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漢 
The Chinese Room



A Thought Experiment
John Searle, “Mind, Brains, and Programs” in 1980

• Suppose we have a computer program that 
behaves as if it understands Chinese 
language.


• You are in a closed room with the AI program 
source code.


• Someone passes a paper with Chinese 
characters written on it, into the room.


• You use the source code as instruction to 
generate the response to the input, and sends 
the response out of the room.


• Do you understand Chinese language, or not?



“And we’re talking about this 
because…”



(Obviously we are all a bit like this now)



🧭 
Landscape



Survey of the Explosion 💥
ICSE 2023 Future of SE Track (https://arxiv.org/abs/2310.03533)

https://arxiv.org/abs/2310.03533
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Fig. 1. A mapping between software development activities, research domains, and the paper structure

Fig. 2. Trends in number of arXiv preprints. The blue line denotes the number
of preprints categorised under “CS”. The orange line denotes the number of
preprints in AI (cs.AI), Machine Learning (cs.LG), Neural and Evolutionary
Computing (cs.NE), Software Engineering (cs.SE), and Programming Lan-
guage (cs.PL) whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”. The green line denotes the number of preprints in SE and
PL categories whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”

Fig. 3. Proportions of LLM papers and SE papers about LLMs. By “about
LLMs”, we mean that either the title or the abstract of a preprint contains
“LLM”, “Large Language Model”, or “GPT”. The blue line denotes the
percentage of the number of preprints about LLMs out of the number of
all preprints in the CS category. The orange line denotes the percentage of
the number of preprints about LLMs in cs.SE and cs.PL categories out of all
preprints about LLMs

Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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“But why are LLMs so popular 
among SE researchers…?”



Correlation vs. Causation, or Syntax vs. Semantic

• MIP talk at ICSE 2019 captured this beautifully - “It Does What You Say, Not 
What You Mean: Lessons from 10 Years of Program Repair”  

• Traditionally, computing the semantic has been either very difficult or 
infeasible; as it is well known to the GI community!

🧠f(x)

Semantic, captured (imperfectly) in fitness 
functions

Candidate solutions, (randomly) generated 
via syntactic perturbations

GI💻



Large Language Model
(really, a very large statistical language model)

• Mainly Transformer-based DNNs that are trained to be an auto-regressive 
language model, i.e., given a sequence of tokens, it repeatedly tries to predict 
the next token.


• The biggest hype in SE research right now with an explosive growth, 
because:


• Emergent behaviour leading to very attractive properties such as in-
context learning, Chain-of-Thoughts, or PAL


• They seem to get the semantics of the code and work across natural 
and programming language



• Above certain size, LLMs change 
their behavior in interesting ways


• The point of change in slope is 
referred to as “breaks”

What is an Emergent Behavior?

Caballero et al., https://arxiv.org/abs/2210.14891

https://arxiv.org/abs/2210.14891


Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Underneath, LLMs are doing autocompletion, not any other type of reasoning: 
they appear to be capable of rational inference because the corpus they are 
trained with includes traces of logical reasoning.


• So, conditioning the model (with the context) to be more precise about the 
reasoning steps can result in generation of more accurate reasoning steps.


• Add “Let’s think in step by step” at the end of every prompt (https://
arxiv.org/abs/2205.11916) 🙃 🫥 🫠

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916


Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Add “Let’s think in step by step” at the end of every prompt (https://arxiv.org/
abs/2205.11916) and the model performance go up! 🙃 🫥 🫠


• We have even weirder, recent results. 


• If you make a strong emotional plea, the performance improves (https://
arxiv.org/abs/2307.11760) 🥺


• Apparently, there is anecdotal evidence that a promise of a large tip 
produces mode detailed responses (https://twitter.com/voooooogel/status/
1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg) 💰

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg


“Okay, it talks like a human and can 
answer some questions. But why SE?”



LLMs seemingly handle semantics across NL/PL barrier
LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)
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Answer to RQ2-3: LIBRO can reduce both the number of
bugs and tests that must be inspected: 33% of the bugs
are safely discarded while preserving 87% of the successful
bug reproduction. Among selected bug sets, 80% of all bug
reproductions can be found within 5 inspections.

C. RQ3. How well would LIBRO work in practice?

TABLE VII: Bug Reproduction in GHRB: x/y means x
reproduced out of y bugs

Project rep/total Project rep/total Project rep/total

AssertJ 3/5 Jackson 0/2 Gson 4/7
checkstyle 0/13 Jsoup 2/2 sslcontext 1/2

1) RQ3-1: We explore the performance of LIBRO when
operating on the GHRB dataset of recent bug reports. We find
that of the 31 bug reports we study, LIBRO can automatically
generate bug reproducing tests for 10 bugs based on 50 trials,
for a success rate of 32.2%. This success rate is similar to
the results from Defects4J presented in RQ1-1, suggesting
LIBRO generalizes to new bug reports. A breakdown of results
by project is provided in Table VII. Bugs are successfully
reproduced in AssertJ, Jsoup, Gson, and sslcontext, while they
were not reproduced in the other two. We could not reproduce
bugs from the Checkstyle project, despite it having a large
number of bugs; upon inspection, we find that this is because
the project’s tests rely heavily on external files, which LIBRO
has no access to, as shown in Section VI-C3. LIBRO also
does not generate BRTs for the Jackson project, but the small
number of bugs in the Jackson project make it difficult to draw
conclusions from it.
Answer to RQ3-1: LIBRO is capable of generating bug
reproducing tests even for recent data, suggesting it is not
simply remembering what it trained with.

2) RQ3-2: LIBRO uses several predictive factors correlated
with successful bug reproduction for selecting bugs and rank-
ing tests. In this research question, we check whether the
identified patterns based on the Defects4J dataset continue to
hold in the recent GHRB dataset.

Fig. 5: Distribution of the max_output_clus_size values for
reproduced and not-reproduced bugs

Recall that we use the maximum output cluster size as a
measure of agreement among the FIBs, and thus as a selection
criterion to identify whether a bug has been reproduced. To
observe whether the criterion is a reliable indicator to predict

Listing 4: Generated FIB test for AssertJ-Core-2666.
1 public void testIssue952() {

2 Locale locale = new Locale("tr", "TR");

3 Locale.setDefault(locale);

4 assertThat("I").as("Checking�in�tr_TR�locale").containsIgnoringCase("i

");

5 }

the success of bug reproduction, we observe the trend of
max_output_clus_size between the two datasets, with and
without BRTs. In Figure 5, we see that the bugs with no BRT
typically have small max_output_clus_size, mostly under
ten; this pattern is consistent in both datasets.

The ranking results of GHRB are also presented in Table VI.
They are consistent to the results from Defects4J, indicating
the features used for our ranking strategy continue to be good
indicators of successful bug reproduction.

Answer to RQ3-2: We find that the factors used for the
ranking and selection of LIBRO consistently predict bug
reproduction in real-world data.

3) RQ3-3: We present case studies of attempts by LIBRO
to reproduce bugs that either succeeded or failed.

TABLE VIII: Bug Report Successfully Reproduced: URLs
are omitted for brevity (AssertJ-Core Issue #2666)

Title assertContainsIgnoringCase fails to compare i and I in
tr_TR locale

See org.assertj.core.internal.Strings#assertContainsIgnoringCase
[url]
I would suggest adding [url] verification to just ban
toLowerCase(), toUpperCase() and other unsafe methods: #2664

We first present a successfully reproduced bug report, issue
#2685 for the AssertJ-Core project, in Table VIII. The bug
is that, in tr_TR locale, assertContainsIgnoringCase method is
mishandling the letter I. For this bug report, LIBRO gener-
ates the bug reproducing test in Listing 4. Despite the bug
report not containing any executable code, LIBRO successfully
generated a bug reproducing test that compares I and i,
using the containsIgnoringCase method referenced within the
report. A BRT for this bug is ranked at the second place,
suggesting a developer would have been quickly provided with
a reproducing test.

Listing 5: Generated FIB test for Checkstyle-11365.
1 public void testFinalClass() throws Exception {

2 final DefaultConfiguration checkConfig =

3 createModuleConfig(FinalClassCheck.class);

4 final String[] expected = CommonUtil.EMPTY_STRING_ARRAY;

5 verify(checkConfig, getPath("InputFinalClassAnonymousClass.java"),

expected);

6 }

We now turn to a bug report that is not successfully
reproduced. Table IX contains issue #11365 in the Checkstyle
project. The bug is that CheckStyle incorrectly decides that a
class should be declared final, and mistakenly raises an error.

public void testIssue952(){ 
  Locale locale = new Locale("tr", "TR"); 
  Locale.setDefault(locale); 
  assertThat("I").as("Checking in tr_TR locale") 
  .containsIgnoringCase("i"); 
} 



AutoFL: LLM based FL
Kang, An & Yoo (https://arxiv.org/abs/2308.05487)

Kang, An, and Yoo

contribution to performance. By providing both successful and un-
successful examples of A���FL debugging traces on di�cult tests
where the buggy method is not immediately apparent, we highlight
the strengths of A���FL, as well as potential weaknesses that point
to the need for future research.

2 BACKGROUND
This section provides the background and research context.

2.1 LLM Tool Use
By integrating chain-of-thought prompting [31] with the output
of tools, ReAct [38] demonstrated that LLMs were capable of in-
teracting with tools to achieve better performance on tasks. Since
then, LLM interaction with external tools has been widely explored.
HuggingGPT [26] has LLMs compose computer vision pipelines by
dynamically integrating the results of various computer vision mod-
els together. Voyager [28] allows LLMs to store and use acquired
skills in the form of functions, which led Voyager to complete tasks
in a computer game more e�ectively. LLM tool use has also been
explored in software engineering, notably for program repair: Xia et
al. [36] integrated test feedback into the prompt for better APR per-
formance, while Kang et al. [12] allows LLMs to invoke a debugger
to gather information and generate patches.

Recent iterations of OpenAI’s LLMs have embraced this change
and added a feature named function calling.1 This capability en-
ables users to provide function descriptions to the LLM, which can
respond with JSON data containing arguments required for calling
one of the available functions on the digression of the LLM. For in-
stance, if a user wants the LLM to compose a brief greeting email and
send it to Alice, they can provide an API call for sending emails, such
as send_email(receiver, content). The LLM can then respond
with a function call like send_email(�alice@example.com�, �Hi�)
to ful�ll the user’s request. While these functions can serve as ac-
tion executors, there is also the option to provide APIs that the
LLM can query to obtain essential information for responding to
users. For example, when a user inquires about the current weather
in a speci�c city while providing the LLM with a weather API call
description, the LLM has the choice to utilize the API call instead
of o�ering an immediate response. The function call request can be
captured and subsequently processed in an automated manner; the
results obtained from this processing are then communicated back
to the model, enabling seamless and e�cient interaction between
the user side and the LLM. In this context, we intend to de�ne
a set of functions that the LLM can employ to gather necessary
information for debugging purposes.

2.2 Fault Localization
Fault localization (FL) is a critical process in software debugging
that involves identifying speci�c locations in a program’s source
code where bugs are present. Automated FL techniques help de-
velopers save time, particularly in large codebases, by accurately
pinpointing the code locations most likely to be responsible for the
target bug. In addition to aiding manual debugging, FL also plays a
pivotal role in automated program repair techniques by providing
information about potential fault locations [22], thus enabling the
1https://platform.openai.com/docs/guides/gpt/function-calling

generation of e�ective patches. Common FL technique families
include Spectrum-based FL (SBFL), Information Retrieval-based FL
(IRFL), and Mutation-based FL (MBFL) [34]. While SBFL techniques
are known to be the most e�ective as standalone techniques [41],
they require coverage data from both passing and failing tests.
Meeting this requirement poses a challenge, particularly in the
domain of large enterprise software, where coverage measurement
can have high computational costs [4, 9, 15]. Additionally, most FL
techniques lack a rationale or explanation in their output, limiting
their reliability and practicality in real-world debugging scenarios.
As Kochhar et al. [16] note, rationales for FL are crucial for bug
�xing and incorporating practitioners’ domain knowledge. A clear
rationale in FL enables developers to understand why a particular
location is identi�ed as the culprit for the bug, helping them make
informed decisions during the �xing process. Additionally, practi-
tioners expressed their desire to use the provided rationale to assess
the correctness of FL output based on their domain knowledge.

3 APPROACH
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Figure 1: Diagram of A���FL. Each arrow represents a
prompt / response between components, with the circled
numbers indicating the order of interactions. Function invo-
cations aremade atmost N times, where N is a predetermined
parameter of A���FL.

In this paper, we introduce A���FL, a novel automated and
autonomous FL technique that harnesses LLMs to localize bugs in
software given a single failing test. As mentioned earlier, dealing
with large code repositories is a challenge for LLMs, but we tackle
this issue by equipping LLMs with custom-designed functions to
enable code exploration and relevant information extraction.

An overview of A���FL is depicted in Figure 1. We employ a
two-stage prompting process, where the �rst stage involves in-
quiring about the root cause of the given failure, and the second
stage requests output about where the fault location is. In the �rst
stage, 1 A���FL provides a prompt to the LLM containing failing
test information and descriptions of available functions for debug-
ging to LLM. 2 The LLM interacts with the provided functions
autonomously, to extract the information needed for the debugging
of the given failure. 3 Based on the gathered information, the LLM
generates an explanation about the root cause of the observed fail-
ure. In the second stage, 4 the user queries for the location of the
identi�ed bug, and 5 the LLM responds by providing the culprit
method (FL output). In doing so, we can explicitly acquire both the
Root Cause Explanation and Bug Location.
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Figure 4: Most common function call sequence patterns in
successful and unsuccessful runs. The black square means
the LLM stopped calling functions at the next step.

Figure 5: Function call frequency by step over all �ve runs of
A���FL. The total length at each step decreases as A���FL
can stop calling functions at any step; e.g. about 400 A���FL
processes stopped calling functions after the �rst step.

to a conclusion (right). This indicates that a premature or overex-
tended debugging process can yield worse performance, as was
also suggested by the lower performance of the LLM+Test baseline.

We additionally provide the method call frequency at each step
for each bug in Figure 5. As instructed, on the �rst function call
step, A���FL always requests for the classes that are covered (blue).
In the next step, A���FL generally retrieves the methods that were
covered by the failing test, even though the LLM was not given
explicit instructions to do so. Finally, from Step 3 and onward,
A���FLmostly inspects the actual code of the repository via invok-
ing the get_code_snippet and get_comments functions. As the
graph shows, there is signi�cant variance in the average function
call length; for reference, the average number of function calls was
5.36 calls, and the standard deviation was 2.78 calls.

4.4 Qualitative Analysis
Finally, we present example runs from A���FL, one successful and
one unsuccessful. On the successful example, we present the han-
dling of A���FL locating the cause of the bug Math-30 from the
Defects4J benchmark, in which the failing test does not make it
clear what method is being tested (the buggy method name never
appears within the test). In this bug, the test shown in Listing 4 fails,
due to an integer over�ow issue when calculating the p-value in the

Listing 4: Failing test for Math-30.
1 @Test
2 public void testBigDataSet() throws Exception {
3 double[] d1 = new double[1500];
4 double[] d2 = new double[1500];
5 for (int i = 0; i < 1500; i++) {
6 d1[i] = 2 * i;
7 d2[i] = 2 * i + 1;
8 }
9 double result = testStatistic.mannWhitneyUTest(d1, d2);
10 Assert.assertTrue(result > 0.1); // error occurred here
11 }

Figure 6: Example run of A���FL on Defects4J Math-30.

calculateAsymptoticPValue function, which for brevity we refer
to as [CAPV] in this paragraph. Figure 6 shows a schematic of how
A���FL debugged the issue to �nd the buggy location. The function
call sequence of A���FL is presented in the left half of Figure 6.
Here, we see that A���FL inspected four di�erent functions in the
process of discerning which part of the repository was responsible
for the bug. After the �rst two function calls that provide infor-
mation about which parts of the repository were executed by the
failing test, based on the test code provided by the user message (as
in Listing 2), A���FL uses the code inspection function to look at
the code of the mannWhitneyUTest function, which was mentioned
within the test. In turn, this method calls three other methods, of
which two are subsequently inspected by A���FL: mannWhitneyU
and [CAPV]. After inspecting these methods in turn, A���FL once
more inspects the test method (Figure 6 (4)) and concludes that the
[CAPV] function is most likely to be the culprit of the bug, based
on the assertion and the expected behavior of the functions. In-
deed, the developer actually �xed this function to remove the bug.
Meanwhile, SBFL (Ochiai) could not rank this method on a high
level for two reasons: (i) as the test is not meant to test the buggy
method speci�cally, the coverage pro�le of the failing test does not
clearly specify a single method, and (ii) there are too few passing
tests that execute this part of the code to improve the accuracy of
SBFL in this situation. This example clearly shows that A���FL has
the potential to go deeper within software repositories to identify
which part of the code is likely to be causing an error, and that
it can provide meaningful FL results based on a single failing test
when other techniques struggle.

In addition to this, we present the explanation thatA���FLmade
for its debugging process of Math-30 in Listing 5. The explanation
starts by explaining what the test checks (Line 1), then summarizes
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the LLM suggests EqualsBuilder.append(Object, Object) as
the culprit, which matches the developer patch location.

3.3 Finalizing Fault Localization Results
To address the inherent variability of LLMs, we propose to repeat
the A���FL process ' times (' = 5 in our experiment). After the
repetitions, we consolidate these results into a single FL outcome.
It is worth noting that if there exist multiple failing tests, we use
distinct failing test cases for each run of A���FL. Speci�cally, if
there is just one failing test case, all iterations are conducted with
that speci�c test case. However, when there are several failing
test cases, we adopt a round-robin approach, selecting one failing
test case for each run to ensure the even distribution of iterations.
For clari�cation, if the number of failing test cases exceeds the
prede�ned maximum repetition count, ', we restrict our selection
to only ' failing test cases.

Given the ' predictions generated from A���FL, we aggregate
the outputs to drive a ranked list of suspicious methods. First, we
assign scores to the methods �agged as suspicious byA���FL based
on whether they appear in the �nal predictions generated from
the ' runs. Speci�cally, if a �nal prediction contains a total of =
methods, we give a score of 1/= to each of these identi�ed methods.
These individual scores are then combined across all ' predictions.
To illustrate, supposing that the �nal predictions are {m1, m2},
{m2}, {m2, m3}, {m3}, and {m2, m4} across 5 runs, the score for
method m2 would be calculated as: 0.5 + 1.0 + 0.5 + 0.0 + 0.5 = 2.5
In case of a tie in scores, we prioritize methods that appeared in
earlier predictions over others. For instance, in the given example,
the resulting ranked list would be [m2, m3, m1, m4].

Finally, if there are methods that are not part of the �nal A���FL
results but are covered by the failing test cases, we append them
to the end of the ranked list to ensure the list includes all methods
relevant to the failures. These methods are sorted in descending
order of the number of failing tests covering each method. To break
ties, we give priority tomethods that aremore frequentlymentioned
during the function interaction process of A���FL (Figure 1, 2 ),
based on the intuition that methods that are inspected by the LLM
or related to inspected methods are more likely to be faulty than
methods that were never observed in the debugging process.

4 RESULTS
We present the setup and results of our experiments.

4.1 Experimental Setup
To evaluate how well A���FL could reveal the fault location, we
used the widely-used real-world bug benchmark, Defects4J [11].
We select this benchmark as it has been the subject of multiple fault
localization studies [6, 7, 32], and in particular the comparative
empirical study of Zou et al. [41], which compared the fault localiza-
tion performance of various fault localization families: SBFL [1, 33],
MBFL [21, 24], slicing [29], using the stack trace (Zou et al. [41] pro-
pose predicting methods in the stack based on Schroter et al. [25]),
predicate switching [39], IRFL [40], and history-based fault local-
ization [14]. Of these, IRFL and history-based fault localization are
excluded, as they could not identify any true bug locations as the
most likely fault element in the evaluation of Zou et al. We also

introduce two additional baselines relevant to our work: (i) how
well the same LLM can identify bug locations without any function
calls, i.e. call budget=0 (the LLM+Test baseline), and (ii) SBFL using
only failing tests (the SBFL-F baseline). We con�ne our compar-
isons of A���FL to these standalone metrics to maintain fairness
by limiting the evaluations to unsupervised FL techniques only. As
A���FL does not involve any explicit learning process, we antici-
pate that its outcomes can also serve as a feature for learning-based
FL techniques that combine multiple FL results [19, 27, 37, 41].

Following Zou et al., we use �ve projects from Defects4J (Chart,
Closure, Lang, Math, Time) which together comprise 353 bugs
in total, excluding some bugs that were deprecated to problems
(e.g. problem duplication) in the Defects4J dataset. To make the
comparison fair, we used the research artifact that Zou et al. publicly
shared to derive rankings in an identical setting to ours, namely
using an ordinal tiebreaker instead of the average tiebreaker, and
removing four deprecated bugs from the Defects4J benchmark. For
evaluation, we use the acc@k metrics, which measure the number
of bugs for which any buggy code element was correctly localized
within the top : suggestions; the acc@k metric has the additional
bene�t that it is a closer measure to what developers expect from
FL [16]. As LLM-based FL techniques generate text as the �nal
output instead of pinpointing a location, this text must be matched
with existing methods within the repository. In this work, we check
if the class name, method name, and method arguments of a fault
method all match the predicted method to check if A���FL has
accurately found the fault location. For our experiments, we used
the gpt-3.5-turbo-0613 language model from OpenAI.

4.2 FL Performance

Table 1: A���FL and FL Technique Performance from Zou et
al. [41]

Family Technique acc@1 acc@3 acc@5

Predicate Switching 42 99 121

Stack Trace 57 108 130

Slicing (frequency) 51 96 119

MBFL MUSE 73 139 161
Metallaxis 106 162 191

SBFL
Ochiai 122 192 218
DStar 125 195 216

SBFL-F 34 66 78

LLM-Based LLM+Test 81 94 97
A���FL 149 180 194

The FL performance of A���FL is compared against seven base-
line techniques that showed non-zero performance per Zou et al.
The results of this comparison are presented in Table 1. We �nd
that A���FL could �nd the accurate bug location on its �rst choice
(acc@1) in 149 cases, and that it shows superior performance to
all standalone techniques that it was compared against, including
those from the previously identi�ed best fault localization family
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Answer to RQ2-3: LIBRO can reduce both the number of
bugs and tests that must be inspected: 33% of the bugs
are safely discarded while preserving 87% of the successful
bug reproduction. Among selected bug sets, 80% of all bug
reproductions can be found within 5 inspections.

C. RQ3. How well would LIBRO work in practice?

TABLE VII: Bug Reproduction in GHRB: x/y means x
reproduced out of y bugs

Project rep/total Project rep/total Project rep/total

AssertJ 3/5 Jackson 0/2 Gson 4/7
checkstyle 0/13 Jsoup 2/2 sslcontext 1/2

1) RQ3-1: We explore the performance of LIBRO when
operating on the GHRB dataset of recent bug reports. We find
that of the 31 bug reports we study, LIBRO can automatically
generate bug reproducing tests for 10 bugs based on 50 trials,
for a success rate of 32.2%. This success rate is similar to
the results from Defects4J presented in RQ1-1, suggesting
LIBRO generalizes to new bug reports. A breakdown of results
by project is provided in Table VII. Bugs are successfully
reproduced in AssertJ, Jsoup, Gson, and sslcontext, while they
were not reproduced in the other two. We could not reproduce
bugs from the Checkstyle project, despite it having a large
number of bugs; upon inspection, we find that this is because
the project’s tests rely heavily on external files, which LIBRO
has no access to, as shown in Section VI-C3. LIBRO also
does not generate BRTs for the Jackson project, but the small
number of bugs in the Jackson project make it difficult to draw
conclusions from it.

Answer to RQ3-1: LIBRO is capable of generating bug
reproducing tests even for recent data, suggesting it is not
simply remembering what it trained with.

2) RQ3-2: LIBRO uses several predictive factors correlated
with successful bug reproduction for selecting bugs and rank-
ing tests. In this research question, we check whether the
identified patterns based on the Defects4J dataset continue to
hold in the recent GHRB dataset.

Fig. 5: Distribution of the max_output_clus_size values for
reproduced and not-reproduced bugs

Recall that we use the maximum output cluster size as a
measure of agreement among the FIBs, and thus as a selection
criterion to identify whether a bug has been reproduced. To
observe whether the criterion is a reliable indicator to predict

Listing 4: Generated FIB test for AssertJ-Core-2666.
1 public void testIssue952() {

2 Locale locale = new Locale("tr", "TR");

3 Locale.setDefault(locale);

4 assertThat("I").as("Checking�in�tr_TR�locale").containsIgnoringCase("i

");

5 }

the success of bug reproduction, we observe the trend of
max_output_clus_size between the two datasets, with and
without BRTs. In Figure 5, we see that the bugs with no BRT
typically have small max_output_clus_size, mostly under
ten; this pattern is consistent in both datasets.

The ranking results of GHRB are also presented in Table VI.
They are consistent to the results from Defects4J, indicating
the features used for our ranking strategy continue to be good
indicators of successful bug reproduction.

Answer to RQ3-2: We find that the factors used for the
ranking and selection of LIBRO consistently predict bug
reproduction in real-world data.

3) RQ3-3: We present case studies of attempts by LIBRO
to reproduce bugs that either succeeded or failed.

TABLE VIII: Bug Report Successfully Reproduced: URLs
are omitted for brevity (AssertJ-Core Issue #2666)

Title assertContainsIgnoringCase fails to compare i and I in
tr_TR locale

See org.assertj.core.internal.Strings#assertContainsIgnoringCase
[url]
I would suggest adding [url] verification to just ban
toLowerCase(), toUpperCase() and other unsafe methods: #2664

We first present a successfully reproduced bug report, issue
#2685 for the AssertJ-Core project, in Table VIII. The bug
is that, in tr_TR locale, assertContainsIgnoringCase method is
mishandling the letter I. For this bug report, LIBRO gener-
ates the bug reproducing test in Listing 4. Despite the bug
report not containing any executable code, LIBRO successfully
generated a bug reproducing test that compares I and i,
using the containsIgnoringCase method referenced within the
report. A BRT for this bug is ranked at the second place,
suggesting a developer would have been quickly provided with
a reproducing test.

Listing 5: Generated FIB test for Checkstyle-11365.
1 public void testFinalClass() throws Exception {

2 final DefaultConfiguration checkConfig =

3 createModuleConfig(FinalClassCheck.class);

4 final String[] expected = CommonUtil.EMPTY_STRING_ARRAY;

5 verify(checkConfig, getPath("InputFinalClassAnonymousClass.java"),

expected);

6 }

We now turn to a bug report that is not successfully
reproduced. Table IX contains issue #11365 in the Checkstyle
project. The bug is that CheckStyle incorrectly decides that a
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Figure 2: Overlap analysis of bugs successfully localized by
the techniques on the �rst rank.

SBFL, while also showing comparable performance in acc@3 and
acc@5 as well. It is noteworthy that A���FL showed comparable
performance to standalone FL techniques that require more soft-
ware artifacts from the developer even though it only uses only
failing tests to identify the fault location. This is in contrast to
other FL techniques which require more software artifacts from the
developer, such as the SBFL techniques DStar and Ochiai, which
generally require passing tests for good performance. In addition,
we �nd that A���FL outperforms the LLM+Test baseline, which
does not retrieve information from the repository, by a substantial
margin (84.0% improved performance on acc@1). This indicates
that the function calls are meaningfully contributing to better FL
performance. Overall, our results indicate that A���FL provides
state-of-the-art standalone fault localization performance and that
these results are made possible by providing the LLM with tools to
explore a repository.

To investigate how SBFL performs using the same artifacts as
A���FL, we compare it against the SBFL-F baseline as well, which
uses only failing tests; we �nd SBFL-F performed substantially
worse than A���FL. Such results demonstrate that A���FL could
provide state-of-the-art FL performance even without a preexisting
test suite unlike existing techniques, underscoring the wide applica-
bility of A���FL. For example, Kang et al. [13] note that 42% of the
top starred Java repositories had no detectable JUnit test suite, and
thus would su�er from low SBFL performance even if a failing test
were provided. On the other hand, A���FL could provide strong
performance even without a pre-existing test suite.

While A���FL achieved better acc@1 performance than the
best previous automatic FL techniques, it may be providing correct
results in a similar set of bugs to existing techniques, in which case
the results of A���FL would be less interesting, and practically
provide little marginal value to a supervised FL technique [19, 27, 37,
41]. We verify that the set of bugs that A���FL correctly localizes
was substantially distinct from the best baseline SBFL technique,
DStar, as shown in Figure 2 (a); more than 40% of the bugs that
A���FL could successfully localize were not correctly localized on
the �rst rank by DStar. Indeed, even when compared to the set of
all baseline techniques that we used, 32 bugs could be uniquely
localized by A���FL (Figure 2 (b)), indicating that its performance
is indeed orthogonal to other techniques.

Figure 3: Performance as more run information is merged
together.

Finally, we present the results of aggregating multiple runs in
Figure 3. As the �gure shows, as the algorithm is rerun and more
results are merged, the performance of A���FL uniformly increases
over all : , signifying that repeat runs can re�ne the rankings and
suggest new locations that were overlooked by previous runs, and
thus improve the performance consistently. Furthermore, the perfor-
mance does not seem to have plateaued, suggesting that more runs
could further improve the performance. These results demonstrate
that our result aggregation algorithm (Section 3.3) is contributing to
improving performance, as a single run alone, while still better than
existing approaches on the acc@1 measure, performs substantially
worse than the merged results (�nding about 40 less locations ac-
curately). Merging can also help improve the precision of A���FL:
in our experiments, when all �ve runs agreed on a bug location,
the likelihood that that location was actually a bug location was
93.5%, suggesting the possibility that such features could be used to
assess the con�dence A���FL has in predictions made, and thereby
reduce developer hassle on false positives.

4.3 Function Call Patterns
In addition to investigating the performance of A���FL relative
to baselines, we inspect how the LLM identi�es fault locations
within the framework of A���FL. First, we analyze the represen-
tative function call patterns in both successful and unsuccessful
runs of A���FL, and present the results in Figure 4. The function
call pattern which had the greatest success rate went as follows:
which classes were covered was retrieved, then which methods
were covered in a class of interest, then three consecutive methods
were observed. A common success pattern was to similarly observe
the code and comments of a target method. It appears that after
such a con�rmation process, A���FL could successfully identify
that the retrieved method was indeed faulty. On the other hand,
when A���FL failed, A���FL either inspected multiple methods
seemingly with no aim until the call budget was met (left), or did
not retrieve any information outside of class coverage and jumped
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the LLM suggests EqualsBuilder.append(Object, Object) as
the culprit, which matches the developer patch location.

3.3 Finalizing Fault Localization Results
To address the inherent variability of LLMs, we propose to repeat
the A���FL process ' times (' = 5 in our experiment). After the
repetitions, we consolidate these results into a single FL outcome.
It is worth noting that if there exist multiple failing tests, we use
distinct failing test cases for each run of A���FL. Speci�cally, if
there is just one failing test case, all iterations are conducted with
that speci�c test case. However, when there are several failing
test cases, we adopt a round-robin approach, selecting one failing
test case for each run to ensure the even distribution of iterations.
For clari�cation, if the number of failing test cases exceeds the
prede�ned maximum repetition count, ', we restrict our selection
to only ' failing test cases.

Given the ' predictions generated from A���FL, we aggregate
the outputs to drive a ranked list of suspicious methods. First, we
assign scores to the methods �agged as suspicious byA���FL based
on whether they appear in the �nal predictions generated from
the ' runs. Speci�cally, if a �nal prediction contains a total of =
methods, we give a score of 1/= to each of these identi�ed methods.
These individual scores are then combined across all ' predictions.
To illustrate, supposing that the �nal predictions are {m1, m2},
{m2}, {m2, m3}, {m3}, and {m2, m4} across 5 runs, the score for
method m2 would be calculated as: 0.5 + 1.0 + 0.5 + 0.0 + 0.5 = 2.5
In case of a tie in scores, we prioritize methods that appeared in
earlier predictions over others. For instance, in the given example,
the resulting ranked list would be [m2, m3, m1, m4].

Finally, if there are methods that are not part of the �nal A���FL
results but are covered by the failing test cases, we append them
to the end of the ranked list to ensure the list includes all methods
relevant to the failures. These methods are sorted in descending
order of the number of failing tests covering each method. To break
ties, we give priority tomethods that aremore frequentlymentioned
during the function interaction process of A���FL (Figure 1, 2 ),
based on the intuition that methods that are inspected by the LLM
or related to inspected methods are more likely to be faulty than
methods that were never observed in the debugging process.

4 RESULTS
We present the setup and results of our experiments.

4.1 Experimental Setup
To evaluate how well A���FL could reveal the fault location, we
used the widely-used real-world bug benchmark, Defects4J [11].
We select this benchmark as it has been the subject of multiple fault
localization studies [6, 7, 32], and in particular the comparative
empirical study of Zou et al. [41], which compared the fault localiza-
tion performance of various fault localization families: SBFL [1, 33],
MBFL [21, 24], slicing [29], using the stack trace (Zou et al. [41] pro-
pose predicting methods in the stack based on Schroter et al. [25]),
predicate switching [39], IRFL [40], and history-based fault local-
ization [14]. Of these, IRFL and history-based fault localization are
excluded, as they could not identify any true bug locations as the
most likely fault element in the evaluation of Zou et al. We also

introduce two additional baselines relevant to our work: (i) how
well the same LLM can identify bug locations without any function
calls, i.e. call budget=0 (the LLM+Test baseline), and (ii) SBFL using
only failing tests (the SBFL-F baseline). We con�ne our compar-
isons of A���FL to these standalone metrics to maintain fairness
by limiting the evaluations to unsupervised FL techniques only. As
A���FL does not involve any explicit learning process, we antici-
pate that its outcomes can also serve as a feature for learning-based
FL techniques that combine multiple FL results [19, 27, 37, 41].

Following Zou et al., we use �ve projects from Defects4J (Chart,
Closure, Lang, Math, Time) which together comprise 353 bugs
in total, excluding some bugs that were deprecated to problems
(e.g. problem duplication) in the Defects4J dataset. To make the
comparison fair, we used the research artifact that Zou et al. publicly
shared to derive rankings in an identical setting to ours, namely
using an ordinal tiebreaker instead of the average tiebreaker, and
removing four deprecated bugs from the Defects4J benchmark. For
evaluation, we use the acc@k metrics, which measure the number
of bugs for which any buggy code element was correctly localized
within the top : suggestions; the acc@k metric has the additional
bene�t that it is a closer measure to what developers expect from
FL [16]. As LLM-based FL techniques generate text as the �nal
output instead of pinpointing a location, this text must be matched
with existing methods within the repository. In this work, we check
if the class name, method name, and method arguments of a fault
method all match the predicted method to check if A���FL has
accurately found the fault location. For our experiments, we used
the gpt-3.5-turbo-0613 language model from OpenAI.

4.2 FL Performance

Table 1: A���FL and FL Technique Performance from Zou et
al. [41]

Family Technique acc@1 acc@3 acc@5

Predicate Switching 42 99 121

Stack Trace 57 108 130

Slicing (frequency) 51 96 119

MBFL MUSE 73 139 161
Metallaxis 106 162 191

SBFL
Ochiai 122 192 218
DStar 125 195 216

SBFL-F 34 66 78

LLM-Based LLM+Test 81 94 97
A���FL 149 180 194

The FL performance of A���FL is compared against seven base-
line techniques that showed non-zero performance per Zou et al.
The results of this comparison are presented in Table 1. We �nd
that A���FL could �nd the accurate bug location on its �rst choice
(acc@1) in 149 cases, and that it shows superior performance to
all standalone techniques that it was compared against, including
those from the previously identi�ed best fault localization family

https://arxiv.org/abs/2308.05487


So, self-consistency is everywhere
It works for code-related LLM tasks too!

• One of the easiest post-processing to improve LLM generations: no external 
dependencies (well, except the additional cost)


• Can we explain why this is the case?


• Can we model its behavior?


• Can we apply this to any target?



Why does this work?

• Wang et al.’s original intuition: “there are many reasoning paths to the correct 
solutions, but only one way to arrive at a specific incorrect solution”


• My first reaction: “surely there are infinite ways to arrive at a single incorrect 
solution!”


• My second reaction: “oh, it is probably assumed that the LLM is at least 
trying… that is, there are infinite total nonsense ways to arrive at a specific 
incorrect solution, but perhaps fewer ways to move from the question to a 
specific incorrect solution while trying to appear plausible”



Kang et al., Under Review

• Empirical evidence for my 
second reaction…?


• Too high a temperature —> too 
random sequence sampling —> 
not really trying to make sense 
—> self-consistency seems to 
break down…

LLM-Based Bug Reproduction

12

TABLE 9: OpenAI model performance under prompts

Model GPT-0301 GPT-0613 GPT-0613
Prompt Prompt 1 Prompt 1 Prompt 2

Performance 164 72 168

50 tests. As LLMs tend to show similar performance for the
GHRB data which is likely not part of the training dataset
of any LLM, we suggest that LIBRO with general LLMs can
be used for novel bug reproduction.

Answer to RQ4-2: LLMs can still perform well for held-
out bugs; similarly to Defects4J, StarCoder shows the best
performance among the open-source models.

6.4.3 RQ4-3
While the LLMs of OpenAI are the most well-known and
show strong performance on a multitude of tasks [6], there
are few details known about the models, particularly start-
ing with the most recent model, GPT-4 [36], which did not
provide even basic details about the model such as model
size. Furthermore, OpenAI LLMs are regularly updated,
and thus pose a challenge for reproducibility in academic
research. For example, the LLM that was used in our initial
experiments, Codex (code-davinci-002), has since become
inaccessible to the public.

Comparing the OpenAI LLM models, gpt-3.5-turbo-
0301 achieved a similar performance of 164 bugs given 10
test generation attempts, but gpt-3.5-turbo-0613 achieved a
much worse performance than both of these models, only
reproducing 72 bugs under the same condition, as shown
in Table 9. Initially, such results may appear to represent a
shift in model performance, as has been suggested by Chen
et al. [18] which noted that the number of executable Python
scripts generated by ChatGPT had reduced. Inspecting the
results from gpt-3.5-turbo-0613, we find that gpt-0613 would
generate full test files instead of test methods, so that
the generated code could no longer be processed correctly
by our postprocessing pipeline. Modifying the prompt by
placing the examples in the system message and empha-
sizing the need to generate test methods instead of test
files, gpt-3.5-turbo-0613 could achieve similar performance
to its earlier version. Thus, it is difficult to conclude from
our data that ChatGPT has become “worse” over time, as
Chen et al. [18] argue. Rather, as noted by Narayanan and
Kappor [37], it highlights the risk when building services
on top of ChatGPT: its behavior can change at any time,
and thus postprocessing pipelines or prompts may need to
adapt without warning.

Answer to RQ4-3: Similarly to prior work, we observe
a change in ChatGPT behavior; in our case, ChatGPT
became less susceptible to few-shot learning, and our
post-processing pipeline which relied on a specific output
format failed.

6.4.4 RQ4-4
While Figure 6 compared the performance of LLMs trained
in different ways, we also make a comparison between

LLMs that are from the same family and were thus trained
in a similar manner, but are of substantially different size,
to demonstrate how LLM size can affect bug reproduction
performance. We plot the results of these experiments in
Figure 8a. As the graph shows, bug reproduction suddenly
becomes possible when using the 7B model for CodeGen2.
Such results are reminiscent of ‘emergent’ properties of
LLMs [38], in which LLM capabilities suddenly appear at
a certain model size, which makes LLM capabilities difficult
to predict prior to training. On the other hand, in the Incoder
family, even the 1B model can reproduce a certain amount
of bugs using our default prompt. Regardless of whether
the property is emergent, the results in Figure 6 show that
bug reproduction performance tends to increase as model
size increases.

Answer to RQ4-4: LIBRO performance improves as the
underlying LLM size increases; for CodeGen2, a sudden
appearance of reproduction capability is observed.

(a) Model Size (b) Temperature

Fig. 8: Evaluation of the influence of LLM configuration to
performance.

6.4.5 RQ4-5

Figure 8b shows the performance of LIBRO when using
StarCoder. As the graph shows, we find that the perfor-
mance was best when the temperature was 0.6, which was
similar to our initial setting of temperature=0.7. At tem-
perature=0.6, LIBRO-StarCoder could reproduce 127 bugs
when generating ten tests for each bug report. Looking at
each temperature, we find that at temperatures lower than
0.6, the LLM tends to generate identical or similar tests
for a given bug report, and thus does not reproduce more
bugs as more tests are generated. Meanwhile, for higher
temperatures, the coherence of the LLM-generated results
deteriorates, and thus increasingly less bugs are reproduced.
Indeed, while not shown in the graph, our experiments
when the temperature was set to 2.0 revealed that the
LLM would almost exclusively generate unparsable code,
indicating that setting the LLM to the right temperature is
important when achieving strong bug reproduction perfor-
mance.

Answer to RQ4-5: The performance of LIBRO-StarCoder is
optimized when the temperature is set to 0.6, which gets
a good balance between generation diversity and result
coherence.



Déjà Vu from Self-Consistency, Part 1
N-version Programming

• For a mission-critical system, n-version programming is to make N 
independent teams to develop N different versions of the system, that are 
deployed in parallel. Any final decision is made by the majority voting among 
the N systems and their outputs.


• In some sense, N samples we take from an LLM is N different reasoning 
chains —> strongly reminiscent of N-version Programming



Déjà Vu from Self-Consistency, Part 1
N-version Programming

• Feldt, 1999 applied GP to 
generate 400 versions of Aircraft 
Braking controller systems.


• Figure shows rate of failure 
among 400 versions against 
different areas of input space 
(aircraft velocity and mass).


• Can self-consistency tell us 
where the difficult problems are?



Déjà Vu from Self-Consistency, Part 2
Fitness Landscape Analysis from Optimization Literature

• Fitness Landscape = [solution space]  
[fitness dimension]


• Optimisation is essentially climbing up hills 
to get higher fitness


• What if we see LLM-based solution 
generation as an optimisation process?


• What would be the landscape that 
results in self-consistency?

×



Déjà Vu from Self-Consistency, Part 2
Fitness Landscape Analysis from Optimisation Literature

• With problems for which the self-
consistency works, I hypothesise that:


• The tallest hill is also the largest; there 
are multiple starting points and 
pathways to the top


• Smaller hills (=incorrect solutions) have 
smaller base area, resulting in fewer 
pathways to their top



“Interesting. Where does the 
executability fits in?”



Code is a unique w.r.t. LLM because it executes. 
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NL + LLM Pipeline

PL/NL + LLM Pipeline



Execution enabling self-consistency
LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)
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•Any test that does not fail 
in the buggy version are 
filtered out


•Failure type and error 
messages are considered 
when clustering tests.



Execution enabling Chain-of-Thoughts
Automated Scientific Debugging, Kang et al., https://arxiv.org/abs/2304.02195
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Sungmin Kang

(PhD Candidate)

Kang et al.

Construct
Prompt

Scientific 
Debugging 
Explanation

Debugging 
Problem 

Description

1 def f(n):
2     # Evaluate if n can be
3     # written as the sum of 4
4     # positive even numbers.
5     return n%2==0 and n>8

fails on the test
assert f(8) == True, f(8)

with the error message
...
AssertionError: False

Hypothesize
via LLM

Hypothesis: The input 8 is even. 
Perhaps the condition on line 5 is 
classifying the input as odd.
Prediction: n%2==0 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n%2==0)`

The LLM makes a hypothesis 
about what the bug is, and an 
experiment to run.

Observe
via execution

Observation: True

The debugger verifies 
by performing the 
experiment.

Conclude
via LLM

Conclusion: The 
hypothesis is rejected.

The LLM judges the 
hypothesis (here, to 
be incorrect).

Hypothesis: [The prev. hypothesis] 
was REJECTED. Perhaps the 
condition… is classifying the 
input as less than or equal to 8.
Prediction: n>8 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n>8)`

The prior hypothesis was 
rejected; the LLM suggests 
n>8 is problematic.

Observation: False

This time, the 
debugger confirms the 
prediction.

Conclusion: The 
hypothesis is supported.

The LLM deems the 
hypothesis correct.

1 2 3

4 5

Hypothesis: [The prev. hypothesis] 
was SUPPORTED. Perhaps it should 
be changed to n>=8.
Prediction: If the condition on 
line 5 is changed to n>=8, the 
test will pass.
Experiment: `REPLACE(5, "n>8", 
"n>=8") AND RUN`

6

The LLM generates a custom 
command to fix the code and 
execute the failing test.

Observation: 
[No exception triggered]

Due to the fix, the 
failing test passed.

Conclusion: The 
hypothesis is supported. 
<DEBUGGING DONE>

The LLM signals that 
debugging is done 
(<DEBUGGING DONE>).

7 8 9
Legend

Dashed boxes:
generated by LLM

Solid boxes: generated by 
debugger / test execution

def f(n):
  return (n%2==0 and
            n>=8)

Fix is generated; 
the developer may 
check the process 
(steps 1-9) 
on request.

Suggest
via LLM

10

Append to prompt
after generation

Legend

A B C D E

Annotated Run (1-10)

Pipeline (A-E)

Figure 1: The pipeline and a real example run of A���SD, with annotations in black boxes and lightly edited for clarity. Given
a detailed description of the scienti�c debugging concept and a description of the bug (A), A���SD will generate a hypothesis
about what the bug is and construct an experiment to verify, using an LLM (B), actually run the experiment using a debugger
or code execution (C), and decide whether the hypothesis is correct based on the experiment result using an LLM (D). The
hypothesize-observe-conclude loop is repeated until the LLM concludes the debugging or an iteration limit is reached; �nally,
a �x is generated (E), with an explanation (white boxes from (1) to (9)) that the developer may view.

3.2 Hypothesize-Observe-Conclude
With the initial prompt,A���SD starts iterating over the ‘hypothesize-
observe-conclude’ loop depicted in Figure 1 ( B - D ). The result
of each process is appended to the prompt to allow incremental
hypothesis prediction; i.e. when generating the conclusion in 3 ,
the LLM would predict it based on the concatenation of the initial
prompt, 1 , and 2 . We describe each iteration of the loop as a step:
for example, Figure 1 1 - 3 would make up one step.

Hypothesize. Here, we lead the language model to generate a
hypothesis by appending the token Hypothesis: to the prompt, so
that the language model generates a hypothesis about the bug. We
observe that the Prediction: and Experiment: line headers are
also generated in turn by the LLM, due to the detailed description
of the scienti�c debugging process provided by the prompt. The
important aspect for the next step is the Experiment command,
where the language model either generates a debugger command
that can be executed by a debugger, or a custom code modi�cation-
and-execution script so that the language model can ‘test’ a certain
change. As the document is in Markdown format, the Experiment
script is wrapped in backticks (�); this script is extracted from the
LLM output to get concrete code execution results in the next step.

Examples can be seen in Figure 1 1 , 4 , and 7 - note thatA���SD
also localizes the fault as a part of the hypothesizing process, thus
making fault localization explainable as well.

Observe. The generated experiment script is passed to a back-
ground process based on traditional software engineering tools that
provides real execution results back to the language model, so that
we can ground the generation process of A���SD on real results,
and also build credibility for developer presentation. The model
can either (i) invoke a composite debugger command by setting a
breakpoint and printing a value, or (ii) modify the code and run
the failing test with the aforementioned DSL. When executing a
debugger command, it is executed via the command-line interface
of the language-appropriate debugger, and the output from the last
subcommand of the composite command (assumed to be a print
command) is returned, as in Figure 1 2 and 5 . When the break-
point is within a loop, the debugger collects values at di�erent
timesteps of execution and returns them together, e.g. ‘At each loop
execution, the expression was: [v1, v2, ...]’, up to a maximum of 100
values. Meanwhile, upon test execution from a edit-and-execute
DSL command, if an exception is raised, the exception type and
message are returned as the observation; otherwise, the result ‘[No
exception triggered]’ is appended, as in Figure 1 8 .

https://arxiv.org/abs/2304.02195


Executing non-executables (?)
(secondary execution via LLMs)

Code LLM Documentation Human
Evaluation

Evaluation

Code LLM Documentation LLM Test

Test

Test

Test

•How do we evaluate the 
quality of automatically 
generated documents?


•Derive executables from 
documents using LLMs, 
then exploit the 
executability!


•(Yes, the derivation 
introduces imprecision 
& noise, but still…)

Sungmin Kang

(PhD Candidate)



Power of secondary executability
An ongoing work

The better documents the secondary execution is based on, 
the higher the pass rate becomes.



What this means to GI community

• We need to re-think the semantic/syntactic boundary.


• Naively asking LLMs to do such and such will only go so far; especially if the 
scope is very narrow, e.g., rewriting a few lines of code.


• Can LLMs do more structural changes? Refactoring?


• We have amassed a mountain of experience on how we can exploit 
executions to extract (semantic) interpretations of code and also to induce 
desirable (semantic) changes - use them well with LLMs!


• Software testing, program analysis, GI applications…



A critical and essential perspective
LLMs are still autocompletion engines - does it speak Chinese? 🙂

• Do not be too easily persuaded into 
thinking that they can think :)


• Try to imagine whether the given task 
can be broken down to chunks of 
text generation (ideally text that it has 
seen during training)



A Thought Experiment
John Searle, “Mind, Brains, and Programs” in 1980

• Suppose we have a computer program that 
behaves as if it understands Chinese 
language.


• You are in a closed room with the AI program 
source code.


• Someone passes a paper with Chinese 
characters written on it, into the room.


• You use the source code as instruction to 
generate the response to the input, and sends 
the response out of the room.


• Do you understand Chinese language, or not?

Correlation vs. Causation, or Syntax vs. Semantic

• MIP talk at ICSE 2019 captured this beautifully - “It Does What You Say, Not 
What You Mean: Lessons from 10 Years of Program Repair”  

• Traditionally, computing the semantic has been either very difficult or 
infeasible; as it is well known to the GI community!

"f(x)

Semantic, captured (imperfectly) in fitness 
functions

Candidate solutions, (randomly) generated 
via syntactic perturbations

GI#

Kang, An, and Yoo

the LLM suggests EqualsBuilder.append(Object, Object) as
the culprit, which matches the developer patch location.

3.3 Finalizing Fault Localization Results
To address the inherent variability of LLMs, we propose to repeat
the A���FL process ' times (' = 5 in our experiment). After the
repetitions, we consolidate these results into a single FL outcome.
It is worth noting that if there exist multiple failing tests, we use
distinct failing test cases for each run of A���FL. Speci�cally, if
there is just one failing test case, all iterations are conducted with
that speci�c test case. However, when there are several failing
test cases, we adopt a round-robin approach, selecting one failing
test case for each run to ensure the even distribution of iterations.
For clari�cation, if the number of failing test cases exceeds the
prede�ned maximum repetition count, ', we restrict our selection
to only ' failing test cases.

Given the ' predictions generated from A���FL, we aggregate
the outputs to drive a ranked list of suspicious methods. First, we
assign scores to the methods �agged as suspicious byA���FL based
on whether they appear in the �nal predictions generated from
the ' runs. Speci�cally, if a �nal prediction contains a total of =
methods, we give a score of 1/= to each of these identi�ed methods.
These individual scores are then combined across all ' predictions.
To illustrate, supposing that the �nal predictions are {m1, m2},
{m2}, {m2, m3}, {m3}, and {m2, m4} across 5 runs, the score for
method m2 would be calculated as: 0.5 + 1.0 + 0.5 + 0.0 + 0.5 = 2.5
In case of a tie in scores, we prioritize methods that appeared in
earlier predictions over others. For instance, in the given example,
the resulting ranked list would be [m2, m3, m1, m4].

Finally, if there are methods that are not part of the �nal A���FL
results but are covered by the failing test cases, we append them
to the end of the ranked list to ensure the list includes all methods
relevant to the failures. These methods are sorted in descending
order of the number of failing tests covering each method. To break
ties, we give priority tomethods that aremore frequentlymentioned
during the function interaction process of A���FL (Figure 1, 2 ),
based on the intuition that methods that are inspected by the LLM
or related to inspected methods are more likely to be faulty than
methods that were never observed in the debugging process.

4 RESULTS
We present the setup and results of our experiments.

4.1 Experimental Setup
To evaluate how well A���FL could reveal the fault location, we
used the widely-used real-world bug benchmark, Defects4J [11].
We select this benchmark as it has been the subject of multiple fault
localization studies [6, 7, 32], and in particular the comparative
empirical study of Zou et al. [41], which compared the fault localiza-
tion performance of various fault localization families: SBFL [1, 33],
MBFL [21, 24], slicing [29], using the stack trace (Zou et al. [41] pro-
pose predicting methods in the stack based on Schroter et al. [25]),
predicate switching [39], IRFL [40], and history-based fault local-
ization [14]. Of these, IRFL and history-based fault localization are
excluded, as they could not identify any true bug locations as the
most likely fault element in the evaluation of Zou et al. We also

introduce two additional baselines relevant to our work: (i) how
well the same LLM can identify bug locations without any function
calls, i.e. call budget=0 (the LLM+Test baseline), and (ii) SBFL using
only failing tests (the SBFL-F baseline). We con�ne our compar-
isons of A���FL to these standalone metrics to maintain fairness
by limiting the evaluations to unsupervised FL techniques only. As
A���FL does not involve any explicit learning process, we antici-
pate that its outcomes can also serve as a feature for learning-based
FL techniques that combine multiple FL results [19, 27, 37, 41].

Following Zou et al., we use �ve projects from Defects4J (Chart,
Closure, Lang, Math, Time) which together comprise 353 bugs
in total, excluding some bugs that were deprecated to problems
(e.g. problem duplication) in the Defects4J dataset. To make the
comparison fair, we used the research artifact that Zou et al. publicly
shared to derive rankings in an identical setting to ours, namely
using an ordinal tiebreaker instead of the average tiebreaker, and
removing four deprecated bugs from the Defects4J benchmark. For
evaluation, we use the acc@k metrics, which measure the number
of bugs for which any buggy code element was correctly localized
within the top : suggestions; the acc@k metric has the additional
bene�t that it is a closer measure to what developers expect from
FL [16]. As LLM-based FL techniques generate text as the �nal
output instead of pinpointing a location, this text must be matched
with existing methods within the repository. In this work, we check
if the class name, method name, and method arguments of a fault
method all match the predicted method to check if A���FL has
accurately found the fault location. For our experiments, we used
the gpt-3.5-turbo-0613 language model from OpenAI.

4.2 FL Performance

Table 1: A���FL and FL Technique Performance from Zou et
al. [41]

Family Technique acc@1 acc@3 acc@5

Predicate Switching 42 99 121

Stack Trace 57 108 130

Slicing (frequency) 51 96 119

MBFL MUSE 73 139 161
Metallaxis 106 162 191

SBFL
Ochiai 122 192 218
DStar 125 195 216

SBFL-F 34 66 78

LLM-Based LLM+Test 81 94 97
A���FL 149 180 194

The FL performance of A���FL is compared against seven base-
line techniques that showed non-zero performance per Zou et al.
The results of this comparison are presented in Table 1. We �nd
that A���FL could �nd the accurate bug location on its �rst choice
(acc@1) in 149 cases, and that it shows superior performance to
all standalone techniques that it was compared against, including
those from the previously identi�ed best fault localization family

Libro Reproduction Results 
(against of 750 Bugs)

AutoFL Evaluation Metric 
(against of 353 Bugs)

Wang et al., ICLR 2023

• When sampling answers from an 
LLM, take multiple answers with 
high temperature.


• If there is an answer that has the 
majority among the sampled 
answers, it is more likely to be 
the correct one.

Self-Consistency Déjà Vu from Self-Consistency, Part 2
Fitness Landscape Analysis from Optimization Literature

• Fitness Landscape = [solution space]  
[fitness dimension]


• Optimisation is essentially climbing up hills 
to get higher fitness


• What if we see LLM-based solution 
generation as an optimisation process?


• What would be the landscape that 
results in self-consistency?

×

Code is a unique w.r.t. LLM because it executes. 
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