mative features and suppress less useful features by using useful global in-
formation. Different variants of SENets, such as SE-ResNet, SE-Inception,
SE-ResNeXt, and SE-Inception-ResNet, were designed and compared. A
small ensemble of SENets was employed to deal with object classification
in ILSVRC2017 and obtained 2.252% top-5 error rate on the test set. This
method won first place in ILSVRC2017 on classification. Other datasets,
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such as Place365-Challenge dataset [246] was also used to evaluate the
performance of this method.

Huang et al. [112] develop a densely connected CNN (DenseNet) for
image classification. DenseNet has a number of dense blocks, where all
the layers are directly connected with each other. The feature maps of the
previous layers are concatenated and passed to the next layer. This design
allows L(L + 1)/2 connections in a L-layer network. The advantage of
DenseNet over ResNet or other CNNs is their improved flow of informa-
tion and gradients in the network, which makes them easy to train. The
performance of DenseNet has been examined on four benchmark image
classification datasets, i.e., CIFAR-10, CIFAR-100, SVHN, and ImageNet.
The results showed that DenseNet achieved better performance than the
other CNN methods.

Many other types of CNNs have been developed, where general do-
main knowledge was utilised to learn invariant features for image classi-
fication. Bruna and Mallat [49] proposed an invariant Scattering Convo-
lution Network (ScatNet) for image classification. ScatNet has multiple
layers of wavelet transform convolutions with non-linear modulus and
averaging operators to learn invariant information from images to achieve
good classification performance. This method has achieved better perfor-
mance than a Gaussian kernel SVM and a generative PCA classifier on
digital recognition and texture classification.

Based the concept of PCA, Chan et al. [53] developed the famous PCANet
for image classification. PCANet can have multiple stages/layers of con-
volutions to extract/learn high-level features. The filters for convolutions
were generated by PCA. The final layers of PCANet were binary hashing
and blockwise to obtain the final output/features for classification. Two
variants of PCANet, RandNet and LDANet, have been developed by us-
ing different filters for convolutions, i.e., randomly generated or learned
from Linear Discriminant Analysis (LDA). PCANet has achieved promis-
ing results in many well-known image classification benchmark datasets,
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including face recognition, digits recognition and texture classification.

Qian and Zhang [177] developed a Feedforward Convolutional Con-
ceptor Neural Network (FCCNN) for image classification. This method
built a simple but fast representation learning model by integrating com-
ponents of CNNs, PCA, binary thresholding (BT), and non-temporal con-
ceptor classifiers. The results showed the effectiveness of FCCNN over the
other CNN variants on MNIST variant datasets.

Li and Gong [140] proposed a self-paced CNN (SPCN) by assigning
weights to the training instances during the learning process to enhance
the learning robustness of CNN. The method has gained better perfor-
mance than a number of effective algorithms on six benchmark datasets.

AE is well-known as an unsupervised feature learning algorithm. The
learned features of AE can be fed into a commonly used classification
algorithm such as SVM for classification. Rifai et al. [183] developed
Contrastive AE (CAE) by using a new cost function with a well-chosen
penalty term. This method has been examined on seven image classifica-
tion datasets and compared with other types of AEs, including 3-layers
Stack AE (SAE-3) and 3-layers denoising AE with binary masking noise
(DAE-b-3). As variants of NNs, DBN and DBM have also been applied by
Larochelle et al. [132] to digit recognition.

In summary, NN-based methods are popular and effective for image
classification. More related works can be found in [95, 180, 245]. CNNs
have gained remarkable success on large-scale image classification in re-
cent years. However, these deep methods have several limitations. First,
the deep models with a huge number of trainable parameters require a
large number of labelled training instances/images to train. For exam-
ple, AlexNet has 138 million parameters, which can only be trained well
when sufficient data are provided. In many real-world applications, such
as medical image classification, biological image classification and remote
sensing image classification, the number of labelled instances is often lim-
ited due to the high cost to collect data. In these domains, it could be dif-
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ficult to obtain a deep model to achieve good classification performance.
Second, the deep models often have poor interpretability due to the “black-
box” mapping from inputs to outputs. It is difficult to explain and under-
stand what features are extracted/learned and why they are effective for
classification. Third, rich domain expertise is often required to design an
effective architecture for CNN [248]. CNNs can integrate many different
modules/functions, such as inception, dropout, activation functions, reg-
ularisation, residual, and batch normalisation, which is difficult to manu-
ally find an effective architecture of CNNs with good performance from
the scratch. The architecture of CNN is a key factor to achieve promising
results, as it can be found from [100, 112, 126, 199, 239] that CNNs with dif-
ferent architectures perform differently. Fourth, the model complexity of
CNNs is fixed, indicating that the flexibility and adaptability of the mod-
els are limited. Due to these limitations, it is still necessary to explore and
develop new approaches for image classification.

2.7.3 Evolving Neural Networks

To address the limitation that designing deep CNNs requires rich domain
knowledge, many methods have been proposed to automatically evolve
the architectures for CNNs for image classification. These methods are
also known as Neural Architecture Search (NAS) algorithms, which in-
clude reinforcement learning methods, EC methods, and others [73, 226].
Since most of these works focused on solving image classification, this sec-
tion reviews recent works on EC for evolving CNNs (or NAS).

Real et al. [181] developed an evolutionary algorithm to evolve archi-
tecture for deep CNNs (known as Large-scale Evolution) for image clas-
sification. In this method, each individual represents a trainable CNN. A
specific mutation operation was developed to change or increase the com-
ponents of CNNs in the individual. The results showed that this method
achieved better or competitive performance on CIFAR10 and CIFAR100
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than the manually designed CNNs and the other NAS algorithms. How-
ever, the computational cost of this method is very high.

Xie and Yuille [230] employed GA to automatically search the architec-
tures of CNNs (Genetic CNN). In this method, the network structure is en-
coded using a fixed binary string. At each generation, selection, crossover
and mutation operators were used to generate a new population of so-
lutions. The effectiveness of this method has been examined on three
datasets, i.e., MNIST, CIFAR10 and CIFAR100.

Irwin-Harris et al. [115] developed an evolutionary algorithm with a
graph encoding to evolve architectures of CNNs. The graph encoding is
similar to a tree-based encoding, which is more flexible and has fewer con-
straints to the search space. Accordingly, the initialisation method and the
individual generation method were proposed for creating a population of
individuals. The graph encoding can be easily decoded to an architec-
ture of CNN. The results showed that this method achieved similar per-
formance to the manually designed CNNs and found CNN models with
significantly fewer parameters.

Sun et al. [208] developed a GA method to automatically evolve archi-
tecture and connection weight initialisation values for CNNs (this method
is knowns as EvoCNN) on image classification. In EvoCNN, GA was em-
ployed to search the CNN structures, consisting of convolution layers,
pooling layers, and full connected layers, and to find the optimal mean
and standard deviation values of weights. Besides, EvoCNN simultane-
ously searched for the numbers of filters in the convolutional layers and
the types of pooling. The results showed that EvoCNN achieved better
performance on nine datasets than state-of-the-art algorithms. However,
EvoCNN has a high computational cost.

Sun et al. [209] developed a GA method to automatically design CNNs
(CNN-GA) for image classification. In this method, a variable-length rep-
resentation and a corresponding crossover operation were developed to
better search for the CNN structures. Skip connections were employed
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in this method for dealing with complex data. Besides, this method ad-
dressed the drawbacks of high computational cost by developing a new
fitness evaluation process. The results showed that this method achieved
better performance on two benchmark datasets than eight manually-designed
CNNs, seven automatic+manual tuning and five automatic CNN architec-
ture design algorithms.

In summary, these methods addressed the limitations requiring rich ex-
pertise to design the architectures of CNNs for image classification. How-
ever, one major limitation of these methods is the high computational cost.
For example, the Large-scale Evolution [181] used 2,750 Graphics Process-
ing Unit (GPU) days, Genetic CNN [230] consumed 27 GPU days, and
CNN-GA [209] used 35-40 GPU days to obtain the best structures of CNNs
on the CIFAR10 and CIFAR100 datasets. In addition, the NN-based meth-
ods still suffer from the poor interpretability of the learnt models.

2.7.4 Ensemble Methods

To employ an ensemble method for image classification often requires a
different design since before the general classifier training process the fea-
ture extraction process is performed to extract meaningful features from
raw images. Dittimi and Suen [65] used CNNs to extract image features
and used PCA to reduce the dimension (number) of the features. Then
different base learners, i.e., RF, DT and SVM, were trained on the features.
Finally, ensemble methods such as stacking or bagging were used to ob-
tain the combined predictions.

Forcén et al. [85] developed a weighted ensemble method for image
classification. A set of features were extracted and employed to train
many binary classifiers. The binary classifiers were combined using neu-
ral networks and the weights of the classifiers were calculated to build
a weighted ensemble. The experimental results showed that a weighted
ensemble could improve the classification accuracy on two datasets.



2.7. OTHER ALGORITHMS FOR IMAGE CLASSIFICATION 75

Sergyan [194] proposed a method that extracts statistics of the his-
togram features from images and employed a distance-based similarity
function in a content-based image retrieval system. This method was fast
due to the small number of features employed. However, this method
may not be effective for difficult image classification tasks due to the lack
of sufficient information.

Kumar et al. [128] proposed an ensemble of different CNNs for medical
image classification. Based on the AlexNet and GoogLeNet models with
weights trained from ImageNet, this method fine-tuned these two CNNs
to obtain the outputs (treated as features) of the final layer. The ensemble
was built using five classifiers, i.e., the softmax classifier in the fine-tuned
AlexNet, the softmax classifier in the fine-tuned GoogLeNet, the SVM clas-
sifier trained using the features from AlexNet, the SVM classifier trained
using the features from GoogLeNet, and the SVM classifier trained us-
ing the concatenated features from GoogLeNet and AlexNet. The results
showed that the built ensemble achieved better classification performance
than the other CNN baselines on two datasets. However, this method
is computationally expensive and requires a large number of training in-
stances to fine-tune deep CNNs.

Xia et al. [229] investigated five different strategies, i.e., bagging, boost-
ing, random subspace, rotation-based, and boosted rotation-based, to con-
struct RF ensembles for hyperspectral image classification. In these meth-
ods, the spatial features, i.e., extended multiattribute extinction profiles,
were used as features/inputs for classification. The results showed the
effectiveness of the five ensemble methods on two commonly used bench-
mark datasets. The results also showed that the rotation-based and boosted
rotation-based methods were the most effective methods among all these
methods. However, these methods were only developed for hyperspec-
tral image classification and have not been tested on other types of image
classification tasks.

Overall, ensemble methods have shown to be effective approaches for
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     Neutral ( FEI_1)             Smile  (FEI_1)                   Neutral ( FEI_2)              Smile  (FEI_2)   

Figure 2.8: Example images from the FEI 1 and FEI 2 datasets, respec-
tively.

image classification. However, most methods require rich domain knowl-
edge or human intervention to build an effective ensemble of diverse and
accurate classifiers for image classification. In addition, most of these
methods used manually extracted features to build ensembles, which might
not be effective. Thus, the potential of ensemble methods for image classi-
fication has not been fully investigated.

2.8 Benchmark Datasets

Throughout this thesis, 15 different image classification datasets of vary-
ing difficulty, image sizes, numbers of images and classes, are employed
to examine the effectiveness of the proposed GP-based approaches. The
details of these datasets, i.e., image size, number of classes, number of in-
stances, and image type, are summarised in Table 2.1.

The FEI 1 and FEI 2 datasets [215] are the tasks of facial expression
classification based on images. These two datasets contain frontal facial
images with a neutral or smiling expression. Each of these two datasets
include 200 260×360 colour images sampled from 200 Brazilian with a dif-
ferent appearance, hairstyle and adorn. Example images from these two
datasets are shown in Figure 2.8.

The VGDB dataset is to identify Vincent Van Gogh’s paintings [84].
This dataset has 330 colour images in two classes, i.e., Vincent Van Gogh’s
(VG) paintings or not Vincent Van Gogh’s paintings (Non VG). The im-
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Table 2.1: Benchmark Datasets

Dataset Image size Number
of Classes

Number of
Images

Image
Type

FEI 1 360×260 2 200 Colour
FEI 2 360×260 2 200 Colour
VGDB (600-14,000)×

(600-14,000)
2 330 Colour

ORL 92×112 40 400 Grey
JAFFE 256×256 7 213 Grey
KTH 200×200 10 810 Grey
EYALE 192×168 38 2,424 Grey
FS About 250×300 13 3,859 Grey
MB 28×28 10 62,000 Grey
MRD 28×28 10 62,000 Grey
MBR 28×28 10 62,000 Grey
MBI 28×28 10 62,000 Grey
Rectangle 28×28 2 51,200 Grey
RI 28×28 2 62,000 Grey
Convex 28×28 2 58,000 Grey

                                   Non_VG                                                                               VG

Figure 2.9: Example images from the VGDB dataset.

ages in this dataset have very high quality with a large range of resolution
in pixels (width and height) from 600 to 14,000. This task is very difficult
as all the images are abstract without any particular objects inside and the
painting style is hard to capture. Example images from this dataset can be
found in Figure 2.9.
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Figure 2.10: Example images of some classes from the ORL dataset.

  Anger        Disgust          Fear        Happiness      Neutral       Sadness       Surprise    

Figure 2.11: Example images from the JAFFE dataset.

The ORL dataset [191] is a small dataset for face recognition/classification.
This dataset includes 400 facial images of 40 different people i.e., 10 images
per class. The faces in the images include variations of gender, expres-
sions, rotations, occlusion by glass, illumination, and facial details.

The Japanese Female Facial Expression (JAFFE) dataset [150] is a well-
known facial expression classification dataset. It has seven common facial
expressions, i.e., anger, disgust, fear, happiness, neutral, sadness, and sur-
prise. This dataset has 213 images of 7 different expressions sampled from
10 Japanese females. The size of the images is 256×256. Example images
from each class of JAFFE are shown in Figure 2.11.

The kth-tips2 (KTH) dataset [153] is a texture classification dataset,
containing 810 images equally distributed in 11 classes, i.e., aluminium
foil, styrofoam, brown bread, linen, corduroy, cotton, orange peel, cracker,
sponge, sandpaper. The images are sampled on nine different scales with
three poses under four illumination conditions, which indicates the diffi-
culty of classification. Example images from the KTH dataset are shown
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Figure 2.12: Example images from the KTH dataset.

Figure 2.13: Example images from the EYALE dataset.

in Figure 2.12, where each row represents images from one class. It is clear
that the images have variations of scale, illumination and pose.

The Extended Yale B (EYALE) dataset [137] is a face classification task,
having 2,424 192×168 facial images from 38 different people, i.e., about
64 images per class. The facial images in this dataset are sampled under
different poses and illumination conditions. The images of EYALE are
resized, cropped and manually-aligned. Example images of EYALE are
showed in Figure 2.13.

The 13 categories of natural scenes (FS) dataset [79] is a challenging
task of scene analysis and classification. This dataset contains 3,859 natural
images in 13 groups, i.e., bedroom, suburb, kitchen, living room, office,
coast, forest, highway, inside city, mountain, open country, street, and tall
building. The average size of the images in this dataset is approximately
250×300. The natural images are acquired under different conditions and
have high variations, which makes the task difficult. Example images of
each class from the FS dataset are shown in Figure 2.14.

The remaining seven datasets are the mnist-basic (MB) [132], mnist-
rot (MRD) [132], mnist-back-rand (MBR) [132], mnist-back-image (MBI)
[132], Rectangle [132], rectangle-image (RI) [132], and convex sets (Con-
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Bedroom Suburb Kitchen Living room

Coast Forest Highway Inside city Mountain Open country Street Tall building

Office

Figure 2.14: Examples image of each class from the FS dataset.

vex) [132] datasets. These datasets have separated training and test sets
3. The MB dataset [132] is a large dataset of digit images. The MB dataset
is a subset of the famous MNIST benchmark dataset. This dataset has
62,000 images of 10 classes, i.e., 50,000 images in the training set and 12,000
images in the test set. The MRD, MBR and MBI datasets are three vari-
ants of the MB dataset obtained by adding factors of variations, including
rotation, random background and image background. The MRD dataset
includes digit images with rotation by an angle generated uniformly be-
tween 0 and 2π. The MBR dataset has images with random background
and the MBI dataset has images with random images added as their back-
ground. The MRD, MBR and MBI datasets are more difficult than the MB
dataset due to these additional variations. The Rectangle, RI and Con-
vex datasets are the tasks of object classification with two classes. The
Rectangle and RI datasets have images with rectangle objects and the task
is to recognise whether each rectangle in an image has a larger width or
length. The RI dataset is more difficult than the Rectangle dataset due to
the addition of the random background. The Convex dataset has images
with convex or non-convex objects, i.e., two classes. Example images from
these seven datasets are shown in Figure 2.15.

These datasets include a broad range of image classification tasks, i.e.,

3The training and test sets can be downloaded from http://www.iro.umontreal.
ca/˜lisa/twiki/bin/view.cgi/Public/PublicDatasets
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                                                                                    MB

                                                                                   MRD

                                                                                            MBR

                                                                                            MBI

                                                                                       Rectangle

                                                                                              RI

                                                                                          Convex

Figure 2.15: Example images from the MB, MRD, MBR, MBI, Rectangle,
RI, and Convex datasets.

facial expression classification: FEI 1, FEI 2 and JAFFE; face classifica-
tion/recognition: ORL and EYALE; texture classification: KTH; scene clas-
sification: FS; object classification: MB, MRD, MBR, MBI, Rectangle, RI,
and Convex, and painting classification: VGDB. In these image classifi-
cation tasks, different image variations are included, e.g., rotation, scale,
illumination, pose, facial expression, and occlusion. In the object classifica-
tion tasks, the variations also include the random background in MBR and
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RI, rotations in MRD, and additional image background in MBI. The va-
riety of image classification tasks and the image variations are two main
considerations for selecting these datasets as benchmark datasets in this
thesis. These datasets will be employed to comprehensively investigate
the performance of the proposed approaches on different types of image
classification tasks. This is also a limitation of existing GP methods, which
have only been examined on a very limited number and type of image
classification tasks. It is noticeable that the MB, MRD, MBR, MBI, Rectan-
gle, RI, and Convex datasets are large datasets with over 50,000 images for
training and testing. To the best of our knowledge, no GP-based methods
have been examined on these datasets.

2.9 Chapter Summary

This chapter reviewed the main concepts of computer vision, machine
learning and evolutionary computation, particularly image preprocessing
operators, image descriptors, image feature extraction, classification, en-
semble learning, transfer learning, feature learning, and GP. This chapter
also reviewed and discussed the related works of GP, traditional methods,
CNNs, and ensemble methods for image classification.

This chapter summarised the limitations of the existing works that
form the motivations of this research. Image classification is a challenging
task and a set of informative features are important for effectively solving
it. Traditional image classification methods often require domain knowl-
edge to manually extract a set of features from images. The manually ex-
tracted features may not be the optimal features for solving this task so
that the classification performance is limited. In recent years, NN-based
methods, particularly CNNs, have been widely applied to image classifi-
cation and showed promising results. However, most of these NN-based
methods have a number of limitations, such as requiring a large number
of training instances, being computationally expensive, and having poor
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interpretability. Compared with these NN-based methods, GP has a flexi-
ble tree-based representation, enabling it to evolve solutions with variable
depths/lengths and high interpretability. Existing works show the poten-
tial ability of GP with different representations to learn one or multiple
features for image classification. However, existing GP methods also have
other limitations, which are discussed as follows.

• Existing works show that employing image-related operators, such
as filters, in GP can potentially improve the image classification per-
formance [175, 197]. Existing image descriptors, such as HOG, SIFT
and LBP, can extract effective features that are invariant to certain
variations. However, the use of these effective descriptors in GP to
achieve feature learning has not been fully investigated. In addi-
tion, global and local features are two types of features that can be
employed for image classification. These two types of features are
effective for different image domains. However, most existing meth-
ods can only learn one type of image features, i.e., global features or
local features, which are not flexible and effective for solving differ-
ent types of image classification tasks.

• The image-related operators, including image filters and image de-
scriptors, have not been simultaneously investigated in GP to effec-
tively use them to achieve effective feature learning. Existing GP
program structures, e.g., multi-tier [27], two-tier [14] and multi-layer
[197], are often restricted in a certain way and cannot be used when
new image-related operators introduced in GP. Therefore, it is neces-
sary to develop a new GP program structure to effectively use these
operators for feature learning.

• Ensemble methods have shown to be an effective approach to im-
age classification [128, 229]. However, very few GP-based ensem-
ble methods have been developed for image classification. GP has a
flexible tree-based representation and can integrate the processes of
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feature learning and ensemble learning into a single GP tree. How-
ever, GP has never been applied to automatically and simultane-
ously learn features and evolve ensembles from raw images for im-
age classification.

• It is often computationally expensive to use GP to learn features from
a large number of training instances, e.g., the famous MNIST dataset
[136] has 60,000 training images. However, very few works have suc-
cessfully addressed this issue in the GP-based feature learning algo-
rithms. Therefore, it is necessary to develop a new GP approach that
can improve both the computational efficiency and the classification
performance on image classification.

The following four chapters of this thesis will show how GP is em-
ployed to tackle these limitations.



Chapter 3

GP with Image Descriptors for
Global and/or Local Feature
Learning

3.1 Introduction

Many existing image descriptors, such as Histogram of Oriented Gradi-
ents (HOG) [60], Scale-Invariant Feature Transform (SIFT) [147] and Lo-
cal Binary Patterns (LBP) [169], have been developed for handling image
variations and widely used for feature extraction. With a flexible tree-
based representation, it is possible to use existing well-developed image
descriptors as GP functions to automatically learn high-level features for
image classification. However, existing GP methods cannot directly em-
ploy these descriptors due to the limitations of the program structures
(representations). Therefore, it is necessary to develop a new GP-based
approach with a new representation to effectively employ these descrip-
tors for feature learning. In addition, many existing methods only learn or
extract one type of features, i.e., global features [11, 197] or local features
[14, 138]. Typically, the application scenarios of global features and local
features are often different. By capturing the overall characteristics (e.g.,

85
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brightness level, texture and histogram) of an image, global features are
often employed to classify images that do not have specific objects, such
as texture images. In contrast, by extracting features (e.g., edge, shape
and appearance) from the regions of interests, local features are often em-
ployed to classify object images, e.g., face images. However, from some
image classification tasks, both global and local features may be needed.
But it is often unknown how many and what types of global and/or local
features are needed. Therefore, it is necessary to develop a new feature
learning approach to automatically learning global and/or local features
in a flexible way.

3.1.1 Chapter Goals

The overall goal of this chapter is to develop a new feature learning ap-
proach using GP (FLGP) to automatically select and combine existing im-
age descriptors to extract rich and discriminative global and/or local fea-
tures for different image classification tasks. To achieve this goal, a novel
program structure (individual representation), a new function set and a
new terminal set are developed in FLGP. To effectively learn discrimina-
tive features, a new feature learning process and a new fitness evaluation
process are developed. Specifically, this chapter will investigate:

• how image descriptors are employed in FLGP to achieve global and/or
local feature learning by developing a new program structure, a new
function set and a new terminal set;

• how the generalisation performance of the learned features is im-
proved by developing a new fitness evaluation process;

• whether FLGP can obtain better classification performance than ex-
isting GP-based methods, the methods using different manually ex-
tracted features, and three Convolutional Neural Network (CNN)-
based methods; and
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• whether and how the solutions/programs evolved by FLGP provide
insights into the tackled image classification tasks.

3.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Chapter 3.2 de-
scribes the proposed FLGP approach. Chapter 3.3 presents the experiment
design, i.e., benchmark datasets, baseline methods and parameter settings.
The experimental results are discussed and analysed in Chapter 3.4. Fur-
ther analysis of the convergence behaviour and the solutions/programs
evolved by FLGP is presented in Chapter 3.5. Chapter 3.6 concludes this
chapter.

3.2 The Proposed Approach

This section describes the proposed FLGP approach in detail. The overall
algorithm, the new feature learning process, and the new fitness evalu-
ation process are presented. Then it describes the main components of
FLGP, i.e., the program structure, the function set, and the terminal set.

The FLGP approach is proposed to address the limitations of a GP
method for automatic global and local feature extraction (GP-GLF), which
is a method we previously proposed in [44]. The GP-GLF method is a
feature learning algorithm that uses seven image descriptors as GP func-
tions to learn global and local features for image classification. In GP-GLF,
six different root nodes have been developed to combine the global fea-
tures and local features extracted by descriptors, which allow GP-GLF
to produce a combination of global and local features. Although GP-
GLF has achieved better performance than a large number of methods us-
ing manually-extracted features, it has several limitations. First, GP-GLF
learns a combination of global and local features, which is not effective and
flexible. Second, GP-GLF uses a fixed train-test split of the dataset in the
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fitness evaluation process and uses k-Nearest Neighbour (KNN) for classi-
fication. The learning performance can be further improved by exploring a
new fitness evaluation process with a new classification algorithm. Third,
the features generated by GP-GLF are from different descriptors and they
may have different scales. For example, features described by the uniform
LBP (uLBP) descriptor may be in the range of [0, 100] and the features
described by the SIFT descriptor are in the range of [0, 1]. In the GP-
GLF method, these features are fed into a SVM for classification without
normalisation, which may lead to bias towards features with large val-
ues. Therefore, feature normalisation is needed to rescale the range of the
learned features. Fourth, the performance of GP-GLF has not been exam-
ined on multi-class image classification datasets.

Therefore, this chapter develops a new GP-based feature learning ap-
proach, i.e., FLGP, by addressing the above limitations of GP-GLF. The
FLGP approach aims to automatically learn global and/or local features
in a flexible way.

3.2.1 Overall Algorithm

The proposed FLGP approach can automatically evolve solutions/trees
that are able to extract discriminative global and/or local features using
existing image descriptors from the input image. The overall feature learn-
ing process of FLGP is shown in Figure 3.1, where the left part shows the
general evolutionary learning process of GP and the right part shows the
new fitness evaluation process. The new components and the basic con-
figuration of the FLGP system are shown in Figure 3.2.

As shown in Figure 3.1, FLGP starts with population initialisation,
where a number of programs/trees/individuals are randomly generated
according to the new program structure, the new function and terminal
sets. Then each individual is evaluated using the new fitness evaluation
process. After fitness evaluation, a selection method and three genetic op-
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Figure 3.1: The overall feature learning process of FLGP.
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Figure 3.2: The new components and the basic configuration of the FLGP
system.
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erators, i.e., elitism, crossover and mutation, are used to obtain a new pop-
ulation for the next generation. The selection method selects individuals
with better fitness values for crossover and mutation. The crossover and
mutation operations change the nodes or branches of the FLGP trees to
search for better trees/solutions. The evolutionary learning process is ter-
minated when a pre-defined termination criterion is satisfied. If the ter-
mination criterion is not satisfied, the process of fitness evaluation and
population generation repeat again. Otherwise, the evolutionary process
ends and the best individual is returned.

During the evolutionary learning process, a fitness function is used to
guide the search for the best individual. The right part of Figure 3.1 shows
the new fitness evaluation process in FLGP. In this process, a training set,
containingN m×l images {Ii}Ni=1 andN labels {Yi}Ni=1, is used. Each FLGP
individual/program, as a solution to feature extraction, transforms each
image Ii to a feature vector Fi with the size of S. S is the number of the
extracted features by the FLGP program. Then all the features {Fi}Ni=1 are
normalised and fed into a linear SVM together with the class labels {Yi}Ni=1

to perform classification. A linear SVM is employed because it is popular
for image classification [197] and has fewer parameters compared with
SVMs with other kernel functions. On image classification tasks, the clas-
sification accuracy is the most commonly used fitness function [138, 197].
To increase the generalization ability, stratified k-fold cross-validation is
used for evaluating each individual and the mean accuracy of the k folds
is set as the fitness value. k = 5 and k = 10 are commonly used for k-fold
cross-validation [185]. To reduce the computational cost, we set k to 5 in
FLGP.

Normalization of Extracted Features

The previous GP-GLF [44] method does not perform feature normalisa-
tion. However, the features produced by GP-GLF are the combination of
features with different scales. For example, the uLBP features may be in
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the range [0, 100] and the SIFT features are in the range [0, 1]. This may
lead to bias towards particular types of features such as uLBP features
when using the combination of these features for classification. Therefore,
in FLGP, the min-max normalisation method is used to rescale the output
features Fi to F i, as shown in Equation (3.1).

F i =
Fi −min({Fi}Ni=1)

max({Fi}Ni=1)−min({Fi}Ni=1)
. (3.1)

In addition to the above differences, the FLGP approach has a new
representation (program structure), a new function set, and a terminal set,
which will be described below.

3.2.2 New Program Structure

The proposed FLGP approach is based on STGP so that a new program
structure is needed. The new program structure is extended from that of
GP-GLF in [44] by improving its flexibility. The program structure of GP-
GLF has a representation with a fixed tree depth, which limits the type
of output features, i.e., the combination of global and local features. The
new program structure of FLGP addresses these limitations by using a
flexible structure to represent more possible ways of combining global and
local features. The new program structure allows each solution to have a
flexible tree depth and to produce various numbers of global and/or local
features FS .

The new program structure is shown in Figure 3.3 (a). It contains the
tiers of input, region detection, feature extraction, feature concatenation,
and output, where different functions are used at different functional tiers.
The region detection tier aims to detect small regions of interest from a
large input image. The region detection tier may exist or be absent in
FLGP trees, which indicates that the solutions/trees of FLGP can be con-
structed without any region detection. This allows FLGP to also produce
only global features. The feature extraction tier extracts global features
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Figure 3.3: The new program structure of FLGP and an example program
that describes a combination of global and local features.

from an input image or local features from the detected regions. There-
fore, the feature extraction functions are developed in both the global and
local scenarios. The feature concatenation tier concatenates the features
from its child nodes to a feature vector. To further demonstrate the pro-
gram structure, a typical example program/solution of FLGP is shown in
Figure 3.3 (b), where different colours indicate inputs, outputs and dif-
ferent functions. In this program, there are region detection functions, i.e.,
Region S andRegion R, feature extraction functions, i.e.,G SIFT , L DIF

and L uLBP , and feature concatenation function, i.e., FeaCon2.

The new program structure allows FLGP to produce three types of fea-
tures. The first type is a combination of global and local features. As
shown in the example program in Figure 3.3 (b), the output features are
a combination of global SIFT features, local domain-independent features
(DIF) and local uLBP features. The total number of the output features
S equals s1 + s2 + s3, where s1 is the number of the SIFT features, s2 is
the number of the DIF features, and s3 is the numbers of the uLBP fea-
tures. These features are extracted by the G SIFT , L DIF and L uLBP

functions, respectively. The second type is a combination of local features.
This can be achieved by building an FLGP tree where each input image
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Figure 3.4: Two example program structures to describe (a) a combination
of local features, and (b) a combination of global features.

(the Image terminal) must connect with the region detection functions, as
shown in Figure 3.4 (a). The third type is a combination of global features,
which can be achieved by building an FLGP tree without using region de-
tection functions, as shown in Figure 3.4 (b).

3.2.3 New Function Set

According to the new program structure, the function set of FLGP has
three different types of functions: region detection functions, feature ex-
traction functions and feature concatenation functions.

Region Detection Functions

The region detection functions are Region S and Region R, which detect
small square and rectangle regions from a large input image, respectively.
The Region S function takes an image Image (Ii, the size is m × l), X ,
Y , and Size as inputs and returns a square region. The coordination of
the top-left point of the region in Image is (X , Y ) and the size of the re-
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gion is Size. Thus the detected region by Region S is Image[X : min((X+

Size), m), Y : min((Y +Size), l)]. Similar toRegion S, theRegion R func-
tion detects the Image[X : min((X+Width), m), Y : min((Y +Height), l)]

region by taking the Image, X , Y , Width, and Height as inputs. In the two
functions, the Image, X , Y , Size, Width, and Height are terminals, which
will be described in the next subsection. The values of these terminals are
randomly generated from pre-defined ranges and can be automatically
optimised during the learning process. This indicates that the two func-
tions can detect a region at an appropriate position with a suitable size.

Feature Extraction Functions

GP-GLF [44] uses seven descriptors, including the GLCM and Gabor de-
scriptors. Since the GLCM, uniform LBP (uLBP) or Gabor descriptor is
able to describe texture features, FLGP only uses uLBP instead of the three
texture descriptors. Therefore, five representative descriptors, i.e., DIF
[242], histogram (Hist), SIFT, HOG, and uniform LBP (uLBP), are used in
FLGP as feature extraction functions to avoid a big search space. The five
descriptors are representative methods to describe distribution, texture,
shape, and appearance information of images. In FLGP, the five methods
are developed in global and local scenarios. The methods in the global
scenario are G DIF , G Hist, G SIFT , G HOG, and G uLBP , which ex-
tract features from a whole image. The methods in the local scenario
are L DIF , L Hist, L SIFT , L HOG, and L uLBP , which extract local
features from a detected region. The functions in the global scenario di-
rectly use the Image terminal as their children node, while the functions in
the local scenario employ the region detection functions as their children
nodes. Each feature extraction function transforms an image or a region
into a set of features Fs, where the number of features is s. The details of
these functions are listed in Table 3.1. It is obvious that each function ex-
tracts a different number (s) of features from an image/region, as shown
in the fourth column of Table 3.1.
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Table 3.1: Feature Extraction Functions

Methods Input Output #Features Description
G DIF/
L DIF

1 Image/
Region

1 Vector 20 Domain independent features [242].

G Hist/
L Hist

1 Image/
Region

1 Vector 32 Histogram features of the im-
age/region [99]. The number of bins
is set to 32.

G SIFT/
L SIFT

1 Image/
Region

1 Vector 128 SIFT features. The image or detected
region is considered as a keypoint
[220].

G HOG/
L HOG

1 Image/
Region

1 Vector Flexible HOG features [60].
G HOG/L HOG extracts the
mean value of each 20× 20 / 10× 10
grid with a step of 10 from a HOG
image.

G uLBP/
L uLBP

1 Image/
Region

1 Vector 59 Uniform LBP histogram features
[169]. In G uLBP and L uLBP ,
the radius is 1.5 and the number of
neighbors is 8.

Feature Concatenation Functions

The feature concatenation functions are FeaCon2 and FeaCon3, which
concatenate two feature vectors (Fs1 and Fs2) and three feature vectors
(Fs1 , Fs2 and Fs3) to produce a feature vector FS , respectively. The chil-
dren nodes of the two functions can be the feature extraction functions
and/or the feature concatenation functions. This allows FLGP to evolve
trees with variable lengths to produce different numbers of features.

3.2.4 New Terminal Set

The new terminal set has six different terminals: Image,X , Y , Size,Width,
and Height. The Image terminal indicates the input grey-scale image,
which is a two-dimension array (m × l) with values in the range [0, 1].
The input image is normalised by dividing pixel values by 255, which is a
commonly used method of normalising image data. The other terminals



96 CHAPTER 3. GP WITH IMAGE DESCRIPTORS

of FLGP are ephemeral random constants. The X and Y terminals indi-
cate the coordinates of the top-left point of a detected region in the image
and are the parameters of the Region S and Region R functions. They are
integers in the ranges [0, m − 20] and [0, l − 20], respectively. The Size,
Width and Height terminals are the size or width and height of a detected
region. Their values are in the range [20, 50], indicating that the size of the
detected region ranges from 20 × 20 to 50 × 50. It is noted that the value
ranges of Size, Width and Height are smaller than that in [44] to narrow
the search space.

3.3 Experiment Design

A number of experiments have been conducted to evaluate the perfor-
mance of FLGP on feature learning. The experiments aim to investigate
whether FLGP can achieve better performance than existing GP-based
methods, the methods using manually extracted features, and simple CNN-
based methods. This section describes the design of the experiments.

3.3.1 Benchmark Datasets

Eight different datasets of varying difficulty are used in the experiments
to examine the effectiveness of FLGP. These datasets are FEI 1 [215], FEI 2
[215], VGDB [84], ORL [191], JAFFE [150], KTH [153], EYALE [137], and
FS [79]. These datasets contain five types of image classification tasks, i.e.,
facial expression classification (FEI , FEI 2 and JAFFE), object classification
(EYALE and ORL), scene classification (FS), texture classification (KTH),
and painting classification (VGDB).

Table 3.2 describes the details of these eight datasets, e.g., the image
size, the number of classes, the number of images in the training and test
sets. The original images in some datasets are resized and the colour im-
ages are converted to grey-scale images in order to reduce computational
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Table 3.2: Dataset Properties

Dataset Image size # Classes Training set Test set
FEI 1 180×130 2 150 50
FEI 2 180×130 2 150 50
VGDB 200×200 2 247 83
ORL 92×112 40 280 120
JAFFE 128×128 7 140 73
KTH 100×100 10 600 210
EYALE 100×100 38 1,209 1,215
FS 100×100 13 1,928 1,931

time. These datasets are split into the training and test sets according
to commonly used proportions. For the FEI 1, FEI 2, VGDB, and KTH
datasets, 3/4 images are used to form the training sets and 1/4 images
are used to form the test sets [116]. For the ORL dataset, which only has
ten images per class, seven images per class are used for training and the
remaining images are used for testing. For the JAFFE dataset, 20 images
per class are used for training and the others are for testing. Since the
EYALE and FS datasets are large, they are split into half and half to form
the training set and the test set, respectively, according to [17].

3.3.2 Benchmark Methods

The benchmark methods are five GP-based methods, eight traditional meth-
ods using different types of manually extracted features, and three CNNs.

GP-based Methods

The five GP-based benchmark methods are GP-GLF [44], 2TGP [14], DIF+GP
[242], Hist+GP, and uLBP+GP [8]. Since the new FLGP approach is an ex-
tension of GP-GLF, it is necessary to compare FLGP with GP-GLF. The
2TGP method automatically generates a high-level feature for classifica-
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tion from the input image with simultaneous region detection, feature ex-
traction and feature construction. The DIF+GP, Hist+GP and uLBP+GP
methods construct high-level features for classification from pre-extracted
features, i.e., 20 DIF features, 64 Hist features and 59 uLBP features, re-
spectively. Since the 2TGP, DIF+GP, Hist+GP, and uLBP+GP methods are
originally designed for binary image classification, they are only used for
comparisons on binary image classification tasks, i.e., the FEI 1, FEI 2 and
VGDB datasets. Because of the high computational cost of GP-GLF, it is
too expensive to run it on the difficult multi-class classification tasks (prob-
ably needs several months to obtain all the results). Therefore, the com-
parisons of FLGP and GP-based methods, including GP-GLF, are only on
the binary image classification tasks.

Traditional Methods

Eight traditional methods that use different well-known features are em-
ployed for comparisons. The features are DIF [242], Hist [99], GLCM [96],
Gabor [144], SIFT [147], HOG [60], LBP [169], and uLBP [169] features.
Most of these feature extraction methods have been introduced in Chap-
ter 2. These features are fed into a linear SVM for classification. The DIF,
SIFT, HOG, and ulBP features are extracted using the same functions as
those employed in the function set of FLGP in the global scenario. Table
3.3 lists the detailed information of the eight feature extraction methods.

CNN-based Methods

Three CNN-based methods with different architectures are employed for
comparisons. They are the LeNet [135], a five-layer CNN (CNN-5) [197]
and an eight-layer CNN (CNN-8) [57]. LeNet is the very early version of
CNN and its main parameters are the same as those in [135]. In CNN-5,
there are two convolutional layers with 32 and 64 filters with a kernel size
of 3×3, respectively, one max-pooling layer and two fully connected lay-
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Table 3.3: Traditional Feature Extraction Methods for Comparisons

Methods Description

DIF Domain independent features the same as those in [242]

Hist 256 histogram features based on the pixel values of the image

GLCM GLCM features [97]. Four different orientations are used and
the contrast, dissimilarity, homogeneity, energy, correlation,
and ASM are extracted from each GLCM

Gabor Gabor bank features. 40 Gabor filters with eight different ori-
entations at five scales are used [143]. The mean value of each
32× 32 grid is extracted to form the features

SIFT 128 SIFT features. The whole image is used as a keypoint to
generate a set of features [220]

HOG A HOG image is generated by using the HOG descriptor with
the same parameter settings in [60]. The mean value of each
20× 10 grid is extracted from the HOG image

LBP 256 LBP histogram features [169]. In LBP, the number of
neighbours is set to 8 and the radius is set to 1.5

uLBP 59 uniform LBP histogram features [169]

ers. The first fully connected layer has 128 neurons/nodes and the number
of neurons of the final layer is the same as the number of classes. CNN-8
has four convolutional layers with 32, 32, 64, and 64 filters with a kernel
size of 3×3, respectively, two max-pooling layers and two fully connected
layers. These three methods use the popular rectified linear unit (ReLU)
as the activation function and softmax for classification. Dropout is added
after the pooling layer and the first fully connected layer with 0.25 and 0.5
probabilities, respectively, to avoid overfitting [201]. In these three CNN-
based methods, the loss function is cross-entropy and the adaptive sub-
gradient method is used to train the models [70]. The number of epochs
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is set to 500, which allows the three methods to be fully trained on these
datasets. It is noted that there are many deep CNN-based methods for
image classification, which have been discussed in Chapter 2. The deep
CNN-based methods require a large number of training instances. How-
ever, these benchmark datasets are not big and may not be sufficient to
train the deep CNN-based methods with a large number of parameters.
Instead of using deep CNNs, these three CNN-based methods with a small
number of layers and parameters, which are able to be well trained on
these benchmark datasets, are employed for comparisons.

3.3.3 Parameter Settings

Parameter settings for the proposed FLGP approach are the most com-
monly used settings in the community of GP [114], which are described
in Table 3.4. Note that we aim to develop a general method that with
common settings can achieve a good performance on a variety of image
classification tasks. Therefore, we do not conduct parameter tuning for
FLGP, although it could improve the performance. The other four GP-
based benchmark methods use the same parameter settings as FLGP ex-
cept for the population size. The population size for the four GP-based
methods is 500, while FLGP and GP-GLF use a smaller size of 100 in or-
der to reduce the computational cost. The crossover, mutation, and elitism
rates are 0.8, 0.19, and 0.01, respectively. The selection method is Tourna-
ment selection with size 7. The tree generation method is ramped-half-
and-half. The tree depth is between 2 and 6. The termination criterion for
all the GP methods is reaching the maximum number of generations.

3.3.4 Test Process and Experiment Settings

The overall test process of FLGP and the eight traditional methods are
the same. The FLGP solution is used as a feature extraction/description
method to transform the training set and the test set. Before feeding the
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Table 3.4: GP Run Time Parameters

Parameter Value Parameter Value
Generations 50 Crossover rate 0.8
Population size 100 Mutation rate 0.19
Population generation Ramped half-and-half Elitism rate 0.01
Selection type Tournament (size=7) Tree depth 2–6

datasets to SVM, the min-max normalisation method is used to rescale the
feature range of the training and test sets. Note that the normalisation for
the test set is based on the min and max values of features in the training
set. A linear SVM is employed to train a classifier using the transformed
and normalised training set and the classifier is tested on the transformed
and normalised test set. The linear SVM is employed because it is popular
for image classification [197] and it has fewer parameters compared with
SVMs with other kernel functions. The classification accuracy of the test
set is reported.

The implementations of all the GP-based methods are based on the
DEAP (Distributed Evolutionary Algorithm in Python) [86] package. The im-
plementations of the CNN-based methods are based on Keras [57] pack-
age. The implementation of the linear SVM method is based on the scikit-
learn [172] package with default parameter settings for simplification. In
SVM, the penalty parameter (C) is 1. The experiments of these methods
run independent 30 times with different random seeds and the classifica-
tion results are reported.

3.4 Results and Discussions

This section discusses and compares the classification results of the pro-
posed FLGP approach, the five GP-based methods, the eight traditional
methods, and the three CNNs on the eight datasets with relatively large
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image sizes. The classification results are listed in Tables 3.5, 3.6 and 3.7.
The results include maximum accuracy (Max), mean accuracy and stan-
dard deviation (Mean ± St.dev). The Wilcoxon rank-sum test with a 5%
significance level is used to compare FLGP with a benchmark method to
show the significance of performance improvement. The symbols “+” or
“–” in these tables indicate that FLGP is significantly better or significantly
worse than the compared method. The symbol “=” indicates the perfor-
mance of FLGP is similar to the compared method. In Tables 3.5, 3.6 and
3.7, each small block lists the results on one dataset, and the maximum
classification accuracy is highlighted in bold. The final row of each block
summarizes the overall results of the significance test.

3.4.1 Overall Classification Performance

As mentioned in Section 3.3.2, the GP-GLF method and the other four GP-
based benchmark methods are only used for comparisons on binary image
classification tasks. Thus, there are 16 benchmark methods on the FEI 1,
FEI 2 and VGDB datasets and 11 benchmark methods on the remaining
five datasets. From the final rows of Tables 3.5, 3.6 and 3.7, it is obvi-
ous that the FLGP approach achieves significantly better or similar per-
formance in almost all the comparisons. Specifically, the FLGP approach
obtains 97 “+”, 5 “=” and 1 “–” in the total 103 comparisons. The proposed
FLGP approach significantly outperforms all the benchmark methods on
one binary classification dataset, i.e., FEI 2, and on five multi-class classi-
fication datasets, i.e., ORL, JAFFE, KTH, EYALE, and FS. FLGP performs
significantly better than or similar to any of the 16 benchmark methods on
the FEI 1 dataset.

The proposed FLGP approach gains the maximum accuracy and the
maximum mean accuracy among all the methods on seven datasets ex-
cept for the VGDB dataset. Specifically, FLGP improves the maximum
accuracy by 11% on the JAFFE dataset, 8.1% on the KTH dataset, 7.8% on
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the FS dataset, 6% on the FEI 2 dataset, 1.7% on the ORL dataset, and 0.5%
on the EYALE dataset. The proposed FLGP approach improves the mean
accuracy by 9% on the FS dataset, 6.9% on the KTH dataset, 2.5% on the
FEI 2 dataset, 2.2% on the JAFFE dataset, and 1.3% on the ORL dataset.
On the VGDB dataset, FLGP performs worse than the LBP method. The
FLGP approach does not use the LBP descriptor (FLGP only uses uniform
LBP to extract 59 features) so that it cannot achieve classification perfor-
mance as good as the LBP features on this dataset. Overall, it is clear that
FLGP is more effective than any of the benchmark methods on different
types of image classification tasks.

The experimental results demonstrate the effectiveness of FLGP on fea-
ture learning. The main reasons to explain why FLGP is effective are
the developments of the feature learning process, the new program struc-
ture, the function set and the terminal set in FLGP. With the utilization
of five representative image descriptors in global and local scenarios, re-
spectively, the proposed FLGP approach can extract high-level invariant
features with the potential capability of increasing classification perfor-
mance. The program structure enables FLGP to effectively search for op-
timal functions and terminals to form solutions that flexibly produce var-
ious numbers of global and/or local features. The overall feature learning
process enables FLGP to find optimal solutions with high generalization
ability.

3.4.2 Comparisons with Five GP-based Methods

Comparisons Between FLGP and GP-GLF

Table 3.5 shows that the proposed FLGP approach achieves significantly
better performance than the GP-GLF method on the three binary classifica-
tion datasets. Compared with GP-GLF, FLGP improves the mean accuracy
by 6.7% on the FEI 1 dataset, 10.8% on the FEI 2 dataset and 9.8% on the
VGDB dataset. The FLGP approach improves the maximum accuracy by
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Table 3.5: Classification Accuracy (%) of the FEI 1, FEI 2 and VGDB
Datasets

Methods Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev
FEI 1 FEI 2 VGDB

2TGP 96.00 88.13±6.22+ 94.00 85.47±5.98+ 63.86 61.61±1.45+
DIF+GP 80.00 56.67±6.88+ 72.00 60.33±8.38+ 68.67 61.41±3.51+
Hist+GP 70.00 48.93±7.22+ 60.00 48.80±6.14+ 84.34 75.98±2.58=
uLBP+GP 66.00 50.87±7.48+ 72.00 48.73±7.87+ 79.52 69.40±4.36+
GP-GLF 96.00 89.07±3.92+ 92.00 82.47±5.77+ 74.63 65.12±4.73+
DIF 74.00 61.13±4.89+ 72.00 62.80±6.10+ 66.27 55.62±10.25+
Hist 54.00 48.13±3.38+ 54.00 50.13±2.53+ 62.65 62.21±0.79+
GLCM 50.00 49.67±0.75+ 54.00 50.13±0.72+ 62.65 53.33±9.80+
Gabor 82.00 71.60±7.87+ 74.00 65.67±5.14+ 63.86 56.02±8.28+
SIFT 82.00 82.00±0.00+ 78.00 78.00±0.00+ 60.24 60.24±0.00+
HOG 94.00 94.00±0.00+ 88.00 88.00±0.00+ 57.83 57.23±0.68+
LBP 68.00 62.47±3.49+ 66.00 57.60±3.56+ 84.34 80.56±3.23–
uLBP 64.00 56.87±5.18+ 56.00 51.93±2.34+ 81.93 71.48±8.14=
LeNet 98.00 94.40±1.96= 94.00 90.80±1.83+ 65.06 58.07±4.84+
CNN-5 98.00 95.60±1.50= 90.00 85.00±3.00+ 65.06 61.45±2.09+
CNN-8 98.00 94.20±2.09= 94.00 90.02±2.27+ 61.45 56.87±4.57+
FLGP 98.00 95.80±3.24 100.0 93.27±3.78 81.93 74.94±3.72
Overall 13+, 3= 16+ 13+, 2=, 1–

2% on the FEI 1 dataset, 8% on the FEI 2 dataset and 7.3% on the VGDB
dataset. From the results, it is clear that FLGP is more effective than GP-
GLF for feature learning to image classification. As mentioned in Section
3.2, FLGP has been developed to address the limitations of the previous
GP-GLF method. The experimental results show that this goal was suc-
cessfully achieved. FLGP is more effective than GP-GLF by producing
three types of features, i.e., a combination of global and local features, a
combination of global features, a combination of local features. This al-
lows FLGP to automatically find suitable types and numbers of features
to improve the classification accuracy for a given task.
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Comparisons with The Other Four GP-based Methods

From Table 3.5, it is noticeable that the proposed FLGP approach achieves
significantly better results in 11 comparisons and similar results in 1 com-
parison out of the total 12 comparisons. Importantly, compared with the
four GP-based methods (i.e., 2TGP, DIF+GP, Hist+GP, and uLBP+GP), the
proposed FLGP approach improves the mean accuracy by over 7% on the
FEI 1 and FEI 2 datasets. Moreover, FLGP achieves the maximum accu-
racy on the FEI 1 and FEI 2 datasets. On the VGDB dataset, FLGP ob-
tains a similar performance to Hist+GP. The Hist+GP method uses 256
histogram features as inputs while the G Hist/L Hist function in FLGP
only extracts 32 histogram features, which may be the reason why FLGP
cannot achieve classification performance as good as the Hist+GP method.

By automatically extracting a set of global and/or local features from
raw pixels, FLGP achieves significantly better performance than DIF+GP,
Hist+GP and uLBP+GP in most comparisons. The results show the poten-
tial of GP in feature learning from raw pixels. The 2TGP method can learn
features from raw images. However, FLGP is more effective than 2TGP on
these three datasets. The 2TGP method learns only one high-level feature
from an image to perform classification. In contrast, FLGP learns a set of
high-level features from an image, which is more effective for classifica-
tion.

3.4.3 Comparisons with Eight Traditional Methods

Tables 3.5, 3.6 and 3.7 show that FLGP achieves significantly better re-
sults in 62 comparisons out of the total 64 comparisons. Specifically, FLGP
performs significantly better than any of the eight benchmark methods
on seven datasets except for VGDB. Compared with the eight traditional
methods (i.e., DIF, Hist, GLCM, Gabor, SIFT, HOG, LBP, and uLBP), FLGP
improves the mean accuracy by 10.8% on EYALE, 9.1% on FS, 7.1% on
JAFFE, and 6.9% on KTH. Moreover, FLGP obtains the maximum accuracy
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Table 3.6: Classification Accuracy (%) of the ORL, JAFFE and KTH
Datasets

Methods Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev
ORL JAFFE KTH

DIF 85.00 85.00±0.00+ 35.62 35.62±0.00+ 56.19 56.19±0.00+
Hist 97.50 97.50±0.00+ 19.18 19.18±0.00+ 51.43 51.43±0.00+
GLCM 2.50 2.50±0.00+ 15.07 15.07±0.00+ 23.33 23.33±0.00+
Gabor 59.17 57.06±0.88+ 46.58 43.15±1.57+ 44.29 42.87±0.71+
SIFT 98.33 98.33±0.00+ 73.97 73.97±0.00+ 81.43 81.43±0.00+
HOG 96.67 96.67±0.00+ 72.60 72.60±0.00+ 51.43 51.37±0.16+
LBP 87.50 87.50±0.00+ 21.92 21.92±0.00+ 87.62 87.62±0.00+
uLBP 94.17 94.17±0.00+ 23.29 23.29±0.00+ 80.95 80.95±0.00+
LeNet 93.33 89.92±1.88+ 79.45 68.93±6.95+ 78.57 72.00±6.43+
CNN-5 97.50 96.33±0.77+ 80.82 78.90±1.26+ 84.29 81.48±1.84+
CNN-8 96.67 94.17±1.79+ 61.64 52.47±6.15+ 82.38 80.71±1.54+
FLGP 100.0 99.58±0.70 91.78 81.14±4.69 95.71 94.52±0.90
Overall 11+ 11+ 11+

on seven datasets except for VGDB. FLGP has an increase by over 10%
in terms of the maximum accuracy on the FEI 2, JAFFE, EYALE, and FS
datasets. The VGDB dataset is the only one which FLGP performs worse
than one of the eight traditional methods, i.e., LBP. The FLGP approach
does not use the LBP descriptor so that it cannot achieve classification per-
formance as good as the LBP features on VGDB.

The experimental results show that the features learned by FLGP are
more effective than the well-known hand-crafted features for image classi-
fication. Using traditional methods often requires domain expertise to ex-
tract a set of effective features for classification. The new FLGP approach
can automatically learn features from the images. The design of FLGP en-
ables it to automatically find the best combination of global and/or local
features, which are effective for image classification. Compared with the
features used in the eight methods, the features learned by FLGP are more
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Table 3.7: Classification Accuracy (%) of the EYALE and FS Datasets

Methods Max Mean±St.dev Max Mean±St.dev
EYALE FS

DIF 26.42 26.42±0.00+ 33.51 33.51±0.00+
Hist 11.03 11.03±0.00+ 21.23 21.23±0.00+
GLCM 5.10 4.97±0.12+ 13.88 13.88±0.00+
Gabor 36.71 36.27±0.21+ 22.68 22.28±0.19+
SIFT 88.40 88.40±0.00+ 63.13 63.13±0.00+
HOG 74.32 74.32±0.00+ 30.81 30.81±0.00+
LBP 46.42 46.42±0.00+ 62.45 62.45±0.00+
uLBP 56.13 56.13±0.00+ 66.13 66.13±0.00+
LeNet 92.35 89.38±1.58+ 54.17 51.05±2.35+
CNN-5 99.26 98.57±0.52+ 58.88 55.35±1.39+
CNN-8 90.86 88.19±1.03+ 69.24 66.21±1.98+
FLGP 99.75 99.21±0.38 77.01 75.22±0.65
Overall 11+ 11+

flexible in type and number. FLGP can learn various numbers of features
of three types, i.e., a combination of global and local features, a combina-
tion of global features and a combination of local features.

3.4.4 Comparisons with Three CNN-based Methods

Compared with LeNet, CNN-5 and CNN-8, FLGP achieves significantly
better performance on seven datasets and similar performance on the re-
maining one, the FEI 1 dataset. Importantly, FLGP improves the mean ac-
curacy by over 13% on the VGDB and KTH datasets, and by over 9% on the
FS dataset compared with the three CNNs. Surprisingly, CNN-8 performs
worse than CNN-5 on six datasets except for the FEI 2 and FS datasets,
which indicates that an increase in the depth of CNNs cannot guarantee
an increase in classification accuracy. A more complex model may require
more training instances/samples in order to obtain satisfactory results, but
the numbers of instances for these datasets are not large. Compared with
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the three methods with pre-defined model complexity, the flexible repre-
sentation allows FLGP to evolve solutions with various depths, which is
more flexible for solving different image classification tasks.

The results indicate that the features learned by FLGP are more effec-
tive than those by the three CNNs with different architectures for image
classification. Compared with the three CNNs, FLGP uses a simpler pro-
gram structure and a set of functions and terminals but achieves better
performance on different types of datasets. FLGP can learn various num-
bers and types of features, which is more flexible than the three CNNs.
FLGP can learn not only global features but also local features from au-
tomatically detected regions. However, it may be difficult for the three
CNNs to achieve this.

3.5 Further Analysis

This section further analyses the convergence behaviours of the FLGP method.
It also analyses the best solutions/programs/trees evolved by FLGP to
fully understand why it achieves good performance and to demonstrate
good interpretability.

3.5.1 Convergence Behaviour of FLGP

The convergence behaviours of the proposed FLGP approach on the FEI 1,
ORL, KTH, and EYALE datasets are shown in Figure 3.5. The X-axis indi-
cates the number of generations and the Y-axis indicates the fitness value,
i.e., the classification accuracy (%). This figure shows that the proposed
FLGP approach can converge within 50 generations on these four datasets.
On the ORL dataset, the proposed FLGP approach converges faster and
reaches the maximum accuracy of 100% at very early generation, specifi-
cally, within 10 generations. On the other datasets, such as KTH, the pro-
posed FLGP approach converges slowly and shows its search ability even
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Figure 3.5: Convergence curve of the proposed FLGP approach on the
FEI 1, ORL, KTH, EYALE datasets.

at the final several generations. But the convergence of FLGP becomes
stable after 30 generations by achieving a high fitness value.

To sum up, this analysis shows that the proposed FLGP approach is
able to converge to a high fitness value within the given number (50) of
generations. Additionally, it is clear that the convergence behaviours of
FLGP vary with the datasets.

3.5.2 Evolved Programs

An Example Program on the FEI 2 Dataset

An example program/tree of FLGP on the FEI 2 dataset is visualised in
Figure 3.6. This example program achieves 100% classification accuracy
on both the training and test sets. Two example images from the two
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Figure 3.6: An example program evolved by FLGP on the FEI 2 dataset.

classes (smile and natural) are used for visualisation to show what and
how features are extracted. This solution detects a 50 × 50 region using
Region S and a 38 × 46 rectangle region using Region R from the input
image. From each detected region, the example program extracts 128 SIFT
features using L SIFT . Together with the extracted 20 DIF features from
the whole image by G DIF , the example program is able to produce 276
features from an input image.

From Figure 3.6, it can be seen that the Region S function detects the
chin and mouth area of the left face and the Region S function detects a
similar area of the right face. It is obvious that the two regions capture the
most discriminative information between the two different classes. For
example, the detected areas contain the teeth in the happy face image but
not in the natural face image and capture the difference in mouth shapes
between the two expressions.
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This example program finds a combination of local SIFT features and
global DIF features for classification. The combined features are more ef-
fective for classification than the individual global DIF and SIFT features.
The traditional method using DIF features only achieves a maximum accu-
racy of 72% and the method using SIFT features only achieves a maximum
accuracy of 78% on the FEI 2 dataset. The example program improves
the classification performance by detecting the regions of interest and ex-
tracting meaningful local features from the detected regions. The analysis
shows that FLGP detects informative regions and extract discriminative
global and/or local features for classification.

Example Programs on the ORL Dataset

Three different example programs/trees of FLGP on the ORL dataset are
shown in Fig 3.7. These example programs achieve 100% accuracy on both
the training set and the test set. These three example programs detect one,
two and two regions from the input image, respectively. The example
images with detected regions are shown in Figure 3.8.

Using the three example programs, different types of global and local
features are extracted to form the final output features. The first program
extracts global Hist, uLBP and SIFT features from an input image and local
uLBP features from a detected 30×46 region. The detected region includes
the mouth area of the face, which is discriminative under two different ex-
pressions. The second program is able to produce a combination of global
SIFT features, local Hist features from a 24× 29 region and local uLBP fea-
tures from a 44 × 46 region (the size of the detected region is 46 × 46, but
part of the region is outside the input image). From Figure 3.8, it can be
found that the chin and mouth areas of the face are detected, where dis-
criminative local features can be extracted from. The third program is able
to extract global DIF, HOG and uLBP features, local uLBP features from a
27 × 26 region and from a 27 × 30 region (the size of the detected region
is 30 × 30, but part of the region is outside the input image), as shown in
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Figure 3.7: Three example programs evolved by FLGP on the ORL dataset.

Figure 3.8.

By analysing the three different programs, some patterns can be found.
Both the first and second programs extract the Hist, uLBP and SIFT fea-
tures rather than the HOG and DIF features. The third program extracts
the uLBP, DIF and HOG features rather than the SIFT and Hist features.
This pattern shows that different combinations of global and local features
can achieve the same classification performance. Generally, without do-
main expertise, it is very difficult to find such a combination of features for
image classification. FLGP is able to automatically find the most effective
combinations. Moreover, the flexible representation and the population-
based search enable FLGP to have good global search ability to find multi-
ple optimal solutions (combinations of features) for a given task. From the
three example programs, it can be found that the uLBP features are one of
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By Program 1                      By Program 2                                  By Program 3

Figure 3.8: The detected regions by the three example programs showed
in Figure 3.7 on the ORL dataset.

the most important and meaningful features in the face images of ORL. By
visualising the programs evolved by FLGP, it is very clear what types of
features are extracted and why they are effective.

3.5.3 Analysis on the Feature Extraction Functions

To further analyse FLGP, we recorded the ten best FLGP programs/trees
of each run (totally 300 programs) on each dataset. The frequency of occur-
rences of the ten feature extraction functions in the global (G DIF ,G Hist,
G SIFT ,G HOG andG uLBP ) and local (L DIF , L Hist, L SIFT , L HOG,
and L uLBP ) scenarios in these programs are ranked. The results of the
ranking are listed in Table 3.8, where 1 indicates the most frequently used
function and 10 indicates the least frequently used function in these pro-
grams.

From Table 3.8, it is clear that the frequency-rank of the feature extrac-
tion functions varies with the datasets. Specifically, theL SIFT function is
the most frequently used on the FEI 1, FEI 2, JAFFE, and EYALE datasets,
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Table 3.8: Ranking of All the Feature Extraction Functions on Each Dataset

Function FEI 1 FEI 2 VGDB ORL JAFFE KTH EYALE FS
G DIF 5 9 7 7 7 5 8 4
G Hist 10 10 3 5 9 6 5 6
G SIFT 8 5 8 1 2 2 3 2
G HOG 3 4 10 4 5 7 9 9
G uLBP 9 7 1 2 10 1 4 1
L DIF 6 6 5 9 3 4 7 7
L Hist 4 8 2 6 8 3 6 8
L SIFT 1 1 9 10 1 10 1 10
L HOG 7 3 4 8 4 9 10 5
L uLBP 2 2 6 3 6 8 2 3

the G uLBP function is the most frequently used on the VGDB, KTH and
FS datasets, and the G SIFT function is the most frequently used on the
ORL dataset. Moreover, the frequently used functions on one dataset may
be less frequently used on the other datasets. For example, L SIFT is the
most frequently used on four datasets but it is the least frequently used on
the ORL, KTH and FS datasets. The G Hist function is the least frequently
used on the FEI 1, FEI 2 and JAFFE datasets, but it is frequently used on
the VGDB dataset. This confirms the difficulty of feature extraction. In
contrast, FLGP automatically finds the best feature extraction methods or
combinations of them to extract features.

It can be seen from Table 3.8 that FLGP learns more local features than
global features on most face datasets, i.e., FEI 1, FEI 2, JAFFE, and EYALE,
which confirms that local features are more effective for object classifi-
cation. In contrast, FLGP learns more global features than local features
on the non-object datasets, i.e., VGDB, KTH and FS, as global features
are more effective. The analysis shows that FLGP learns the best feature
extraction functions or combinations of them to extract effective global
and/or local features for image classification.
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3.6 Chapter Summary

In this chapter, a GP-based feature learning approach was developed to
automatically learn effective global and/or local features for image classi-
fication. A novel program structure, a new function set with five existing
image descriptors in the global and local scenarios, and a new terminal set
were proposed. To effectively learn discriminative features, a new feature
learning process and a new fitness evaluation process were developed in
FLGP. These designs allowed FLGP to automatically learn various num-
bers of global and/or local features from different types of images. The
performance of FLGP was examined on eight different image classification
datasets of varying difficulty and compared with a number of benchmark
methods to show its effectiveness.

This chapter showed that the use of image descriptors in GP could
help to learn effective features for image classification. The results showed
that FLGP achieved significantly better performance in almost all the com-
parisons on eight different image classification datasets. The results con-
firmed the effectiveness of FLGP in learning effective features for image
classification. FLGP has a flexible program structure, a new function set
and a new feature learning process to learn various types of features. The
comparisons of FLGP and GP-GLF showed that the classification perfor-
mance was improved in FLGP with these new designs. Compared with
the other GP-based methods that constructed one high-level feature, FLGP
was more effective for image classification by automatically learning a set
of features from images. The results showed that the features learned by
FLGP were more effective than many manually extracted features, i.e.,
achieving significantly better classification results in almost all the com-
parisons. The comparisons with the three CNN-based methods demon-
strated that FLGP was more effective by evolving small solutions of vari-
able lengths. Further analysis of the example solutions of FLGP confirmed
the good interpretability of the solutions and revealed that FLGP learned
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discriminative features using a simple solution. The analysis showed that
FLGP detected informative regions from a large input image and found
the most effective feature extraction functions to extract features from the
regions/images.

This chapter showed the potential of GP with existing image descrip-
tors in feature learning and image classification. The FLGP approach learned
global and/or local features from relatively large images. Besides the im-
age descriptors employed in FLGP, many other image-related operators,
such as image filters, can be employed in GP to achieve effective feature
learning. However, no GP-based methods have been developed to simul-
taneously employ image descriptors and filters to feature learning for im-
age classification. Therefore, the next chapter will investigate the use of
image filters and descriptors in GP to automatically learn features for im-
age classification.



Chapter 4

GP with Image-Related Operators
for Feature Learning

4.1 Introduction

Image-related operators include image descriptors, e.g., Histogram of Ori-
ented Gradients (HOG) [60], Scale-Invariant Feature Transform (SIFT) [147]
and Local Binary Patterns (LBP) [169], and image filters, e.g., Gaussian
filter, mean filter, min filter, Laplacian filter, and Sobel filter. The previ-
ous chapter investigated the use of image descriptors in GP for feature
learning and achieved promising results in image classification. Existing
GP-based algorithms have employed image filters as functions for feature
learning [197]. However, no GP-based methods have been developed to
simultaneously employ image descriptors and filters to learn features for
image classification. To effectively use these image-related operators in
GP, a program structure typically needs to integrate different functions
and terminals into a single tree. Several GP methods with different pro-
gram structures, e.g., multi-tier [27], two-tier [14] and multi-layer [197],
have been developed, but these program structures are often restricted
somehow and cannot be used when new image-related operators are em-
ployed/needed. For example, the program structure in [27] has filtering,

117
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aggregation, and classification layers, which indicates that the output fea-
tures should be transformed via these three layers. This may not be effec-
tive and flexible in learning features that need various types of transforma-
tions. In addition, very few GP-based feature learning methods have been
examined on large/big benchmark datasets and compared with state-of-
the-art algorithms for image classification.

4.1.1 Chapter Goals

The overall goal of this chapter is to develop a new GP-based approach
with image-related operators and a flexible program structure to learn fea-
tures for different image classification tasks. The new approach is called
FGP in short. To achieve this, a flexible program structure, a new function
set with image-related operators, and a new terminal set are developed in
FGP. The new approach is evaluated on 12 benchmark datasets of varying
difficulty and compared with a large number of state-of-the-art methods.
Further analysis is conducted to provide an in-depth understanding of the
new approach. Specifically, this chapter will investigate

• how different image-related operators are employed in FGP to learn
various numbers and types of features by developing a new program
structure, a new function set and a new terminal set;

• whether FGP can achieve better classification performance than the
methods using raw pixels, the methods using well-known features,
and two CNN-based methods;

• whether FGP can achieve better classification performance than a
large number of state-of-the-art algorithms on datasets with a large
number of training and test instances;

• whether FGP can learn various types and numbers of features from
different images; and
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• whether the solutions evolved by FGP and the learned features can
be easily explained to provide insights on why they can achieve good
results.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Chapter 4.2 de-
scribes the details of the proposed FGP approach. Chapter 4.3 designs
the experiments. The results are discussed and compared in Chapter 4.4.
Chapter 4.5 further analyses the proposed FGP method in terms of the
convergence curve, the learned features and the evolved trees/programs.
Chapter 4.6 concludes this chapter.

4.2 The Proposed Approach

In this section, the proposed FGP approach with a flexible program struc-
ture is described in detail, including the algorithm overview, the flexible
program structure, the function set, and the terminal set.

4.2.1 Overall Algorithm

The framework of the proposed FGP approach is outlined in Algorithm 2.
The FGP approach starts with population initialisation, where N (popu-
lation size) individuals/trees are randomly generated using a commonly
used tree generation method: ramped half-and-half. Each FGP individual is
built by selecting functions from the new function set to construct inter-
nal/root nodes and selecting terminals from the new terminal set to con-
struct the leaf nodes. Each individual is then evaluated through the fitness
evaluation process to have a fitness value. After fitness evaluation, the best
individual and a hash table, Cache Table, are updated. The Cache Table
is used to avoid evaluating the individuals that have been already eval-
uated in past generations. At each generation, the selection method and
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three genetic operators, i.e., subtree crossover, subtree mutation and elitism,
are employed to generate a new population to replace the current one.
The evolutionary process is terminated when the maximum number of
generations is reached. Finally, the best individual is returned.

Algorithm 2: Framework of FGP
Input : X train: the training images; Y train: the labels of the

training images.
Output : Best Individual: the best individual.

1 Cache Table← ∅;
2 P0 ← Initialise the population using the ramped half-and-half

method according to the new program structure, the new
function set and the terminal set;

3 Evaluate P0 using Algorithm 3;
4 Update Best Individual and Cache Table;
5 g ← 0;
6 while g < G do
7 I ← The best individuals of Pg using elitism operator;
8 S ← Individuals selected from Pg using tournament selection;
9 Og+1 ← Offspring generated from S using subtree crossover

and subtree mutation operators;
10 Evaluate the fitness of each individual p in Og+1 using

Algorithm 3;
11 Pg+1 ← Og+1 ∪ I ;
12 Update Best Individual and Cache Table;
13 g ← g + 1

14 end
15 Return Best Individual.

A new fitness evaluation process is developed in FGP to evaluate each
individual, as described in Algorithm 3. On image data, GP is often known
as a computationally expensive method, especially when the number of
instances is large. To avoid evaluating the same subtrees, subtree caching
strategy has been developed in GP on image data [184]. Inspired by this, a
hash table Cache Table is employed in FGP to store individuals and their



4.2. THE PROPOSED APPROACH 121

Algorithm 3: Fitness Evaluation
Input : Cache Table: the hash table to store evaluated

individuals and their fitness values; X train: the training
images; Y train: the labels of the training images; p: the
individual to be evaluated.

Output : The fitness value for p: f(p).

1 if p in Cache Table then
2 f(p)← the fitness value of p in Cache Table;
3 else
4 Use p to transform X train into features X features;
5 Normalise X features using the min-max normalisation

method;
6 Feed normalised X features and Y train into a linear SVM

using stratified k-fold cross-validation;
7 f(p)← average test accuracy of k folds
8 end
9 Return f(p).

fitness values so that repeated individual can be directly assigned a fitness
value without evaluating it on the training data. To balance the search
time in Cache Table and the evaluation time of an individual, only the
Nc best unique individuals and the previous population (Pg) are stored in
Cache Table. With the Cache Table, the new fitness evaluation process is
described in Algorithm 3. It starts by checking whether the individual is in
theCache Table. If the individual is in theCache Table, the fitness value is
directly assigned to the individual. Otherwise, the individual is evaluated
on a training set using a linear SVM. The linear SVM is chosen because it is
commonly used for image classification [197]. In this process, the FGP in-
dividual transforms each image inX train to a number of features to form
X features. Then X features is normalised using the min-max normal-
ization method and fed into a linear SVM using the stratified k-fold cross-
validation method. The stratified k-fold cross-validation method splits the
dataset (X features and class labels) into k folds by preserving the class
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ratio. Each time k− 1 folds are used to build a SVM classifier and the clas-
sifier is tested on the remaining one fold. The average test accuracy of the
k folds is set as the fitness value for the individual. In FGP, k is set to be 5
instead of 10 used in [197] to reduce the computational cost of the fitness
evaluation.

Besides the above feature learning process, the main properties of the
proposed FGP approach that lead to its success in feature learning and
difference from other GP-based methods are the flexible program struc-
ture, the function set and the terminal set. The following subsections will
introduce these properties.

4.2.2 Flexible Program Structure

A flexible program structure is developed in FGP to integrate functions
and terminals into a single tree. The development of the new program
structure is based on three motivations. First, in state-of-the-art GP meth-
ods on feature learning in [146, 197], the program structure has two main
components, the filtering layer and the pooling layer, connected in a bottom-
up manner. This program structure is fixed, which may not be effective
for learning invariant features as learned by CNN using multiple layers’
transformations. To this end, we relax this constraint to design a more
flexible program structure, which allows FGP to evolve programs with
multiple filtering and pooling layers. Second, integrating feature extrac-
tion functions into GP for feature learning has achieved promising results,
as shown in Chapter 3. However, this method has a limitation of fixed
tree depth, and the learned features may not be invariant to noise without
filtering/denoising process. To address this, a flexible filtering/pooling
layer is added between the input layer and the feature extraction layer.
Third, hybrid features/representations, i.e., combined features extracted
by filtering/pooling and features extracted by traditional feature extrac-
tion methods, have been seen in CNN-based methods with promising per-
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formance [50]. But no existing GP methods can achieve this. Therefore, the
flexible program structure of FGP can combine the two different types of
features to produce hybrid features.

The program structure of FGP is based on STGP [161], which has types
constraint on functions (input types and output types) and terminals (out-
put types). In STGP, each function can only use particular functions or
terminals as child nodes, where its input types must be the same as the
output types of its child nodes. Based on STGP, a program structure is de-
veloped in FGP to integrate functions and terminals of different types into
trees. The new program structure and three typical example programs are
shown in Figure 4.1. The new program structure has several different lay-
ers, i.e., an input layer, filtering layers, pooling layers, a feature extraction
layer, a concatenation layer, and an output layer. The input layer feeds the
image and ephemeral random constants into the FGP system. The filter-
ing layer performs filtering operations or other operations on the image.
The pooling layer conducts max-pooling to the image with size reduction,
which is in contrast to that in [146, 197]. The feature extraction layer ex-
tracts features from the image using several well-known feature extrac-
tion methods. The concatenation layer concatenates/combines features
from different processes, i.e., filtering/pooling and feature extraction, into
a feature vector to form the output of the FGP system.

More importantly, as shown in Figure 4.1, the layers drawn with a
dashed line are flexible, indicating that they may be absent in an FGP
program. These flexible layers allow the FGP program to have multiple
filtering and pooling layers to extract features, which are similar to those
in CNNs. The layers that are drawn with a solid line are fixed layers to
make sure that there are feature transformations from the input to the out-
put. Using this flexible program structure, three typically different types
of features can be produced by FGP. The first type combines features from
the feature extraction process as the Example Program 1 shown in Figure
4.1. The second type combines features from the filtering and/or pool-
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Figure 4.1: The program structure of the FGP approach and three typical
example programs.

ing processes as the Example Program 2 shown in Figure 4.1. The third type
combines features from the feature extraction process and the filtering and
pooling processes, as shown in the Example Program 3 in Figure 4.1.

This program structure allows FGP to evolve shallow/small trees that
contain a few functions or to evolve deep/large trees with multiple pool-
ing and/or filtering layers. With this program structure, FGP can produce
various types and numbers of features, which are flexible for solving dif-
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ferent image classification tasks. Associated with this program structure,
a number of functions and several terminals are employed in FGP, which
will be described in the following subsections.

4.2.3 New Function Set

Many operators and methods have been developed for feature detection
and description. These operators can give insights on what type of fea-
tures are detected and why they are effective. FGP employs a set of well-
known image-related operators in the function set. Based on the program
structure, these functions are filtering functions, pooling functions, feature
extraction functions, and feature concatenation functions.

Filtering Functions

There are 19 functions employed in the filtering layer of FGP, as listed in
Table 4.1. The Gau function takes an image and standard deviation σ as
inputs and returns an image convolved by a Gaussian kernel. GauD has
three parameters, i.e., standard deviation σ, o1 and o2. The o1 and o2 rep-
resent orders of the derivative along the X and Y axis, respectively. The
Gabor filter is generated by a Gabor wavelet function. It has θ and f as pa-
rameters, which indicate the orientation of the kernel and the wavelength
(λ = 1/f ) of the sinusoid function in the Gabor wavelet function. The
Lap function is generated by discretising and approximating the Lapla-
cian operator, and it can detect flat areas or edges. The LoG1 and LoG2

functions convolve the Laplacian filter by the Gaussian function, which re-
duces noise in the image. The standard deviation of the Gaussian function
in LoG1 and LoG2 is set as 1 and 2, respectively. Among these filters, the
Gau, Med and Mean filters are often employed for image denoising and
smoothing. The filters, including GauD, Lap, LoG1, LoG2, Sobel, SobelX ,
and SobelY , can detect edges or flat areas in the image.

The kernel sizes for the Mean, Med, Min, and Max functions are 3× 3,
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Table 4.1: Filtering Functions

Function Input Output Function Description
Gau 1 image, σ 1 image Gaussian filter with standard deviation

σ
GauD 1 image, σ,

o1, o2

1 image Derivatives of Gaussian filter

Gabor 1 image, θ, f 1 image Gabor filter with θ orientation and f fre-
quency (1/λ)

Lap 1 image 1 image Laplacian filter
LoG1 1 image 1 image Laplacian of Gaussian filter with σ = 1
LoG2 1 image 1 image Laplacian of Gaussian filter with σ = 2
Sobel 1 image 1 image Sobel edge detector
SobelX 1 image 1 image Sobel filter along the X axis
SobelY 1 image 1 image Sobel filter along the Y axis
Med 1 image 1 image 3× 3 median filter
Mean 1 image 1 image 3× 3 mean filter
Min 1 image 1 image 3× 3 min filter
Max 1 image 1 image 3× 3 max filter
LBP -F 1 image 1 image Return LBP image
HOG-F 1 image 1 image Return HOG image
W -Add 2 images, n1, n2 1 image Add two weighted images
W -Sub 2 images, n1, n2 1 image Subtract two weighted images
ReLU 1 image 1 image The rectified linear unit
Sqrt 1 image 1 image Sqrt an image

which is a commonly used kernel size. The kernel sizes for the other filters
are based on their parameters or default settings. For example, the kernel
sizes of the Gau and GauD functions are related to their parameter σ; and
the kernel size of the Sobel, SobelX and SobelY functions is 3× 3.

Besides the above filters, the LBP -F , HOG-F , W -Add, W -Sub, ReLU ,
and Sqrt functions listed in Table 4.1 are also employed. The LBP -F and
HOG-F functions return a LBP image and a HOG image for an input im-
age, respectively. The two functions produce high-level feature maps that
may be informative. The W -Add and W -Sub functions are used to add or
subtract two weighted images with different or the same sizes, where the
weights are n1 and n2. In the case where the sizes of the two images are
not the same, W -Add and W -Sub overlap the image pixels at coordinates
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(0, 0), cut the exceeding part of the larger images, and then perform the
add or subtract operation. The ReLU is the rectified linear unit, which is
commonly used in CNNs. The Sqrt function calculates the square root of
each pixel value in an image and is protected by returning 1 if the pixel
value is negative. The ReLU and Sqrt functions rescale the input image
by transforming the pixel values from the negative to non-negative.

Pooling Functions

Commonly used pooling functions are max-pooling and average-pooling.
Max-pooling returns the maximum value of each sliding window, while
average-pooling returns the mean value of the sliding window. The im-
portant features, e.g., edges, can be extracted by the max-pooling function
but may be smoothed by the average-pooling function. Therefore, only
max-pooling (simplified asMaxP ) function is employed. TheMaxP func-
tion takes three arguments as inputs, i.e., an image and the kernel sizes, k1
and k2, and returns a smaller image. The MaxP function in FGP not only
extracts important features but also reduces the dimensionality of the fea-
tures. Note that k1 and k2 are two parameters of MaxP and are used as
two ephemeral random constants of FGP. The values of k1 and k2 are ran-
domly selected from a pre-defined range at the initialisation step.

Feature Extraction Functions

Many image descriptors can be employed as GP functions to extract infor-
mative features. To reduce the search space of FGP, the three most com-
monly used methods, i.e., HOG, LBP, and SIFT, are employed for feature
extraction. Table 4.2 lists the details of these functions.

Concatenation Functions

To concatenate features produced by different functions, five functions
(Root2, Root3, Root4, FeaCon2, and FeaCon3) are employed and devel-
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Table 4.2: Feature Extraction Functions

Function Input Output Description
SIFT 1 Image 1 Vector SIFT descriptor. 128 features are ex-

tracted from the image [220]
LBP 1 Image 1 Vector LBP descriptor. It extracts 59 uniform

LBP histogram features. In the LBP
method, the radius is 1.5 and the num-
ber of neighbours is 8 [169]

HOG 1 Image 1 Vector HOG descriptor. In HOG, the orienta-
tion is 9, the cell size is 8×8 and the block
size is 3× 3 [60]. The mean value of each
4 × 4 grid is extracted from an HOG im-
age

Table 4.3: Concatenation Functions

Function Input Output Description
RootX 2/3/4 Vec-

tors
1 Vector Concatenate vectors to a vector

FeaConY 2/3 Images 1 Vector Convert images to a vector by
concatenating each row

oped. The descriptions of these functions are listed in Table 4.3. Each
concatenation function can be used as the root node of a program tree or
a child node of another concatenation function. This means that the tree
depth of the concatenation layer is flexible. With these functions, FGP trees
can output various numbers of features from an input image.

4.2.4 New Terminal Set

The terminal set of FGP contains the input image (Image) and the param-
eters for the functions, i.e., σ, o1, o2, θ, f , n1, n2, k1, and k2. More details
of them are listed in Table 4.4. The Image terminal represents the input
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Table 4.4: Terminal Set

Terminal Type Description
Image Image The input grey-scale image (2D array containing im-

age pixel values in the range of [0, 1])
σ Integer The standard deviation of the Gaussian filter. It ran-

domly initialized from the range of {1, 2, 3}
o1, o2 Integer The order of the Gaussian derivatives. They are ran-

domly initialised from the range of {0, 1, 2}
θ Float The orientation of the Gabor filter. It is in the range

of [0, 7π/8] with a step of π/8 [144]
f Float The frequency of the Gabor filter. It equals to

π
2√
2
v ,

where v is an integer in the range of {0, 1, 2, 3, 4}
[144]

n1, n2 Float The parameters for the W -Add and W -Sub func-
tions. They are randomly generated from the range
of [0, 1)

k1, k2 Integer The kernel size of the MaxP function. They are in
the range of {2, 4}

image, which is a 2D array, and the values in the array are normalised into
[0, 1] dividing them by 255. The other terminals are ephemeral random
constants of FGP and only appear in the trees where the corresponding
functions are used. The values of these terminals are randomly selected
from a pre-defined range at the initialisation step.

4.3 Experiment Design

In this section, the design of the experiments is described, including bench-
mark datasets, benchmark methods, parameter settings, and test process.
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4.3.1 Benchmark Datasets

Twelve widely used image classification datasets are employed to exam-
ine the performance of FGP. They are FEI 1 [215], FEI 2 [215], ORL [191],
KTH [153], FS [79], MB [132], MRD [132], MBR [132], MBI [132], Rectangle
[132], RI [132], and Convex [132] benchmark datasets. These datasets rep-
resent different types of image classification tasks, i.e., facial expression
classification (FEI 1 and FEI 2), face recognition (ORL), texture classifica-
tion (KTH), scene classification (FS), digit recognition (MB, MRD, MBR,
and MBI), and object classification (Rectangle, RI and Convex). The im-
ages in these datasets are grey-scale or converted to grey-scale images to
reduce the computational cost. The details of these datasets are listed in
Table 4.5.

Table 4.5: Summary of the 12 Benchmark Datasets

No. Dataset Image Size Training Set Size Test Set Size #Class
1 FEI 1 60×40 150 (75) 50 2
2 FEI 2 60×40 150 (75) 50 2
3 ORL 50×55 240 (6) 160 40
4 KTH 50×50 480 (48) 330 10
5 FS 55×55 1,300 (100) 2,559 13
6 MB 28×28 12,000 50,000 10
7 MRD 28×28 12,000 50,000 10
8 MBR 28×28 12,000 50,000 10
9 MBI 28×28 12,000 50,000 10
10 Rectangle 28×28 1,200 50,000 2
11 RI 28×28 12,000 50,000 2
12 Convex 28×28 8,000 50,000 2

For the FEI 1 and FEI 2 datasets [215], 75 images randomly selected
from each class form the training set and the remaining 25 images form the
test set. For the ORL dataset [191], which has a small number of images
per class, six images randomly selected from the 10 images construct each
class of the training set and the remaining images construct the test set.
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For the KTH dataset [153], 48 images randomly selected from each class
are used for training and the renaming 33 images are used for testing. The
training set of the FS dataset [79] has 100 randomly selected images per
class and the test set has the remaining images, since the dataset is large.

The MB, MRD, MBR, MBI, Rectangle, RI, and Convex datasets [132]
have separated training and test sets 1, which can be directly used in exper-
iments. The MB, MRD, MBR, and MBI datasets are subsets of the famous
MNIST benchmark dataset. The training sets of the MB, MRD, MBR, and
MBI datasets have 12,000 images, and the test sets have 50,000 images, re-
spectively. The Rectangle dataset has 1,200 images for training and 50,000
images for testing. The RI dataset has 12,000 images for training and has
50,000 images for testing. The Convex dataset has 80,000 images for train-
ing and 50,000 images for testing.

4.3.2 Benchmark Methods

To show the effectiveness of the FGP approach, a large number of effective
methods are used for comparisons. Because the datasets 1-5 do not have
separated training and test sets, we need to split them and run the exper-
iments of all the benchmark methods to make sure that the classification
results are on the same test sets. For the datasets 6-12, the results of many
methods have been reported on the same public test sets. These results
can be directly used for comparisons. Therefore, the benchmark methods
on the datasets 1-5 are different from those on the datasets 6-12.

On datasets 1-5, 12 different methods are used as benchmark meth-
ods. They are six commonly used classification algorithms using raw
pixels, four SVM methods using different pre-extracted features, and two
CNN-based methods with different architectures. The six commonly used
classification algorithms are linear SVMs, KNN, logistic regression (LR),
RF, adaptive boosting (AdaBoost), and extremely randomised trees (ERF).

1The training and test sets can be downloaded from http://www.iro.umontreal.
ca/˜lisa/twiki/bin/view.cgi/Public/PublicDatasets
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These methods use the normalised raw pixel values of images as inputs
to train the classifiers. The four SVM methods are uLBP+SVM LBP+SVM,
HOG+SVM and SIFT+SVM, which use uniform LBP, LBP, HOG, or SIFT
features as inputs of SVMs for classification. The uniform LBP, LBP, HOG,
and SIFT features are extracted by the methods described in Table 4.2. The
final two benchmark methods are a five-layer CNN (CNN-5) [197] and an
eight-layer CNN (CNN-8) [57]. CNNs are well known for image classifi-
cation so that it is necessary to compare FGP with CNNs.

On datasets 6-12, 18 existing methods are used as benchmark methods.
These methods have been reported recently or are representative methods
for image classification. The classification results of these 18 methods are
collected from the corresponding papers. These methods are SVM+RBF
[132], SVM+Poly [132], SAE-3 [183], DAE-b-3 [183], CAE-2 [183], SPAE
[236], RBM-3 [183], ScatNet-2 [49, 53], RandNet-2 [53], PCANet-2 (soft-
max) [53], LDANet-2 [53], NNet [132], SAA-3 [132], DBN-3 [132], FCCNN
[177], FCCNN (with BT) [177], SPCN [140], and EvoCNN [208]. Most of
these methods are NN-based methods, which have been introduced in
Chapter 2. Note that in several methods, including SVM+RBF, SVM+Poly,
NNet, SAA-3, and DBN-3, model selection has been conducted to find
the best parameters using a training set and a validation set. Then these
methods with the best parameters were trained using the training set and
tested on the test set. The EvoCNN method is a deep learning method,
which uses an evolutionary algorithm to automatically search for the best
architectures of CNNs and has achieved the best performance on some of
these benchmark datasets [208].

4.3.3 Parameter Settings

The parameter settings for FGP are based on the commonly used settings
in the community of GP [114]. In FGP, the maximum number of genera-
tions G is 50 and the population size N is 500. The crossover rate Pc is 0.8,
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the mutation rate Pm is 0.19, and the elitism rate Pe is 0.01. The selection
method is the tournament selection with size 7. The tree depth is between
2-6 at the initialisation step, and the maximum tree depth is 8. Note that in
FGP, which is based on STGP, the type constraint is more important than
the depth constraint. Therefore, a tree may have a depth of over eight. As
a new parameter, Nc, the number of individuals stored in the Cache Table
is set to 6 ∗ N (N for the previous population and 5 ∗ N for the best in-
dividuals at the past generations) based on the assumption that 6 ∗ N is
efficient and effective. In general, the value of Nc can be any number, but
too large one may lead to a long searching time in Cache Table, and if a
too small one, it would only store very limited individuals, which would
make the Cache Table not very useful. Note that the parameter settings
for FGP are kept the same on the 12 different datasets for generality, al-
though performing parameter tuning for FGP could further improve its
performance on these datasets.

The parameter settings for the six classification algorithms SVM, KNN,
LR, RF, AdaBoost, and ERF refer to [235, 249]. In KNN, the number of
nearest neighbours is set to 1 [16]. In SVM and LR, the penalty parameter
C is set to 1 [235]. In RF, ERF and AdaBoost, the number of trees is set to
500, and the maximum tree depth is set to 100 [249]. In CNN-5 and CNN-
8, the commonly used ReLU function is used as the activation function
and softmax is used for classification [57]. To avoid overfitting, dropout is
added after the pooling layer and the first fully connected layer with 0.25
and 0.5 probabilities, respectively [201]. The maximum number of epochs
is set to 500, and the batch size is set to 128, which is a commonly used
value.

The implementation of FGP is based on the DEAP (Distributed Evolu-
tionary Algorithm in Python) [86] package. The implementations of the clas-
sification algorithms are based on the scikit-learn [172] package and the im-
plementations of CNNs are based on Keras [57]. The experiments of FGP
on each dataset conduct 30 independent runs to avoid the experimental
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bias, which follows the conventions of the EC communities. Each of the
benchmark methods has been run 30 times on datasets 1-5 to obtain the
classification results.

4.3.4 Test Process

The test procedure of the best individual/tree found by FGP is shown
in Figure 4.2. In the process, the training set and the test set are used
(note that only the training set are employed during the evolutionary pro-
cess). The best FGP individual/tree is used to transform the training and
test images into features. Then the transformed training and test sets are
normalised using the min-max normalisation method to scale the features
[102]. Note that the normalisation of the test set is based on the minimum
and maximum values of each feature in the training set. The normalised
training set is used to train a linear SVM classifier. The trained classifier is
tested on the normalised test set to obtain the classification error rate.

Transformed 
training set

Transformed
 test set

Test set

Training set
Min-max

normalisation

Min-max
normalisation

Best tree

Best tree

Train

Test

Linear SVM

Classifier
Classification 
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Figure 4.2: The test procedure of the best individual/tree found by FGP.

4.4 Results and Discussions

In this section, the experimental results of FGP on all the 12 benchmark
datasets are reported and analysed. The performance of FGP is compared
with that of a large number of benchmark methods.
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Table 4.6: Classification Error Rates (%) of Datasets 1-3

FEI 1 FEI 2 ORL
Methods Min Mean±St.dev Min Mean±St.dev Min Mean±St.dev
SVM 10.00 10.00±0.00+ 12.00 12.00±0.00+ 5.62 5.62±0.00+
KNN 68.00 68.00±0.00+ 92.00 92.00±0.00+ 5.62 5.62±0.00+
LR 8.00 8.00±0.00+ 12.00 12.00±0.00+ 6.25 6.25±0.00+
RF 2.00 2.93±1.01– 10.00 10.80±1.13+ 6.88 7.67±0.63+
AdaBoost 20.00 21.33±1.32+ 20.00 24.00±3.44+ 40.62 47.73±4.00+
ERF 6.00 6.73±0.98+ 8.00 9.40±0.93+ 2.50 3.29±0.59+
uLBP+SVM 34.00 43.27±3.66+ 32.00 37.47±3.52+ 12.50 12.58±0.21+
LBP+SVM 32.00 35.40±1.83+ 26.00 30.20±0.00+ 11.88 12.48±0.20+
HOG+SVM 4.00 4.00±0.00– 18.00 18.00±0.00+ 8.75 8.75±0.00+
SIFT+SVM 44.00 44.00±0.00+ 38.00 38.00±0.00+ 6.25 6.25±0.00+
CNN-5 2.00 4.60±1.30= 2.00 4.73±1.62– 3.12 4.71±1.06+
CNN-8 2.00 4.67±1.32= 4.00 9.07±1.87= 5.00 6.96±1.09+
FGP 2.00 5.53±2.67 4.00 8.67±3.36 0.00 1.37±1.04
Overall 8+, 2=, 2– 10+, 1=, 1– 12+

4.4.1 Classification Results on Datasets 1-5

The classification results on datasets 1-5, i.e., FEI 1, FEI 2, ORL, KTH, and
FS, are listed in Tables 4.6 and 4.7. The results are the minimum classifi-
cation error rate (Min), the average classification error rate of 30 runs and
the standard deviation (Mean±St.dev). To show the significance of perfor-
mance improvement, the Wilcoxon rank-sum test with a 95% significance
interval is used to compare FGP with a benchmark method. In Tables 4.6
and 4.7, the symbols “+” and “–” indicate that FGP achieves significantly
better and worse results than the compared method. The symbol “=” de-
notes that FGP achieves similar results to the compared method. In Tables
4.6 and 4.7, the best error rate and the average error rate on each dataset
are highlighted in bold. The final row of each bock in the table summaries
the overall results of the significance test.

From Tables 4.6 and 4.7, it can be found that FGP achieves significantly
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Table 4.7: Classification Error Rates (%) of Datasets 4-5

KTH FS
Methods Min Mean±St.dev Min Mean±St.dev
SVM 53.03 55.41±2.83+ 79.37 79.71±0.15+
KNN 65.76 65.76±0.00+ 75.65 75.65±0.00+
LR 51.21 51.21±0.00+ 76.51 76.51±0.00+
RF 40.00 42.19±0.83+ 62.64 63.47±0.49+
AdaBoost 62.12 66.56±1.37+ 82.53 86.96±1.47+
ERF 38.48 40.17±0.86+ 62.06 62.85±0.36+
uLBP+SVM 21.21 26.71±4.18+ 50.21 66.73±8.90+
LBP+SVM 16.36 17.29±0.51+ 46.50 49.55±1.80+
HOG+SVM 42.73 44.04±0.64+ 87.89 92.09±2.47+
SIFT+SVM 34.24 34.24±0.00+ 39.08 39.08±0.00+
CNN-5 14.24 17.44±1.87+ 49.86 51.97±1.16+
CNN-8 23.64 28.37±3.18+ 50.84 53.21±1.01+
FGP 1.21 3.93±1.13 25.52 29.41±1.74
Overall 12+ 12+

better performance in 54 comparisons out of the 60 comparisons. More
importantly, FGP significantly outperforms the 12 benchmark methods on
the ORL, KTH and FS datasets, which are the face recognition, texture
classification and scene classification tasks. On these three datasets, FGP
not only obtains the minimum error rate but also achieves the best mean
error rate among all the methods. It improves the error rate by 13.03%
on KTH and 13.56 % on FS. In terms of the other two datasets, which are
facial expression classification tasks, FGP is significantly better than seven
methods on FEI 1 and than nine methods on FEI 2. The experimental re-
sults show that FGP is very effective for dealing with different types of
image classification tasks. The main reasons are the development of the
program structure and the function set within a number of image-related
operators, which allow FGP to produce different types and numbers of
effective features in more flexible ways.

Compared with SVM, KNN, LR, RF, AdaBoost, and ERF, which use
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raw pixels for classification, FGP is more effective by automatically learn-
ing a number of high-level features for classification of different datasets.
The results show that feature extraction is more important for texture and
scene classification since FGP achieves better results than any of these
methods on scene and texture datasets. Comparing the results obtained
by FGP with that by uLBP+SVM, LBP+SVM, HOG+SVM, and SIFT+SVM,
it is clear that the features learned by FGP are more effective than the uni-
form LBP, LBP, SIFT and HOG features for image classification, especially
for texture classification and scene classification. This shows that automat-
ically learning features is more effective than manually extracting features
for image classification. Feature extraction methods often require domain
expertise, while feature learning methods do not. There are two advan-
tages: effectiveness and no domain knowledge requirement, from FGP
as a feature learning method in contrast to traditional feature extraction
methods. Compared with CNN-5 and CNN-8, FGP achieves comparable
or significantly better performance on the five datasets. As a result, FGP is
an effective approach to learning informative features for different types
of image classification tasks.

4.4.2 Classification Results on Datasets 6-12

On datasets 6-12, 18 baseline methods with published results are used for
comparisons. Note that some of the 18 methods have not been examined
on the Rectangle, RI, and Convex datasets so that there are 15 benchmark
methods on Rectangle and RI and 11 benchmark methods on Convex. Ta-
ble 4.8 lists the classification error rates (%) of FGP and 18 benchmark
methods. Each column of Table 4.8 shows all the results on one dataset
and the minimum error rate is highlighted in bold. The results of FGP,
including the minimum error rate (best), the mean error rate (mean) and
the standard deviation (std), are listed at the bottom of Table 4.8. Since the
benchmark methods only have the best classification results, we compare
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the FGP approach with them using the best error rate. The symbol “+” in
the table denotes that FGP is better than the compared method in terms
of the best error rate. The final row of Table 4.8 summarises the ranking
results of FGP among all the methods on each dataset.

Table 4.8: Classification Error Rates (%) of Datasets 6-12

Methods MB MRD MBR MBI Rectangle RI Convex

SVM+RBF [132] 3.03(+) 11.11(+) 14.58(+) 22.61(+) 2.15 (+) 24.04(+) 19.13(+)

SVM+Poly [132] 3.69(+) 15.42(+) 16.62(+) 24.01(+) 2.15(+) 24.05(+) 19.82(+)

SAE-3 [183] 3.46(+) 10.30(+) 11.28(+) 23.00(+) 2.14(+) 24.05(+) −
DAE-b-3 [183] 2.84(+) 9.53(+) 10.30(+) 16.68(+) 1.99(+) 21.59(+) −
CAE-2 [183] 2.48(+) 9.66(+) 10.90(+) 15.50(+) 1.21(+) 21.54(+) −
SPAE [236] 3.32(+) 10.26(+) 9.01(+) 13.24(+) − − −
RBM-3 [183] 3.11(+) 10.30(+) 6.73(+) 16.31(+) 2.60(+) 22.50(+) −
ScatNet-2 [49, 53] 1.27(+) 7.48(+) 12.30(+) 18.40(+) 0.01(+) 8.02(+) 6.50(+)

RandNet-2 [53] 1.25(+) 8.47(+) 13.47(+) 11.65(+) 0.09(+) 17.00(+) 5.45(+)

PCANet-2 (softmax) [53] 1.40(+) 8.52(+) 6.85(+) 11.55(+) 0.49(+) 13.39(+) 4.19(+)

LDANet-2 [53] 1.05 7.52(+) 6.81(+) 12.42(+) 0.14(+) 16.20(+) 7.22(+)

NNet [132] 4.69(+) 18.11(+) 20.04(+) 27.41(+) 7.16(+) 33.20(+) 32.25(+)

SAA-3 [132] 3.46(+) 10.30(+) 11.28(+) 23.00(+) 2.41(+) 24.05(+) 18.41(+)

DBN-3 [132] 3.11(+) 10.30(+) 6.73(+) 16.31(+) 2.60(+) 22.50(+) 18.63(+)

FCCNN [177] 2.43(+) 8.91(+) 6.45 13.23(+) − − −
FCCNN (with BT) [177] 2.68(+) 9.59(+) 6.97(+) 10.80(+) − − −
SPCN [140] 1.82(+) 9.81(+) 5.84 9.55(+) 0.19(+) 10.60(+) −
EvoCNN (best) [208] 1.18 5.22 2.80 4.53 0.01(+) 5.03 4.82(+)

FGP (best) 1.18 7.37 6.54 7.48 0.00 6.10 1.54

FGP (mean) 1.30 8.44 7.34 10.35 0.12 7.34 1.84

FGP (std) 0.06 0.6 0.42 1.41 0.11 0.61 0.19

Rank 2/19 2/19 4/19 2/19 1/16 2/16 1/11

From Table 4.8, it can be found that FGP achieves a smaller error rate
than any of the benchmark methods on two datasets, i.e., Rectangle and
Convex, and ranks second on four datasets, i.e., MB, MRD, MBR, and RI.
Importantly, FGP improves the error rate by 2.65% on Convex. Note that
these datasets have been widely used by these effective methods so that
even 1% improvement in error rate is very difficult to achieve. On the MB
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dataset, the FGP approach achieves 1.18% error rate, which is better (or
similar) than any of the 18 benchmark methods except for LDANet-2. The
LDANet-2 method achieves 1.05% error rate on the MB dataset, which
is slightly better than FGP of 1.18% error rate. Although FGP is worse
than LDANet-2 on the MB dataset, it is better than LDANet-2 on the other
six datasets. The MRD, MBR and MBI datasets are three variants of the
MB dataset by adding additional factors to make it more difficult. On the
MRD dataset, FGP achieves an error rate of 7.37%, which is better than
17 benchmark methods and worse than EvoCNN. On the MBR dataset,
FGP ranks fourth among all the benchmark methods. On the MBI dataset,
FGP achieves an error rate of 7.48%, which is better than 18 methods and
only worse than EvoCNN. On the Rectangle and Convex datasets, FGP
achieves better results than any of the benchmark methods. It is notice-
able that FGP finds the perfect solution on Rectangle. The RI dataset is
an extension of the Rectangle dataset and it is more difficult. Most meth-
ods perform worse on the RI dataset, e.g., LDANet-2 obtains 16.20% error
rate, SPCN obtains 10.60% error rate, and NNet obtains 33.20% error rate.
FGP obtains an error rate of 6.10%. On the Convex dataset, FGP achieves
the best error rate of 1.54%, which is better than that of any benchmark
method.

Compared with EvoCNN, which is a state-of-the-art deep learning al-
gorithm, FGP achieves better or the same error rates on the MB, Rectan-
gle and Convex datasets. FGP is a non-neural network-based algorithm,
while EvoCNN is a CNN-based algorithm, where an evolutionary algo-
rithm is used to search for the best architecture of CNNs. EvoCNN was
designed to find a more complex CNN-based solution for image classi-
fication so that it can achieve better performance on the other four diffi-
cult datasets. Compared with EvoCNN, FGP can find simpler solutions
with several image-related operators. In addition, the EvoCNN method
requires to run on Graphics Processing Unit (GPU), while FGP runs on
Central Processing Unit (CPU), which is less computationally expensive.
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These advantages enable FGP to be an alternative to effective feature learn-
ing for image classification.

The comparisons demonstrate that the proposed FGP approach achieves
better results than the 18 existing effective algorithms for object classifica-
tion. Comparing the classification results on the MB dataset with those
on the MRD, MBR and MBI dataset, it is obvious that FGP is less affected
by rotation and background changes in images than the 18 effective meth-
ods. This indicates that FGP can learn invariant features from images with
these additional factors. FGP has a function set with a number of image-
related operators having different functionalities, such as denoising, de-
tecting edges and extracting invariant features. These functions enable
FGP to find optimal solutions with the capability of dealing with different
image variations.

4.5 Further Analysis

This section further analyses the FGP approach to provide insights on why
it achieves better results. First, the convergence behaviours of FGP on dif-
ferent datasets are analysed. Second, the evolved example programs/solutions
of FGP are analysed to understand what features are learned. Third, the
frequency of the image-related operators in best-of-the-run programs/trees
is calculated and analysed. Third, the datasets with the learned features
are visualised and compared with the original raw pixels and the com-
monly used features. This provides insights on how the hidden structures
of the datasets are changed by the solutions of FGP.

4.5.1 Convergence Behaviour of FGP

The convergence behaviours of FGP on the FEI 2, KTH, MB, MBI, MBR,
MRD, Convex, and RI datasets are shown in Figure 4.3. The X-axis indi-
cates the number of generations and the Y-axis indicates the fitness value,
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i.e., the classification accuracy (%). It can be found from Figure 4.3 that
FGP has different convergence behaviours on different datasets. Specif-
ically, FGP has fast convergence speed at the early stage of generation.
When approaching the maximum number generation, the convergence
speed of FGP becomes slow on most of the datasets. Figure 4.3 shows
the FGP can converge to a high fitness value after 50 generations. How-
ever, on some difficult datasets such as MBI, the FGP approach has not
been converging at the end of generations. These difficult datasets may
need a larger number of generations or population size to allow FGP to
find better solutions and coverage to a higher fitness value. This analysis
shows that the proposed FGP approach is able to converge to a high fitness
value within the given number (50) of generations on most of the datasets.

Figure 4.3: Convergence Behaviours of FGP on the FEI 2, KTH, MB, MBI,
MBR, MRD, Convex, and RI datasets.

4.5.2 Number of Learned Features

The numbers of features produced by the best FGP programs/trees are
shown in Figure 4.4. On the FEI 2, ORL, MBR, Rectangle, and RI datasets,
the average number of features learned by FGP is about or less than 500.
On the remaining datasets except for MRD, the average number of learned
features is more than 500 but less than 1000. On the MRD dataset, FGP
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Figure 4.4: Distribution of the number of features learned by FGP on each
dataset.

learns an average number of 1100 features. The smallest number of learned
features on the 12 datasets is smaller than 500. This analysis confirms that
FGP can learn various numbers of features from different datasets.

4.5.3 Evolved Programs/Solutions

An Example Program on FEI 1

An example program evolved by FGP on the FEI 1 dataset is visualised
in Figure 4.5. It achieves 98% accuracy on both the training and test sets.
To show how the program extracts features, two example images from the
natural and smile classes are used for visualisation, as shown in Figure
4.5. The example program has filtering and pooling functions to describe
the features from the input image. The edge filters, i.e., SobelY and GauD,
are used as nodes in the two branches of the example program. These op-
erators can extract edges from the images before applying the pooling op-
erators. The two example images are different in facial expressions. From
Figure 4.5, it is clear that using different filters can obtain informative fea-
tures that enlarge the difference between the two classes. Finally, the ex-
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Figure 4.5: Example program evolved by FGP on the FEI 1 dataset.

ample program with 24 nodes produces 750 features from an input 60×40

image, i.e., 600 features extracted by the left branch and 150 extracted by
the right branch.

Example Programs on Rectangle

Three example programs of the proposed FGP approach on the Rectangle
dataset are visualised in Figure 4.6. The three programs achieve 100% clas-
sification accuracy on both the training set and the test set. The three pro-
grams learn 433, 187 and 246 features from the input image, respectively.
Meanwhile, their tree sizes (the number of nodes) are 23, 9 and 11, respec-
tively. In contrast to the example program in Figure 4.5, which describes
features using filtering and pooling functions, the three example programs
generate features using feature extraction, filtering and pooling functions.
The three example programs extract SIFT and LBP features from the input
image or the images after the filtering functions, e.g.,Med, LoG1,Gau, and
LoG2. Since Rectangle has images with rotation and scale variations, the
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Figure 4.6: Example programs evolved by FGP on the Rectangle dataset.

features that are invariant to these variations are more discriminative than
the other types of features. Therefore, the LBP and SIFT features are ex-
tracted by the example programs. It is noticeable that the LBP and SIFT

functions in the three example programs have different child nodes, which
indicate that each LBP or SIFT function extracts different features.

Example Programs on the Other Datasets

The best-of-the-run programs and the number of learned features on the
other ten datasets except for the FEI 1 and Rectangle datasets are listed in
Table 4.9. On the FEI 2 dataset, the SIFT and HOG features are extracted
by the example program after the corresponding filtering and pooling op-
erations on the input image. On the ORL dataset, the example program
extracts the LBP and SIFT features from raw images or the images after
filtering or pooling. On the KTH dataset, the LBP, HOG and SIFT features
are extracted by the example program. On the FS dataset, the LBP and
SIFT features are extracted by the example program. On the object classi-
fication tasks, i.e., the MB, MRD, MBR, and MBI datasets, compared with
the LBP and HOG features, more SIFT features are extracted by these ex-
ample programs from the raw images or images after pooling/filtering.
The reason may be that the SIFT features can better capture the salient
information of objects and are invariant to scale and rotation variations.
On the RI and Convex datasets, the LBP and SIFT features are extracted



4.5. FURTHER ANALYSIS 145

Table 4.9: An Example of Best-of-the-Run Program on Each Dataset

Dataset Evolved Program # Fea-
tures

FEI 2 Root3(SIFT (MaxP (W -Sub(Image, 0.453, Image, 0.641), 4, 2)), HOG(W -Add(LoG2(
Image), 0.031,W -Sub(ReLU(SobelY (Image)), 0.9,W -Add(LoG1(Image), 0.206,
GauD(Image, 2, 0, 1), 0.776), 0.837), 0.837)), HOG(Lap(Image)))

428

ORL Root4(SIFT (Image), SIFT (LoG1(W -Add(Image, 0.873, Image, 0.178))), LBP (MaxP (
ReLU(Image), 4, 4)), LBP (Image))

374

KTH Root2(Root4(Root3(HOG(Gabor2(Image, 8, 4)), LBP (W -Sub(Image, 0.093, Image,
0.259)), LBP (Min(Image))), SIFT (SobelX(Image)), SIFT (Max(Image)), SIFT (
SobelY (Image))), Root4(HOG(Image), HOG(Gau2(Image, 4)), LBP (W -Sub(
LoG1(W -Sub(Image, 0.093, Image, 0.093)), 0.093, LoG1(W -Sub(LoG1(W -Sub(
Image, 0.093, Image, 0.168)), 0.765, LoG1(GauD(Image, 3, 3, 3)), 0.935)), 0.935)),
SIFT (Min(Gau(Image, 4)))))

1121

FS Root3(Root4(LBP (Max(W -Add(Image, 0.24, Image, 0.24))), LBP (SobelY (SobelX(
W -Add(Image, 0.24, Image, 0.24)))), Root4(LBP (Max(Lap(Image))), LBP (LoG1(
Image)), Root4(LBP (Max(Sobel(Image))), SIFT (SobelX(Image)), Root4(LBP (
Max(LBP (Image))), LBP (Sobel(Image)), Root2(LBP (W -Add(Image, 0.24, Image,
0.24)), SIFT (LBP -F (Image))), LBP (SobelY (Image))), LBP (SobelY (Sobel(Image)))),
LBP (SobelY (SobelY (Image)))), LBP (LBP -F (Image))), LBP (Image), SIFT (Image))

1151

MB Root4(SIFT (Image), HOG(Image), SIFT (SobelY (Image)), Root2(Root2(SIFT (
W -Add( SobelX(Max(SobelY (Image))), 0.074, Gau(Gau(Max(Image), 3), 3), 0.665)),
SIFT (Gabor(Lap(Gabor(SobelY (Image), 8, 5)), 8, 2))), Root2(Root2(SIFT (SobelX(
Image)), SIFT (SobelX(Max(Image)))), Root2(SIFT (Mean(LoG1(MaxP (Image, 2,
2)))), SIFT (SobelX(Sqrt(Image)))))))

1073

MRD Root2(Root4(SIFT (Gau(Gau(W -Sub(Relu(GauD(Image, 2, 0, 2)), 0.713, LoG2(Image),
0.52), 4), 4)), SIFT (Mean(GauD(Image, 4, 1, 1))), SIFT (Gau(Gau(W -Sub(ReLU(
GauD(Image, 2, 2, 0)), 0.713, LoG2(Image), 0.52), 4), 2)), LBP (Sqrt(Image))), Root4(
SIFT (Sobel(MaxP (Gau(Gau(Sqrt(Image), 4), 4), 2, 2))), SIFT (Sobel(Gau(Image,
2))), SIFT (ReLU(SobelX(Sqrt(Image)))), SIFT (Sqrt(Image))))

955

MBR Root4(SIFT (Max(MaxP (GauD(Gabor(Gabor(Gabor(Image, 3, 1), 3, 1), 3, 1), 1, 0, 0),
2, 2))), SIFT (Max(MaxP (GauD(Gabor(GauD(Gabor(Image, 7, 2), 1, 0, 0), 7, 2), 1, 0, 0),
2, 2))), SIFT (Max(MaxP (GauD(Gabor(Image, 3, 2), 1, 0, 0), 2, 2))), SIFT (Mean(
Image)))

512

MBI Root2(Root4(SIFT (SobelY (Image))SIFT (Lap(ReLU(W -Sub(W -Add(Image, 0.329,
Image, 0.791), 0.317,Max(Max(Image)), 0.329)))), SIFT (ReLU(W -Sub(W -Add(
Image, 0.329, Image, 0.791), 0.317,Max(Max(Max(Image))), 0.329))), SIFT (SobelX(
ReLU(W -Sub(W -Add(Image, 0.329, Image, 0.791), 0.317,Max(Max(Image)), 0.329))))),
Root4(HOG(Image), SIFT (MaxP (Max(W -Add(Max(Image), 0.419, Gabor(Image,
3, 1), 0.911)), 2, 2)), SIFT (Max(W -Add(Max(Image), 0.187, Image, 0.192))), SIFT (
ReLU(SobelX(Image)))))

945

RI Root2(Root4(LBP (Sobel(Sobel(GauD(W -Add(Image, 0.386, Image, 0.259), 2, 0, 0)))),
SIFT (ReLU(Gabor(GauD(Max(Gabor(Image, 0, 4)), 2, 0, 0), 0, 4))), LBP (Sobel(Sobel
(GauD(Max(Gabor(Image, 4, 4)), 2, 1, 0)))), SIFT (Gau(Max(Gabor(Lap(Image), 4, 4)),
1))), Root4(LBP (Sobel(Gabor(Lap(GauD(Image, 1, 3, 0)), 0, 2))), SIFT (Gau(Max(
Gabor(Image, 6, 3)), 2)), LBP (Sobel(Image)), LBP (Sobel(GauD(Max(Gabor(Image,
0, 4)), 1, 0, 0)))))

679

Convex Root2(Root2(Root3(Root3(LBP (W -Sub(Image, 0.961, Image, 0.379)), LBP (W -Sub(
ReLU(Image), 0.372, Image, 0.961)), LBP (W -Sub(ReLU(Image), 0.609, Sqrt(Mean(
Image)), 0.379))), LBP (Lap(Mean(Image))), LBP (Image)), LBP (W -Sub(Image,
0.379, Gau(Image, 1), 0.961))), Root2(Root3(Root4(LBP (MaxP (Gau(Image, 1), 2, 2)),
LBP (W -Sub(ReLU(Image), 0.609, Sqrt(Mean(Image)), 0.961)), LBP (W -Sub(Image,
0.961, Lap(Mean(Image)), 0.961)), LBP (Sqrt(Mean(Image)))), LBP (Sqrt(Mean(
Image))), LBP (W -Sub(ReLU(Image), 0.609, Sqrt(Mean(Image)), 0.379))), LBP (
W -Sub(Image, 0.379, Image, 0.961))))

767
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using many feature concatenation functions, feature extraction functions,
filtering functions, and pooling functions.

By analysing these example programs, it can be found that FGP evolves
programs/solutions that describe features using feature extraction, filter-
ing and pooling functions. With the flexible program structure, FGP can
produce three different types of features, i.e., features produced by fea-
ture extraction functions, features produced by filtering and/or pooling
functions, the combination of features produced by feature extraction and
filtering or pooling. The example programs show that most of the output
features are of the first type, and few output features are of the second type
(as the example program evolved by FGP on the FEI 1 dataset showed in
Figure 4.5). A possible reason is that the features extracted from the pool-
ing and filtering operations are not invariant to particular variations, such
as rotation.

4.5.4 Analysis on Image-Related Operators in the Best-of-

the-Run Programs

Analysis of the frequencies of the image-related operators/functions in
30 best-of-the-run programs/trees on each dataset is conducted to further
understand the relationship between the datasets and the functions that
are used in the final program. The frequency of each function (%) is shown
in Figure 4.7.

From Figure 4.7, it is clear that the frequencies of the functions vary
with the dataset. On the FEI 1 and FEI 2 datasets, the most frequently
used functions are HOG, LBP , SobelX , and Max. On the ORL dataset,
the LBP , SIFT , SobelX , and LBP -F functions appear most frequently
in the best programs. On the KTH dataset, the HOG, LBP , and SIFT

functions are frequently used. In the best programs on the FS dataset, the
most frequently appearing functions are LBP and SIFT . This indicates
that FGP mostly learns LBP and SIFT features on the FS dataset. On the
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Figure 4.7: The frequency (%) of each function in the best program of 30
runs by FGP on each dataset.

MB dataset, the most frequently used functions are SIFT , SobelX , and
LBP . On the MRD dataset, the best programs frequently use the Gau

function, which is able to reduce noise. On the MBR and MBI datasets, no
LBP functions are used to extract features. This may be because LBP is
not invariant to noise. On the Rectangle dataset, the best programs tend
to extract LBP, HOG, and SIFT features. On the RI dataset, the SIFT and
LBP features are frequently extracted. On the Convex dataset, the most
frequently used functions are LBP , SobelX , LBP -F , and W -Sub. This
indicates that LBP features are frequently extracted by the programs of
FGP on the Convex dataset. The analysis of the frequently used functions
indicates which types of features are mostly learned by FGP. The results of
this analysis are consistent with the results of the analysis in Section 4.5.3.

It can be found from Figure 4.7 that the frequently used functions on
one dataset might not be (mostly) used on another dataset. For example,
LBP is not used on the MBR and MBI datasets but frequently used on
the Convex, ORL and FS datasets. The Sqrt function is seldom used on
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the MBR and MBI datasets. The SobelY function is seldom used on the RI
and Convex datasets but is commonly used on the FS and MBI datasets.
The MaxP function is mostly used on the MBI and RI datasets but is sel-
dom used on the FS and Convex datasets. This confirms the difficulty
of manually combining the different functions to achieve feature extrac-
tion/learning because different datasets require different functions to ex-
tract features. FGP can automatically combine these functions to build
solutions that can extract/learn effective features for classification.

In summary, the analysis of the number of features learned by FGP
shows that FGP can learn various numbers of features from different datasets.
The analysis of the example programs shows that FGP mostly learns fea-
tures from filtering and pooling; and features from feature extraction. The
frequency of the image-related operators shows an overall picture on the
use of image-related operators in the best programs of FGP. The analysis
indicates that the frequencies of the image-related operators vary with the
datasets. This confirms the difficulty of manually combining the differ-
ent functions to achieve feature extraction/learning. The analysis gives
insights into what image-related operators are used to build the solutions
of FGP and what types of features are extracted/learned from different
images.

4.5.5 Visualisation of the Learned Features

A popular visualisation method, t-distributed stochastic neighbour em-
bedding (t-SNE) [152], is employed to visualise the features learned by
FGP. The t-SNE method is a non-linear dimension reduction technique,
which maps high-dimensional data into two- or three-dimensional data.
The resulting low-dimensional data can be easily visualised in a scatter
plot, which shows how well the similarities within each class is preserved.
Compared with other visualisation methods, t-SNE produces better visu-
alisation results [152]. Therefore, we use t-SNE for visualisation.
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Three large datasets, i.e., MB, MBI and Rectangle, are used to run the
experiments for visualisation because MB is representative and FGP achieves
the best performance on the MBI and Rectangle datasets. The MB and MBI
datasets have 12,000 training images and 50,000 test images. The Rectan-
gle dataset has 1,200 training images and 50,000 test images. To reduce
the computational cost of t-SNE, each experiment randomly selects 5,000
images from each dataset for visualisation. To show how the hidden struc-
ture of the data is changed by the FGP program, the original data, the LBP
features, the HOG features, and the SIFT features are visualised for com-
parisons. The visualisation results are plotted in a scatter, and the class
label of each point is used to give a specific colour to the point in the plot.
The parameter settings for t-SNE are the same as those in [152].

(a) Original data (MB)

(e) Features learned by FGP

(b) LBP features (c) HOG features

(d) SIFT features

Figure 4.8: The visualisation results of the ten classes from the MB dataset
(each colour represents one class). These figures are the visualisation re-
sults using (a) raw pixels, (b) LBP features, (c) HOG features, (d) SIFT
features, and (e) the features learned by FGP, respectively.

The visualisation results of the MB dataset are shown in Figure 4.8. It is
clear that the ten classes of the original MB data and the transformed MB
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(a) Original data (MBI)

(e) Features learned by FGP

(b) LBP features (c) HOG features 

(d) SIFT features

Figure 4.9: The visualisation results of the ten classes from the MBI dataset
(each colour represents one class). These figures are the visualisation re-
sults using (a) raw pixels, (b) LBP features, (c) HOG features, (d) SIFT
features, and (e) the features learned by FGP, respectively.

data with the HOG features, the SIFT features, and the learned features by
FGP are well clustered after 1000 iterations using t-SNE. The visualisation
results of the LBP features are poor as the plot shows a high mixture of
different classes. In Figures 4.8 (a), (c) and (d), there are still some points
being clustered into wrong classes as each cluster of points contains other
points with different colours. In contrast, Figure 4.8 (e) shows clearer clus-
ters of the data transformed by the example program of FGP. This figure
shows that fewer points have been clustered into wrong classes, and each
cluster is clearer than those in Figures 4.8 (a)-(d).

The visualisation results of the original MBI data (Figure 4.9) show a
high mixture of different classes as it is very difficult to distinguish a clus-
ter from the scatter plot. The reason is that the images of MBI have noise,
which makes the visualisation of MBI more difficult than that of MB. The
visualisations of the transformed MBI data using the features learned by
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FGP (Figure 4.9 (e)) have a clearer plot than those of the original data (Fig-
ure 4.9 (a)) and the data with the LBP (Figure 4.9 (b)), HOG (Figure 4.9
(c)) and SIFT (Figure 4.9 (d)) features, respectively. It can be observed that
several clusters of points exist in Figure 4.9 (e) even if some points are not
well clustered. Comparing the visualisation results in Figure 4.8 with the
results in Figure 4.9, it is obvious that the hidden structure of the MBI data
is more complex than that of the MB data so that MBI is more difficult
than MB. The results reveal that the programs/solutions evolved by FGP
transform the original data into a space where the new data can be easily
clustered by t-SNE, and the hidden structure can be well captured.

(a) Original data (Rectangle)

(e) Features learned by FGP (f) Features learned by FGP (g) Features learned by FGP

(b) LBP features (c) HOG features (d) SIFT features

Figure 4.10: The visualisation results of the ten classes from the Rectangle
dataset (each colour represents one class). These figures are the visual-
isation results using (a) raw pixels, (b) LBP features, (c) HOG features,
(d) SIFT features, and (e-g) the features learned by the three example pro-
grams of FGP showed in Figure 4.6, respectively.

The visualisation of the Rectangle dataset is simpler than that of the MB
and MBI datasets as Rectangle only has two classes. Figure 4.10 shows the
visualisation results of the original data, the LBP features, the HOG fea-
tures, the SIFT features, and the features learned by the proposed FGP ap-
proach using three different evolved programs, respectively. Figures 4.10
(a), (c) and (d) have clear scatter plots, where the two classes of Rectan-
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gle are shown in two different colours. However, it is obvious that many
points are clustered into the wrong classes in Figures 4.10 (a), (c) and (d).
The visualisation results of the different classes are not clear when using
LBP features, which indicates that the LBP features are not effective on
the Rectangle dataset. The scatter plots are clearer in Figure 4.10 (e)-(g)
than those in Figures 4.10 (a)-(d). It is noticeable that all the points are
clustered into the correct classes by t-SNE using the data transformed by
three different GP programs/solutions. The visualisation results confirm
the search ability and superiority of FGP in finding the optimal solutions
to transform the data into a new feature space where the new data can be
easily classified into different classes.

4.6 Chapter Summary

In this chapter, the FGP approach with a flexible program structure and
image-related operators was developed to learn effective features for dif-
ferent types of image classification tasks. With the flexible program struc-
ture, a new function set and a new terminal set, the FGP approach can
evolve solutions with variable lengths to extract various numbers and
types of features from raw images. The performance of FGP was exam-
ined on 12 datasets, including the datasets having a large number of train-
ing and testing instances (i.e., the variants of MNIST), and compared with
a large number of existing methods.

The experimental results showed that FGP achieved significantly bet-
ter performance than the 12 commonly used methods on five small im-
age classification datasets of varying difficulty. The experimental results
showed that FGP achieved better classification performance than the exist-
ing methods to which it has been compared on the other seven big datasets
with a large number of instances. Compared with a state-of-the-art deep
learning method, i.e., EvoCNN, FGP achieved better performance on two
datasets and comparable performance on the remaining five datasets. The
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results demonstrated that FGP is an effective and promising approach to
feature learning for different types of image classification tasks.

In addition to the encouraging classification results achieved by FGP,
further analysis provided more insights on why it achieves good perfor-
mance. The solutions found by FGP can be easily visualised as trees to
show how and what features are extracted/learned. The visualisation
technique, t-SNE, was employed to further understand the learned fea-
tures by FGP in comparison to raw pixel values and the LBP features, the
HOG features, and the SIFT features. The results revealed that the FGP
solutions transform raw pixel values of images into a new feature space so
that each class can be effectively distinguished.

In this chapter and the previous chapter (Chapter 3), two different GP-
based approaches were developed to use image descriptors and/or image
filters to learn effective features for classifying relatively large or small im-
ages. The two approaches use a single classifier to perform classification.
The classification performance can be further improved by using ensem-
ble methods. The next chapter will develop a new GP-based approach to
construct ensembles to improve classification performance.
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Chapter 5

GP for Simultaneous Feature
Learning and Ensemble Evolving

5.1 Introduction

The previous two chapters proposed two GP-based approaches with im-
age descriptors and other image-related operators for feature learning in
image classification. These two approaches use a single classifier for classi-
fication. However, the classification performance can be further improved
by using ensemble classifiers. This chapter proposes an ensemble method
for image classification using GP.

Ensemble methods have been widely used for solving classification
problems [91, 237]. An ensemble consists of multiple classifiers to solve
a classification problem and often achieve a better generalisation perfor-
mance [247]. Traditional ensemble methods for image classification of-
ten have the processes of feature extraction, base learner or classifier se-
lection, training and combination [65]. In these processes, rich domain
knowledge is required, especially for feature extraction. In addition, the
diversity of the classifiers in the ensemble is a key factor to build an ef-
fective ensemble, but it is an open issue due to the difficulty of quanti-
sation/measurement [129]. GP has been applied to evolve ensembles for
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classification [75, 77, 218]. But most methods cannot be directly used for
tackling image classification tasks due to the necessity and difficulty of fea-
ture extraction. On the other hand, GP has been applied to automatically
learn features for image classification [11, 14, 27, 197], including the meth-
ods described in the previous two chapters. But these methods only em-
ploy a single classifier for classification. Their classification performance
could be further improved by using ensemble classifiers. Therefore, this
chapter proposes a new GP-based approach to automatically learning fea-
tures and evolving ensembles for image classification.

5.1.1 Chapter Goals

The overall goal of this chapter is to develop a new effective GP-based
approach to automatically learning features and evolving ensembles for
image classification. The new approach is named Improved Ensemble GP
method (IEGP). To achieve this goal, a new representation with an input
layer, a filtering & pooling layer, a feature extraction layer, a concatenation
layer, a classification layer, a combination layer, and an output layer is
developed in IEGP. Except for the input and output layers, each of the re-
maining layers has a number of functions, which allow the new approach
to automatically evolve combinations of them to form the solutions. Each
solution produces the combined predictions of class labels for the input
images. The IEGP approach is evaluated on 12 datasets of varying diffi-
culty, including datasets with a large number of training and test images,
and compared with state-of-the-art methods. Specifically, this chapter will
investigate

• how the processes of feature learning and ensemble evolving are in-
tegrated into a single GP tree by developing a new program struc-
ture, a new function set and a new terminal set;

• whether IEGP can achieve better classification performance than the
methods using raw pixels, the methods using well-known features,
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two CNN-based methods, the FGP method described in the previous
chapter, and other GP-based methods;

• whether IEGP can achieve better classification performance than a
large number of state-of-the-art algorithms on the datasets with a
large number of training and test instances;

• whether IEGP can select and optimise the parameters of the classifi-
cation algorithms in the evolved ensemble, and address the diversity
issue; and

• whether the solutions of IEGP can provide high interpretability of
what features are learned, what classification algorithms are used to
build the ensemble, and why they achieve good performance.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Chapter 5.2 de-
scribes the proposed approach. Chapter 5.3 designs the experiments. The
results are discussed and compared in Chapter 5.4. Further analysis is
presented in Chapter 5.5. Chapter 5.6 concludes this chapter.

5.2 The Proposed Approach

The general process of traditional ensemble methods for image classifica-
tion is shown in Figure 5.1. The overall process includes feature extraction,
base classifiers selection, training and combination [65]. In these processes,
domain knowledge or human intervention is often required to determine
what and how effective features are extracted from raw images, what the
base learners are used, how the parameters are set for the base learners,
and how the trained base learners are combined to construct an ensemble.

With a flexible tree-based representation, it is possible to integrate these
processes into a single GP tree to automatically evolve effective ensem-
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Figure 5.1: The outlines of the traditional ensemble methods [65] and the
new approach (IEGP) for image classification.

bles with simultaneous feature learning for image classification from raw
images. Our preliminary work [38] developed an automated ensemble
framework using GP (EGP) for image classification and achieved promis-
ing results on different types of image classification tasks. The EGP method
can learn features using filtering and pooling operators and use these fea-
tures to build classifiers of an ensemble. The main advantage of EGP is
the significant reduction of domain knowledge requirement in the whole
process, where the selections of image-related operators, classification al-
gorithms and combination methods are automatically conducted and opti-
mised during the evolutionary learning process. However, the EGP method
has shown an inferior performance on large image classification datasets,
which might happen because the learned features are not effective. In ad-
dition, EGP cannot automatically select parameters for the classification
algorithms, which is not flexible and efficient for different image classifica-
tion tasks. Therefore, this chapter significantly improves the EGP method
by developing the IEGP approach to automatically learning meaningful
features and selecting suitable parameters for classification algorithms to
build effective ensembles for image classification.

As shown in Figure 5.1, the inputs of an IEGP solution are raw images
and the outputs are class labels. All the processes, such as feature extrac-
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tion, base learner selection and combination, are coupled within a single
IEGP solution/program. To achieve this, a novel individual representa-
tion, a new function set and a new terminal set are developed in IEGP.
This section will describe these three important components of IEGP, and
then outline the overall algorithm of IEGP for image classification.

5.2.1 Novel Individual Representation

GP has a tree-based representation, which is known for the variable lengths
of the evolved solutions. The individual representation of the proposed
IEGP approach is based on STGP [161], where each function has input
and output types, and each terminal has an output type. To define the type
constraints, a new program structure is developed, as shown in Figure 5.2.
The new program structure comprises input, filtering & pooling, feature
extraction, concatenation, classification, combination, and output layers.
Each layer, except for the input and output layers, has different functions
for different purposes. The input layer represents the input of the IEGP
system, i.e., the terminals. The filtering & pooling layer has filtering and
pooling functions, which operate on images. The feature extraction layer
extracts informative features from the images using existing feature ex-
traction methods. The concatenation layer concatenates features produced
by its children nodes into a feature vector. The filtering & pooling, feature
extraction and concatenation layers belong to the process of feature learn-
ing, where informative features are learned from raw images. The learned
features can be directly fed into any classification algorithm for classifica-
tion. Therefore, a classification layer is connected with the concatenation
layer. The classification layer has several classification functions that can
be used to train the classifiers using the learned features. The combination
layer has several combination functions to combine the outputs of the clas-
sification functions. The classification and combination layers belong to
the process of ensemble learning, where the classification functions are se-
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Figure 5.2: The new program structure of IEGP and an example solu-
tion/program that can be evolved by IEGP.

lected and trained, and the outputs of the classifiers are combined. Finally,
the output layer performs the plurality voting on the outputs produced by
the combination layer to obtain the combined predictions.

Compared with the program structure of the EGP method [38], the new
program structure of the IEGP approach has one more layer, i.e., the fea-
ture extraction layer. The features learned by the previous EGP method
are from the filtering and pooling operations, which might not be robust
to variations such as scale and rotation. To improve the effectiveness of the
learned features, a feature extraction layer is inserted between the filtering
& pooling layer and the concatenation layer. The feature extraction layer
utilises three well-developed image descriptors, i.e., LBP, SIFT, and HOG,
to extract invariant and informative features from raw images. The three
feature extraction functions will be introduced in Section 5.2.2.

An example solution of IEGP is shown in Figure 5.2 to further demon-
strate the new representation. Figure 5.2 shows that different layers have
different functions, which will be introduced in the following subsections.
In the feature learning layers, i.e., the filtering & pooling layer and the
feature extraction layer, a set of different image-related operators, such as
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LoG1, HOG and SIFT , are employed. The classification layer has differ-
ent classification functions, e.g., SVM , RF and LR and these functions
have new additional leaf nodes in contrast to that in EGP. These leaf nodes
are important parameters of the classification functions. In the combina-
tion layer, new combination functions, e.g., Comb3, are used to combine
the predicted class labels in a flexible way. Therefore, the output of the
example program in Figure 5.2 is the combined output of the SVM , RF
and LR classifiers from the three branches.

Diversity of Ensembles

There are four commonly used strategies to enhance the diversity of an
ensemble [249], (1) data sample manipulation, (2) input feature manip-
ulation, (3) learning parameter manipulation, and (4) output representa-
tion manipulation. The ensembles evolved by IEGP can automatically ad-
dress the diversity issue, adopting the strategies belonging to input feature
manipulation and learning parameter manipulation. The new program
structure allows that different classification functions have different tree
branches in an evolved program, as the example program shown in Figure
5.2. The different tree branches with functions can produce various fea-
tures to form the inputs of the classification functions, which is the input
feature manipulation strategy. The parameters of the classification func-
tions are developed as terminals of IEGP, which allows IEGP to automat-
ically fine-tune the parameters during the evolutionary learning process
(this will be introduced in subsection 5.2.3). This is the learning parame-
ter manipulation. In addition, the new program structure allows IEGP to
evolve ensembles of the same or different classifiers, which is more flexible
than the other ensemble methods with fixed classifiers, such as in [249].
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Flexibility of Representation

The new program structure enables IEGP to evolve programs with various
tree sizes (nodes) and depths. In the new representation, the input layer
and the output layer have a fixed tree depth of one. The feature extraction
layer transforms images into features, which is an irreversible data trans-
formation so that the depth of this layer is one. Similarly, the depth of
the classification layer is one, where the inputs are transformed into class
labels. The remaining layers, i.e., the filtering & pooling layer, the con-
catenation layer, and the combination layer, have a flexible/variable tree
depth, which indicates that the tree depth can be automatically adjusted
according to the problems. This maintains the flexibility of the evolved
solutions by IEGP. Another point is that the filtering & pooling layer may
not be necessary for a particular task. Therefore, the filtering & pooling
layer is developed as a flexible layer, which indicates that it might be or
might not be comprised in the IEGP programs. As shown in the example
program in Figure 5.2, the inputs X train can be directly fed into the fea-
ture extraction functions uLBP and HOG without any filtering & pooling
operations.

5.2.2 New Function Set

The new function set has a number of different functions for different pur-
poses. The functions for each layer are summarised in Table 5.1. The in-
troduction of these functions is in a direction from the bottom layer to the
top output layer.

Filtering & Pooling Functions

The filtering & pooling functions operate on arrays. They take a num-
ber of images as inputs and conduct corresponding operations on the in-
put image. The filtering functions keep the size of the output images
consistent with the input size. The pooling function reduces the size of
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Table 5.1: Function Set

Layer Function
Filtering & Pooling Gau, GauD, Gabor, Lap, LoG1, LoG2, Sobel, SobelX ,

SobelY , LBP -F , HOG-F , Med, Mean, Min, Max,
Sqrt, W -Add, W -Sub, ReLU , MaxP

Feature Extraction SIFT , HOG, uLBP
Concatenation FeaCon2, FeaCon3, FeaCon4
Classification LR, SVM , RF , ERF
Combination Comb3, Comb5, Comb7

images by subsampling maximum values from a small window of the
image. Gau is the Gaussian filter generated by a 2D Gaussian function
Gau(x, y) = 1

2πσ2 exp[−x2+y2

2σ2 ], where the standard deviation σ is a termi-
nal of IEGP. GauD represents the derivative of the Gaussian function with
the standard deviation σ in the orders (o1, o2) along the X axis and the Y
axis, respectively. The three parameters are terminals of IEGP. The kernel
of the Gabor function is generated according to Gabor(x, y) = Gau(x, y) ∗
sin[(2π(cosθx+sinθy)

λ
+ ψ)]. The frequency f ( 1

λ
) and the orientation θ are de-

veloped as terminals of IEGP. Lap is the Laplacian filter, which is com-
monly used to detect the flat area. In the case that the results produced by
Laplacian are noisy, the Laplacian of Gaussian filter is used to convolve the
image produced by Laplacian using the Gaussian filter. LoG1 and LoG2

are the Laplacian of Gaussian filters, where the σ for the Gaussian function
is 1 and 2, respectively. SobelX , SobelY and Sobel conduct edge detection
on the images. HOG-F and LBP -F produce the HOG and LBP images
with informative features. Med, Mean, Min, and Max convolve images
by returning the median, mean, minimum, and maximum values of each
3× 3 sliding window, respectively. Sqrt returns the sqrt root of each pixel
value and is protected by returning 1 if the pixel value is negative. W -Add
and W -Sub take two images and two weights as inputs and calculate the
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weighted sum or subtraction of the images. If the input images have dif-
ferent sizes, the two functions will overlap the two images at the left top
point and cut them to have the same sizes for sum or subtraction. ReLU re-
turns 0 if the pixel value is negative. Otherwise, it returns the pixel value.

Feature Extraction Functions

Three commonly used feature extraction methods, uniform LBP (uLBP)
[169], HOG [60] and SIFT [147], are used as functions for IEGP. These func-
tions transform the input image into a set of effective features, which are
invariant to certain variations. The uLBP function extracts 59 histogram
features of the LBP image. In uLBP , the radius is set to 1.5 and the number
of neighbours is set to 8 [169]. The HOG function extracts the mean value
of each 4 × 4 grid from the HOG image to form the feature vector. The
parameter settings for the HOG method refer to [60]. The SIFT function
produces 128 features for each image by taking the image as a keypoint
[220]. It is noticeable that the three functions produce various numbers of
features.

Concatenation Functions

The concatenation functions in IEGP are different from that in the EGP
method [38]. The FeaCon2, FeaCon3 and FeaCon4 functions convert two,
three and four vectors as a vector by concatenating them, respectively.
The concatenation functions can take the feature extraction functions or
the concatenation functions as their children nodes, which indicates that a
combination of features is produced by each concatenation function.

Classification Functions

Any commonly used classification algorithm can be used as a function in
the classification layer for IEGP. To narrow the search space, the previous
EGP method [38] employs six classification algorithms, logistic regression
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(LR), k-nearest neighbour (KNN ), support vector machine (SVM ), ran-
dom forest (RF ), extremely randomised trees (ERF ), and adaptive boost-
ing (AdaBoost), according to [235]. However, since KNN is an instance-
based method and is computationally expensive when the training data is
large, the KNN function is not employed in IEGP. The AdaBoost method
achieves an inferior performance on image classification [38] so that it is
also removed from the function set. Therefore, only four classification
functions are employed in IEGP. They are LR, SVM , RF , and ERF , in-
cluding linear classification methods and tree-based (non-linear) classifi-
cation methods. Note that RF and ERF are ensemble methods and the
IEGP approach can build ensembles of ensembles.

The previous EGP method uses fixed parameters for the classification
functions, which is not effective and efficient for solving different tasks.
Therefore, the key parameters for LR, SVM , RF , and ERF are developed
as terminals of IEGP to allow their values to be automatically generated
or optimised during the evolutionary process. These key parameters and
their ranges are introduced in Section 5.2.3.

Combination Functions

The previous EGP method [38] conducts voting multiple times, which is
computationally expensive. To address this, three new functions are de-
veloped in IEGP to combine the classifiers effectively. The functions are
Comb3, Comb5 and Comb7, which take 3, 5 and 7 class labels as inputs and
concatenate these labels to form the output, respectively. These functions
can be root or internal nodes of a GP tree, which represents different ways
of combining the classifiers, as shown in Figure 5.3. In the left example
(Ensemble 1) of Figure 5.3, the Comb3 function is used as the root node.
The inputs for Comb3 are 1 from SVM , 1 from RF , and 0 from LR. The
Comb3 function combines these inputs and returns 110. In the right exam-
ple (Ensemble 2) of Figure 5.3, Comb3 is an internal node and Comb5 is the
root node. The outputs of Comb3 are 012 and the outputs of Comb5 are
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Figure 5.3: Example ensembles with the new Comb3 and Comb5 functions
as root nodes and internal nodes.

3101221 from the nodes of SVM, RF, Comb3, ERF , and LR. After ob-
taining the outputs from the root node, the plurality voting is conducted
to produce the predicted class label for an instance/image. As shown in
the Figure 5.3, the final output (class label) of Ensemble 1 is 1 (from 110)
and the final output (class label) of Ensemble 2 is 1 (from 3101221).

5.2.3 New Terminal Set

The terminal set represents the inputs of the IEGP system. Table 5.2 lists
the terminals of IEGP and their ranges. The X train = {Xi}Ni=1 represents
N input training images and the Y train = {Yi}Ni=1 represents the class
labels of the N images. In X train, Xi represents an image of size M × L,
where the pixel values in the image are in the range of [0, 1]. In Y train,
Yi is an integer representing the class label. The σ, o1, o2, θ, n1, n2, k1, and
k2 terminals are the parameters for particular functions in the filtering &
pooling layer and their values are in the commonly used ranges.

The important parameters for the classification functions are designed
as terminals of IEGP. The parameters are C, NT and MD. The C terminal
is an integer and is related to the penalty term/parameter for the classifi-
cation functions LR and SVM . The range for C is set to [−2, 5] [25], which
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Table 5.2: Terminal Set

Terminal Type Description
X train Array N training images with a size of M × L
Y train Array The class labels of N training images
σ Integer The standard deviation of the Gaussian filter in the

Gau and GauD functions. Its range is {1, 2, 3}
o1, o2 Integer The orders of the Gaussian derivatives. They are

in range {0, 1, 2}
θ Float The orientation of the Gabor function. It is in the

range of [0, 7π/8] with a step of π/8 [143]
f Float The frequency of the Gabor function. It equals to

(π/2)/(
√
2
v
), where v is an integer in the range of

[0, 4] [143]
n1, n2 Float The parameters for the W-Add and W-Sub func-

tions. They are randomly generated from the
range of [0, 1)

k1, k2 Integer The kernel size forMaxP . They are in range {2, 4}
C Integer The penalty term/parameter in LR and SVM is

10C , where C is in the range of [−2, 5] according to
[25]

NT Integer The number of trees in RF and ERF . It is in the
range of [50, 500] with a step of 10

MD Integer The maximum tree depth of the decision tree in
RF and ERF . It is in the range of [10, 100] with a
step of 10

results in a penalty term/parameter (10C) in the range of {10−2, 10−1,

. . . , 104, 105}. The number of decision trees and the maximum tree depth
are two important parameters for RF and ERF according to [249]. There-
fore, they are developed as terminals, NT and MD. The values for NT
is in the range of [50, 500] with a step of 10 and the values for MD is in
the range of [10, 100] with a step of 10. The maximum values for NT and
MD are set according to that in [249]. To reduce the computational cost,
a smaller NT and MD are desired to be found for RF and ERF . In ad-
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dition, a step of 10 is used to limit the dimension of the search space of
IEGP.

5.2.4 Overall Algorithm

With the new program structure, the new function set and the new termi-
nal set, the IEGP approach can automatically learn features and ensembles
for image classification. The overall algorithm of IEGP is described in Al-
gorithm 4. The flowchart of the overall algorithm (include the training and
test processes) is shown in Figure 5.4.

The IEGP approach starts with randomly initialising the population P0

using the ramped half-and-half method. Each individual in P0 is evaluated
by a fitness function. During the evolutionary learning process (at gener-
ation g), the elitism, subtree crossover and subtree mutation operators are
used to create a new population Pg. The new Pg is then evaluated. When
g equals the maximum number of generations, the evolutionary learning
process stops and the best individual (ensemble) is returned.

During the evolutionary learning process, a subtree caching method is
used to reduce the evaluation time since GP is known for being computa-
tionally expensive on image data [184]. A Cache Table is used to store in-
dividuals and their fitness values. At generation 0, the Cache Table stores
the P0 with fitness values. At generation g, the Cache Table stores the best
individuals of the past generations and all the individuals in generation
g−1 [184]. To evaluate individual o at g (g > 1), a search is conducted in
Cache Table to check whether o has been evaluated before. If o has been in
the Cache Table, the fitness value will be directly assigned to o, otherwise,
o is evaluated using the fitness function. Generally, any individual can
be stored in Cache Table but a tradeoff between the searching time and
the evaluation time for an individual should be considered. Therefore, in
IEGP, the size of Cache Table is set to 6×Np (Np is the population size).
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Algorithm 4: Framework of IEGP
Input : X train: N training images; Y train: the class labels of N

training images.
Output : Best Individual: the best program tree.

1 P0 ← Initialise a population based on the new representation, the
new function set and the new terminal set;

2 g ← 0;
3 Cache Table← ∅;
4 for each individual p in P0 do
5 fp ← Evaluate p using the fitness function
6 end
7 Cache Table← P0;
8 while g < G do
9 I ← Best individuals of Pg using elitism operator;

10 S ← Selected individuals from Pg by tournamanet selection;
11 Og+1 ← Offspring generated from S using subtree crossover

and subtree mutation;
12 for each individual o in Og+1 do
13 if o in Cache Table then
14 fo ← the fitness value of o in Cache Table;
15 else
16 fo ← Evaluate o using the fitness function;
17 end
18 end
19 Pg+1 ← Og+1 ∪ I ;
20 Update Best Individual and Cache Table;
21 g ← g + 1;
22 end
23 Return Best Individual.

Training Process and Fitness Function

In the training process of IEGP, the training data X train and Y train are
fed into the IEGP system. Since the classification functions in each tree re-
quire training, we employ stratified k-fold cross-validation on the training
set (X train and Y train) to build and evaluate the classifier in the training
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Figure 5.4: The flowchart of the overall IEGP algorithm.

process of IEGP. For each classification function in the evolved IEGP tree,
k−1 folds are used to train the classifier and the remaining one fold is used
as the test set. The trained classifier is employed to obtain the predicted
class labels for the test set (the one fold). This process is repeated k times to
obtain the predicted class label for each instance inX train. The value of k
is set to 3 to reduce the computational cost, which is also recommended in
[249]. The predicted class labels from different nodes (classification func-
tions) are then combined by the combination functions and voted by the
plurality voting to form the output Y predict.

The fitness function for IEGP is the classification accuracy, which is the
percentage of the number of correctly classified images out of the total
number of images in the training set. In IEGP, the classification accuracy
is calculated according to Y predict and Y train.

After the evolutionary process, the best IEGP tree (ensemble) is re-
trained usingX train and Y trainwithout k-fold cross-validation (X train.
The ensemble of trained classifiers is used for classifying images in the test
set X test.

Test Process

The test process is to use the best tree/ensemble evolved by IEGP to clas-
sify the images in an unseen (test) set X test. The ensemble of the trained
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classifiers is used to classify images in the test set. It is noted that the im-
ages in the test set are transformed by the nodes of feature learning in the
IEGP tree. Then the features are fed into the trained classifiers to obtain the
predicted class labels. The class labels from multiple classifiers are com-
bined and the final prediction can be obtained. Based on the class labels,
the accuracy of the test set is calculated and reported.

5.3 Experiment Design

A number of experiments are conducted to show the effectiveness of the
proposed approach. The detailed design of experiments is described in
this section.

5.3.1 Benchmark Datasets

The performance of the proposed IEGP approach is examined on 12 bench-
mark datasets, which are the same as those in Chapter 4. These datasets
are FEI 1 [215], FEI 2 [215], ORL [191], KTH [153], FS [79], MB [132], MRD
[132], MBR [132], MBI [132], Rectangle [132], RI [132], and Convex [132].
These datasets include a broad variety of image classification tasks, i.e.,
facial expression classification: FEI 1 and FEI 2; face recognition: ORL;
texture classification: KTH; scene classification: FS; and object classifica-
tion: MB, MRD, MBR, MBI, Rectangle, RI, and Convex. The details of
these datasets are listed in Table 4.5.

5.3.2 Benchmark Methods

For the datasets 1-5, we use 14 different benchmark methods for compar-
isons. The aim is to comprehensively investigate whether IEGP can learn
informative features and evolve effective ensembles for image classifica-
tion. These benchmark methods are six classification algorithms using
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raw pixels, i.e., SVM, KNN, LR, RF, AdaBoost, and ERF, four SVM meth-
ods using different features, i.e., uLBP+SVM, LBP+SVM, HOG+SVM, and
SIFT+SVM, two CNNs, i.e., CNN-5 and CNN-8, the EGP method [38], and
the FGP method proposed in Chapter 4. Except for EGP and FGP, the other
12 benchmark methods are the same as those employed in Chapter 4.

The datasets 6-12 have public training and test sets, so the test accuracy
reported in literature can be directly used for comparisons without reim-
plementing the methods. The results of these methods are collected from
corresponding references on datasets 6-12. Therefore, there are 20 compar-
ison methods on datasets 6-12, i.e., SVM+RBF [132], SVM+Poly [132], SAE-
3 [183], DAE-b-3 [183], CAE-2 [183], SPAE [236], RBM-3 [183], ScatNet-2
[49, 53], RandNet-2 [53], PCANet-2 (softmax) [53], LDANet-2 [53], NNet
[132], SAA-3 [132], DBN-3 [132], FCCNN [177], FCCNN (with BT) [177],
SPCN [140], EGP [38], FGP proposed in Chapter 4, and EvoCNN [208].
Note that most of these methods are neural network-based methods and
parameter tuning was used in some methods to optimise performance.
Except for EGP and FGP, the other benchmark methods are the same as
those employed in Chapter 4.

5.3.3 Parameter Settings

The parameter settings for IEGP are these commonly used settings within
the GP community [114]. The population size is set to 100, which is smaller
than in FGP due to the high computational cost of training multiple classi-
fiers in a GP tree. The maximum number of generations is 50. The elitism
rate is 0.01, the crossover rate is 0.8 and the mutation rate is 0.19. Tour-
nament selection with a size of seven is used to select individuals for mu-
tation and crossover during the evolutionary learning process. The tree
depth is between two and eight. In IEGP, the type constraint has higher
priority than the depth constraint so that the tree depth may be larger than
8 in some cases.
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The implementation of IEGP is in Python using the DEAP (Distributed
Evolutionary Algorithm in Python) [86] package. The implementations of the
classification algorithms in IEGP and the benchmark methods are based
on the scikit-learn package [172] and the Keras package [57]. Note that the
other parameters (except for the optimised ones) of these classification al-
gorithms are the default settings in scikit-learn for simplification. The ex-
periment of IEGP on each dataset has been executed for 30 independent
runs and the best tree of each run has been tested on the test set.

5.4 Results and Discussions

This section discusses and analyses the classification performance of the
proposed IEGP approach and the benchmark methods, including the EGP
method, on the 12 benchmark datasets.

5.4.1 Classification Results on Datasets 1-5

The classification results, i.e., the maximum accuracy (Max), the average
accuracy and standard deviation (Mean±St.dev) of 30 runs by the IEGP
approach and the benchmark methods on the six datasets are listed in Ta-
bles 5.3 and 5.4. The Wilcoxon rank-sum test with a 5% significance level
is used to compare the IEGP approach with a benchmark method to show
the significance of the differences. The symbols “+”, “–” and “=” in Tables
5.3 and 5.4 indicate that the IEGP approach is significantly better, signifi-
cantly worse or similar than/to the benchmark method. The final row of
each table summaries the overall results of the significance test. The best
maximum accuracy and mean accuracy of each dataset are highlighted in
bold in Tables 5.3 and 5.4.

Table 5.3 shows that the IEGP approach performs significantly better
than or similar to any of the benchmark methods on FEI 1 and FEI 2,
which are facial expression classification tasks. The IEGP approach finds
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Table 5.3: Classification Accuracy (%) of Datasets 1-3

Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev
FEI 1 FEI 2 ORL

SVM 90.00 90.00±0.00+ 88.00 88.00±0.00+ 94.38 94.38±0.00+
KNN 32.00 32.00±0.00+ 8.00 8.00±0.00+ 94.38 94.38±0.00+
LR 92.00 92.00±0.00+ 88.00 88.00±0.00+ 93.75 93.75±0.00+
RF 98.00 97.07±1.01= 90.00 89.20±1.13+ 93.12 92.33±0.63+
AdaBoost 80.00 78.67±1.32+ 80.00 76.00±3.44+ 59.38 52.27±4.00+
ERF 94.00 93.27±0.98+ 92.00 90.60±0.93+ 97.50 96.71±0.59+
uLBP+SVM 66.00 56.73±3.66+ 68.00 62.53±3.52+ 87.50 87.42±0.21+
LBP+SVM 68.00 64.60±1.83+ 74.00 69.80±0.00+ 88.12 87.52±0.20+
HOG+SVM 96.00 96.00±0.00= 82.00 82.00±0.00+ 91.25 91.25±0.00+
SIFT+SVM 56.00 56.00±0.00+ 62.00 62.00±0.00+ 93.75 93.75±0.00+
CNN-5 98.00 95.40±1.30+ 98.00 95.27±1.62+ 96.88 95.29±1.06+
CNN-8 98.00 95.33±1.32+ 96.00 90.93±1.87+ 95.00 93.04±1.09+
EGP 100.0 96.20±2.06= 100.0 98.07±1.70= 99.38 97.44±1.26+
FGP 98.0 94.47±2.67+ 96.00 91.33±3.36+ 100.0 98.63±1.04=
IEGP 100.0 96.67±2.55 100.0 96.20±3.66 100.0 98.29±0.97
Overall 11+, 3= 13+, 1= 13+, 1=

the best accuracy of 100% on these two datasets. Although RF achieves the
best mean accuracy on FEI 1 and EGP achieves the best mean accuracy on
FEI 2, there is no significant difference between IEGP and EGP or RF in
the performance on the two datasets.

The classification results in Table 5.3 show that IEGP achieves similar
performance to FGP and significantly better performance than any of the
other 13 benchmark methods on ORL. ORL is a face recognition task of 40
classes and has a very small number of training images, which is challeng-
ing for some methods needing a large number of training instances such
as CNN-5 and CNN-8. IEGP found the best accuracy of 100% and the best
mean accuracy of 98.29% on ORL, which shows the effectiveness of IEGP
on datasets with a small number of training instances.

The classification results on the KTH and FS datasets in Table 5.4 indi-
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Table 5.4: Classification Accuracy (%) of Datasets 4-5

KTH FS
Max Mean±St.dev Max Mean±St.dev

SVM 46.97 44.59±2.83+ 20.63 20.30±0.15+
KNN 34.24 34.24±0.00+ 24.35 24.35±0.00+
LR 48.79 48.79±0.00+ 23.49 23.49±0.00+
RF 60.00 57.81±0.83+ 37.36 36.53±0.49+
AdaBoost 37.88 33.44±1.37+ 17.47 13.04±1.47+
ERF 61.52 59.83±0.86+ 37.94 37.15±0.36+
uLBP+SVM 78.79 73.29±4.18+ 49.79 33.27±8.90+
LBP+SVM 83.64 82.71±0.51+ 53.50 50.45±1.80+
HOG+SVM 57.27 55.96±0.64+ 12.11 7.91±2.47+
SIFT+SVM 65.76 65.76±0.00+ 60.92 60.92±0.00+
CNN-5 85.76 82.56±1.87+ 50.14 48.03±1.16+
CNN-8 76.36 71.63±3.18+ 49.16 46.79±1.01+
EGP 87.88 77.53±5.17+ 67.17 61.07±2.91+
FGP 98.79 96.07±1.13= 74.48 71.59±1.74+
IEGP 98.48 96.43±1.26 92.54 89.63±1.47
Overall 13+, 1= 14+

cate that IEGP achieves significantly better results in almost all the com-
parisons. The KTH dataset has texture images and the FS dataset has natu-
ral scene images. The SVM, KNN, LR, RF, and AdaBoost methods achieve
very low accuracy on these two datasets, which indicates that using raw
pixels to classify these two datasets is not effective. However, simple fea-
ture extraction cannot improve accuracy as the uLBP+SVM, LBP+SVM,
HOG+SVM, and SIFT+SVM methods achieve low accuracy as well. By
automatically learning features and evolving ensembles for classification,
IEGP achieves the best results on these two datasets, i.e., a maximum ac-
curacy of 98.48% on KTH and a maximum accuracy of 92.45% on FS. Im-
portantly, the IEGP approach improves the mean accuracy by 0.36% on
KTH and by 18.04% on FS. The results indicate that IEGP is very effective
for texture classification and scene classification.

Table 5.5 summarises the overall results of the significance tests in the
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Table 5.5: Summary of Significance Test on Datasets 1-5

A B C D
Significantly better (+) 29 19 10 6
Similar (=) 1 1 0 4
Significantly worse (–) 0 0 0 0

A: compare IEGP with SVM, KNN, LR, RF, AdaBoost, and ERF
B: compare IEGP with uLBP+SVM, LBP+SVM, HOG+SVM, and SIFT+SVM
C. compare IEGP with CNN-5 and CNN-8
D. compare IEGP with EGP and FGP

comparisons of different benchmark methods on the six datasets. IEGP
achieves significantly better results than or similar results to any of the
six classification algorithms using raw pixels (in case A), which indicates
that IEGP can learn informative features for effective image classification.
Compared with the four methods (in case B), which use uLBP, LBP, SIFT,
and HOG features as inputs for SVM, IEGP achieves significantly better re-
sults than or similar results to any of them. The results show that IEGP is
more effective than the four methods by learning informative features and
evolving ensembles for classification. Compared with CNN-5 and CNN-8
(in case C), IEGP achieves significantly better results on the five datasets,
which shows that IEGP is more effective than simple CNN-based meth-
ods. The main advantage of IEGP over the CNN-based methods is the
flexible length and depth of the evolved solutions. IEGP does not need to
define the model/solution structure (complexity) as it is able to find a suit-
able model during the evolutionary learning process. In addition, CNNs
often require a large number of training instances. In contrast, IEGP can
evolve effective solutions from a relatively small number of training in-
stances, as it does on the ORL dataset. Compared with FGP, the IEGP
approach achieves significantly better performance on three datasets and
similar performance on two datasets. The FGP approach only uses SVM
for classification, while IEGP uses ensemble classifiers for classification.
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The results indicate that the classification performance of these datasets
can be further improved by using GP to evolve ensembles for classifica-
tion. The results show that IEGP performs significantly better than or sim-
ilar to EGP. Compared with EGP, the IEGP approach uses a new represen-
tation, a new function set and a new terminal set, which allow it to learn
more effective features and to find more suitable classification algorithms
with appropriate parameters to form effective ensembles for classification.

5.4.2 Classification Results on Datasets 6-12

The classification accuracy (%) of the datasets 6-12 are listed in Table 5.6.
On these datasets, 20 methods are employed for comparisons, where the
results are collected from the corresponding references. Note that some
of these 20 methods may not have results on some datasets such as RI,
Rectangle and Convex. In Table 5.6, each column shows the results of all
these methods on one dataset. The results obtained by IEGP are listed at
the bottom of the table. Because most of these benchmark methods have
only reported the best results on these datasets, we compare IEGP with
them using the best results. In Table 5.6, the symbol “+” denotes that IEGP
achieves better accuracy than the corresponding benchmark method. The
final two rows of Table 5.6 summarise the ranking results of IEGP among
all these methods.

Table 5.6 shows that IEGP achieves better (or similar) classification ac-
curacy than any of the benchmark methods with reported results on one
dataset, i.e., Rectangle. On the MB, MRD, RI, and Convex datasets, the
best accuracy of IEGP ranks second among all the methods, which indi-
cates that only one method achieves better accuracy than IEGP on any of
these four datasets. On the remaining two datasets, the best accuracy of
IEGP ranks third among all the methods on MBR and ranks fourth on the
MBI dataset, which indicates that only two and three methods achieve bet-
ter accuracy than IEGP on these two datasets, respectively. IEGP achieves



178 CHAPTER 5. FEATURE LEARNING AND ENSEMBLE EVOLVING

Table 5.6: Classification Accuracy (%) of Datasets 6-12

Method MB MRD MBR MBI Rectangle RI Convex

SVM+RBF [132] 96.97(+) 88.89(+) 85.42(+) 77.39(+) 97.85(+) 75.96(+) 80.87(+)

SVM+Poly [132] 96.31(+) 84.58(+) 83.38(+) 75.99(+) 97.85(+) 75.95(+) 80.18(+)

SAE-3 [183] 96.54(+) 89.70(+) 88.72(+) 77.00(+) 97.86(+) 75.95(+) −
DAE-b-3 [183] 97.16(+) 90.47(+) 89.70(+) 83.32(+) 98.01(+) 78.41(+) −
CAE-2 [183] 97.52(+) 90.34(+) 89.10(+) 84.50(+) 98.79(+) 78.46(+) −
SPAE [236] 96.68(+) 89.74(+) 90.99(+) 86.76(+) − − −
RBM-3 [183] 96.89(+) 89.70(+) 93.27(+) 83.69(+) 97.40(+) 77.50(+) −
ScatNet-2 [49, 53] 98.73(+) 92.52(+) 87.70(+) 81.60(+) 99.99(+) 91.98(+) 93.50(+)

RandNet-2 [53] 98.75(+) 91.53(+) 86.53(+) 88.35(+) 99.91(+) 83.00(+) 94.55(+)

PCANet-2 (softmax) [53] 98.60(+) 91.48(+) 93.15(+) 88.45(+) 99.51(+) 86.61(+) 95.81(+)

LDANet-2 [53] 98.95 92.48(+) 93.19(+) 87.58(+) 99.86(+) 83.80(+) 92.78(+)

NNet [132] 95.31(+) 81.89(+) 79.96(+) 72.59(+) 92.84(+) 66.80(+) 67.75(+)

SAA-3 [132] 96.54(+) 89.70(+) 88.72(+) 77.00(+) 97.59(+) 75.95(+) 81.59(+)

DBN-3 [132] 96.89(+) 89.70(+) 93.27(+) 83.69(+) 97.40(+) 77.50(+) 81.37(+)

FCCNN [177] 97.57(+) 91.09(+) 93.55(+) 86.77(+) − − −
FCCNN (with BT) [177] 97.32(+) 90.41(+) 93.03(+) 89.20(+) − − −
SPCN [140] 98.18(+) 90.19(+) 94.16 90.45 99.81(+) 89.40(+) −
EvoCNN (best) [208] 98.82 94.78 97.20 95.47 99.99(+) 94.97 95.18(+)

EGP (best) [38] 97.19(+) − − − 99.91(+) − 93.97(+)

FGP (best) 98.82 92.63(+) 93.46(+) 92.52 100 93.90(+) 98.46

IEGP (best) 98.82 94.28 93.59 89.41 100 94.88 98.26

IEGP (mean) 98.69 93.78 92.65 88.42 99.94 89.02 97.76

IEGP (std) 0.08 0.24 0.35 0.64 0.05 2.1 0.26

Rank 2/21 2/20 3/20 4/20 1/18 2/17 2/13

100% accuracy on the Rectangle dataset, although it is only 0.01% higher
than the best results of the benchmark methods. Note that these bench-
mark methods have been explored extensively on these datasets, there-
fore, even 1% improvement in accuracy is very difficult to achieve.

On the MB dataset, the IEGP approach achieves better (or the same)
results than any of the 19 benchmark methods except for LDANet-2. IEGP
achieves a maximum accuracy of 98.82%, which is slightly lower than
the accuracy of 98.95% achieved by LDANet-2. Although IEGP achieves
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worse results than LDANet-2 on MB, it achieves better results on the other
six datasets. The three variants of the MB dataset, i.e., the MRD, MBR,
and MBI datasets, are more difficult than the MB dataset by adding vari-
ational factors including rotation and background change. On the MRD
dataset, IEGP achieves better results than any of the 19 benchmark meth-
ods except for EvoCNN. On the MBR dataset, IEGP is better than any
of the 18 benchmark methods except for SPCN and EvoCNN, which are
CNN-based methods. On the MBI dataset, IEGP is better than any of the
17 benchmark methods except for SPCN, EvoCNN, and FGP. The SPCN
method is more effective than IEGP on these two datasets but less effective
on the other four datasets. Particularly, IEGP achieves 94.28% accuracy on
MRD which is much higher than the accuracy (90.19%) achieved by SPCN.
EvoCNN is a state-of-the-art CNN-based method by automatically evolv-
ing the architectures of CNNs. Compared with EvoCNN, IEGP achieves
worse results on some difficult datasets, i.e., the MBR and MBI datasets,
but IEGP achieves better (same) results on the MB, Rectangle and Convex
datasets. This indicates that IEGP as a GP method is effective and promis-
ing for image classification. On the Rectangle dataset, IEGP achieves 100%
accuracy. RI as a variant of Rectangle is more difficult. IEGP achieves the
best accuracy among all the methods on the RI dataset except for EvoCNN.
But the difference between the best results achieved by EvoCNN and IEGP
on the RI dataset is very small, i.e., 94.97% (EvoCNN) vs. 94.88% (IEGP).
On the Convex dataset, IEGP obtains a maximum accuracy of 98.26%,
which is slightly lower than the best accuracy (98.46%) obtained by FGP
among all the methods, but 3% higher than that achieved by EvoCNN.
Compared with the FGP approach, the IEGP approach achieves better per-
formance on three datasets, the same performance on two datasets and
worse performance on two datasets. FGP only uses a single classifier for
classification, while IEGP constructs an ensemble of accurate and diverse
classifiers for classification. The results confirm the effectiveness of IEGP
for constructing ensembles of various classifiers for image classification.
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Figure 5.5: Comparisons of the distributions of the training and test re-
sults obtained by the EGP and IEGP approaches on the MB, Rectangle and
Convex datasets.

Compared with EGP, the IEGP approach is more effective for classify-
ing large-scale datasets. On three datasets, i.e., MB, Rectangle and Con-
vex, IEGP achieves better results than EGP. Importantly, IEGP achieves a
maximum accuracy of 98.26% on Convex, which is 4% higher than that
achieved by EGP. To further compare EGP with IEGP, Figure 5.5 show the
distributions of the training accuracy and test accuracy of the EGP and
IEGP methods on the MB, Rectangle and Convex datasets. From this fig-
ure, it is clear that IEGP achieves much higher maximum classification
accuracy and median accuracy than EGP on these three datasets. These
results indicate that IEGP achieves better performance than EGP. In ad-
dition, the results obtained by IEGP are more clustered than those ob-
tained by EGP, which means that IEGP is more stable than EGP. The results
demonstrate that IEGP significantly improves the EGP method by having
a new representation and a new function set for image classification.

5.5 Further Analysis

This section compares the convergence behaviours of EGP and IEGP, and
analyses the trees/solutions evolved by IEGP to further understand what
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features they extract and what classifiers in the evolved ensembles are
built for image classification.

5.5.1 Convergence Behaviour of IEGP

Figure 5.6: Convergence curve of the EGP method and the proposed IEGP
method on the FEI 1, FEI 2, ORL, MB, Rectangle, Convex datasets.

Figure 5.6 shows the convergence behaviours of EGP and IEGP on the
FEI 1, FEI 2, ORL, MB, Rectangle, Convex datasets. It can be found that
the start points of IEGP are better than EGP on most of these datasets, indi-
cating that the new designs of the program structure and the function set
can improve the quality and effectiveness of the whole population. Com-
pared with EGP, IEGP has faster convergence speed and can find better
solutions with larger fitness value. Specifically, on the FEI 1 and FEI 2, the
start points of EGP and IEGP are close and IEGP obtains better results than
EGP at the final generation. This indicates the new individual represen-
tation of IEGP allows it to find better solutions with higher fitness values
than the EGP method with the same parameter settings. In addition, it can
be found from Figure 5.6 that IEGP can converge to a high point after 50
generations on these datasets.
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5.5.2 Visualisation of Example Solutions

An Example Solution on MRD

Since IEGP achieves the best results on the MRD dataset, the best pro-
gram/solution on this dataset is used for analysis and visualisation. The
solution is visualised in Figure 5.7. This solution achieves 93.8% accuracy
on the training set of MRD and 94.28% accuracy on the test set. Note that
the example solution is used for testing so that the X train node is re-
placed with the Images node and the Y train node is removed for simpli-
fication. It is clear from Figure 5.7 that the example solution is an ensemble
of three ERF classifiers with different parameters. The left and right clas-
sifiers have 450 decision trees with a maximum tree depth of 60, while the
middle classifier has 450 decision trees with a maximum tree depth of 30.
It is obvious that the example solution is an ensemble of ensembles.
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Figure 5.7: An example solution found by IEGP on the MRD dataset.

As shown in this figure, it is obvious that the three classifiers are trained
using different features. The first branch uses the features that are the com-
bination of 128 SIFT features and 59 uLBP features. Before extracting fea-
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tures using the SIFT and uLBP functions, each image is processed by the
Sqrt function or the Gau function (with a standard deviation value of 1).
The second branch uses 256 (128× 2) SIFT features extracted from the im-
ages after the corresponding transformations, such as the Sqrt, Max, Gau,
andMaxP functions. The third branch uses 128 SIFT features and 59 uLBP
features for classification. The Sqrt function and the Gau function are em-
ployed to rescale and smooth the images before feature extraction. The
SIFT and uLBP functions transform the processed images into features
and the features are fed into the classification functions. By this analysis,
it is clear that each branch extracts various numbers and types of features
from images after corresponding filtering or pooling operations and uses
these features to build different classifiers. This indicates that the inputs
for each classifier in the example solution are different, which enhances
the diversity of the classifiers in the ensemble.

An Example Solution on MBR

An example solution on the MBR dataset is visualised in Figure 5.8. This
solution achieves 93.38% accuracy on the training set and 93.21% accuracy
on the test set. Different from the solution in Figure 5.7, where the clas-
sifiers in the ensemble are trained from the same classification algorithm,
this example solution is an ensemble of three classifiers trained from dif-
ferent classification algorithms. This shows that the IEGP approach can
evolve ensembles of the same or different classifiers, which is very flexible
for solving different image classification tasks.

In the ensemble in Figure 5.8, the first classifier is ERF, having 480 de-
cision trees with a maximum tree depth of 90. The second classifier is
SVM, where the value of the penalty parameter is 10−1. The third classi-
fier is LR, where the value of the penalty parameter is 10. From Figure 5.8,
we can see that the three classifiers are trained using features extracted
by different feature extraction functions in their children branches. The
features extracted from this dataset are the combinations of the SIFT fea-
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Figure 5.8: An example solution found by IEGP on the MBR dataset.

tures and the HOG features. Meanwhile, different filtering functions are
employed to process the image before feature extraction. Accordingly, dif-
ferent inputs for the three classifiers further enhance the diversity of the
constructed ensemble.

5.5.3 Effectiveness of the Evolved Ensembles

To further analyse the performance of the example ensembles in Figures
5.7 and 5.8, we calculate the accuracy of each classifier in the example en-
sembles on the test set of MRD and MBR, respectively. Table 5.7 lists the
results obtained by the example ensembles (the second row) and the re-
sults obtained by each classifier in the branches circled in Figures 5.7 and
5.8 (the third to the fifth rows). In addition, we use the raw pixels as inputs
to train three classification algorithms that are used to build the example
ensembles in Figures 5.7 and 5.8, and build a new ensemble of the trained
classifiers using the plurality voting. The results obtained by this ensem-
ble are listed in the final two rows of Table 5.7.

The ensemble in Figure 5.7 achieves 94.28% accuracy on the test set of
MRD and the ensemble in Figure 5.8 achieves 93.21% accuracy on the test
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Table 5.7: Classification Accuracy (%) on the Test Sets of MRD and MBR

Method MRD MBR
Ensemble in Figure 5.7 or Figure 5.8 94.28 93.21
Classifier in branch 1 in Figure 5.7 or Figure 5.8 93.31 88.37
Classifier in branch 2 in Figure 5.7 or Figure 5.8 93.53 92.84
Classifier in branch 3 in Figure 5.7 or Figure 5.8 93.30 91.29
Ensemble of three ERFs using raw pixels 88.51
Ensemble of ERF, SVM and LR using raw pixels 66.04

set of MBR, which are better than any of the three single classifiers or the
ensemble using raw pixels, as listed in Table 5.7. Comparing the example
ensembles with the single classifiers, we can find that the combination of
these three classifiers using the voting function enhances the classification
accuracy. The reason may be that IEGP automatically selects classification
functions to build an ensemble during the evolutionary process, which re-
sults in a good combination of classifiers. This indicates that IEGP can
find a good ensemble to achieve better generalisation performance than a
single classifier. Compared the example ensembles in Figure 5.7 and Fig-
ure 5.8 with the new ensembles listed in the final two rows of Table 5.7, it
is obvious that feature extraction is necessary and important for improv-
ing the classification performance. The ensembles of classifiers built using
raw pixels only achieve 88.51% on MRD and 66.04% on MBR, which are
much lower than those of the ensembles found by IEGP. This indicates that
the features learned by IEGP are more discriminative than raw pixels and
can further boost the performance of the ensembles. This shows that one
of the objectives that uses the proposed IEGP approach to learn effective
features has been successfully achieved.

To conclude, further analysis shows that the ensembles found by IEGP
have high diversity by using different features to build classifiers to form
ensembles. The analysis reveals that IEGP can find ensembles using the



186 CHAPTER 5. FEATURE LEARNING AND ENSEMBLE EVOLVING

classifiers trained from the same or different classification algorithms. The
analysis also shows that IEGP finds good ensembles of classifiers to achieve
higher generalisation performance than a single classifier. In addition, the
features learned by IEGP are more discriminative than raw pixels for clas-
sifying images.

5.6 Chapter Summary

In this chapter, the IEGP approach was proposed to automatically learn ef-
fective features and evolve ensembles for image classification. A new indi-
vidual representation, a new function set, and a new terminal set were de-
veloped to allow IEGP to learn informative features and evolve ensembles
of diverse classification algorithms. The parameters of the classification
algorithms in the evolved ensemble can be automatically set during the
evolutionary process. The diversity issue of ensembles can be automat-
ically addressed by IEGP with a tree-based representation. In addition,
the evolved ensembles have variable lengths or sizes, which is suitable for
dealing with different types of image classification tasks.

This chapter showed the effectiveness of the IEGP approach by testing
it on 12 image classification datasets of varying difficulty and comparing
it with a large number of effective methods. The comparisons showed that
IEGP achieved better performance than the six methods using raw pixels,
the four methods using well-known features, two CNN-based methods,
and the two GP methods (EGP and FGP). On the datasets with a large
number of training and test instances, i.e., datasets 6-12, the IEGP ap-
proach achieved better performance than all the benchmark methods on
one dataset, ranked second on three datasets, third on one dataset, and
fourth on the remaining one dataset. Compared with EvoCNN, the IEGP
approach achieved better or the same results on three datasets and slightly
worse results on the other four datasets. EvoCNN as a state-of-the-art
deep learning method achieved the best results on some datasets, but it
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required a large number of computational resources (must be trained on
GPU) and training instances. The comparisons further demonstrated the
effectiveness of IEGP for image classification. Compared with the pre-
vious EGP method, IEGP achieved significantly better results on most
benchmark datasets. The comparisons between EGP and IEGP in the dis-
tributions of the training and test results showed that IEGP achieved better
and more stable results than EGP. Compared with the FGP method pro-
posed in Chapter 3, IEGP achieved better performance in most compar-
isons, indicating that the performance can be further improved by using
ensembles for image classification.

Different from the previous two chapters, this chapter developed a
new GP-based approach to automatically learn features and evolve en-
sembles for image classification. Ensemble classifiers can improve the ac-
curacy over the single classifier on image classification. Although these
approaches have achieved promising results on different types of image
classification tasks, they may be computationally expensive, especially
when the number of training instances is large. Therefore, the next chapter
will develop a new GP-based approach with a new multi-population al-
gorithm framework to further improve both the classification performance
and the computational efficiency by creating an ensemble for image clas-
sification.
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Chapter 6

Multi-Population GP with
Knowledge Transfer and
Ensembles for Fast Feature
Learning

6.1 Introduction

The previous chapters developed new GP-based approaches that are able
to improve the generalisation performance on different types of image
classification tasks. Although existing GP-based feature learning approaches
and the proposed approaches have achieved promising results on many
image classification tasks, they are often computationally expensive due
to a large number of expensive fitness evaluations. The evaluation of the
features learned by GP is often based on the training set in the fitness eval-
uation process. It is known that many image classification datasets have a
large number of training instances, e.g., MNIST [136] has 60,000 training
images. The high computational cost is challenging for applying GP-based
feature learning algorithms to such large datasets. Therefore, it is neces-
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sary to develop a new GP-based approach that is computationally cheap
for feature learning in image classification.

GP is a population-based approach that uses a number of individu-
als to search for the best solution. The large population can be split into
several small populations and each small population can learn features
from a small subset of the large training set. Thus, evaluating the indi-
viduals on a small subset of the training set is computationally cheaper
than on the original training set. Therefore, this chapter proposes a multi-
population GP-based approach to fast feature learning for image classi-
fication. With multiple populations, the knowledge learned by one pop-
ulation can be extracted and used to help the learning of the other pop-
ulation(s). An effective knowledge transfer method can be proposed to
achieve this. However, learning from a small subset of the original train-
ing set, the GP-based approach may find solutions with poor generalisa-
tion performance. Therefore, to improve the generalisation performance,
it is also necessary to investigate a new fitness function and a new ensem-
ble formulation method for image classification.

6.1.1 Chapter Goals

The overall goal of this chapter is to develop a new approach to improving
both the generalisation performance and computational efficiency of GP-
based feature learning algorithms for image classification. To achieve this
goal, a new feature learning approach with a new multi-population algo-
rithm framework, a new fitness function and a new combination strategy
for ensemble formulation is proposed. To reduce the computational cost, a
new multi-population algorithm framework that uses multiple small pop-
ulations to learn features from small subsets of the original training data
is developed. During the evolutionary process, knowledge transfer is em-
ployed to improve the learning performance of the small populations. To
improve the generalisation performance, a new fitness function and a new
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combination strategy for ensemble formulation are proposed to create an
effective ensemble for classification. The new approach uses the same pro-
gram structure, the function set and the terminal set as the FGP approach
(proposed in Chapter 4) for feature learning. The new approach is termed
as fastFGP in short. Specifically, this chapter will investigate

• how a multi-population algorithm framework is developed in GP-
based feature learning algorithms to improve computational efficiency;

• how the knowledge across different small populations is extracted
and transferred to improve the learning performance;

• how an effective fitness function is proposed to better evaluate the
individuals on small subsets of the training data;

• how an effective ensemble with weighted classifiers is created for
image classification;

• whether the proposed fastFGP approach can achieve better classi-
fication performance and reduce the computational cost than the
baseline GP-based feature learning approach (the FGP approach pro-
posed in Chapter 4); and

• whether the fastFGP approach can achieve better classification per-
formance than the other benchmark methods.

6.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Chapter 6.2 presents
the proposed approach. Experiments are designed in Chapter 6.3. Chapter
6.4 discusses and analyses the experimental results. Further analysis of the
proposed approach is presented in Chapter 6.5. Chapter 6.6 concludes this
chapter.
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6.2 The Proposed Approach

This section introduces the proposed approach, fastFGP, in detail. First,
the overall algorithm is outlined. Second, it introduces the knowledge
transfer and a new mutation operator. Then it describes the new log-
loss-based fitness function and the fitness evaluation process. Finally, it
presents the strategy that combines final solutions to create an ensemble
for classifying images.

6.2.1 Algorithm Framework

The overall feature learning process is generally computationally expen-
sive due to a large number of expensive fitness evaluations. Using a small
number of training instances or a small population in GP can reduce the
computational cost. However, using a small number of training instances
for feature learning may cause the model/solution not to generalise on
unseen data due to the high variations among images. In addition, a small
population might not be sufficient for GP to find good solutions. Based
on these considerations, a new feature learning framework is developed
in GP-based feature learning algorithms to reduce the computational cost
and to improve the generalisation performance of the solutions.

The overall framework of the proposed fastFGP approach is shown in
Figure 6.1. In the new framework, the full training set Dtrain is split into
N non-overlapping small subsets with preserving the class ratio to form
subsets D1, . . . ,DN . Then N + 1 small populations, i.e., P0, P1, . . . , PN , are
randomly initialised using a tree/program generation method based on
the program structure, the function set, and the terminal set of FGP. The
first population P0 uses the full training data Dtrain for feature learning,
which aims at finding the best solution on the full training data with high
generalisation performance. The remaining N populations P1, . . . , PN use
D1, . . . ,DN for feature learning, respectively, which aim to find the best
solutions on the non-overlapping small subsets of Dtrain. Each population
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solves one problem on the training set or a small subset. The best solu-
tions for these problems, Dtrain,D1, . . . ,DN , can be the same or different
because these datasets have different instances. In this framework, each
population in the new framework uses a small population size. The pop-
ulation size for each population is set as [PS/(N +1)] (use the integer part
if PS is indivisible by N +1), where PS is the commonly used population
size for a GP method. Note that compared with other evolutionary algo-
rithms, e.g., GAs and PSO, GP often has a larger population size, e.g., 500
used in FGP. Therefore PS/(N + 1) is 100 when N = 4 and PS = 500.

At each generation, P0 is evaluated on the full training data Dtrain and
Pi (1 ≤ i ≤ N) is evaluated on the small subset Di (1 ≤ i ≤ N). Dur-
ing the evolutionary learning process, useful knowledge is extracted from
and transferred between the N + 1 populations to improve the learning
performance. The extracted knowledge is stored in two archives and the
knowledge transfer is achieved by using a new mutation operator. At each
generation, the crossover operator and the new mutation operator are em-
ployed to create a new population for the next generation. Note that repro-
duction or elitism is not employed in the proposed approach since the best
trees can be stored in two archives. When the termination condition is sat-
isfied, the best solution of each population is returned. Based on the N +1

best solutions, a combination strategy is proposed to combine these solu-
tions to create an ensemble for solving image classification, which aims to
achieve high generalisation performance on the unseen dataset.

Computational Complexity Analysis and Comparisons

We compare the computational complexity of fastFGP and FGP to analyse
whether the computational complexity is reduced in fastFGP. In GP-based
feature learning algorithms, the main computational cost is from fitness
evaluation. For simplification, we compare the computational complexity
of FGP and fastFGP on population evaluation at one generation. At each
generation, FGP evaluates PS individuals on Dtrain, where the number of
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Figure 6.1: Overall framework of the proposed fastFGP approach.
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instances is n. The fastFGP approach evaluates [PS/(N + 1)] individuals
on Dtrain and [PS/(N + 1)] individuals on D1, . . . , DN , respectively. In
D1, . . . , DN , the number of instances is [n/N ] (use the integer part if n is
indivisible by N ).

The FGP method uses a linear SVM for classification in the fitness eval-
uation process. The approximated complexity of SVM is O(n2f) [54, 172],
where n represents the number of training instances and f represent the
number of features. The fastFGP method uses LR for classification in the
fitness evaluation process and the complexity of LR is O(nf 2). When
f ≤ n, the complexity of LR is smaller than the complexity of SVM. To
analyse the effects of the N on the computational complexity, we assume
that both FGP and fastFGP use a Linear SVM for fitness evaluation to
achieve easy comparisons. We assume that the complexity of transform-
ing n images into features using a GP individual is O(n) and f is the same
for all the individuals. Then the complexity of FGP at one generation is

OFGP = O(PS × (n2f + n)), (6.1)

The complexity of fastFGP at one generation OfastFGP is

OfastFGP = O(
PS

N + 1
(n2f + n) +

N × PS
N + 1

((
n

N
)2f +

n

N
)). (6.2)

Based on equations (6.1) and (6.2), we can have OfastFGP < OFGP on
the condition that N > 1

2(nf+1)
+

√
1− 4nf+3

(2(nf+1))2
. As n > 1, f > 1, and

22(nf + 1))2 > 4nf + 3, it can be induced that when N > 1, we can have
OfastFGP < OFGP .

In the fastfGP approach, we set N = 4, leading to the creation of five
small populations. When N = 4, the complexity of fastFGP is OfastFGP =

O(1
5
PS(n2f+n))+4

5
PS((n

4
)2f+n

4
). After simplification, we haveOfastFGP =

O(PS(n
2f+n
4

)), which is three times less than the complexity of FGP, i.e.,
O(PS(n2f + n)).
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Figure 6.2: The knowledge transfer route in fastFGP crossing different
small populations.

6.2.2 Knowledge Transfer and A New Mutation Operator

The fastFGP approach hasN+1 small populations, which can learn differ-
ent knowledge from various data Dtrain,D1, . . . ,DN . Each dataset can be
considered as a single task with different instances. Knowledge transfer
crossing these tasks can help improve the learning performance on an-
other task. But the key questions are what to transfer, how to transfer and
when to transfer [170]. In the fastFGP approach, a new method is pro-
posed to achieve knowledge transfer between the N +1 small populations
at each generation, which is different from the current work on knowledge
transfer in GP.

In FGP, the tree or subtrees represents the interrelationship between
the input variables/images and the operators, which indicates the knowl-
edge (building blocks) discovered from the task by learning. The knowl-
edge can be extracted to reuse [114]. The fastFGP approach has multi-
ple populations, which indicates that there are several possible sources
to extract trees and reuse them. To achieve fast and effective knowledge
transfer, the relationship between the datasets can be used to provide intu-
itive hints towards how to extract and use the knowledge across different
populations. Based on the relationships Di ⊂ Dtrain (1 ≤ i ≤ N) and
Di ∩ Dj = ∅ (1 ≤ i ≤ N ; 1 ≤ j ≤ N ; i 6= j), a simple knowledge transfer is
defined in fastFGP, which is shown in Figure 6.2.

In fastFGP, two archives are built to store the extracted trees (including
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subtrees) from different populations for transferring. These extracted trees
are stored in two archives, i.e., Archive1 and Archive2. Archive1 is used to
store [PS/(N+1)] best trees extracted from P0 andArchive2 is used to store
[PS/(N + 1)] best trees extracted from P1, . . . , PN . Specifically, [PS/(N ∗
(N + 1))] best trees are extracted from Pi(1 ≤ i ≤ N) to form Archive2.
Note that we limit the storage of Archive1 and Archive2 to PS/(N + 1)

trees in order to save memory. The trees in Archive1 are the best trees
of P0 of all the past generations. The trees in Archive2 are the best trees
of P1, . . . , PN of all the past generations. The Archive1 and Archive2 are
updated at each generation after fitness evaluations to store the best trees
so far.

Algorithm 5: Knowledge-based Mutation Operator
Input : p: an individual for mutation; Archive: an archive storing

the extracted trees for knowledge transfer (Archive1 or
Archive2 depending on p from which population).

Output : A new offspring o after mutation.

1 pkb ← Select an individual from Archive using tournament
selection;

2 Node types← Find all the common types of the nodes in
individuals pkb and p; // fastFGP is based on strongly

typed GP

3 sub tree← Randomly select a type from Node types and select a
subtree from pkb based on the type;

4 o← Select the node with the same type in p and replace its branch
with sub tree.

The knowledge transfer happens in the mutation operation at each
generation. Since the two archives, Archive1 and Archive2, can store best
trees, only crossover and mutation operators are employed in fastFGP to
generate new populations during the evolutionary process and elitism is
not used/needed. Standard mutation operator randomly generates a new
branch to replace the branch from a randomly selected node of the tree,
which can add new genetic materials into the population. Instead of us-
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ing randomly generated subtrees in mutation, a new mutation operator is
proposed to use the branch of trees selected from the archives. The new
mutation operator is called knowledge-based mutation operator, which is
described in Algorithm 5. The new operator starts with selecting one best
tree/individual pkb from the archives using Tournament selection. Then
the common types (Node types) of all the nodes in pkb and p (the individ-
ual will be mutated) are found. The fastFGP approach is based on strongly
typed GP and the type constraint needs to be satisfied when performing
mutation. One type is randomly selected from Node types and a subtree
(sub tree) is selected from pkb based on the selected type. Then mutation
is performed on p by randomly selecting a node with the same type and
replacing the branch of p using the selected sub tree. The new individ-
ual/tree has a subtree (sub tree) from the archive, which indicates that
the knowledge is successfully transferred from the archives to the current
population.

6.2.3 Fitness Evaluation

In many GP-based feature learning algorithms [197], SVM is often used
for classifying images. SVM builds multiple strong binary classifiers for a
classification problem and cannot directly provide probabilities of predic-
tion. Compared with SVM, LR, also known as softmax regression, can pre-
dict confidence scores/probabilities of different classes for each instance,
which may be better for building an ensemble. The fastFGP approach uses
multinomial LR for image classification. In multinomial LR, the probabil-
ity of an instance x to belong to one of the C − 1 classes is P{y = c|x}
and the probability of x to belong to class C is P{y = C|x}, which are
formulated in Equation (6.3) and Equation (6.4), respectively.

P{y = c|x} = ew
T
c ·x+βc

1 +
∑C−1

c=1 e
wTc ·x+βc

, c = 1, 2, 3, · · · , C − 1, (6.3)
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P{y = C|x} = 1

1 +
∑C−1

c=1 e
wTc ·x+βc

, (6.4)

where wc represents a S × 1 vector of weights and βc represents the bias
of the linear model: wTc · x + βc. wTc represents the vector transpose. The
weights {w1, w2, . . . , wC−1} and biases {β1, β2, . . . , βC−1} can be estimated
from training data using maximum likelihood estimation.

The outputs of a LR classifier for an instance x are probabilities of dif-
ferent classes, such as P{y = 0|x} = 0.1 and P{y = 1|x} = 0.9. The com-
monly used log-loss (also known as cross-entropy loss) function is more
suitable for evaluation than the accuracy metric. The accuracy metric only
considers the total number of correctly classified instances, which, for ex-
ample, consider whether P{y = 0|x} is larger or smaller than P{y = 1|x}.
However, the log-loss function can provide more information by quantify-
ing the penalty if the predicted probability for the correct class is not one.
In general, the smaller the loss, the better the classification performance. A
zero log-loss indicates that all the instances have predicted probabilities of
one in the correct class and zero in the other classes. In this chapter, we for-
mulate the fitness function based on the log-loss function. Since log-loss is
a minimisation problem, we transform it as a maximize problem by using
negative log-loss. As in FGP, stratified k-fold cross-validation is employed
to improve the generalisation performance of the solutions. Therefore, the
fitness function for the fastFGP approach can be formulated as Equation
(6.5).

maxF = max
1

K

K∑
i=1

Li

= max
1

K

K∑
i=1

(
1

Mi

Mi∑
m=1

C∑
c=1

ym,c log pm,c).

(6.5)

where Li represents the negative log-loss on the ith fold. ym,c ∈ {0, 1} rep-
resents the true label of instance m on class c. pm,c ∈ [0, 1] represents the
predicted probability of instance m on class c and

∑C
c=1 pm,c = 1. C rep-
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resents the total number of classes of the dataset.K represents the number
of K in K-fold cross-validation and Mi represents the total number of in-
stances in fold i. The value of F is in the range (−∞, 0].

FGP uses a hash table to store a number of individuals to avoid evaluat-
ing the same individuals again. The fitness evaluation process of fastFGP
also employs this strategy for fast evaluation. Since there are N + 1 popu-
lations in fastFGP, N + 1 hash tables (CTn (0 ≤ n ≤ N)) are built to store
individuals and their fitness values in the past generations, respectively.
Based on the hash table and the new fitness function, the overall fitness
evaluation process is shown in Algorithm 6.

Algorithm 6: Fitness Evaluation
Input : CTn: the hash table of population n;

Dn = {(x1, y1), . . . , (xm, ym)}: the training data for
population n (D0 is Dtrain), p: the evaluated individual.

Output : f(p).

1 if p in CTn then
2 f(p)← the fitness value of CTn(p);
3 else
4 Use p to transform {x1, . . . , xm} into features {f1, . . . , fm};
5 Standardise {f1, . . . , fm} according to the mean and standard

deviation values;
6 Split {f1, . . . , fm} and {y1, . . . , ym} into K = 5 folds preserving

the class ratio;
7 for i = 1 to K do
8 Fit four folds of data except for the ith fold into logistic

regression to train a classifier;
9 Test the classifier on the ith fold of data;

10 Li ← Calculate the values of log-loss on the ith fold
according to Equation (6.5);

11 end
12 f(p)← Calculate the average negative log-loss values;
13 end
14 Return f(p).
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6.2.4 Ensemble Formulation for Classification

After the evolutionary process, fastFGP returns the best individual from
each population. Therefore, N + 1 best individuals, i.e., I0, . . . , IN , are
returned. To achieve good generalisation performance on test data, an
ensemble is created based on these individuals and their weights for clas-
sification. The outline of ensemble formulation is shown in Figure 6.3.
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Figure 6.3: Outline of ensemble formulation.

First, the weights of individuals are calculated and some bad individ-
uals are discarded according to the weights. The calculation of the weight
is based on the performance (fitness value) of each individual on the full
training data Dtrain. The bad individuals are discarded in order to make
the individual classifiers be not only diverse but also accurate. In this
method, we discard individuals by comparing their fitness values (f ) with
the fitness value (f0) of the best individual of the first population P0. This is
because the range of the fitness values (the negative log-loss values) varies
with the datasets and f0 is often higher than f . The discarding criterion
will be f < a ∗ f0. In this approach, a > 1 and we set a as 2 to balance
discarding and selecting individuals.

The main steps of ensemble formulation are summarised as follows:

Step 1: Evaluate each individual Ii (1 ≤ i ≤ N) on Dtrain using the fitness
function to obtain fitness values fi. Note that I0 has its fitness value
f0 on Dtrain so that it is not evaluated again;
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Step 2: Discard bad individuals if fi < 2f0 (1 ≤ i ≤ N) to obtain m + 1

individuals with their fitness values {f0, . . . , fm} (0 ≤ m ≤ N);

Step 3: To obtain the weights of each classifier. First, the negative (log-
loss) values of fi (0 ≤ i ≤ m) are transformed to positive using∑m

i=0 fi/fi to obtain {pfi}mi=1 (note that the rank of {fi}mi=0 does not
change). Second, pfi is scaled into [0, 1] using pfi/

∑m
i=0 pfi to obtain

{wi}mi=0, where
∑m

i=0wi = 1;

According to the m + 1 selected individuals and the weights, we can
build m + 1 classifiers using the corresponding individuals and create an
ensemble based on the classifiers and the weights. Each classifier is built
from an individual Ii (0 ≤ i ≤ m). In this process, the individual Ii is
used to transform images in Dtrain to features, i.e., Ditrain. The features in
Ditrain are standardised. Then Ditrain is fed into LR to train the classifier
i. Repeating this process, the m + 1 trained classifiers using Dtrain are
obtained. The weight for classifier i is wi (wi ∈ {wi}mi=0).

In the test process, the m+ 1 trained classifiers are combined to obtain
an ensemble for classifying images in test set Dtest using weighted voting
[247]. In the test process, the test set Dtest is transformed into features Ditest
using the corresponding individual Ii. The Ditest is standardised according
to Ditrain. Then an instance x in Ditest can be feed into a classifier i to obtain
the predicted probabilities for x, i.e., {P i(y = 0|x), . . . , P i(y = C|x)}. Re-
peating this process, m+1 sets of predicted probabilities for instance x are
obtained from the m+ 1 classifiers.

Based on the weights {wi}mi=0 and the probabilities from each classi-
fier, the weighted probabilities for instance x are calculated using Equation
(6.6).

P (y = c|x) =
m∑
i=0

wi × P i(y = c|x), c = 0, . . . , C, (6.6)

Based on the weighted probabilities, we can obtain the class label c∗ for
instance x returned by Equation (6.7).
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c∗ = argmax
P (y=c|x)

{P (y = 0|x), . . . , P (y = C|x)}. (6.7)

Finally, the class label for each instance in Dtest and the overall classifi-
cation accuracy on the test set can be calculated.

6.3 Experiment Design

A number of experiments have been conducted to show the effectiveness
of the proposed approach. This section designs the experiments, including
benchmark datasets, benchmark methods, and parameter settings.

6.3.1 Benchmark Datasets

In the experiments, 11 datasets are employed to examine the performance
of the proposed approach. These datasets are the same as those employed
in Chapters 4 and 5 except for the ORL dataset. The ORL dataset is very
small, having 10 images per class. Such a small dataset cannot be used in
the proposed framework and there is no need to reduce the computational
cost of GP for feature learning from such a small dataset. The employed
11 datasets are FEI 1 [215], FEI 2 [215], KTH [153], FS [79], MB [132], MRD
[132], MBR [132], MBI [132], Rectangle [132], RI [132], and Convex [132].
These datasets contain various representative image classification tasks,
i.e., facial expression classification (FEI 1 and FEI 2), texture classification
(KTH), scene classification (FS), digit recognition (MB, MRD, MBR, and
MBI), and object classification (Rectangle, RI and Convex). The detailed
information about these datasets are listed in Table 4.5.

6.3.2 Benchmark Methods

The majority of the benchmark methods are the same as those employed
in Chapters 4 and 5. Besides, the FGP method proposed in Chapter 4
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and the IEGP method proposed in Chapter 5 are employed for compar-
isons to show the effectiveness of the proposed fastFGP approach. There-
fore, there are 14 benchmark methods on datasets 1-4, i.e., six classifica-
tion algorithms using raw pixels (i.e., SVM, KNN, LR, AdaBoost, RF, and
ERF), four SVMs using different pre-extracted features (i.e., uLBP+SVM,
LBP+SVM, HOG+SVM, and SIFT+SVM), two CNNs with different archi-
tectures (i.e., CNN-5 and CNN-8), and two GP-based methods (i.e., EGP
[38] and FGP). On datasets 5-11, there are 21 benchmark methods for com-
parisons, i.e., SVM+RBF [132], SVM+Poly [132], SAE-3 [183], DAE-b-3
[183], CAE-2 [183], SPAE [236], RBM-3 [183], ScatNet-2 [49, 53], RandNet-
2 [53], PCANet-2 (softmax) [53], LDANet-2 [53], NNet [132], SAA-3 [132],
DBN-3 [132], FCCNN [177], FCCNN (with BT) [177], SPCN [140], EvoCNN
[208], EGP [38], IEGP, and FGP.

6.3.3 Parameter Settings

The parameter settings for fastFGP are based on the commonly used set-
tings for GP [114]. In the FGP method, the population size is 500. To
achieve fair comparisons, the total population size in fastFGP is 500. Based
on preliminary experiments, N is set as 4 as it achieves a good balance be-
tween efficiency and effectiveness. With N = 4, fastFGP has five small
populations with a size of 100, respectively. The crossover rate is 0.8 and
the mutation rate is 0.2. The best individuals can be stored into the archives
so that fastFGP does not need elitism. The selection method is tournament
selection with size 7. The tree generation method is ramped half-and-half.
The tree depth at the initialisation step is 2-6 and the maximum tree depth
is 8. Note that fastFGP may evolve trees with depth larger than 8 because
the type constraints are more important than the depth constraint in STGP.
In the LR classification algorithm employed for fitness evaluation, stochas-
tic average gradient (SAG) is used for optimising weights and bias as it is
fast on large dataset [192]. The number of iterations in LR is set to 50 dur-
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ing the evolutionary learning process to save computational cost and set
as 100 in the test process. The other parameters for LR are based on the
default settings of the algorithm implemented in scikit-learn [172].

The parameter settings for the benchmark methods, i.e., SVM, KNN,
LR, RF, AdaBoost and ERF, refer to [16, 235, 249], where the number of
nearest neighbours is 1 in KNN, the number of trees is 500 and the maxi-
mum tree depth is 100 in RF and ERF. These algorithms are implemented
based on the scikit-learn [172] package. The other parameters are the de-
fault ones in this package for simplification. The CNN-5 and CNN-8 meth-
ods are implemented on Keras [57]. ReLU is used as the activation function
and softmax is used for classification at the final layer. Dropout is added
after the pooling layer and the first fully connected layer with 0.25 and
0.5 probabilities, respectively, to avoid overfitting [201]. Note that CNN-5
and CNN-8 are just examples of CNNs to show whether the proposed ap-
proach can achieve better results than simple CNNs on datasets 1-4. The
performance of CNNs on datasets 1-4 might be further improved by using
deep CNNs with transfer learning or manually tuning on architectures,
which are out of the scope of this chapter.

The fastFGP approach is implemented on the DEAP (Distributed Evolu-
tionary Algorithm in Python) [86] package. To further speed up the fastFGP
approach, the SCOOP package [105] is employed to use multiple cores for
fitness evaluation. In the fitness evaluation, each individual is evaluated
on one core and multiple individuals are evaluated at the same time ac-
cording to the number of cores employed. In the experiments, four cores
are used to run fastFGP. In general, the training time can be sped up by
using more cores. On each dataset, fastFGP has been executed 30 inde-
pendent runs according to the convention of the EC communities. The
benchmark methods on datasets 1-4 have also been executed 30 indepen-
dent runs for comparisons. The best and average results of the 30 runs on
each dataset are reported. Note that all the reported results are on the test
sets, which are unseen to the training and evolutionary processes.
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6.4 Results and Discussions

This section presents the experimental results obtained by the proposed
fastFGP approach and the benchmark methods on the 11 benchmark datasets.
This section compares the fastFGP approach with the benchmarks meth-
ods in terms of classification accuracy and training time on these bench-
mark datasets.

6.4.1 Classification Results

Comparison with FGP

The classification results, i.e., maximum accuracy (Max), mean accuracy
and standard deviation (Mean±St.dev), of fastFGP and FGP are listed in
Table 6.1. The Wilcoxon rank-sum test with a 95% significance interval is
used to compare fastFGP with FGP. In Table 6.1, the “+” or “–” symbols in-
dicate that fastFGP achieves significantly better or worse results than FGP.
The “=” symbol indicates that fastFGP achieves similar results to FGP.

Table 6.1 shows that fastFGP achieves significantly better results than
FGP on five datasets and similar results on the remaining six datasets.
The proposed fastFGP approach obtains higher maximum accuracy than
FGP on ten datasets except for the MRD dataset. It achieves better mean
accuracy than FGP on ten datasets except for the MBI dataset. More im-
portantly, fastFGP improves the mean accuracy by 6.93% on FS, which is
a challenging task of understanding natural scene images. The classifica-
tion results show that fastFGP is more effective than FGP on the 11 differ-
ent image classification tasks. Compared with FGP, the fastFGP approach
uses the same individual representation, function set, terminal set, and
parameter settings. The results show that the new components, i.e., the
new algorithm framework, the new knowledge transfer method, the new
fitness function, and the constructed ensemble, in fastFGP are effective for
improving the performance of the baseline method (FGP) in image classi-
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Table 6.1: Classification Accuracy (%) of fastFGP and FGP on the 11
Datasets

FGP fastFGP
Dataset Max Mean±St.dev Max Mean±St.dev
FEI 1 98.00 94.47±2.67= 98.00 94.80±2.61
FEI 2 96.00 91.33±3.36= 98.00 91.40±3.02
KTH 98.79 96.07±1.13+ 99.09 97.84±0.78
FS 74.48 71.59±1.74+ 80.23 78.52±1.09
MB 98.82 98.70±0.06+ 98.95 98.85±0.05
MRD 92.63 91.56±0.61+ 92.58 91.99±0.40
MBR 93.46 92.66±0.43= 93.73 92.79±0.41
MBI 92.52 89.65±1.44= 93.16 89.49±0.92
Rectangle 100.0 99.88±0.11+ 100.0 99.99±0.02
RI 93.90 92.66±0.62= 95.11 93.05±1.03
Convex 98.46 98.16±0.19= 98.54 98.22±0.14
Total 5+, 6=

fication. With these new designs, the fastFGP approach can find the best
solutions from each small population and construct an effective ensemble
of diverse and effective classifiers using these solutions to achieve higher
generalisation on different image classification datasets. The results indi-
cate that the goal of improving the generalisation performance has been
successfully achieved.

Comparison with Other Benchmark Methods on Datasets 1-4

The classification results of fastFGP and 13 benchmark methods on datasets
1-4 are listed in Tables 6.2 and 6.3. The “+”, “–” and “=” symbols indicate
that fastFGP is significantly better, worse or similar than/to the compared
method.

Tables 6.2 and 6.3 show that the proposed fastFGP approach obtains
significantly better results than most benchmark methods on the FEI 1,
FEI 2, KTH, and FS datasets. Specifically, fastFGP is significantly better
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than eight methods and similar to four methods out of the 13 benchmark
methods on the FEI 1 dataset. On the FEI 2 dataset, fastFGP is signif-
icantly better than nine methods and similar to two methods. On the
KTH and FS datasets, fastFGP performs significantly better than any of
the benchmark methods. The FEI 1 and FEI 2 datasets are facial expres-
sion classification tasks, which are relatively easy so that many benchmark
methods achieve good results, i.e., over 90% accuracy. The KTH and FS
datasets are texture classification and scene classification tasks, which are
more difficult than the FEI 1 and FEI 2 datasets. The benchmark methods
achieve very low accuracy on these two datasets, i.e., the mean accuracy
is less than 83% on the KTH dataset and less than 62% on the FS dataset,
while fastFGP achieves 97.84% mean accuracy on the KTH dataset and
78.52% mean accuracy on the FS dataset. The comparisons show that fast-
FGP is effective for solving different types of image classification tasks of
varying difficulty.

Comparison with Other Benchmark Methods on Datasets 5-11

The classification accuracy of the proposed fastFGP approach and 21 bench-
mark methods on datasets 5-11 are listed in Table 6.4. The datasets 5-11
have public training and test sets so that the accuracy of these benchmark
methods on the test set is collected from the corresponding papers. On
these datasets, we only compare the best results of these methods because
most benchmark methods only reported the best results. In Table 6.4, the
symbol “↑” indicates that the best accuracy obtained by fastFGP is better
than that of the compared method.

From Table 6.4, we can find that the proposed fastFGP approach achieves
better results than most of the effective methods on the seven datasets.
Note that these datasets have been extensively exploited by these meth-
ods so that any improvement in accuracy is difficult. In addition, most
benchmark methods are (deep) neural network-based methods, which are
known as powerful methods for feature learning and image classifica-
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Table 6.2: Classification Accuracy (%) of the FEI 1 and FEI 2 Datasets

FEI 1 FEI 2
Method Max Mean±St.dev Max Mean±St.dev
SVM 90.00 90.00±0.00+ 88.00 88.00±0.00+
KNN 32.00 32.00±0.00+ 8.00 8.00±0.00+
LR 92.00 92.00±0.00+ 88.00 88.00±0.00+
RF 98.00 97.07±1.01– 90.00 89.20±1.13+
AdaBoost 80.00 78.67±1.32+ 80.00 76.00±3.44+
ERF 94.00 93.27±0.98+ 92.00 90.60±0.93=
uLBP+SVM 66.00 56.73±3.66+ 68.00 62.53±3.52+
LBP+SVM 68.00 64.60±1.83+ 74.00 69.80±0.00+
HOG+SVM 96.00 96.00±0.00= 82.00 82.00±0.00+
SIFT+SVM 56.00 56.00±0.00+ 62.00 62.00±0.00+
CNN-5 98.00 95.40±1.30= 98.00 95.27±1.62–
CNN-8 98.00 95.33±1.32= 96.00 90.93±1.87=
EGP [38] 100.0 96.20±2.06= 100.0 98.07±1.70–
fastFGP 98.00 94.80±2.61 98.00 91.40±3.02
Overall 8+, 4=, 1– 9+, 2=, 2–

tion. Compared with these benchmark methods, the fastFGP approach,
as a GP method, ranks first among all the methods on four datasets, i.e.,
MB, Rectangle, RI, and Convex, ranks second on two datasets, i.e., the
MBR and MBI datasets, and ranks fourth on the remaining one dataset,
i.e., MRD. On the MB dataset, fastFGP and LDANet-2 find the best ac-
curacy of 98.95%. However, LDANet-2 only achieves 87.58% on the MBI
dataset, which is a variant of the MB dataset by adding additional image
background, and 83.80% on the RI dataset, which is a variant of Rectan-
gle by adding additional background noise. This indicates that the per-
formance of LDANet-2 is significantly affected by these additional noises
in the MBI and RI datasets. Compared with LDANet-2, fastFGP is less
affected by achieving 93.16% accuracy on the MBI dataset and 95.11% ac-
curacy on the RI dataset. The EvoCNN method, which is a state-of-the-art
deep learning method using EC to evolve architectures of CNNs, achieves
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Table 6.3: Classification Accuracy (%) of the KTH and FS Datasets

KTH FS
Method Max Mean±St.dev Max Mean±St.dev
SVM 46.97 44.59±2.83+ 20.63 20.30±0.15+
KNN 34.24 34.24±0.00+ 24.35 24.35±0.00+
LR 48.79 48.79±0.00+ 23.49 23.49±0.00+
RF 60.00 57.81±0.83+ 37.36 36.53±0.49+
AdaBoost 37.88 33.44±1.37+ 17.47 13.04±1.47+
ERF 61.52 59.83±0.86+ 37.94 37.15±0.36+
uLBP+SVM 78.79 73.29±4.18+ 49.79 33.27±8.90+
LBP+SVM 83.64 82.71±0.51+ 53.50 50.45±1.80+
HOG+SVM 57.27 55.96±0.64+ 12.11 7.91±2.47+
SIFT+SVM 65.76 65.76±0.00+ 60.92 60.92±0.00+
CNN-5 85.76 82.56±1.87+ 50.14 48.03±1.16+
CNN-8 76.36 71.63±3.18+ 49.16 46.79±1.01+
EGP [38] 87.88 77.53±5.17+ 67.17 61.07±2.91+
fastFGP 99.09 97.84±0.78 80.23 78.52±1.09
Overall 13+ 13+

the best results on the MRD, MBR and MBI datasets. These three datasets
are difficult due to additional variations. EvoCNN requires the Graphics
Processing Unit (GPU) implementation and uses extensive computational
resources to find the best architectures for CNNs so that it can achieve
better classification accuracy. In contrast, fastFGP is implemented on the
Central Processing Unit (CPU) and the computational cost is affordable
(or even less). Although fastFGP achieves slightly worse results on these
three datasets, it is noticeable that it achieves better results than EvoCNN
on the remaining four datasets. Compared with EGP, IEGP and FGP, fast-
FGP achieves better results on six datasets except for the MRD dataset,
where IEGP achieves slightly better accuracy. Compared with IEGP, which
is an ensemble method that automatically learns features and builds many
different classifiers (e.g., SVM, RF and LR) to construct the ensemble, fast-
FGP only uses the LR classifier to construct the ensemble but achieves
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Table 6.4: Classification Accuracy (%) of Datasets 5-11

Method MB MRD MBR MBI Rectangle RI Convex
SVM+RBF [132] 96.97 (↑) 88.89 (↑) 85.42 (↑) 77.39 (↑) 97.85 (↑) 75.96 (↑) 80.87 (↑)
SVM+Poly [132] 96.31 (↑) 84.58 (↑) 83.38 (↑) 75.99 (↑) 97.85 (↑) 75.95 (↑) 80.18 (↑)
SAE-3 [183] 96.54 (↑) 89.70 (↑) 88.72 (↑) 77.00 (↑) 97.86 (↑) 75.95 (↑) −
DAE-b-3 [183] 97.16 (↑) 90.47 (↑) 89.70 (↑) 83.32 (↑) 98.01 (↑) 78.41 (↑) −
CAE-2 [183] 97.52 (↑) 90.34 (↑) 89.10 (↑) 84.50 (↑) 98.79 (↑) 78.46 (↑) −
SPAE [236] 96.68 (↑) 89.74 (↑) 90.99 (↑) 86.76 (↑) − − −
RBM-3 [183] 96.89 (↑) 89.70 (↑) 93.27 (↑) 83.69 (↑) 97.40 (↑) 77.50 (↑) −
ScatNet-2 [49, 53] 98.73 (↑) 92.52 (↑) 87.70 (↑) 81.60 (↑) 99.99 (↑) 91.98 (↑) 93.50 (↑)
RandNet-2 [53] 98.75 (↑) 91.53 (↑) 86.53 (↑) 88.35 (↑) 99.91 (↑) 83.00 (↑) 94.55 (↑)
PCANet-2 (softmax) [53] 98.60 (↑) 91.48 (↑) 93.15 (↑) 88.45 (↑) 99.51 (↑) 86.61 (↑) 95.81 (↑)
LDANet-2 [53] 98.95 92.48 (↑) 93.19 (↑) 87.58 (↑) 99.86 (↑) 83.80 (↑) 92.78 (↑)
NNet [132] 95.31 (↑) 81.89 (↑) 79.96 (↑) 72.59 (↑) 92.84 (↑) 66.80 (↑) 67.75 (↑)
SAA-3 [132] 96.54 (↑) 89.70 (↑) 88.72 (↑) 77.00 (↑) 97.59 (↑) 75.95 (↑) 81.59 (↑)
DBN-3 [132] 96.89 (↑) 89.70 (↑) 93.27 (↑) 83.69 (↑) 97.40 (↑) 77.50 (↑) 81.37 (↑)
FCCNN [177] 97.57 (↑) 91.09 (↑) 93.55 (↑) 86.77 (↑) − − −
FCCNN (with BT) [177] 97.32 (↑) 90.41 (↑) 93.03 (↑) 89.20 (↑) − − −
SPCN [140] 98.18 (↑) 90.19 (↑) 94.16 90.45 (↑) 99.81 (↑) 89.40 (↑) −
EvoCNN (best) [208] 98.82 (↑) 94.78 97.20 96.47 99.99 (↑) 94.97 (↑) 95.18 (↑)
EGP (best) [38] 97.19 (↑) − − − 99.91 (↑) − 93.97 (↑)
IEGP (best) 98.82 (↑) 94.28 93.59 (↑) 89.41 (↑) 100 94.88 (↑) 98.26 (↑)
FGP (best) 98.82 (↑) 92.63 93.46 (↑) 92.52 (↑) 100 93.90 (↑) 98.46 (↑)
fastFGP (best) 98.95 92.58 93.73 93.16 100 95.11 98.54
Rank 1/22 4/21 2/21 2/21 1/19 1/18 1/14

similar or even better performance than IEGP. The results on these seven
datasets demonstrate that fastFGP is more effective than existing methods
by achieving better results in almost all the comparisons.

6.4.2 Training Time

The fastFGP approach is sped up by the SCOOP [105] package to use four
CPU cores for fitness evaluation. To achieve fair comparisons, we also run
FGP on four cores using the SCOOP package. Due to the high computa-
tional cost of FGP, we only run it on the FEI 1, FEI 2, KTH, FS, and Rect-
angle datasets. The training time of fastFGP and FGP on the five datasets
are shown in Figure 6.4. The computational time of fastFGP on the other
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datasets are shown in Figure 6.5.
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Figure 6.4: Training time (hour) of fastFGP and FGP on the FEI 1, FEI 2,
KTH and Rectangle datasets.
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Figure 6.5: Training time (hour) of fastFGP on the MB, MRD, MBR, MBI,
RI, and Convex datasets.

From Figure 6.4, it is clear that the proposed fastFGP approach is much
faster than the FGP method in training on the five datasets. On the FEI 1
and FEI 2 datasets, fastFGP uses less than 1 hour. On the KTH dataset,
FGP uses 14.68 hours for training, while fastFGP only uses 4.26 hours. On
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the FS dataset, FGP uses 48.93 hours for training, while fastFGP only uses
8.58 hours. On the Rectangle dataset, fastFGP uses 3.66 hours, while FGP
uses 9.78 hours. Therefore, it is clear that fastFGP uses much less training
time than FGP. Specifically, fastFGP is at least twice faster than FGP. In ad-
dition, when FGP takes a long training time, the saving of fastFGP is even
larger. As a result, fastFGP is less computationally expensive than FGP,
which is consistent with the finding of the theoretical complexity analysis
in Section 6.2.1. Compared with FGP, the fastFGP approach uses multiple
populations to learn features from small subsets of the training set. Com-
pared with FGP, fastFGP evaluates most of the individuals on the subsets
with a smaller number of training instances at each generation, which sig-
nificantly reduces the fitness evaluation time. Thus, the overall training
time of fastFGP is much less than that of FGP.

From Figure 6.5, it is clear that fastFGP uses about 38 to 50 hours on
the MB, MRD, MBR, and MBI datasets, 33.6 hours on the RI dataset, and
8.2 hours on the Convex dataset. The state-of-the-art method, EvoCNN,
needs 2 to 3 days to run the experiments using two GPU cards on these
benchmarks [208]. The training time of fastFGP is less or similar than/to
that of EvoCNN if not considering other factors. However, it is noted that
the computational capacity of GPU is much higher than that of CPU. The
fastFGP approach could use much less training time than EvoCNN if it
could be implemented on GPU, which is beyond the scope of this chapter
and necessary to be investigated in the future. The comparisons can pro-
vide insights on what is the computational cost of fastFGP in contrast to
the state-of-the-art deep learning method (i.e., EvoCNN).

Comparing the training time of fastFGP with both FGP and EvoCNN,
it can be found that fastFGP can significantly reduce the training time of
feature learning. The results show that the goal of improving the compu-
tational effectiveness has been successfully achieved.
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6.4.3 Summary

To sum up, the results show that fastFGP is an effective and promising
approach for feature learning to image classification. Compared with the
original FGP method, fastFGP not only improves the classification perfor-
mance but also significantly reduces the computational time. Compared
with a large number of existing image classification algorithms, fastFGP
achieves better results in most comparisons, which further indicates the
effectiveness of fastFGP. The extensive experimental results on different
datasets demonstrate that fastFGP can effectively solve different types of
image classification tasks. The results indicate that fastFGP achieves high
generalisation performance by constructing an effective ensemble of di-
verse and accurate classifiers using the solutions found by small popula-
tions from different subsets of training data. The comparisons of fastFGP
with FGP and EvoCNN in training time show that the computational effi-
ciency of fastFGP is improved by using small populations to learn features
from small subsets of the training data.

6.5 Further Analysis

This section further analyses the ensembles constructed from the solutions
of fastFGP to show why fastFGP can achieve good classification perfor-
mance. Further analysis is conducted to analyse whether and why the
knowledge transfer is effective in fastFGP.

6.5.1 Analysis on the Constructed Ensembles

The fastFGP approach outputs five best solutions, i.e., one solution from
a small population, and creates an ensemble based on these solutions for
testing. Note that N is set as four in fastFGP so that there are five small
populations to return five solutions. In the constructed ensemble, there
are at most five classifiers. Each classifier is obtained from one solution.
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Therefore, the performance of the five classifiers on the test set and the
weights of the five classifiers in the ensemble are analysed to show why
fastFGP can achieve high generalisation performance.

Figure 6.6 shows the distributions of the classification accuracy (%) ob-
tained by every single classifier and the constructed ensemble on the test
set of MB. Note that the results are from the independent 30 runs. From
Figure 6.6, it can be found that the classification performance of all the five
classifiers is between 98.1% to 98.8%. Among all the five classifiers, the
best one is the first one, which is obtained using the best solution found
from the full training data. The other four classifiers are obtained using
the best solutions found from the small subsets of the training data. This
shows that using a small number of training instances could reduce the
generalisation performance of the solutions. However, the differences in
the accuracy between all the classifiers are not very big. One reason may
be that the knowledge transfer between the multiple small populations
improves generalisation performance.

0 1 2 3 4 Ensemble

98.2

98.4

98.6

98.8

Figure 6.6: The distributions of classification accuracy (%) obtained by
each single classifier and the constructed ensemble on the MB dataset.
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Figure 6.7: The distributions of weights of the five classifiers in the con-
structed ensemble on the MB dataset.

Comparing the results of the five classifiers with the ensemble in Fig-
ure 6.6, it is clear that the constructed ensemble achieves better generali-
sation performance than any of the five classifiers. More importantly, the
lowest accuracy of the ensembles in the 30 runs is better than the highest
accuracy of the five classifiers on the MB dataset. In general, to obtain a
good ensemble, the classifiers should be diverse and accurate [249]. Since
each classifier is trained using solutions from the different small popula-
tions, it is clear that the diversity of the classifiers in the ensemble is high.
Since the accuracy of every single classifier is also high, the generalisation
performance of the constructed ensemble is better than any of the single
classifiers. It is noticeable that the accuracy of the constructed ensemble is
better than any of the benchmark methods on the MB dataset although the
best accuracy of the five classifiers is worse than some benchmark meth-
ods, such as FGP and RandNet-2.

Figure 6.7 shows the distributions of weights of the five classifiers in
the ensembles on the MB dataset. The weights are calculated according
to the performance of the solutions found by the small populations on the
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full training data, which has been described in Section 6.2.4. From Figure
6.7, it is obvious that the weight of the first classifier is higher than those
of the other four classifiers. From Figures 6.6 and 6.7, we can find that
the classifier that has higher weights in the ensemble also obtains higher
accuracy on the test set of MB. This shows that the developed combination
strategy can combine the classifiers to obtain an effective ensemble with
high generalisation performance.

6.5.2 Effectiveness of Knowledge Transfer

To analyse the effectiveness of knowledge transfer in fastFGP, the baseline
method without knowledge transfer is used for comparison. Six differ-
ent datasets comprising different various numbers of instances are used
to conduct the experiments. The parameter settings for the fastFGP ap-
proaches with and without knowledge transfer (KT) are the same. The
classification results of these two approaches are listed in Table 6.5. The
“+” and “=” symbols show that fastFGP with knowledge transfer is signif-
icantly better and similar than/to the baseline method without knowledge
transfer, respectively.

Table 6.5: Classification Accuracy (%) of fastFGP with and without Knowl-
edge Transfer (KT) on Six Datasets

fastFGP without KT fastFGP with KT
Dataset Max Mean±St.dev Max Mean±St.dev
FEI 1 98.00 93.47±2.83= 98.00 94.80±2.61
FEI 2 96.00 88.73±5.08+ 98.00 91.40±3.02
KTH 98.79 98.16±0.43= 99.09 97.84±0.78
FS 79.95 78.63±0.74= 80.23 78.52±1.09
MB 98.91 98.86±0.04= 98.95 98.85±0.05
Convex 98.12 97.86±0.24+ 98.54 98.22±0.14
Total 2+, 4=

From Table 6.5, it can be found that fastFGP with knowledge transfer
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achieves significantly better or similar performance than/to that without
knowledge transfer on the six different datasets. On five of the six datasets,
fastFGP with knowledge transfer achieves better maximum accuracy than
without knowledge transfer. On the remaining dataset (FEI 1), fastFGP
with knowledge transfer achieves the same maximum accuracy without
knowledge transfer. On the FEI 1, FEI 2 and Convex datasets, fastFGP
with knowledge transfer achieves better mean accuracy than without knowl-
edge transfer. On the KTH, FS and MB datasets, fastFGP without knowl-
edge transfer achieves better mean accuracy than with knowledge trans-
fer, but the results of the 30 runs are not significantly different. From Table
6.5, it is noteworthy that fastFGP without knowledge transfer can achieve
comparable performance on some datasets. One possible reason is that
randomly generated subtrees in the mutation operation may improve the
diversity of each small population. Thus, multiple diverse solutions may
be found by small populations. Thus, an effective ensemble of diverse
classifiers can be formulated to achieve high generalisation performance.
Compared to fastFGP without knowledge transfer, in the fastFGP with
knowledge transfer method, subtrees of the best solutions/trees found by
small populations in fastFGP can be extracted and reused in the mutation
operation to replace the selected subtrees. This can help to improve the
learning performance of every single small population and find the best
individual with better performance. Using multiple effective individuals,
an effective ensemble can be constructed for image classification to achieve
high generalisation performance. The results show that knowledge trans-
fer can improve the learning performance of fastFGP.

6.6 Chapter Summary

In this chapter, a multi-population GP-based approach (fastFGP) with knowl-
edge transfer and ensembles was developed to improve both generalisa-
tion performance and computational efficiency of GP-based feature learn-
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ing algorithms for image classification. In the fastFGP approach, a new al-
gorithm framework, where the training data and population are split into
multiple small subsets/populations and each population learns features
from a small subset of the original training set, was proposed to reduce
the computational cost. A new knowledge transfer method, a new fitness
function and a new combination strategy were developed to improve the
generalisation performance of fastFGP. With these designs, fastFGP can
build an ensemble using the best solutions from the different small popu-
lations for image classification. Extensive experiments were conducted to
show the effectiveness of fastFGP on 11 different image classification tasks
of varying difficulty.

The results showed that fastFGP not only achieves better generalisa-
tion performance but also has significantly a lower computational cost
than the baseline GP-based feature learning algorithm (the FGP method).
Compared with other effective methods, fastFGP achieved better perfor-
mance in almost all the comparisons on 11 different image classification
datasets. The results indicated that fastFGP is a promising and effective
approach to feature learning for image classification. Compared with the
state-of-the-art deep learning method, EvoCNN, fastFGP achieved better
or comparable performance and used less computational resources. Fur-
ther analysis of the constructed ensembles and the classifiers in the ensem-
bles showed that the constructed ensembles obtained better performance
than single individual classifiers. The analysis revealed the effectiveness
of the developed ensemble formulation strategy. Further analysis showed
that knowledge transfer improved the learning performance of fastFGP,
leading to constructing an effective ensemble for image classification.

Different from the previous chapters, one of the goals of this chapter
was to improve the computational efficiency of GP-based feature learning
algorithms for image classification. This problem has seldom been investi-
gated in the GP literature. Many other approaches, such as surrogate, can
be used to address this problem, which will be investigated in the future.
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Next chapter will conclude this thesis and point out a number of potential
research directions for future work.



Chapter 7

Conclusions and Future Work

This thesis focuses on Genetic Programming (GP) for feature learning in
image classification. The overall goal of this thesis was to further inves-
tigate and explore the potential capability of GP for image classification
by developing a new GP-based approach to automatically learning effec-
tive features for different types of image classification tasks. This goal
has been successfully achieved by developing a new GP-based method
with image descriptors for global and/or local feature learning (FLGP in
Chapter 3), a new GP-based method with many image-related operators
for feature learning (FGP in Chapter 4), a new GP-based method for si-
multaneous feature learning and ensemble evolving (IEGP in Chapter 5),
and a new GP-based method with multiple small populations and knowl-
edge transfer for fast feature learning and ensemble formulation (fastFGP
in Chapter 6), for various types of image classification tasks. The perfor-
mance of the FLGP method was examined on eight different image classi-
fication datasets with relatively large image sizes because it can automat-
ically select small regions from the large input images. The performance
of the FGP and IEGP methods was examined on 12 different image clas-
sification datasets, including seven datasets with a large number of in-
stances/images that have not been solved by existing GP-based methods.
The performance of the fastFGP method was tested on 11 large datasets
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out of these 12 datasets because one dataset is too small for conducting
the experiments. These datasets having varying difficulty represent a wide
range of image classification tasks, i.e., face classification, facial expression
classification, texture classification, scene classification, and object classi-
fication. The classification results have clearly shown that these proposed
methods can achieve better classification performance than a large num-
ber of competitive methods on these different types of image classification
tasks.

The rest of this chapter provides the conclusions for each research ob-
jective of this thesis and the key findings of each chapter. The thesis is
concluded by highlighting potential research directions for future work.

7.1 Achieved Objectives

This thesis has achieved the following research objectives:

• Proposed a new GP-based approach with image descriptor for au-
tomatically learning global and/or local features for image classifi-
cation. A new program structure allows GP to detect small regions
from the relatively large input image, extract features using image
descriptors from the detected regions or the input image, and com-
bine the extracted features to form the output features for classifica-
tion. A new function set with five commonly used image descrip-
tors in the global and local scenarios and a new terminal set were
developed. With these designs, the proposed approach can auto-
matically select and combine existing image descriptors to extract
rich and discriminative global and/or local features for different im-
age classification tasks. A new fitness evaluation method was pro-
posed to evaluate the GP individuals in order to improve the gen-
eralisation performance of the learned features. The proposed ap-
proach can significantly outperform other five GP-based methods,
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eight traditional methods and three CNN methods in almost all the
comparisons on eight different datasets of varying difficulty. The
solutions/programs evolved by the proposed approach can provide
potentially high interpretability. The analysis showed that the pro-
posed approach can detect informative regions and find the most
effective feature extraction functions to extract features from the re-
gions/images.

• Proposed a new GP-based approach with a flexible program struc-
ture and a number of image-related operators for feature learning in
image classification. A new flexible program structure with an in-
put layer, filtering layers, pooling layers, a feature extraction layer,
a feature concatenation layer, and an output layer was proposed.
The new function set has a large number of image-related operators,
i.e., filters, pooling operators, and image descriptors. With these de-
signs, the proposed approach can learn three types of features, i.e.,
features from filtering and pooling, features from feature extraction,
and the combination of features from filtering/pooling and feature
extraction. The proposed approach can be easily applied to differ-
ent image classification tasks to achieve good classification perfor-
mance. The proposed approach can achieve better classification per-
formance than a large number of effective algorithms on 12 bench-
mark datasets of varying difficulty. The solutions found by the pro-
posed approach can be easily visualised as trees to show how and
what features are extracted. The features learned by the proposed
approach can be visualised to understand why the proposed ap-
proach is effective.

• Proposed a GP-based approach with a new representation to auto-
matically and simultaneously learning features and evolving ensem-
bles for image classification. This is the first approach that uses GP to
learn features and evolve ensembles from raw images for classifica-
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tion. A new representation with an input layer, a filtering & pooling
layer, a feature extraction layer, a concatenation layer, a classifica-
tion layer, a combination layer, and an output layer was proposed.
A new function set with many different functions/operators for dif-
ferent subtasks was developed in the proposed approach. The pro-
posed approach can automatically and simultaneously learn high-
level features through multiple transformations, select effective clas-
sification algorithms, optimise the key parameters of the classifica-
tion algorithms, and evolve effective ensembles for image classifi-
cation. The diversity issue of the ensemble building can be auto-
matically addressed by automating the ensemble building process
in the proposed approach. The proposed approach can outperform
a large number of benchmark methods on 12 different image classi-
fication datasets of varying difficulty. The solutions evolved by the
proposed approach can provide potentially high interpretability, i.e.,
what types of features are learned, what classification algorithms are
used to build the ensemble, and why they achieve good results.

• Proposed a multi-population GP-based approach with knowledge
transfer and ensembles to achieve fast feature learning for effective
image classification. A new multi-population algorithm framework
was developed to split the training set into several non-overlapping
subsets and use multiple small populations to learn features from
the small subsets of the training set. A new knowledge transfer
method was proposed to effectively extract useful knowledge from
these small populations and use the extracted knowledge to improve
the learning performance of the other small populations. A new
fitness function based on logistic regression and log-loss was pro-
posed to evaluate the fitness of the individual by providing more
accurate information on the classification performance. A new en-
semble formulation strategy was proposed to calculate the weights
and create an effective weighted ensemble of classifiers to achieve
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high generalisation performance for image classification. Compared
with the FGP approach proposed in the second objective, which is
the baseline GP-based feature learning algorithm, this proposed ap-
proach improved not only the generalisation performance but also
the computational efficiency on 11 image classification datasets. The
proposed approach can achieve better performance on 11 datasets
than a large number of other effective benchmark methods, includ-
ing many neural network-based methods and a state-of-the-art deep
learning method, EvoCNN [208].

7.2 Main Conclusions

Overall, this thesis finds that GP can be effectively used for feature learn-
ing in image classification.

This section discusses the main conclusions for the four research objec-
tives drawn from the four contribution chapters (Chapters 3 to 6).

7.2.1 GP with Image Descriptors for Global and/or Local

Feature Learning

Chapter 3 proposes a new GP-based approach with image descriptors to
learning global and/or local features from relatively large images for ef-
fective classification. This thesis finds that GP with image descriptors
can learn effective global and/or local features to achieve better perfor-
mance than other five GP-based algorithms, eight methods using different
manually-extracted features, and three CNN-based methods on eight im-
age classification datasets of varying difficulty. The proposed GP-based
approach can learn a set of features that are more effective for classifica-
tion than the single high-level feature constructed by the other GP meth-
ods. The features learned by the proposed GP-based approach are more
effective than the eight types of manually extracted features for classifi-
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cation. Compared with three CNN-based methods, the GP-based feature
learning approach can evolve solutions of variable lengths and learn dis-
criminative global and/or local features, which may be difficult for CNNs.
The other findings of this chapter are summarised as follows.

GP Representation

This thesis shows how existing image descriptors can be integrated into
GP to learn effective features for image classification by developing a GP
representation. It is found that an effective individual representation al-
lows GP to learn discriminative and rich features that can achieve promis-
ing performance for different types of image classification tasks. This the-
sis finds that the solutions of GP can integrate the processes of global fea-
ture extraction and/or local feature extraction into a single tree. With a
well-designed representation, the solutions of GP can have variable depths
or lengths to produce various numbers of features. Representative and
well-known image descriptors, i.e., uniform Local Binary Patterns (uLBP)
[169], Histogram of Oriented Gradients (HOG) [60], Scale-Invariant Fea-
ture Transform (SIFT) [220], Domain-Independent Features (DIF) [242],
and Histogram (Hist), can be successfully employed as GP functions to
achieve effective feature learning. The experimental results clearly show
the benefit of developing GP representation on learning effective features
for image classification.

Fitness Evaluation

It is found that an effective fitness evaluation process based on support
vector machines and k-fold cross validation can guide the search of the
algorithm towards to the optimal solution and improve the generalisation
ability of the features learned by GP. The problem that the value ranges of
the features extracted by different image descriptors (the feature extraction
functions in GP) are different is addressed by the min-max normalisation
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method in the fitness evaluation. The benefits of the new fitness evaluation
process are clearly shown from the test results of the proposed approach.

Flexibility and Generality

This thesis shows that the GP-based feature learning approach can auto-
matically learn various types and numbers of image features, indicating
that it can find a (nearly) optimal set/number of features for solving a task.
This is more effective and flexible than the other methods, e.g., the tra-
ditional feature extraction methods and the neural network-based meth-
ods, that often extract a fixed number of features. It is found that the GP-
based approach can be easily applied to learn effective features to achieve
promising results on different types of image classification tasks without
human intervention. The classification results on different image classifi-
cation tasks, i.e., facial expression classification, object classification, tex-
ture classification, scene classification, and painting classification, clearly
show the generality and flexibility of the GP-based approach.

Interpretability

The solutions of the GP-based feature learning approach can provide po-
tentially high interpretability. It is clearly found from the solutions of GP
that informative regions can be detected from a large input image and the
most effective feature extraction functions can be evolved to extract fea-
tures from the detected regions or the input image. In addition, which
image descriptors are evolved to extract the most effective features for
classification can be easily found from the solutions of GP.
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7.2.2 GP with Image-Related Operators for Feature Learn-

ing

Chapter 4 proposes a new GP-based approach with a flexible program
structure and image-related operators to automatically learning features
for image classification. The proposed approach achieves promising re-
sults on different types of image classification datasets, including the datasets
having a large number of training and test instances. This thesis shows
that the GP-based approach can achieve significantly better performance
than the 11 commonly used methods on five small image classification
datasets of varying difficulty. This thesis shows that the GP-based ap-
proach can achieve better classification performance than 18 existing effec-
tive methods on seven datasets with a large number of training and test
instances. Compared with a state-of-the-art deep learning method, i.e.,
EvoCNN [208], the GP-based approach can achieve better performance
on two large datasets and comparable performance on the remaining five
large datasets. The other findings of this chapter are summarised as fol-
lows.

GP Representation

It is found that a flexible program structure comprising an input layer,
filtering layers, pooling layers, a feature extraction layer, a concatenation
layer, and an output layer can effectively integrate different functions (in-
cluding image-related operators) and terminals into trees for feature learn-
ing. Compared with the GP representation developed in the previous ob-
jective (Chapter 3), the new GP representation includes the additional fil-
tering layers and pooling layers and does not have the region detection
layer. This design allows GP to uses multiple different image-related op-
erators, i.e., image filters, pooling operator, and image descriptors, to au-
tomatically learn three typically different types of features from the input
images, i.e., features from the feature extraction process, features from the
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filtering and/or pooling process, and the combined features from the fea-
ture extraction and filtering/pooling processes. With a flexible program
structure, GP can evolve shallow trees that contain a few functions or
evolve deep trees with multiple layers of pooling and/or filtering. This
thesis also finds that image-related operators can be used in GP as func-
tional/internal nodes to achieve effective feature learning from different
types of images, i.e., face images, texture images, scene images, digits im-
ages, and other object images.

Interpretability of Learned Features

It is found that the features learned by GP can provide informative in-
sights on the tasks being tackled and why GP can achieve promising re-
sults. What features are learned by GP can be easily found from the solu-
tions of GP because of the use of the image-related operator. By analysing
the frequency of the image-related operators in the solutions evolved by
GP, an overall picture of the dataset (task domain) can be obtained and
it shows that the frequencies of the image-related operators vary with the
dataset. By visualising the learned features, it is found that GP can find the
optimal solutions to transform the data into a new feature space where the
new data can be easily classified.

Number and Type of Learned Features

It is found the GP-based approach can learn various numbers of features
from different datasets, which is effective and flexible for image classifica-
tion. From the evolved solutions, it is found that GP learns three different
types of features, i.e., features produced by feature extraction functions,
features produced by filtering and/or pooling functions, the combination
of features produced by feature extraction and filtering or pooling func-
tions. From the complex images, the GP approach can learn features from
filtering, pooling and feature extraction, which are invariant to particular
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variations, such as rotation and illumination.

7.2.3 GP for Simultaneous Feature Learning and Ensemble

Evolving

Chapter 5 proposes a GP-based approach with a new representation to
automatically and simultaneously learning features and evolving ensem-
bles for image classification. The effectiveness of the proposed approach is
clearly shown from the classification results of 12 different image datasets.
The proposed approach can achieve better classification performance than
methods using raw pixels, methods using well-known features, two CNN-
based methods, and the two GP methods on six small datasets. On seven
datasets with a large number of training and test instances, the proposed
approach can achieve better performance than all the benchmark methods
on one dataset, is ranked second on three datasets, third on one dataset,
and the fourth on the remaining one dataset. Compared with a state-of-
the-art deep learning method, EvoCNN, the proposed approach achieves
better or the same results on three datasets and slightly worse results on
the remaining four datasets. The other findings of this chapter are sum-
marised as follows.

GP Representation

This thesis shows that GP with a multi-layer individual representation can
achieve automatic and simultaneous feature learning and ensemble evolv-
ing for image classification using a single tree. The new GP representation
has seven layers with different functionalities, including feature learning
and ensemble learning, which make it different from the current multi-
layer representations of GP, such as in [197]. The new representation al-
lows GP to produce solutions of ensembles from raw images without do-
main expertise. With feature extraction functions in the function set, it is
found that GP can learn high-level features through multiple transforma-
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tions that are invariant to certain variations such as rotation, which can
improve the classification performance. With classification algorithms in
the function set and the corresponding key parameters in the terminal set,
the GP-based approach is able to automatically select suitable classifica-
tion algorithms and optimise their key parameters to build an effective
ensemble. With this design, it was found that an ensemble with effective
and efficient classifiers can be automatically formulated to achieve promis-
ing results.

Automatic Ensemble Formulation

It is found that GP can automatically build effective ensembles for im-
age classification. Commonly used classification algorithms, i.e., support
vector machines, logistic regression, and random forest, can be automati-
cally selected by GP to build effective ensembles. The key parameters of
these classification algorithms can also be selected and optimised by GP
to achieve better classification performance. More importantly, the diver-
sity issue of the ensemble can be automatically addressed in the GP-based
approach. It is found that the inputs to each classification algorithm (clas-
sifier) in the ensemble for the same dataset can be different when integrat-
ing the feature learning and ensemble evolving processes into a single GP
tree. This increases the diversity of the constructed ensemble via input
feature manipulation. Additionally, the parameters for the classification
algorithms in the ensemble can be automatically selected and optimised,
which encourages high diversity in the constructed ensemble. It is found
that the GP-based approach can build effective ensembles of the same clas-
sifiers but different parameters, ensembles of ensembles, and ensembles
of various classifiers. This shows the effectiveness and the flexibility of
automatic construction of effective ensembles from raw images for classi-
fication.
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7.2.4 Multi-Population GP with Knowledge Transfer and

Ensembles for Fast Feature Learning

Chapter 6 proposes a multi-population GP-based approach with knowl-
edge transfer and ensembles to improving both the generalisation per-
formance and computational efficiency of GP-based feature learning al-
gorithms for image classification. Compared with the baseline feature
learning algorithm, the proposed approach uses the same program struc-
ture, function set and terminal set, but achieves better generalisation per-
formance and higher computational efficiency. Compared with other ef-
fective methods, the proposed approach achieves better performance in
almost all the comparisons on 11 different image classification datasets.
Compared with the state-of-the-art deep learning method, EvoCNN, the
proposed approach achieves better or comparable performance and uses
less computational resources. The other findings of this chapter are sum-
marised as follows.

Multi-Population Algorithm Framework

It is found that a well-designed multi-population algorithm framework
of GP can improve both the generalisation performance and the compu-
tational efficiency of GP-based feature learning algorithms for different
image classification tasks. The issue of high computational cost can be ad-
dressed by proposing a new multi-population algorithm framework. The
new framework uses multiple small populations to find the best solutions
on small subsets of the training set. By evaluating the small populations
on a small number of training instances, the overall computational cost
is reduced theoretically and empirically. Since each small population can
find the best solution, a natural way to achieve high generalisation perfor-
mance is to create an effective ensemble for classification using multiple
solutions. The effectiveness and efficiency of the GP-based features learn-
ing approach with a multi-population algorithm framework is confirmed
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via the comparisons with the baseline method without this framework and
many other effective methods on different image classification tasks.

Knowledge Transfer

It is found that effective knowledge transfer can improve the learning per-
formance of the GP-based feature learning algorithm with multiple popu-
lations. The knowledge transfer approach addresses the three main ques-
tions, i.e., what to transfer, how to transfer and when to transfer, of using
transfer learning in GP. Based on the multi-population algorithm frame-
work, the knowledge transfer route can be easily defined according to
the relationships among the small populations. It is found that the sub-
trees of the best trees found in the past generations can be extracted from
other small populations and used in the mutation operation to effectively
improve the learning performance of the current small population. The
comparisons with the baseline method without knowledge transfer clearly
show the effectiveness of knowledge transfer in the multi-population GP-
based feature learning approach on improving the classification perfor-
mance.

Fitness Evaluation

It is found that the logistic regression classification algorithm and a log-
loss-based fitness function can be used to effectively evaluate the learned
features and guide the search of GP. Logistic regression can be used to
build a soft classifier that predicts the probabilities of the instances in each
class. Given the predicted probabilities, a log-loss-based fitness function
provides more accurate information on how well the learned features per-
form in image classification versus only using the classification accuracy.
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Ensemble Formulation

It is found that an effective ensemble can be formulated using the solu-
tions found by the small populations of GP to achieve high generalisation
performance in image classification. An ensemble formulation strategy
can discard bad solutions of GP, keep the best solutions, build multiple
classifiers, and combine the classifiers using reasonable weights. This the-
sis shows that the ensemble formulation strategy can give higher weights
to the classifiers that can obtain higher test accuracy. It is found that an
effective ensemble of classifiers can be constructed to achieve better per-
formance than using individual classifiers for image classification.

7.3 Future Work

This section highlights key research directions for future work.

7.3.1 Employ Other Image-Related Operators in GP

This thesis has shown how image descriptors, image filters and other image-
related operators were employed in GP to achieve effective feature learn-
ing for image classification. In the well-developed field of computer vi-
sion, there are many other image-related operators and descriptors, such
as, frequency filters, Wiener Filter, Canny edge detector, Kirsch operator,
morphological operations [2], that have not been employed in the pro-
posed GP-based approaches in this thesis. Employing these operators in
GP to learn other types of features for different image classification tasks
is worthy to be further investigated. To achieve this, new program struc-
tures, new function sets and new terminal sets of GP are needed to effec-
tively use different operators.
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7.3.2 GP with Complex/Deep Structures

Many well-known deep CNNs (e.g., ResNet [100] and DenseNet [112])
have architectures with a large number of layers to learn effective repre-
sentations of the data and have achieved promising classification results
on large-scale image classification datasets. Compared with these deep
CNNs, the evolved solutions of GP are simpler and have a smaller num-
ber of lengths or depths. The performance of GP with complex or deep
structures as deep CNNs has not been extensively investigated. It is in-
teresting to investigate whether GP with complex or deep structures can
learn effective features to achieve comparable or even better performance
than the well-known deep CNNs on large-scale and difficult image classi-
fication datasets.

7.3.3 Grammar Guided GP for Feature Learning

This thesis has only employed Strongly Typed GP (STGP) [161] for fea-
ture learning in image classification. Based on STGP, a specific program
structure can be defined to build a GP tree to perform specific tasks. The
Grammar Guided GP (GGGP) algorithm [155, 225] can also achieve this by
defining a specific grammar to generate context-sensitive or context-free
languages for specific tasks. The potential of GGGP in feature learning has
not been (extensively) investigated in this thesis and the other literature.
Since GGGP is different from STGP, the initialisation method, the defini-
tion of grammar and the genetic operators should be further investigated.
Future work can focus on these directions.

7.3.4 Computationally Cheap Evaluation Methods for Fast

Feature Learning

One of the problems of GP for feature learning is the high computational
cost, especially when the number of training instances is large. Many well-
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known image classification datasets have a large number of training in-
stances. It is time-consuming to apply GP to learn features from large
datasets. Employing computationally cheap evaluation methods in GP
for feature learning is necessary and important for applying GP to learn-
ing features to solve image classification tasks with a large number of in-
stances. Well-known methods, such as surrogate and instance selection,
can be used to address this issue.

7.3.5 Island-Based GP for Fast Feature Learning

The idea of the use of small populations in the proposed method in Chap-
ter 6 is similar to some ideas of island-based evolutionary algorithms [51,
156]. Island-based evolutionary algorithms may be alternatives to im-
prove the efficiency and effectiveness of the GP-based feature learning
algorithms. However, it is necessary to investigate how the population
are distributed into small populations and how these small populations
communicate at each generation. There is still a large research space to
explore how an island-based GP algorithm is developed to achieve fast
feature learning for image classification.

7.3.6 Ensemble Learning

This thesis has shown that using an ensemble of classifiers achieved better
performance than using a single classifier for image classification. How-
ever, there are many different ways to build ensembles for image classifi-
cation by using different image features, classifiers and combination meth-
ods. Furthermore, how to create an effective ensemble with accurate and
diverse classifiers is still an open issue in this field. Automated ensemble
learning is a promising area that can automatically address these issues in
the future.
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7.3.7 Transfer Learning

Transfer learning can be used to further improve the learning performance
of GP on feature learning for image classification. Although this thesis
proposes a new knowledge transfer method in GP to improve its learning
performance, the potential of knowledge transfer in GP has not been ex-
tensively investigated. It is interesting to further investigate what to trans-
fer, when to transfer and how to transfer in the GP-based feature learning
algorithms for image classification.

7.3.8 Multi-Objective Feature Learning

Feature learning can be formulated as a multi-objective optimisation prob-
lem of maximising the objective of the classification performance and min-
imising the objective of the number of learned features. A small num-
ber of features can shorten the classification time and provide potentially
high interpretability. However, most feature learning algorithms, includ-
ing the proposed GP-based approaches, only maximise the objective of
the classification performance without considering the number of learned
features. Therefore, it is necessary to investigate new approaches to find
a set of non-dominated solutions for multi-objective feature learning. Fu-
ture work can start by exploring GP using well-known evolutionary multi-
objective algorithm frameworks, such as NSGA-II [62], SPEA2 [251], and
MOEA/D [243], to address multi-objective feature learning.

7.3.9 Learning Features from Colour Images

The approaches proposed in this thesis learn features from grey-scale im-
ages rather than colour images. Typically, colour images are represented
by red, green and blue channels, which provide richer information than
grey-scale images. The proposed approaches can be easily extended to
learn features from colour images by changing the terminal set. However,
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it is computationally expensive. Future work can focus on using GP to
learn features from colour images and improving its computational effi-
ciency for image classification.

7.3.10 Few-Shot Learning

In many real-world applications, it is impossible or very difficult to collect
a large number of labelled training data. Few-shot learning can be used
to learn features using a small number of training instances. A few GP
methods have been developed for few-shot learning in texture classifica-
tion, such as [11, 16]. There are multiple different ways to achieve few-shot
learning [221]. The potential of GP for few-shot learning, including one-
shot learning and zero-shot learning, has not been extensively investigated
in image classification.

7.3.11 GPU Implementation of STGP

One main reason for the success of deep learning in large-scale image clas-
sification is the acceleration of the Graphics Processing Unit (GPU). How-
ever, very few GP or EC frameworks implemented on GPU to speed up
the evolutionary process. A recent example is the Karoo GP [202] method
implemented in Python. The Karoo GP is based on Tensorflow and can be
used to solve symbolic regression and classification. But it cannot support
the acceleration of strongly typed GP, which is the most commonly used
version of GP on image data. The performance of the GP method, particu-
larly GP with deep and complex structures, is limited to the current image
classification benchmark datasets due to the high computational cost. If
these GP methods can be implemented in GPU and benefit from the accel-
eration, it is possible to develop new effective and efficient GP method for
large-scale image classification.
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7.3.12 GP for Other Computer Vision Tasks

This thesis is concerned mainly with using GP for feature learning in im-
age classification as it is a fundamental task in computer vision. Besides
image classification, solving other tasks in computer vision, e.g., object
detection and image segmentation, may also need feature learning. The
applications of the GP-based feature learning algorithms to these tasks are
limited. Future work can explore how GP is used to learn effective features
for solving other tasks, e.g., object detection and image segmentation.

7.4 Chapter Summary

This chapter summarised the objectives achieved in this thesis in GP-based
feature learning for image classification. The major conclusions for the
four achieved objectives were described in detail and the key research di-
rections of future work were highlighted. This thesis explored the po-
tential of GP for feature learning in image classification and showed a
promise. It is worth to further explore this area by addressing the remain-
ing issues.
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