
A New Program Structure in Genetic Programming for
Object Classification

Y. Zhang and M. Zhang

School of Mathematics, Statistics and Computer Science,

Victoria University of Wellington, New Zealand

{yz, mengjie}@mcs.vuw.ac.nz

Abstract
This paper describes an approach to the use of genetic programming (GP) for multiclass object
classification. Instead of using the standard GP approach where each genetic program returns just one
floating number that is then translated into different class labels, this approach invents a new program
structure called Modi with multiple outputs. A voting scheme is then applied to these output values to
determine the class of the input object. The approach is examined and compared with the basic GP
approach on four multiclass object classification tasks with increasing difficulty. The results show that
the new approach always outperforms the basic approach with controllable proper setting.

Keywords: Genetic programming, image recognition, multiple class object classification, modifying-
based program structure, Modi.

1 Introduction

Object classification arises in a very wide range
of applications, such as detecting faces from video
images, recognising digits from the postal codes,
and diagnosing all tumors in a database of x-ray
images. In many cases, people (possibly highly
trained experts) are able to perform these tasks
well, but there is either a shortage of such experts,
or the cost of human expert is too high. Given the
amount of image data that needs to be classified,
automated object classification systems are highly
desired. However, creating automated object clas-
sification systems that have sufficient accuracy and
consistency turns out to be very difficult.

Genetic programming (GP) is a relatively young
and fast developing machine learning and searching
paradigm [1, 3]. Different from traditional learn-
ing methods such as hill climbing [5] and artificial

neural networks[5], which take more advantage of
the detail of an individual creature hence learn by
that individual alters the configuration of itself, the
evolutionary learning procedure of GP learns by
following a genetic beam search to produce skillful
survival though creatures do not themselves learn
during their individual lifetime.

GP research has considered variety kinds of clas-
sifier program representations, including decision
tree classifiers and classification rule sets [3]. Re-
cently, a new representation – numeric expression
classifiers – has been developed for GP [4, 8]. It
has been successfully applied to real world classi-

fication problems such as detecting and recognis-
ing particular classes of objects in images [7, 8],
demonstrating the potential of GP as a general
method for classification problems.

The output of a the GP learnt classifier is a numeric
value that would be later translated into a class
label. For simple binary classification, the transla-
tion can just base on the sign of the numeric value
[4, 2, 6, 9], hence is generally fair; For multiclass
problems, to find appropriate boundary values to
separate different classes is more difficult. Cur-
rent solutions are mostly to separate the program
output space into regions, one per class. These in-
clude a primary static method such as static range

selection [4, 8], more complicated dynamic range

selection [4], and centred and slotted dynamic class

boundary determination [6, 9]. Past works have
demonstrated the effectiveness of these approaches
on a number of object classification problems.

In the static method, the program’s output space
needs to be manually partitioned into fixed regions
in a fixed ordering, resulting in either the expenses
on human experts on the task, or inappropriate
partitioning hence poor performance. In the dy-
namic methods, class boundaries can be automat-
ically learnt, though requires much longer learning
time, and often results in unnecessarily complex
programs [8, 9].

This paper solves the problem from a different re-
spect. Rather than allowing a program to return
one floating point value then translating it into



class labels, we developed a new program struc-
ture Modi that can “return” multiple outputs, each
corresponding to a class. The class label can then
be determined by a simple voting strategy, thus
avoids the painful class label translation step. The
elite of our Modi structure is that it still takes
the advantage of the standard GP on the way the
program is learnt.

The rest of the paper is organised as follows. Sec-
tion 2 describes the new program structure, Modi.
Section 3 describes the experiment configuration
and image data sets. Section 4 presents the results
along with discussions. Section 5 draws the main
conclusions and gives future working directions.

2 The New Program Structure – Modi

2.1 Modi Program Structure

The Modi program structure has two main parts:
(a) a program tree, and (b) an associated output

vector for holding outputs, as shown in Figure 1.

(b)

%

��������������������

������������

����������������

���������������� 	�		�	
�

�


−

%
0

3
−

*

X

Z3.95.3 1.6

4.7 W

Y

+
0

1

2
if>0

0

0

0

0

cls0

cls1

cls2

cls3

(a)

X

Figure 1: An example Modi program structure. (a)
Modi program tree; (b) Output vector.

Similarly to the standard program tree structure,
the Modi tree also has a root node, internal nodes
and leaf nodes. Feature terminals (slashed squares)
and random constants (clear squares) form the leaf
nodes. Operations in the function set form the root
and internal nodes (circles).

Unlike the standard program tree structure, which
outputs just one floating point number through the
root, our Modi program structure takes the out-

put vector as the outputting space, hence produces
multiple values, each of which corresponds to a
single class in the multiclass classification problem.

The two parts of the Modi structure, namely the
output vector and the Modi program tree, are
not structurally connected though are connected
through a special kind of function node, the Modi

node, as shown in grey circle in Figure 1. A
Modi node has two roles: (1) It would update an
element in the output vector that is pre-associated
with it, by adding its node value to the value of

the element; (2) It would pass the value of its
right child node up to its parent, so that the tree
structure of the program could be preserved along
the program evaluation.

Note that the output vector is considered a virtual

structure (shown as dashed). It does not physically
“exist” other than the moment the program is be-

ing evaluated. During evolution, output vectors of
all programs “disappear” from being involved, only
the tree part of the Modi structure are activated
and take part into the evolution. Only in the pro-
gram evaluation time, is the output vector realised
and receives updating from the program tree.

2.2 Evaluation of Modi Programs

Figure 2 shows what happens while the example
program in figure 1 is evaluated. In the very first
place before the evaluation starts, the virtual out-
put vector is realized and initialized with zeros,
shown as the dash drawing of the vector becomes
solid. During the evaluation, each non-Modi node
passes its value to its parent, exactly the same as
in the standard program tree. The Modi node does
differently. It firstly uses its node value to update
the output vector, then passes on the value of its
right child to its parent node. The consequence of
the program evaluation is that the output vector
gets properly updated based on the input object,
by all Modi nodes in the tree. A list of floating
point numbers from the output vector are then
produced, each of which corresponds to a class.
Finally, a voting strategy would be applied to those
outputs. The winner class (the one with the max-
imum value) is considered to be the class of the
input object.

Let us go through an example. consider a four
class object classification task with possible
classes {rat,cat,dog,pig}, and an object to
be classified – doggie, represented by an input
vector that consists of six extracted feature values
[V,U,W,X,Y,Z]=[0.6,5.7,8.4,2.8,13.6,0.2].
Assuming the Figure 2 Modi program is the
learnt classifier, feeding the input vector into
the classifier would modify the output vector to
[9.54,-4.1,13.6,-3.7], as shown in the left
part of Figure 2. Thus doggie is classified into the
third class dog, as the third output 13.6 is the
winner.

2.3 DAG Simulation Effect of Modi Pro-
grams

Figure 3 is just a tidy-up redrawing of Figure 2
with the structural-used-only fine grey lines all
been removed. The figure clearly shows that
the running effect of the Modi program actually



%

{=0+0.34+9.2}
9.54

{=0+(−4.1)}
−4.1

13.6
{=0+13.6}

−3.7
{=0+(−3.7)}

������
�

�


������������ �����
�����
������

����������
����������

����������
����������

−

%
0

3
−

*

X

3.95.3 1.6

4.7 W

cls3 YZ

+
0

1

2
if>0

0+

0+

0+

0+

ca
t

pi
g

do
g

ra
t

cls0

cls1

cls2

X

Figure 2: Evaluation of the example Modi program structure.

�������
�������
�������
�����
�����
�����
�������
�������
�������
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

0+0+

1 3
−

20
% if>0

3.9

Z X 4.7Y

5.3 *%

1.6 W

+
0

−

class0 class1 class2 class3

0+ 0+

Figure 3: Modi simulated graph/network classifier.

simulates the Directed Acyclic Graph (DAG),
although the real structure used by Modi is just
a normal tree plus a vector. Compared with the
multilayer feed forward neural network, which is
also a kind of DAG, the Modi simulated DAG
also has multiple layers, where leaf nodes form the
input space, internal nodes extract higher level
features, and output nodes corresponds to with
class labels. Furthermore, it allows imbalance
structure, shortcut (over-bipartite) connections,
and non-full connections between neighbouring
layers, which makes the representation much more
flexible.

This structure also allows the reuse of child
nodes. Every right most child of the Modi node
is reused by the Modi node itself and the parent
of the Modi node, resulting in a two-way reuse.
Multi-way reuse is also possible by a sequence of
hierarchically connected Modi nodes, as shown
at the bottom right conner around the feature
terminal node W in figure 3.

2.4 Modi Program Generation and Modi
Rate µ

The generation of the Modi program tree is about
the same as of the standard program tree, with

three additional rules for Modi node generation:
(1) All leaf nodes are not Modi since a Modi node
requires a right child; (2) The root node is always
Modi to guarantee that no part of the Modi tree is
wasted; (3) For internal nodes, the probability of
a node to be set to Modi is by a user specified
number – the Modi Rate µ ∈ [0, 1], which can
be interpreted as the expected percentage of Modi
nodes over all internal nodes in programs of the
initial population. Element indexes of the output
vector are then assigned uniformly across all Modi
nodes, with no extra controls. This may result in
Modi programs that do nothing on some of the
output vector element, with poor luck.

2.5 Summary of Modi Characteristics

The Modi program has two major properties: (1)
It can produce multiple related outputs, thus clas-
sifiers of this kind can tell the class of the input
object by simply voting as in neural networks. In
this way, the complex translation from a single
floating point value to multiple class labels can be
avoided; (2) During the evolution, the Modi pro-
gram structure is just like a standard program tree,
thus still take the advantage of the neat evolution
of standard tree-based GP.

3 Experimental Configuration

3.1 Image Data Sets

In the experiment, we used four data sets to pro-
vide object classification problems of varying dif-
ficulty, thus formed a reasonably thorough evalu-
ation regarding Modi. Example images are shown
in Figure 4.

The first set of images (Figure 4a) was generated
to give well defined objects against a relatively
clean background. The pixels of the objects were
produced using a Gaussian generator with different
means and variances for each class. Three classes of



(a) Shapes (b) (c) (d)

Figure 4: Sample Data sets. (a) Shapes; (b) Coins; (c) Digits15; (d) Digits30.

960 small objects were cut out from those images to
form the classification data set. The three classes
are: black circles, grey squares, and light circles.
For presentation convenience, this data set would
be later referred to as shape.

The second set of images (Figure 4b) contained
scanned 5 cent and 10 cent New Zealand coins. In
this dataset, coins were located in different places
with different orientations and appeared in differ-
ent sides (head and tail). In addition, the back-
ground was cluttered. Thus all together the classi-
fier would distinguish between different coins, with
different sides, and from the background. Five
classes of 801 object cutouts were created: 160 5-
cent heads, 160 5-cent tails, 160 10-cent heads, 160
10-cent tails, and the cluttered background (161
cutouts). Compared with the shape data set, the
classification problem of this kind would be much
harder.

The third and the fourth data sets were of two
digit recognition tasks, each consists of 1000 digit
examples, with each of the digit example an 7×7
bitmap image object, as shown in figure 4 (c) and
(d). In the two tasks, the goal was to automatically
recognise which of the 10 classes (digits 0, 1, 2,
...,9) each pattern (digit instance) would belong to.
Note that all digit patterns had been corrupted
by noises. Further difficulty were added by the
fact that 15% to 30% of pixels has been randomly
flipped in the datasets. In data set 3, while some
patterns could be clearly recognised by human eyes
such as “0”, “2”, “5”, “7”, and possibly “4”, it was
not easy to distinguish between “6”, “8”and “3”,
even “1” and “5”. The task data set 4 was even
more difficult — human eyes could even not recog-
nise majority of the patterns, particularly “8”, “9”
and “3”, “5” and “6”, and even between “1”, “2”
and “0”. In addition, the number of classes was
much greater than that in tasks 1 and 2, making
the two tasks get even harder.

For all the four data sets, the objects were equally
split into three separate data sets: half for the
training set used directly for learning the genetic
program classifiers, and half for the test set for
measuring the performance of the learned program
classifiers.

3.2 GP System Customization

In our configuration, feature terminals consisted
of four local statistical features extracted from the
object cutout examples in the first two tasks, and
just 49 pixel values in the third and fourth tasks.
The function set consisted of the four standard
arithmetic operators and a conditional operator.
The division operator represents a “protected” di-
vision in which a divide by zero gives a result of
zero. The conditional operator returns its second
argument if its first argument is negative, and oth-
erwise returns its third argument.

The ramped half-and-half method [1, 3] was used
to generate the initial population and for the muta-
tion operator. The proportional selection mecha-
nism and the reproduction [8], crossover and muta-
tion operators [1] were used in the learning process.
We used reproduction, mutation, and cross over
rates of 10%, 30%, and 60%, respectively. The
program depth was initialised from 3-6, and can
be increased to 7 during evolution. The popula-
tion size was 500. The evolutionary process was
run for a maximum of 50 generations, unless it
found a program that solved the problem perfectly
(100% accuracy), at which point the evolution was
terminated early. Each group of experiments was
repeated 50 runs and the average results are pre-
sented.

4 Results and Discussion

4.1 Object Classification Performance

The new Modi approach and the basic GP ap-
proach are compared under the same experimental



Table 1: Results of the new Modi approach over the basic GP approach.

Methods/ Data Sets
Improvement Shape Coin Digit15 Digit30

GP with Modi (%) 99.77 93.89 68.11 54.46
Basic GP approach (%) 99.40 85.22 56.85 44.09

Improvement (%) 0.37 8.67 11.26 10.37

setting on four datasets described above. The best
results are shown in Table 1. For the shape data
set, both approaches did pretty well as the task is
relatively easy. In particular, the Modi approach
almost achieved perfect results. For the coin data
set, as the task is harder than the shape one, the
Modi approach achieved 93.89% accuracy, 8.67%
higher than the basic GP approach. For two digit
data sets, the Modi approach performed much bet-
ter than the basic GP, with improvements of more
than 10%. In particular, for task four, where even
human eyes could only recognise a small part of
the digit examples, the GP approach with Modi
program structure can recognise majority of them,
achieved 54.45% accuracy. These results suggest
that the new Modi approach can perform better
than the basic GP approach for object classifica-
tion programs, particularly for relatively difficult
tasks.

4.2 The Effect of Modi Rate µ

To investigate the effect of Modi rates on the per-
formance of Modi patched GP, we did four groups
of experiments on the four data sets using different
Modi rates ranging from 0.0 to 1.0. The results are
shown in Figure 5 in terms of the improvement of
the Modi approach over the standard GP. It shows
that the Modi rate does affect the performance.
Its influence is not consistently proportional across
different tasks, provided by that curves in the fig-
ure are not parallel with each other. However,
neither too big nor too small Modi rates are the
best. No reliable way of choosing a very appropri-
ate Modi rate for a task has been found, except
that to do empirical search through experiments.
If such a search can improve performance signifi-
cantly, it is a small price to pay. The experiments
suggest that a Modi rate between 0.3–0.6 is a good
point to start searching on.

4.3 Further Discussion

The result of the two digit datasets are worse than
of the shape and the coin. This is mainly due
to the difficulty of the classification problem, plus
that the program size (program tree depth) was set
to be too small. A too-small program size causes

two problems: (1) The evolved program would not
have enough leaf nodes for handling input features,
particularly when the number of input features is
large, say 49 for the digits. Modi’s reusability helps
on this problem, though cannot generally fix it; 2)
The probability of producing sufficient Modi nodes
so that they all together go across the entire output
vector would be very small, particularly when there
are a large number of classes to be classified, say 10
for the digits. This problem reveals a disadvantage
of the Modi structure, that is, it could require a
larger program size than the standard program tree
structure.

We originally expected a small Modi rate from 0.0
to 0.1 would lead to very bad results. However,
the effect of Modi rates was not as large as we
expected. This is because we used a large size of
population (500), so that the population as a whole
provides sufficient Modi nodes for using by the best

evolved program.

For multiclass classification tasks, the Modi ap-
proach converges much faster to the optimal solu-
tion in terms of the number of evolution used. For
simple classification tasks such as the shape one,
the Modi approach terminates on just a couple of
evolutions, reflecting that the best program in the
random initial population already very approaches
to perfect. Therefore, apply the No Free Lunch

[5] theory inversely, we theoretically conclude that
the Modi approach is more appropriate on mul-
ticlass classification, which is consistent with our
experimental result. However, the per evolution
training time of Modi is generally slower than the
standard GP, provided by that its simulation effect
requires more steps to be done. This results in that
in the real application, when both Modi and the
standard GP are not able to terminate within the
fifty generation limits, the Modi approach would
take more time than the standard approach.

5 Conclusions

This paper described a new way of using the tree
based genetic program structure in GP for multi-
class object classification. This was done through
the new program structure “Modi”, which uses a
virtual output vector to produce multiple values,



�����

����

����

����

����

����

�����

�����

��� ��� ��� ��	 ��� ��
 ��� ��� ��� ��� ���
��������	Im

pr
ov

em
en

t o
n 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)


����

����

������


�����	�

Figure 5: Effect of different Modi rates.

each of which corresponds to a class, instead of tree
root node to produce a single number. The com-
plex translation of the single number into differ-
ent regions for multiclass was successfully avoided.
This approach was examined and compared with
the basic GP approach on four object classifica-
tion problems with increasing difficulty. Results
showed that the new approach outperformed the
basic approach on all tasks.

The results also showed that different Modi rates
led to different results. Neither too small nor too
large Modi rates were good. However, it did not
seem to exist a efficient and reliable way of choosing
a good Modi rate for a particular problem. Rates
between 0.3 – 0.6 seemed to be a good starting
point to try.

Although developed for object classification prob-
lems, this approach is expected to be general and
can be applied to other problems, wherever needs
multiple outputs.

For future work, we will investigate the new ap-
proach for digit tasks with a larger program size
and examine whether the performance can be im-
proved. We would also like to investigate ways of
using the Modi structure to evolve more general
graphs such as Neural Networks, thus produce a
kind of Skinnerian creature other than the pure GP
based Darwinian creature. We will examine this
approach on other multiclass classification prob-
lems and compare this approach with other long
term learning techniques such as decision trees and
neural networks.

References

[1] Wolfgang Banzhaf, Peter Nordin, Robert E.
Keller, and Frank D. Francone. Genetic Pro-

gramming: An Introduction on the Automatic

Evolution of computer programs and its Appli-

cations. San Francisco, Calif. : Morgan Kauf-
mann Publishers; Heidelburg : Dpunkt-verlag,

1998. Subject: Genetic programming (Computer
science); ISBN: 1-55860-510-X.

[2] Daniel Howard, Simon C. Roberts, and Richard
Brankin. Target detection in SAR imagery by
genetic programming. Advances in Engineering

Software, 30:303–311, 1999.

[3] John R. Koza. Genetic Programming II: Au-

tomatic Discovery of Reusable Programs. Cam-
bridge, Mass. : MIT Press, London, England,
1994.

[4] Thomas Loveard and Victor Ciesielski. Rep-
resenting classification problems in genetic pro-
gramming. In Proceedings of the Congress on

Evolutionary Computation, volume 2, pages 1070–
1077, COEX, World Trade Center, 159 Samseong-
dong, Gangnam-gu, Seoul, Korea, 27-30 May
2001. IEEE Press.

[5] D.J.C. MacKay: Information Theory, Inference,

and Learning Algorithms, Cambridge University
Press (2003).

[6] Will Smart and Mengjie Zhang. Classification
strategies for image classification in genetic pro-
gramming. In Donald Bailey, editor, Proceed-

ing of Image and Vision Computing Conference,
pages 402–407, Palmerston North, New Zealand,
November 2003.

[7] Mengjie Zhang, Peter Andreae, and Mark
Pritchard. Pixel statistics and false alarm area in
genetic programming for object detection. In Ste-
fano Cagnoni, editor, Applications of Evolutionary

Computing, Lecture Notes in Computer Science,

LNCS Vol. 2611, pages 455–466. Springer-Verlag,
2003.

[8] Mengjie Zhang, Victor Ciesielski, and Peter An-
dreae. A domain independent window-approach
to multiclass object detection using genetic pro-
gramming. EURASIP Journal on Signal Process-

ing, Special Issue on Genetic and Evolutionary

Computation for Signal Processing and Image

Analysis, 2003(8):841–859, 2003.

[9] Mengjie Zhang and Will Smart. Multiclass ob-
ject classification using genetic programming. In
Applications of Evolutionary Computing, volume
3005 of LNCS, pages 367–376, Coimbra, Portugal,
5-7 April 2004. Springer Verlag.


