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Abstract. Flexible Job Shop Scheduling (FJSS) problem has many real-
world applications such as manufacturing and cloud computing, and thus
is an important area of study. In real world, the environment is often
dynamic, and unpredicted job orders can arrive in real time. Dynamic
FJSS consists of challenges of both dynamic optimisation and the FJSS
problem. In Dynamic FJSS, two kinds of decisions (so-called routing and
sequencing decisions) are to be made in real time. Dispatching rules have
been demonstrated to be effective for dynamic scheduling due to their low
computational complexity and ability to make real-time decisions. How-
ever, it is time consuming and strenuous to design effective dispatching
rules manually due to the complex interactions between job shop at-
tributes. Genetic Programming Hyper-heuristic (GPHH) has shown suc-
cess in automatically designing dispatching rules which are much better
than the manually designed ones. Previous works only focused on stan-
dard job shop scheduling with only the sequencing decisions. For FJSS,
the routing rule is set arbitrarily by intuition. In this paper, we explore
the possibility of evolving both routing and sequencing rules together and
propose a new GPHH algorithm with Cooperative Co-evolution. Our re-
sults show that co-evolving the two rules together can lead to much more
promising results than evolving the sequencing rule only.

1 Introduction

In the modern industrial world, processing and manufacturing are global indus-
tries which are central to the economies of virtually every country. In a large
factory setting, the efficient allocation of jobs to machines is therefore an ex-
tremely important concept that businesses must consider to increase throughput,
decrease costs and increase profitability [15]. In a virtual setting, the idea of the
efficient allocation of jobs to machines can also be applied to cloud resources.
There are further applications to be found in timetabling, sports scheduling,
health care scheduling and crew scheduling. This study of the allocation of jobs
to machines is therefore a hugely important and relevant area of study to create
more efficient outcomes in the modern world, saving time and resources.

In the Job Shop Scheduling (JSS) problem, there is a set of jobs to be com-
pleted, and a set of machines which can process the jobs [26]. A solution to this
problem is an ordered schedule of assignments of jobs to machines, so that all



jobs are completed. These schedules are optimised relative to some objective,
such as minimising the makespan and flowtime.

Flexible JSS (FJSS) problem is an extension of JSS. In JSS, each job oper-
ation only has one candidate machine to process it. In contrast, an operation
of a job may have multiple candidate machines (options) in FJSS. As a result,
FJSS involves allocating job operations to machines (i.e. routing problem) as
well as selecting jobs from the queue of an idle machine to be processed next
(i.e. sequencing problem). This makes FJSS more challenging than JSS.

FJSS is NP-hard since it has JSS as its special case (where all the operations
have only one candidate machine). Thus, traditional optimisation methods such
as branch-and-bound [18] is applicable when the problem size is not large. In this
case, heuristic search methods such as simulated annealing [33], tabu search [25]
and genetic algorithm [34] show promise in finding reasonably good solutions in a
short time. However, in real world, the environment is usually dynamic, and un-
predicted jobs can arrive at any time. The decisions made about which job to be
processed next must be able to factor in the changing state of the system quickly
and computationally cheaply. Therefore traditional optimisation techniques are
infeasible for dynamic JSS due to their high computational complexity.

Dispatching Rules (DRs) have been used extensively in JSS (e.g. [3]) due to
their computational efficiency. Whenever a machine becomes idle, a DR calcu-
lates a priority value for each job waiting in its queue and selects the most prior
job to process next. Such computation is carried out at each decision point (e.g.
when a machine becomes idle) and can be done efficiently. A variety of DRs
have been designed manually to handle different scenarios. An overview of the
manually designed DRs can be found in [29].

Manually designing DRs is time consuming and very demanding on domain
expertise. The existing manually designed rules tend to be overly simplistic, with
plenty of literature showing that many manually designed rules only perform
well for certain objectives and in certain job shops [17, 28, 30]. Recently, Genetic
Programming Hyper-heuristics (GPHH) has been successfully applied to auto-
matically designing (evolving) DRs for scheduling [5, 19, 20], and the evolved
DRs are much more effective than the manually designed DRs. However, the
existing works mainly focused on evolving the sequencing rules, i.e. the rules
selecting the operations from the queue of the idle machine to process next. The
routing rule (i.e. the rule to select a candidate machine to process the given op-
eration) is normally specified intuitive (e.g. selecting the machine with the least
waiting time in [31]). Such simple routing rules are by no means the best and
there is a potential to design routing rules that cooperates with the sequencing
rules better in the given scheduling scenario. This motivates us to evolve the
sequencing and routing rules simultaneously. To this end, we adopt the Cooper-
ative Co-evolution (CC) [27] framework, which is a natural framework to evolve
multiple components together. It has also been applied in JSS for co-evolving
the DR and due date assignment rule [23].



1.1 Goals

In this paper, we aim to find more promising routing and sequencing rules for
FJSS. Specifically, we aim to achieve the following research objectives.

1. Compare between different manually designed routing rules on different FJSS
scenarios to understand which manually designed routing rule performs the
best in general.

2. Propose a GP with Cooperative Co-evolution (called CCGP) for co-evolving
the routing and sequencing rules simultaneously.

3. Compare CCGP with the GP that evolves sequencing rule with pre-specified
routing rule (called SeqGP) to evaluate the performance of CCGP.

4. Conduct analysis on the characteristics of the rules evolved by CCGP to gain
new knowledge about the structure of the effective routing rules for FJSS.

1.2 Organisation

The rest of the paper is organised as follows: Section 2 gives the problem de-
scription and related work. Then, the proposed CCGP is proposed in Section 3.
Experimental studies are carried out in Section 4. Finally, Section 5 gives the
conclusions and future work.

2 Background

2.1 Flexible Job Shop Scheduling

FJSS is to process a set of jobs J = {J1, . . . , Jn} with a set of machines
M = {M1, . . . ,Mm}. Each job Jj has an arrival time t0(Jj) and a sequence
of operations O1,j , . . . , Olj ,j . Each operation Oi,j has a set of candidate ma-
chines πi,j ⊆M. It can be processed by any machine πi,j,k ∈ πi,j . The duration
of processing operation Oi,j with machine πi,j,k is δi,j,k. One cannot start pro-
cessing an operation until its precedent operations have been completed. Each
machine can process at most one operation at a time, and each operation is
processed by exactly one machine without interruption. The goal of FJSS is to
find a feasible schedule to optimise some objective(s). The commonly considered
JSS objectives include minimising the makespan (Cmax), total flowtime (

∑
Cj),

total weighted tardiness (
∑
wjTj), number of tardy jobs, etc [26].

JSS is a special case of FJSS, where for each operation Oi,j , |πi,j | = 1. In
other words, each operation can be processed by only one machine. In this case,
no routing decision needs to be made.

2.2 Related Work

The FJSS problem was first identified by Brucker and Schlie [6] in 1990, where
a solution of a polynomial algorithm was suggested to solve each of the routing
and sequencing sub-problems for a two job system. Early studies focused on



finding FJSS solutions using traditional optimisation approaches. Brandimarte
[4] proposed using a hierarchical method to minimise the makespan for a FJSS
system. In his work, he used a two-level tabu search algorithm in combination
with the decomposition of FJSS into routing and job shop scheduling sub prob-
lems. In his work, Brandimarte also created a class of flexible job shops that
would become used as a benchmark by future researchers [2]. Norman and Bean
[24] developed a genetic algorithm with random key representation, elitist repro-
duction, immigration mutation as well as Bernoulli crossover to solve the FJSS
problem with the objective of minimising total tardiness. In 2002, Kacem et al.
[16] proposed a hybrid approach for solving the FJSS problem, using localisa-
tion for the routing component, and three manually designed dispatching rules
for the sequencing component. An advanced genetic algorithm was proposed for
evolving arrangements of jobs and machines.

In recent decades, hyper-heuristics [7] have attracted more and more re-
search attention, as they can find heuristics (i.e. dispatching rules in JSS) rather
than solutions, and thus are more flexible and scalable. More importantly, the
evolved heuristics can handle dynamic environment much more effectively than
traditional (re-)optimisation approaches. In 2001, Dimopoulos and Zalzal [9]
used GP to evolve dispatching rules for JSS, for single machine scheduling with
a terminal set of scheduling attributes (processing time, due date, number of
jobs, release time, etc) with a standard function set. These evolved dispatching
rules performed well and were better than traditional manually designed rules
even for unseen and large instances. Then in 2006, Geiger et al. [10] presented a
learning system which combined GP with a simulation model for an industrial
facility. This proposed GP method creates a rule assigned priority to jobs on
a single machine in both static and dynamic environments. This paper quickly
produced many dispatching rules which rivalled results produced by rules found
in past decades. A method for evolving dispatching rules for multiple machines
was proposed, which used modified genetic operators. Miyashita [22] in 2000 de-
veloped an automatic method of evolved customised dispatching rules for a JSS
environment, using GP. In his work, he considered the JSS problem as being a
multi-agent problem, where each agent represents a resource (machine or work
station). This multi-agent model was explored using GP, and produced good re-
sults, however prior knowledge of the JSS environment was required. This limits
the application of this work to only static environments.

In 2007, Tay and Ho [32] proposed a GP method to evolve dispatching rules
for a FJSS environment which were optimised for multiple objectives. These
multiple objectives were treated as a single objective by linearly combined their
objective functions. The proposed GP method can be thought of as a priority
function which calculated the priority of operations in the queue of a single ma-
chine, based on static and dynamic attributes in the job shop. The dispatching
rules evolved outperformed other manually designed dispatching rules, although
the use of machine attributes was not considered. This system was assessed later
in 2010 by Hildebrandt et al. [12] which showed that in some dynamic JSS in-
stances, the evolved rules by Tay and Ho [32] performed only slightly better



than the earliest release date rule, and worse the than shortest processing time
rule, which are very simplistic. Hildebrandt et al. [12] then used GP to evolve
dispatching rules in four simulations (all with 10 machines, with a combina-
tion of two utilisation levels and two job types) for the single objective of mean
flow time. Their evolved rules were robust, performing very well in both differ-
ent environments (50 machines with varying processing time distributions) and
the original training environments. In 2014, Nguyen et al. [23] used cooperative
coevolution GP to evolve due date assignment rules and dispatching rules, for
multi-objective JSS. In this work, Nguyen et al. showed that the evolved schedul-
ing policies performed very well on unseen simulation scenarios, given different
shop settings. In 2016, Mei et al. [21] used GP to evolve dispatching rules for
JSS for a single objective. Feature selection was then performed on the terminal
set of the dispatching rules, removing extraneous terminal attributes and reduc-
ing the problem search space. This led to significantly better dispatching rules
evolved by GP on both training and test instances.

3 Genetic Programming with Cooperative Co-evolution

The pseudo-code of the proposed CCGP is described in Algorithm 1. In the
proposed CCGP, there are two subpopulations Pr = {Pr,1, Pr,2, . . . } and Ps =
{Ps,1, Ps,2, . . . }, where Pr stands for the population of routing rules and Ps

stands for the population of sequencing rules. In addition, a context vector
cv = (cvr, cvs) is maintained for fitness evaluation. At first, the two popu-
lations are randomly initialised by ramp half-and-half method, and the con-
text vector is randomly initialised from the populations. Then, at each gener-
ation, the routing rules and sequencing rules are evolved separately using the
crossover/mutation/reproduction operator of GP. Then, each newly generated
rule is evaluated by the evaluate(·) method. Finally, the context vector is up-
dated by replacing the routing and sequencing components with the best indi-
viduals in the corresponding population, if they have better fitness values. In the
minimisation case in FJSS (e.g. makespan and flowtime are to be minimised), a
smaller fitness value is better.

The fitness evaluation procedure is given in Algorithm 2. It takes a routing
rule pr, a sequencing rule ps, and a set of FJSS instances Itrain(i.e. training set),
and returns a fitness value. For each training instance, it constructs a discrete
event simulation based on the instance, the routing and sequencing rules, and
run the simulation to generate a schedule.

At the beginning of the simulation, all machines are idle, and there may be
some initial jobs ready to be processed (ready time 0). In the dynamic FJSS
scenarios, unpredicted job arrival events are generated randomly as well. Then
online decisions are made as follows until all the jobs have been completed.

– Whenever a job becomes ready to be processed, if its next operation has only
one candidate machine, then place the job into the queue of the candidate
machine. Otherwise, apply the routing rule to select the machine to process
the job, and place the job to the queue of the selected machine.



Algorithm 1: Pseudo-code of the proposed CCGP

1 Randomly initialise Pr and Ps by ramp half-and-half;
2 cvr ← Pr,1, cvs ← Ps,1; // arbitrarily initialise context vector

3 while Stopping criteria not met do
// Evolve the routing rules

4 P′
r ← elite(Pr); // copy the elites to the new population

5 while |P′
r| < popsize do

6 Generate offspring(s) by applying the crossover/mutation/reproduction
operator to Pr;

7 Add the generated offspring(s) to P′
r;

8 end
// Evolve the sequencing rules

9 P′
s ← elite(Ps); // copy the elites to the new population

10 while |P′
s| < popsize do

11 Generate offspring(s) by applying the crossover/mutation/reproduction
operator to Ps;

12 Add the generated offspring(s) to P′
s;

13 end
// fitness evaluation

14 foreach p ∈ P′
r do fit(p)← evaluate(p, cvs, Itrain);

15 foreach p ∈ P′
s do fit(p)← evaluate(cvr, p, Itrain);

16 Pr ← P′
r, Ps ← P′

s; // update subpopulations

// update context vector

17 cv′r ← arg minp∈Pr fit(p), cv′s ← arg minp∈Ps fit(p);
18 if fit(cv′r) < fit(cvr) then cvr ← cv′r;
19 if fit(cv′s) < fit(cvs) then cvs ← cv′s;

20 end
21 return cv = (cvr, cvs);

– Whenever a machine is idle and its queue is not empty, apply the sequencing
rule to select the next job from the queue, and start processing the next job.

A simulation essentially generates a schedule (with starting and finishing
time of each job). Then, we can calculate the normalised objective value (e.g.
makespan and flowtime) of the schedule. Finally, the fitness value is set to the
average value of all the normalised objective values (line 7). Here, the normali-
sation (line 5) is with respect to a reference value obj∗(I), which can be set to
either the best known (lower bound of) objective value of the instance, or the
objective value obtained by applying benchmark routing and sequencing rules.

As shown in Algorithm 1 (lines 14 and 15), for evaluating a routing (sequenc-
ing) rule, it is combined with the sequencing (routing) component of the context
vector so that the discrete event simulation in Algorithm 2 can be constructed.



Algorithm 2: evaluate(pr, ps, Itrain)

Input: A routing rule pr, a sequencing rule ps, a set of FJSS instances Itrain
Output: A fitness value

1 f ← 0;
2 foreach I ∈ Itrain do
3 Construct a discrete event simulation based on pr, ps and I;
4 Generate a schedule S(pr, ps, I) by running the discrete event simulation;

5 f ← f + obj(S(pr,ps,I))
obj∗(I) ; // normalisation cross instances

6 end
7 return f/|Itrain|; // average over the training set

4 Experimental Studies

To evaluate the proposed CCGP, we conducted experiments on both static and
dynamic FJSS datasets. The static instances are commonly used in the evalu-
ation of FJSS methods [2], and their lower and upper bounds of makespan are
known. Specifically, there are 4 static FJSS datasets, namely the Barnes dataset
[1], Brandimarte dataset [4], Dauzere dataset [8] and Hurink dataset [14]. The
Barnes dataset consists of 21 instances with 10 or 15 jobs. Each job has 11
to 18 operations, and each operation has 1.07∼1.3 candidate machines. Thus,
the Barnes dataset is small and has relatively low flexibility. The Brandimarte
dataset has 10 small sized instances (no more than 20 jobs and 15 machines,
each job has 5∼15 operations) and medium flexibility (each operation has 2∼6
machine options). The Dauzere dataset consists of 18 instances with similar size
and flexibility as the Brandimarte dataset. There are 66 instances in the Hurink
dataset, which can be divided into 4 subsets with increasing flexibility, namely
sdata, edata, rdata and vdata. The sdata instances are essentially JSS instances,
as no operation can be processed by more than one machine. In the most flexible
vdata instances, all the operations can be processed by multiple machines.

For dynamic simulation, the configuration is given in Table 1, which has been
used in previous studies (e.g. [20, 11]).

Table 1. The Dynamic JSS simulation system configuration.

Parameter Value

#machines 10
#jobs (#warmup jobs) 5000 (1000)

#operations per job Uniform discrete distribution between 1 and 10
#Machines per operation Uniform discrete distribution between 1 and 10

Job arrival process Poisson process
Utilisation level {0.85, 0.95}
Processing time Uniform discrete distribution between 1 and 99

Job weights 20% with weight 1, 60% with weight 2, 20% with weight 4



4.1 Parameter Settings

The parameter setting of CCGP is standard, as given in table 2. The terminal
set of CCGP is described in Table 3. The terminals are adapted from the JSS
terminals proposed in [20]. The terminals involving the future operations (e.g.
NPT and WKR) are modified to take into account the machine-dependent pro-
cessing times. For each future operation, the processing time is set to the median
processing time of all the options.

The function set of CCGP is set to {+,−, ∗, /,min,max}, where “/” is the
protected division that returns 1 if divided by 0. The “min” and “max” operators
take two arguments, and return the minimal (maximal) value between them.

In the experiment, we will compare CCGP with the GP counterpart with
routing rule fixed to LWQ, and evolving the sequencing rule only. For the sake
of convenience, the counterpart will be denoted as SeqGP hereafter. For fair
comparison, the population size of SeqGP is set to 1024 so that the number of
fitness evaluations per generation is the same as CCGP. All the other parameters
are the same for SeqGP and CCGP.

Table 2. The parameter setting of CCGP.

Parameter Value

Number of subpopulations 2
Subpulation size (popsize) 512

Maximal depth 8
Crossover/Mutation/Reproduction rates 80% / 15% / 5%

Parent selection Tournament selection with size 7
Elitism 2 best individuals

Number of generations 51

Table 3. The terminal set of CCGP.

Notation Description

NIQ Number of Operations in a Machine’s Queue.
WIQ Work In a Machine’s Queue.
MWT Waiting Time of a Machine.

PT Processing Time of an Operation on a given Machine.
NPT Median Processing Time for the Next Operation on Machine options.
OWT The Waiting Time of an Operation.
WKR Median Amount of Work Remaining for a Job.
NOR The Number of Operations Remaining in a Job.

W Weight of a Job.
TIS Time In System.



4.2 Comparing Manually Designed Routing Rules for SeqGP

SeqGP requires a pre-specified routing rule for evaluating the evolved sequencing
rules. In existing studies, only the least waiting time assignment routing rule was
considered [13, 31] without investigating whether it is the best routing rule. In
this paper, we first compare a set of commonly used manually designed routing
rules on the static FJSS instances to identify the best routing rule for SeqGP.

Specifically, four manually designed routing rules are taken into account in
the comparison. They are described as follows:

1. Least Work in Queue (LWQ): select the machine with the least work (total
processing time) in its queue;

2. Least Queue Size (LQS): select the machine with the least queue size (num-
ber of operations in the queue);

3. Earliest Ready Time (ERT): select the machine that will become ready (idle)
the earliest;

4. Shortest Busy Time (SBT): select the machine with the shortest busy time
so far.

Among the above routing rules, the ERT is essentially the same as the least
waiting time rule used in previous studies (e.g.[13, 31]).

For each routing rule, the SeqGP with that routing rule was run on each
static instance for 30 times (except the 66 Hurink-sdata instances, which are
essentially JSS instances). Then, a routing rule is considered as a “winner” of
an instance if it achieved the best mean makespan over the 30 runs (there may
be multiple winners). Then, we compare the number of instances where each
routing rule was a winner.

Table 4 shows the number of instances in each static dataset where each
routing rule was a winner. It can be seen that LWQ was a winner for most
instances (127 out of 247), followed by ERT. More specifically, the advantage of
ERT over LWQ was only on the Barnes dataset, which was the very inflexible.
As the flexibility increases, the advantage of LWQ becomes more obvious.

The findings in this subsection is interesting as it identifies LWQ as a better
routing rule than ERT, which has been used in previous studies, for static FJSS.
In subsequent experiments, we set LWQ as the fixed routing rule for SeqGP.

4.3 Optimisation Performance on Static Instances

The first set of experiments aims to verify the optimisation performance of Se-
qGP and CCGP on the static FJSS instances, without a training and test (gener-
alisation) process. This way, one can investigate the effectiveness of (co-)evolving
dispatching rules as compared to directly optimising FJSS solutions.

For the static instances, the objective is to minimise the makespan. For each
static instance, CCGP and SeqGP were run 30 times independently, and the
normalised makespans (makespan over the known lower bound) of the best rules
were recorded. In addition, two manually designed sequencing rules, i.e. First-
Come-First-Serve (FCFS) and Shortest Processing Time (SPT), are also taken
into comparison.



Table 4. The number of instances in each static dataset where each compared routing
rule was a winner.

Dataset #Instances LWQ LQS ERT SBT

Barnes 21 0 0 13 8
Brandimarte 10 8 0 2 2

Dauzere 18 16 0 1 1
Hurink-edata 66 31 3 27 9
Hurink-rdata 66 39 0 27 0
Hurink-vdata 66 33 0 33 0

Total 247 127 3 103 20

Table 5 shows the summary of the compared algorithms over 30 independent
runs for the static datasets. FCFS and SPT are deterministic rules. Therefore,
for each dataset, the average normalised makespan value cross all the instances
of that dataset is shown. SeqGP and CCGP are stochastic algorithms. Therefore,
for each dataset, the mean and standard deviation over the 30 runs are given. In
addition, for each instance, Wilcoxon rank sum test with significance level of 0.05
was conducted between the 30 results obtained by CCGP and SeqGP. Then, for
each dataset, the numbers of instances that CCGP performed significantly better
than SeqGP (“W”), comparable with SeqGP (“D”), and significantly worse than
SeqGP (“L”) are given.

Table 5. The normalised makespan (MK/LB) with respect to lower bound of the
compared algorithms over 30 independent runs for the static datasets.

Dataset #Instances FCFS SPT SeqGP CCGP W-D-L

Barnes 21 1.270 1.238 1.079(0.002) 1.065(0.003) 15-6-0
Brandimarte 10 1.431 1.501 1.229(0.004) 1.062(0.004) 8-2-0

Dauzere 18 1.244 1.227 1.086(0.001) 1.061(0.002) 16-2-0
Hurink-edata 66 1.247 1.241 1.070(0.001) 1.048(0.001) 50-15-1
Hurink-rdata 66 1.271 1.292 1.123(0.001) 1.062(0.001) 64-2-0
Hurink-vdata 66 1.312 1.324 1.215(0.000) 1.019(0.001) 64-2-0

From Table 5, it is obvious that both SeqGP and CCGP dramatically out-
performed the manually designed rules (FCFS and SPT). In addition, CCGP
performed much better than SeqGP. Overall, FCFS and SPT obtained solutions
which are 25%–50% worse than the lower bound. SeqGP obtained solutions that
are 7%–23% worse than the lower bound. All the solutions obtained by CCGP
are less than 7% worse than the lower bound. The most obvious advantage of
CCGP over SeqGP occurred on the Brandimarte and Hurink-vdata datasets,
which have reasonable large problem sizes and flexibility.



More specifically, CCGP statistically significantly outperformed SeqGP on
most static instances (e.g. 64 out of 66 of the Hurink-rdata and Hurink-vdata
instances). CCGP was defeated by SeqGP on only one Hurink-edata instance
out of the total 247 static instances. This clearly demonstrates the advantage of
CCGP over SeqGP on solving static FJSS instances.

Figure 1 shows the convergence curves of SeqGP and CCGP on three repre-
sentative instances (the ribbon is the standard deviation over the 30 runs), on
which CCGP performed significantly better than, worse than, and comparable
with SeqGP. All the other instances showed similar patterns. From the figure,
it is clear that CCGP started from a much higher makespan due to the random
initial routing rule. Then, it converged very fast, and achieved better results
than SeqGP within 10 generations.
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Fig. 1. The convergence curves of the makespan of the 30 runs of SeqGP and CCGP.

Finally, CCGP can obtain solutions that are less than 7% worse than the
lower bound, which can be seen as a promising optimisation performance for
static FJSS instances.

4.4 Generalisation Performance on Dynamic Instances

The experiments in the dynamic environment is to examine the generalisation
performance of SeqGP and CCGP. We consider 2 utilisation levels (0.85 and
0.95) and 3 objectives in the dynamic environment. Specifically, we consider
minimising (1) mean flowtime (Fmean), (2) max flowtime (Fmax) and (3) mean
weighted flowtime (MWF). This results in 3× 2 = 6 scenarios. For each scenario,
SeqGP and CCGP were run 30 times independently over a training set. The
training set consists of a single dynamic FJSS simulation. To improve gener-
alisation, the random seed for generating the training simulation changes per
generation. After the training process, the best rule of the last generation is
then tested on an unseen test set to evaluate its test performance. The test set



consists of 50 dynamic simulations using the same configurations as the training
set, but different random seeds.

For the dynamic simulations, the lower bound objective values are unknown.
Therefore, the normalisation is with respect to the objective value obtained by
a benchmark dispatching rule (routing plus sequencing rules). Here, the bench-
mark routing rule is fixed to LWQ for all the scenarios. The benchmark sequenc-
ing rule is specified depending on the scenario. Based on our preliminary work
[20], we set the benchmark sequencing rule to FCFS for the scenarios minimising
Fmax, to SPT for the scenarios minimising Fmean, and to WSPT for the scenarios
minimising MWF.

Fig. 2 shows the convergence curves of the test fitness obtained by SeqGP
and CCGP over the 6 dynamic scenarios. From the figure, it is obvious that
CCGP significantly outperformed SeqGP in all the 6 scenarios. The Wilcoxon
rank sum test with significance level of 0.05 also confirmed the significance. The
convergence curves of CCGP are almost always below the curves of SeqGP. For
the scenarios minimising Fmean and MWF, CCGP successfully initialised much
more effective routing rules even from the first generation.
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Fig. 2. The convergence curves of the test fitness obtained by SeqGP and CCGP.

Fig. 3 shows the convergence curves of the size of the sequencing rules ob-
tained by SeqGP and CCGP. It can be seen that the two algorithms have similar
convergence curves in terms of sequencing rule size, i.e. evolving routing rules
does not seem to make the sequencing rule simpler or more complex.
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Fig. 3. The convergence curves of the sequencing rule size obtained by SeqGP and
CCGP.

In order to show the generalisation of SeqGP and CCGP, Fig. 4 shows the
training fitness versus test fitness scatter plot based on the 30 final results of
SeqGP and CCGP. From the figure, it is clear that both the training and test
fitnesses of CCGP were much better than that of SeqGP. The generalisation
of both algorithms are similar in terms of the correlation between training and
test fitnesses. The generalisation of CCGP is poorer for the scenarios minimising
Fmax than other scenarios. This may be because Fmax is a maximum function,
which is not so smooth as the other objectives which are based on average as
the sample size grows. Overall, the generalisation of CCGP is promising, as the
test fitness is very consistent with the training fitness. On the other hand, one
can see that for the dynamic scenarios with Fmean and MWF and low utilisation
level (0.85), the pre-specified routing rule restricted the search space too much
so that the evolved sequencing rules perform almost the same as the benchmark
sequencing rules in both training and test instances.

4.5 Rule Analysis

Eq. (1) shows an example routing rule evolved by CCGP for the scenario 〈MWF, 0.95〉.

min{NIQ× PT,WIQ}+
W

MWT× PT
−min{MWT×W,NIQ×NOR}. (1)

It mainly consists of three components. The first component min{NIQ×PT,WIQ}
is similar to WIQ, i.e. the number of operations in queue times the processing
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Fig. 4. The training fitness versus test fitness scatter plot based on the 30 final results
of SeqGP and CCGP.

time of an operation is similar to the total processing time in queue. The second
and third terms show that the routing rule prefers machines with larger MWT,
i.e. the earliest available machine (MWT = current time−machine ready time).
This preference is more obvious if the current job has a larger weight. That is,
the routing rule tries to finish the more important jobs as early as possible. In
summary, CCGP can automatically evolve routing rules that contain sensible
patterns consistent with intuition for making routing decisions.

5 Conclusions and Future Work

In this paper, we propose to co-evolve the routing and sequencing rules to-
gether using a co-operative coevolution framework for flexible job shop schedul-
ing (FJSS). Through comprehensive experiments, we had several interesting find-
ings. First, we found that the commonly used pre-specified routing rule is not
the best one for static FJSS. We found a better routing rule, which is LWQ (least
work in queue). Then, we developed the GPHH with the routing rule fixed to
LWQ (named SeqGP), and the Cooperative Co-evolution GP (CCGP) that co-
evolves the routing and sequencing rules simultaneously. The results show that
CCGP performed much better than SeqGP in both static and dynamic scenar-
ios. This demonstrates that the routing rules evolved by CCGP are much better
than the rules that are manually designed and fixed in SeqGP. In other words,
there is a great potential to find much more effective routing rules for FJSS,
especially in the dynamic environment.

In the future, we will focus on further improving the effectiveness of CCGP. In
this paper, only a baseline CC framework is adopted. We will consider incorpo-



rating other domain specific strategies such as feature selection and construction
to improve the effectiveness and efficiency of the GP search.
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