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Reservoir modeling is a critical step in the planning and development of oil fields. Before a reservoir model can be accepted for
forecasting future production, the model has to be updated with historical production data. This process is called history match-
ing. History matching requires computer flow simulation, which is very time-consuming. As a result, only a small number of
simulation runs are conducted and the history-matching results are normally unsatisfactory. This is particularly evident when the
reservoir has a long production history and the quality of production data is poor. The inadequacy of the history-matching results
frequently leads to high uncertainty of production forecasting. To enhance the quality of the history-matching results and improve
the confidence of production forecasts, we introduce a methodology using genetic programming (GP) to construct proxies for
reservoir simulators. Acting as surrogates for the computer simulators, the “cheap” GP proxies can evaluate a large number (mil-
lions) of reservoir models within a very short time frame. With such a large sampling size, the reservoir history-matching results
are more informative and the production forecasts are more reliable than those based on a small number of simulation models.
We have developed a workflow which incorporates the two GP proxies into the history matching and production forecast process.
Additionally, we conducted a case study to demonstrate the effectiveness of this approach. The study has revealed useful reservoir
information and delivered more reliable production forecasts. All of these were accomplished without introducing new computer
simulation runs.

Copyright © 2008 Tina Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Petroleum reservoirs are normally large and geologically
complex. In order to make management decisions that max-
imize oil recovery, reservoir models are constructed with as
many details as possible. Two types of data that are com-
monly used in reservoir modeling are geological data and
production data. Geological data, such as seismic and wire-
line logs, describe earth properties, for example, porosity, of
the reservoir. In contrast, production data, such as water sat-
uration and pressure information, relate to the fluid flow dy-
namics of the reservoir. Both data types are required to be
honored so that the resulting models are as close to reality
as possible. Based on these models, managers make business
decisions that attempt to minimize risk and maximize prof-
its.

The integration of production data into a reservoir model
is usually accomplished through computer simulation. Nor-
mally, multiple simulations are conducted to identify reser-
voir models that generate fluid dynamics matching the his-
torical production data. This process is called history match-
ing.

History matching is a challenging task for the following
reasons.

(i) Computer simulation is very time consuming. On av-
erage, each run takes 2 to 10 hours to complete.

(ii) This is an inverse problem where more than one reser-
voir model can produce flow outputs that give accept-
able match to the production data.

As a result, only a small number of computer simula-
tion runs are conducted and the history matching results are
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associated with uncertainty. This uncertainty also translates
into the uncertainty of future production forecasts. In order
to optimize reservoir planning and development decisions,
it is highly desirable to improve the quality of the histori-
cal matching results. The subject of uncertainty in reservoir
modeling and production forecast has been studied inten-
sively for the past few years (see Section 2).

Previously, we have introduced a methodology using ge-
netic programming (GP) [1, 2] to construct a reservoir flow
simulator proxy to enhance the history matching process [3].
Unlike the full reservoir simulator, which gives the flow of
fluids of a reservoir, this proxy only labels a reservoir model
as “good” or “bad”, based on whether or not its flow out-
puts match well with the production data. In other words,
this proxy acts as a classifier to separate “good” models from
“bad” models in the reservoir descriptor parameter space.
Using this “cheap” GP proxy as a surrogate of the full-
simulator, we can examine a large number of reservoir mod-
els in the parameter space in a short period of time. Collec-
tively, the identified good-matching reservoir models provide
us with comprehensive information about the reservoir with
a high degree of certainty.

In this contribution, we applied the developed method
to a West African oil field which has a significant produc-
tion history and noisy production data. Additionally, we car-
ried out production forecast using the history matching re-
sults. Production forecast also required computer simula-
tion. Since the number of good models identified by the
history-matching proxy was large, it was not practical to
make all these computer simulation runs. Similar to the way
the history-matching proxy was constructed, a second reser-
voir proxy was constructed for production forecast. This
proxy was then applied to the good reservoir models to fore-
cast future production. Since the forecasting was based on a
large number of reservoir models, it was closer to reality than
the forecasts derived from a small number of computer sim-
ulation runs.

Overall, the project has successfully achieved the goal of
enhancing the quality of the history-matching models and
improving the confidence of production forecast, without in-
troducing new reservoir simulation runs. We believe that the
proposed methodology is a cost-effective way to achieve bet-
ter reservoir planning and development decisions.

The rest of the paper is organized as follows. Section 2 ex-
plains the process of reservoir history matching and produc-
tion forecast. The developed methodology and its associated
workflow are then presented in Section 3. In Section 4, we
describe the case study of a West African oil field. Details of
data analysis and outliers detection are reported in Section 5.
Following the proposed workflow step by step, we present
our history matching study in Section 6 and give the pro-
duction forecast analysis in Section 7. We discuss computer
execution time in Section 8. Finally, Section 9 concludes the
paper with suggestions of future work.

2. HISTORY MATCHING AND PRODUCTION FORECAST

When an oil field is first discovered, a reservoir model is con-
structed utilizing geological data. Geological data can include
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Figure 1: History matching is an inverse problem.

porosity and permeability of the reservoir rocks, the thick-
ness of the geological zones, the location and characteristics
of geological faults, and relative permeability and capillary
pressure functions. Building reservoir models using geologi-
cal data is a forward modeling task and can be accomplished
using statistical techniques [4] or soft computing methods
[5].

Once the field enters into the production stage, many
changes take place in the reservoir. For example, the extrac-
tion of oil/gas/water from the field causes the fluid pressures
of the field to change. In order to obtain the most current
state of a reservoir, these changes need to be reflected in the
model. History matching is the process of updating reser-
voir descriptor parameters to reflect such changes, based on
production data collected from the field. Using the updated
models, petroleum engineers can make more accurate pro-
duction forecasts. The results of history matching and subse-
quent production forecasting strongly impact reservoir man-
agement decisions.

History matching is an inverse problem. In this problem,
a reservoir model is a black box with unknown parameters
values (see Figure 1). Given the water/oil rates and other pro-
duction information collected from the field, the task is to
identify these unknown parameter values such that the reser-
voir model gives flow outputs matching production data.
Since inverse problems, typically, have no unique solutions,
that is, more than one combination of reservoir parameter
values give the same flow outputs, we need to obtain a large
number of well-matched reservoir models in order to achieve
high confidence in the history-matching results.

Figure 2 depicts the work flow of history matching and
production forecast process. Initially, a base geological model
is provided. Next, parameters which are believed to have an
impact on the reservoir fluid flow are selected. Based on their
knowledge about the field, geologists and petroleum engi-
neers determine the possible value ranges of these parameters
and use these values to conduct computer simulation runs.

A computer reservoir simulator is a program which con-
sists of mathematical equations that describe fluid dynamics
of a reservoir under different conditions. The simulator takes
a set of reservoir parameter values as inputs and returns a set
of fluid flow information as outputs. The outputs are usu-
ally a time-series over a specified period of time. That time-
series is then compared with the historical production data to
evaluate their match. If the match is not satisfactory, experts
would modify the parameters values and make a new simu-
lation run. This process continues until a satisfactory match
between simulation flow outputs and the production data is
reached.
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Figure 2: Reservoir history matching and production forecasting work flow. A part of the diagram is from [6].

This manual process of history matching is subjective
and labor-intensive, because the reservoir parameters are ad-
justed one at a time to refine the computer simulations.
Meanwhile, the quality of the matching results largely de-
pends on the experience of the geoscientists involved in the
study. Consequently, the reliability of the forecasting is often
very short lived, and the business decisions made based on
those models have a large degree of uncertainty.

To improve the quality of history matching results, sev-
eral approaches have been proposed to assist the process. For
example, gradient-based algorithms have been used to se-
lect sampling points sequentially for further computer sim-
ulations [7]. Although this approach can quickly find mod-
els that match production data reasonably well, it may cause
the search to become trapped in a local optimum and pre-
vent models with better matches being discovered. Another
shortcoming is that the method generates a single solution,
despite the fact that multiple models can match the produc-
tion data equally well. To overcome these issues, genetic al-
gorithms have been proposed to replace gradient-based algo-
rithms [8, 9]. Although the results are significantly better, the
computation time is not practical for large reservoir fields.

There are also several works that construct a response
surface that reproduces the approximate reservoir simulation
outcomes. The response surface is then used as a surrogate
or proxy for the costly full simulator [10]. In this way, a large
number of reservoir models can be sampled within a short
period of time.

Response surfaces are normally polynomial functions.
Recently, kriging interpolation and neural networks have also

been used as alternative methods [11, 12]. The response sur-
face approach is usually carried out in conjunction with ex-
perimental design, which selects sample points for computer
simulation runs [13]. Ideally, these limited number of sim-
ulation runs would obtain the most information about the
reservoir. Using these simulation data to construct a response
surface estimator, it is hoped that the estimator will generate
outcomes that are close to the outcomes of the full simulator.
This combination of response surface estimation and exper-
imental design is shown to give good results when the reser-
voir models are simple and the amount of production data
is small, that is, the oil field is relatively young [6]. However,
when the field has a complex geologic deposition or has been
in production for many years, this approach is less likely to
produce a quality proxy [14]. Consequently, the generated
reservoir models contain a large degree of uncertainty.

3. A GENETIC PROGRAMMING SOLUTION

To improve the quality of the reservoir models generated
from history matching, a dense distribution of reservoir
models needs to be sampled. Additionally, there needs to be
a method for identifying which of those models provide a
good match to the production data history of the reservoir.
With that information, only “good” models will be used in
the analysis for estimating future production and this will re-
sult in greater confident in the forecasting results.

To achieve that goal, we have adopted uniform de-
sign to conduct computer simulation runs and applied ge-
netic programming for proxy construction. Uniform design,
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Figure 3: Uniform sampling gives good coverage of the parameter
space.

developed by Fang [15], generates a sampling distribution
that covers the entire parameter space for a predetermined
number of runs. It ensures that no large regions of the pa-
rameter space are left undersampled. Such coverage is im-
portant to obtain simulation data for the construction of a
robust proxy that is able to interpolate all intermediate points
in the parameter space.

In terms of implementation, we first decide the number
of simulation runs based on the complexity of the reservoir.
We then apply the Hammersley algorithm [16] to distribute
parameter values of these runs to maximize the coverage.
Figure 3 shows a case where the sampling points were dis-
tributed to cover a 2-parameter space. The algorithm works
similarly to parameter spaces with a larger dimension. This
sampling strategy gives better coverage than that by the ran-
dom Monte Carlo method.

Using the simulation results, we then apply GP symbolic
regression to construct a proxy. Unlike other research works
where the proxy is constructed to give the same type of out-
put as the full simulator [12], this GP proxy only labels a
reservoir model as a good match or bad match to the pro-
duction data, according to the criterion decided by field en-
gineers. In other words, it functions as a classifier to sepa-
rate “good” models from “bad” ones in the parameter space.
The actual amount of fluid produced by the sampled reser-
voir models is not estimated. This is a different kind of learn-
ing problems and it will be shown that GP is able to learn the
task very well.

After the GP classifier is constructed, it is then used to
sample a dense distribution of reservoir models in the pa-
rameter space (millions of reservoir models). Those that are
labeled as “good” are then studied and analyzed to iden-
tify their associated characteristics. Additionally, we will use
these “good” models to forecast future production. Since the
forecast is based on a large number of good models, the re-
sults are considered more accurate and closer to reality than
those based on a limited number of simulation runs.

History matching Production forecasting
uncertainty analysis

1. Decide reservoir parameters
and their value ranges

2. Experimental design for
simulation runs

3. Computer simulation runs

4. Define objective function
and the acceptable mismatch

5. Label good and bad models
based on the acceptable

mismatch threshold

6. Use the simulation data to
train a GP classifier that
separates “good” from

“bad” models

7. Sample a large number of
reservoir models using

the GP classifier

8. Select good models

9. Computer simulation
run for forecasting

10. Construct a
forecasting proxy using

the simulation data

11. Run the forecasting
proxy on the good

models

12. Compute the
statistics P10-P50-P90

Figure 4: Proposed history matching and production forecasting
work flow. Steps 3 and 9 can be combined when the reservoir model
parameters for history matching and production forecasting are
identical.

With the inclusion of these extra steps, the workflow
of reservoir history matching and production forecasting is
shown as in Figure 4. Initially, reservoir parameters and their
value ranges are decided by experts (step 1). Next, the num-
ber of simulation runs and the associated parameters values
are determined according to uniform design (step 2). Based
on this setup, computer simulations are conducted (step 3).
After that, the objective function and the matching thresh-
old (the acceptable mismatch between simulation results and
production data) are defined (step 4). Those reservoir mod-
els that pass the threshold are labeled as “good” while the
others are labeled as “bad” (step 5). These simulation results
are then used by GP symbolic regression to construct a proxy
that separates good models from bad models (step 6). With
this GP classifier as the simulator proxy, we can then sample a
dense distribution of the parameter space (step 7). The mod-
els that are identified by the classifier as “good” are selected
for forecasting future production (step 8).

Reservoir production forecast also requires computer
simulation. Since the number of “good” models identified by
the GP-proxy is normally large, it is not practical to make
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all these runs. Similar to the way the simulator proxy is con-
structed for history matching, a second GP proxy is gener-
ated for production forecast. However, unlike the history-
matching proxy, which is a classifier, forecasting proxy is
a regression which outputs a production forecast value. As
shown on the right-hand side of Figure 4, the simulation re-
sults based on uniform sampling (step 9) will be used to con-
struct a GP forecasting proxy (step 10). This proxy is then ap-
plied to all “good” models identified by the history-matching
proxy (step 11). Based on the forecasting results, uncertainty
statistics such as P10, P50, and P90 are estimated (step 12).

4. A CASE STUDY

The case study is conducted on a large oil field in West Africa.
It has over one billion barrels of original oil in place and has
been in production for more than 30 years. Due to the long
production history, the data collected from the field were not
consistent and the quality was not reliable. Although we do
not know for sure what causes the production measurements
to be inaccurate, we could speculate on newer technology but
more likely it is just poor measurement taking from time to
time. We will address this data quality issue in Section 5.

This field is overlain by a significant gas cap. Figure 5
shows the oil field and the gas oil contact (GOC) surface that
separates the gas cap from the underneath oil. Similarly, there
is a water oil contact (WOC) surface that separates oil from
the water below. The space between GOC and WOC surfaces
is the oil column to be recovered. The field also has 4 geo-
logical faults, illustrated in Figure 6, which affect the oil flow
patterns. Those faults have to be considered in the computer
flow simulation.

As a mature field with most of its oil recovered, the reser-
voir now has pore space which can be used for storage. One

Table 1: Reservoir parameter values for computer simulation.

Parameters Min Max

Water oil contact (WOC) 7289 feet 7389 feet

Gas oil contact (GOC) 6522 feet 6622 feet

Fault transmissibility multiplier (TRANS) 0 1

Global Kh multiplier (XYPERM) 1 20

Global Kv multiplier (ZPERM) 0.1 20

Fairway Y-Perm multiplier (YPERM) 0.75 4

Fairway Kv multipilier2 (ZPERM2) 0.75 4

Critical gas saturation (SGC) 0.02 0.04

Vertical communication multiplier (ZTRANS) 0 5

Skin at new gas injection (SKIN) 0 30

proposed plan is to store the gas produced as a side prod-
uct from the neighboring oil fields. In this particular case,
the gas produced has no economical value and reinjecting it
back into the field was one environmental-friendly method
of storing the gas.

In order to evaluate the feasibility of the plan, the cumu-
lative volume of gas that can be injected (stored) in year 2031
needed to be evaluated. This evaluation would assist man-
agers in making decisions such as how much gas to trans-
port from the neighboring oil fields and the frequency of the
transportation.

The cumulative volume of the gas that can be injected is
essentially the cumulative volume of the oil that will be pro-
duced from the field, since this is the amount of space that
will become available for gas storage. To answer that ques-
tion, a production forecasting study of this field in the year
2031 has to be conducted.

Prior to carrying out production forecast, the reservoir
model has to be updated through the history matching pro-
cess. The first step, as described in Figure 4, is deciding reser-
voir parameters and their value ranges for flow simulation.
After consulting with field engineers, 10 parameters were se-
lected (see Table 1). All parameters are unit-less except WOC
and GOC, whose unit is feet. Critical gas saturation (SGC)
is the gas saturation values for each phase (water and oil),
which has a value between 0 to 1. Skin at new gas injection
(SKIN) is the rock formation damage caused by the drilling
of new gas injector wells. It has values between 0 and 30. The
rest 6 parameters are multipliers and are in log 10 scale.

During computer simulation, the 10 parameter values are
used to define the reservoir properties in each grid of the 3D
model in two different ways. The values of the 4 regular pa-
rameters are used to replace the default values in the original
3D model while the 6 multipliers are applied to the default
values in the original model. Computer simulations are then
performed on the updated reservoir models to generate flow
outputs.

The parameters selected for computer simulation con-
tain not only the ones that affect the history like fluid con-
tacts (WOC and GOC), fault transmissibility (TRANS), per-
meability (YPERM), and vertical communication in different
area of the reservoir (ZTRANS), but also parameters associ-
ated with future installation of new gas injection wells, such
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as skin effect (SKIN). When a well is drilled, the rock for-
mation is typically damaged around the well. If the damage
is small, the “skin effect” value is close to 0. If the forma-
tion around the well is severely impacted by the drilling, the
“skin effect” value can be as high as 30. “Skin effect” acts as an
additional resistance to flow. By including parameters asso-
ciated with future production, each computation simulation
can run beyond history matching and continue for produc-
tion forecast to the year 2031. With these setup, each com-
puter simulation produces the flow outputs time-series data
for both history matching and for production forecasting. In
other words, step 3 and 9 are carried out simultaneously.

Based on uniform design, parameter values are selected
to conduct 600 computer simulation runs (step 2 and 3).
Each computer simulation takes about one hour to complete
using a single CPU machine. For a quick turnover of the re-
sults, we used computer clusters to process dozens of simu-
lations at the same time. We have several computer clusters
in the company, each has typically hundreds of nodes (128
for instance) but only 10–20 nodes are available per user at a
given time. In this case, the total running time for the simu-
lation was in the order of days.

Among the 600 runs, 593 were successful in that the runs
continued until year 2031. The other 7 runs failed for various
reasons, such as power failures, and terminated before the
runs reached year 2031.

During the computer simulation, various flow data were
generated. Among them, only field water production rate
(FWPR) and field gas production rate (FGPR), from year
1973 to 2004, were used for history matching. The other flow
data were ignored because we do not trust the quality of their
corresponding production data collected from the field.

FWPR and FGPR collected from the field were compared
with the simulation outputs from each run. The “error” E,
defined as the mismatch between the two, is the sum-squared
error calculated as follows:

E =
2004∑

i=1973

(
FWPR obsi − FWPR simi

)2

+
(
FGPR obsi − FGPR simi

)2
.

(1)

Here, “obs” indicates production data while “sim” indi-
cates computer simulation outputs. The largest E that can be
accepted as good match is 1.2 (step 4 in Figure 4). Addition-
ally, if a model has E smaller than 1.2 but has any of its FWPR
or FGPR simulation outputs match badly to the correspond-
ing production data (difference is greater than 1), the pro-
duction data was deemed not to be reliable and the entire
simulation record is disregarded. Based on this criterion, 12
data points were removed. For the remaining 581 simulation
data, 63 were labeled as “good” models while 518 were la-
beled as “bad” models (step 5 in Figure 4).

5. DATA ANALYSIS AND OUTLIERS DETECTION

To solve the history-matching problem, we need to find pa-
rameter values that produce fluid flow matching the produc-
tion data. Previously, a history-matching study on this field
has reported that oil column (WOC-GOC) has a strong im-
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pact on the reservoir flow outputs, hence it is important to
the matching of production data [11]. As shown in Figure 7,
among the 581 simulation data, all 63 good models have their
WOC and GOC correlated: when the WOC is low, its GOC
is also low, thus preserving the oil column. This suggests that
only a particular range of oil column heights might be able
to satisfy history matching. To investigate if this is true, we
added the oil column variable (WOC-GOC) to the parame-
ter set. This new variable might help reducing the complexity
of the proxy construction (see Figure 8).

Before proceeding to step 6 of GP proxy construct-
ing, we decided to perform an outliers study on the 581
simulation/production data due to the poor quality of the
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Table 2: GP system parameter values for symbolic regression.

Objective
Evolve a regression to identify outliers in
production data

Functions Addition, subtraction, multiplication, division, abs

Terminals The 10 reservoir parameters listed in Table 1 & oil
column

Fitness MSE:
∑ 581

i=1(Ei − Ri)
2/581, R is regression output.

Selection Tournament (4 candidates/2 winners)

production data. This is a common practice in data model-
ing when the data set is noisy or unreliable.

The following rationale was used to detect inconsistent
production data. Reservoir models parameter values and the
produced flow outputs generally have a consistent pattern.
The computer simulator is an implementation of that pattern
to map reservoir parameters values to flow outputs. Similarly,
there is a consistent pattern between reservoir parameter val-
ues and the mismatch (E) of simulator outputs and produc-
tion data. If the mismatching E of a data point was outside
the pattern, it indicated that the production data had a differ-
ent quality from the others and should not be trusted. Based
on this concept, we used GP symbolic regression to identify
the function that describes the pattern between reservoir pa-
rameter values and E. The GP system and the experimental
setup are given in the following subsection.

5.1. Experimental setup

This case study used a commercial GP package [17]. In this
system, some GP parameters were not fixed but were selected
by the software for each run. These GP parameters included
population size, maximum program size, and crossover and
mutation rates. In the first run, one set of values for these GP
parameters was generated. When the run did not produce an
improved solution for a certain number of generations, the
run was terminated and a new set of GP parameter values was
selected by the system to start a new run. The system main-
tained the best 50 solutions found throughout the multiple
runs. When the GP system was terminated, the best solution
among the pool of 50 solutions was the final solution. In this
work, the GP system continued for 120 runs and then was
manually terminated.

In addition to the parameters whose values were sys-
tem generated, there were other GP parameters whose values
needed to be specified by the users. Table 2 provides the val-
ues of those GP parameters for the outliers study. The termi-
nal set consists of the 11 reservoir parameters, each of which
could be used to build the leaf node in the GP regression
trees. The target is E, which was compared to the regression
output R for fitness evaluation. The fitness of an evolved re-
gression was the mean squared error (MSE) of the 581 data
points. A tournament selection with size 4 is used to select
winners. In each tournament, 4 individuals were randomly
selected to make 2 pairs. The winners of each pair became
parents to generate 2 offspring.
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Figure 9: Oil column versus R.
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Figure 10: Oil column versus log 10(E).

5.2. Results

At the end of 120 runs, the best GP regression contained 4 pa-
rameters: WOC-GOC, TRANS, YPERM, and SGC. Among
them, WOC-GOC was ranked as having the most impact on
the match of production data. Figure 9 shows the relation-
ship between WOC-GOC and the regression outputs R. It is
evident that 17 of the data points did not fit into the regres-
sion pattern. These 17 data points also had similar outliers
behavior with regard to E (see Figure 10). These are clear ev-
idences that the 17 production data points were unreliable
and were removed from the data set.

After the outliers were removed, the final data set to con-
struct the simulator proxies consisted of 564 data points; 63
of them were good models while 501 were bad models as
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Figure 11: Regression output R versus log 10(E) on the 581 simu-
lation data.

illustrated in Figure 11. The outliers study was then com-
pleted.

6. HISTORY-MATCHING STUDY

The next step, step 6, in the history-matching study was
to construct the reservoir simulator proxy which classified
a reservoir model is “good” or “bad” based on the given
reservoir parameter values. For this step, the final set of 564
data points were used to construct this GP classifier. Each
data point contained 4 input variables (WOC-GOC, TRANS,
YPERM, and SGC), which were selected by the GP regression
outliers study, and one output, E.

With the number of “bad” models 8 times larger than the
number of “good” models, this data set was very unbalanced.
To avoid GP training process generating classifiers that biased
“bad” models, the good model data were replicated 5 times
to balance the data set. This ad hoc approach has allowed
GP to produce classifiers with better accuracy and robustness
than that generated based on the data without replication.
However, there are other more systematic approaches to ad-
dress the data imbalance problem. Some examples are over-
sampling of small class, undersampling of large class, and
modifying the relative cost associated to misclassification so
that it compensates for the imbalance ratio of the two classes
[18, 19]. We will investigate these methods and compare their
effectiveness on this data set in our future study.

Normally, we split the data set into training, validation
and testing to avoid overfitting. However, because the num-
ber of good models was very small and splitting them further
would have made it impossible for GP to train a proxy that
represented the full simulator capability, we used the entire
set as training data to construct the proxy.

Table 3: GP system parameter values for symbolic regression.

Objective Evolve a simulator proxy classifier for history
matching

Functions Addition, subtraction, multiplication, division, abs

Terminals WOC-GOC, TRANS, YPERM, SGC

Fitness Hit rate then MSE

Hit rate The percentage of the training data that are
correctly classified.

Selection Tournament (4 candidates/2 winners)

Table 4: Classification accuracy of the final GP proxy.

Good Bad Total

Good 82.54% 17.46% —

Bad 13.77% 86.23% —

Total — — 85.82%

6.1. Experimental setup

The GP parameter setup for this experiment was different
from the setup for the outliers study. In particular, the fitness
function was not MSE. Instead, it was based on hit rate: the
percentage of the training data that were correctly classified
by the regression. Table 3 includes the GP system parameters
values for symbolic regression to evolve the history matching
proxy.

As mentioned in Section 4, the cut point for E for a good
model was 1.2. When the regression gave an output (R) less
than 1.2, the model was classified as “good.” If the mis-match
E was also less than 1.2, the regression made correct classifi-
cation. Otherwise, the regression made an incorrect classifi-
cation. A correct classification is called a hit. The hit rate is
the percentage of the training data that are correctly classified
by the regression.

There were cases when two regressions may have the
same hit rate. In this case, the MSE measurement was used
to select the winners. The “tied threshold” for MSE measure-
ment was 0.01% in this work. If two classifiers were tied in
both their hit rates and MSE measurements, a winner was
randomly selected from the two competitors.

6.2. Results

After the GP system completed 120 runs, the regression with
the best classification accuracy was selected as the final proxy
for the simulator. Table 4 gives the classification accuracy of
this final solution: 82.54% on good models and 86.23% on
bad models. The overall classification accuracy for the sim-
ulator proxy was 85.82%. Considering the length of the pro-
duction data (30 years) to be matched and the quality of the
data, this is a reasonably good classifier. Figure 12 shows the
classification results in the parameter space defined by WOC-
GOC, YPERM, and TRANS. It shows that the models with
WOC-GOC outside the range of 750 and 825 were classified



Tina Yu et al. 9

660 700 740 780 820 860

WOC-GOC

0.5

1

1.5

2

2.5

3

3.5

4

Y
P

E
R

M

1 0.5
0

TRANS

Good classified as good
Good classified as bad

Bad classified as bad
Bad classified as good

Figure 12: GP proxy classification results.

as bad models. Models with WOC-GOC within the range
could be either good or bad depending on other parameter
values.

6.3. Interpolation and interpretation

This GP classifier was then used to evaluate new sample
points in the parameter space (step 7). For each of the 5 pa-
rameters (GOC-WOC was treated as 2 parameters), 11 sam-
ples were selected, evenly distributed between their mini-
mum and maximum values. The resulting total number of
samples was 115 = 161,051. Applying the GP classifier on
these samples resulted in 28 125 being identified as good
models while 132,926 were classified as bad models.

Figure 13 gives the 28 125 good models in the 3D param-
eter space defined by WOC-GOC, TRANS, and SGC. The
pattern is consistent with that of the 63 good models iden-
tified by computer simulation, given in Figure 14.

Within the 3D parameter space defined by WOC-GOC,
YPERM, and TRANS, the good models have a slightly differ-
ent pattern (see Figure 15). Yet the pattern is also consistent
with the pattern of the 63 good models identified by com-
puter simulation, shown in Figure 16.

Those results indicated that the GP classifier was a rea-
sonable high-quality proxy for the full reservoir simulator.
The 28 125 good models were then considered to be close to
reality. Those models revealed the following reservoir char-
acteristics of this West Africa oil field:

(i) the YPERM value was greater than 1.07;
(ii) the faults separating different geobodies (see Figure 6)

were not completely sealing, indicated by the transmis-
sibility values of good models are nonzero;

(ii) the width of the oil column (WOC-GOC) was greater
than 750.

Meanwhile, we felt comfortable in using these 28 125
good models to forecast the cumulative gas injection in 2031
and estimate the forecast uncertainty accordingly (step 8).
This work is reported in the following section.
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Figure 13: Good models (28 125) by GP proxy (WOC-GOC versus
TRANS versus SGC view).
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Figure 14: Good models (63) by computer simulator (WOC-GOC
versus TRANS versus SGC view).
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Figure 15: Good models (28 125) identified by GP proxy (WOC-
GOC versus YPERM versus TRANS view).

7. PRODUCTION FORECAST ANALYSIS

As mentioned previously, the forecast for oil production
(or the volume of gas injection) also required computer
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Figure 16: Good models (63) identified by computer simulator
(WOC-GOC versus YPERM versus TRANS view).

simulation. Since it was not practical to make simulation
runs for all 28 125 good models, a second simulator proxy
was warranted. Similar to the way the history-matching
proxy was constructed, we used GP to construct a second
simulator proxy for production forecasting. In this way, pro-
duction forecasts on these reservoir models can be estimated
in a short period of time.

Since we had no knowledge about which of the 11
reservoir parameters has an impact on production forecast
(The outliers study only investigated the correlation between
reservoir parameters and the mismatch E, not the production
forecast), all 11 parameters were used to construct the fore-
casting proxy. Also, the target forecast (F) was the cumulative
volume of gas injection in the year 2031.

Unlike history-matching proxy, which is a classifier, pro-
duction forecast proxy is a regression. The class imbalance is-
sue therefore does not exist. Also, since all 581 computer sim-
ulation of production forecast data are good (only produc-
tion data collected from the field are noisy), no data points
need to be removed. The 581 data points were divided into
three groups: 188 for training, 188 for validation, and 188 for
blind testing. Training data was used for GP to construct the
forecasting proxy while validation data was used to select the
final forecasting proxy. In this way, overfitting is less likely to
happen. The evaluation of the forecasting proxy was based
on its performance on the blind testing data.

7.1. Experimental setup

The GP parameter setup (see Table 5) was similar to the setup
for outliers detection in Section 5. The only difference was
that the fitness of an evolved regression is the MSE between
simulator forecast (F) and regression output (R) of the 188
training data.

7.2. Results

The GP system continued for 120 runs and the regression
with the smallest MSE on validation data was selected as the
final forecasting proxy. Table 6 gives the R2 and MSE on the
training, validation, and blind testing data. Since the proxy

Table 5: GP system parameter values for symbolic regression.

Objective Evolve a simulator proxy for production forecast

Functions Addition, subtraction, multiplication, division,
abs

Terminals The 10 reservoir parameters listed in Table 1 plus
oil column

Fitness MSE:
∑ 188

i=1(Fi − Ri)
2/188, F: simulator forecast

Selection Tournament (4 candidates/2 winners)

Table 6: Forecasting proxy evaluation.

Data Set R2 MSE

Training 0.799792775 0.001151542

Validation 0.762180905 0.001333534

Testing 0.7106646 0.001550482

All 0.757354092 0.001345186

was to make predications for the next 30 years, which was
a complex task, an R2 in the range of 0.76 was considered
acceptable.

Figure 17 illustrates the crossplot for simulator and proxy
forecasts on the 581 reservoir models. Across all models,
the forecasting proxy gave consistent prediction as that by
the computer simulator. Forecasting on the 63 good mod-
els (which are what are useful for decision making) is
shown in Figure 18. In this particular case, the proxy gave
a smaller forecasting range (0.12256) than that by the simu-
lator (0.2158).

Similar to that of history-matching proxy, WOC-GOC
was ranked to have the most impact on production forecasts.
However, unlike the history-matching proxy, which only
used 4 reservoir parameters (GOC-WOC, TRANS, YPERM,
and SGC) to determine if a model was good or bad, the fore-
casting proxy used all 11 parameters to forecast production.

7.3. Forecasting uncertainty analysis

With the establishment of a good-quality forecasting proxy,
we then used it to derive gas injection predictions from all
good models identified by the history-matching proxy. Since
each model selected by the history-matching proxy was de-
scribed by 6 reservoir parameter values, there was freedom
in selecting the values of the other 5 parameters not speci-
fied by the history-matching proxy. For each of the 5 uncon-
strained parameters, 5 sampling points were selected, evenly
distributed between their minimum and maximum values.
Each combination of the 5 parameter values was used to
complement the 6 parameter values in each of the 28 125
good models to run the forecasting proxy. This resulted in a
total of 28 125 × (55) = 87,890,625 models being sampled.
Figure 19 gives the cumulative gas injection in year 2031,
forecasted by these sampled models.

As shown, the gas injection range between 1.19 and 1.2
was predicated by the largest number of reservoir models
(22% of the total models). This is similar to the predictions
by the 63 computer simulation models (see Figure 20).
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Figure 17: Simulator versus proxy forecasts on all 581 (good and
bad) models.
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Figure 18: Simulator versus proxy forecasts on 63 good models.

The cumulative density function (CDF) of the forecast
proxy gave a P10 value of 1.06 trillion standard cubic feet
(MSCF∗le9), a P50 value of 1.18 MSCF∗le9, and a P90 value
of 1.216 MSCF∗le9. This meant that the most likely (P50)
injection volume would be 1.18 MSCF∗le9. There is a 90%
probability that the injection volume would be higher than
1.05 MSCF∗le9 (P10) and a 10% probability that the injec-
tion volume would be lower than 1.216 MSCF∗le9 (P90).
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Figure 19: Cumulative gas injected in 2031 based on 87 890 625
good models from forecasting proxy: percentage versus cumulative
gas injected (a) CDF versus cumulative gas injected (b).

This uncertainty range allowed management in preparing for
gas transportation and plan for other related arrangements.

Compared to the gas injection volume forecasted by the
63 good models identified by computer simulator, the uncer-
tainty range was not much different; the difference between
P10 and P90 was 0.15 in both cases. However, our results
were derived from a much larger number of reservoir models
sampled under a higher density distribution. Consequently,
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Figure 20: Cumulative gas injected in 2031 based on 63 good mod-
els from computer simulator: frequency versus cumulative gas in-
jected (a) CDF versus cumulative gas injected (b).

they provide the reservoir managers with more confidence to
make business decisions accordingly.

8. DISCUSSIONS OF EXECUTION TIME

This case study consists of three phases: outliers detection,
history matching, and production forecast analysis. In each
phase, GP runs were conducted on a single Pentium CPU
machine and took one weekend to complete. The total com-
puter execution time is approximately 150 hours. Using the
generated GP proxies, we were able to evaluate 161,051 reser-
voir models for history matching and 87,890,625 models for
production forecasts. Without the GP simulator proxies, it
would take the computer simulator 700 000 hours to pro-
cess these reservoir models using a cluster machine with 124
CPUs. The GP overhead is well justified.

9. CONCLUDING REMARKS

History matching and production forecasting are of great im-
portance to the planning and operation of petroleum reser-
voirs. Under time pressure, it is often necessary to curtail
the number of computer simulation runs and make deci-
sions based on a limited amount of information. The task
is even more challenging when the reservoir has a long pro-
duction history and the production data is unreliable. Cur-
rently, there is no standard way to conduct history matching
for production forecasts in oil industry.

We have developed a method using GP to construct prox-
ies for the full computer simulator. In this way, we can replace
the costly simulator by the proxies to sample a much larger
number of reservoir models and, consequently, obtain more
information, which in turn, it is hoped, will lead to better
reservoir decisions being made.

The case study on a West African oil field using the pro-
posed approach has delivered very encouraging results.

(i) Although the reservoir has a significant history and
noisy production data, we were able to construct a
proxy which identifies history-matched models that
have consistent characteristics with those matched by
the full simulator.

(ii) By sampling a large number of reservoir models using
the simulator proxy, new insights about the reservoir
were revealed.

(iii) Production forecasts based on the large number of
reservoir models gave management more confidence
in their decision making.

(iv) These benefits were gained without introducing new
computer simulation runs.

As far as we know, this is the first time such a method is
developed to improve the quality of reservoir history match-
ing and production forecasts. In particular, the innovative
idea of casting the history-matching proxy as a classifier has
allowed us to produce high-quality proxies which were unat-
tentainable by other researchers who restricted their proxies
to reproduce reservoir simulator response surface. We will
continue this work by applying the method to other more
challenging fields to evaluate its generality and scalability.
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