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ABSTRACT: Genetic programming (GP) is one of the computer algorithms in the family of 

evolutionary-computational methods, which have been shown to provide reliable solutions to 

complex optimization problems. The genetic programming under discussion in this work relies on 

tree-like building blocks, and thus supports process modeling with varying structure. In this paper 

the systems containing amino acids + water + one electrolyte (NaCl, KCl, NaBr, KBr) are modeled 

by GP that can predict the mean ionic activity coefficient ratio of electrolytes in presence and in 

absence of amino acid in different mixtures better than the common polynomial equations proposed 

for this kind of predictions. A set of 750 data points was used for model training and the remaining 

105 data points were used for model validation. The root mean square deviation (RMSD) of the 

designed GP model in prediction of the mean ionic activity coefficient ratio of electrolytes is less 

than 0.0394 and proves the effectiveness of the GP in correlation and prediction of activity 

coefficients in the studied mixtures. 
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INTRODUCTION 
Much attention has been paid to the development of 

efficient methods for separation, concentration and 

purification of valuable bio products in biotechnology 

[1]. Due to the application of amino acids in various 

fields such as pharmaceutical, chemical and food 

industries their physical and thermodynamic properties 

such as activity coefficients in the presence of electrolytes 

 

 

 

has been the interest of researchers as a key knowledge in 

separation process [1, 2]. Ordinary separation of amino 

acids is done in the presence of an electrolyte and in this 

regard knowledge about interactions of ions with  

biological molecules such as proteins and amino biological  

molecules such as proteins and amino acids is important 

in understanding their  behavior and  selecting the method 
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the method of separation [2]. The polynomial correlation 

method, although not a predictive one, is an empirical 

approach to treat the activity coefficient data. The semi-

empirical models usually cannot account for all the 

factors, which are not clearly understood at present. The 

universal parameters for the models are also difficult to 

obtain due to complexity of the factors involved in the 

activity coefficients. All of these limit the applications of 

thermodynamic semi-empirical models and polynomial 

correlation methods in prediction of activity coefficients, 

especially when the complex processes such as 

biomolecular separations are involved. 

For aqueous electrolyte systems containing amino 

acids measurement of their thermodynamic properties 

such as mean ionic activity coefficient ratio �
II

± / �
I
± of 

electrolyte in presence of amino acid �
II

± and in absence 

of amino acid �
I
± is very time consuming, and how to 

model the activity coefficient ratio with accuracy have 

not been always fairly resolved problem. 

Two models which can qualitatively represent the 

behavior of the water-electrolyte-amino acid systems at 

low electrolyte and amino acid concentrations have been 

developed by Kirkwood [3, 4]. Merida et al. [5] and 

Raposo et al. [6] applied the modified form of the Pitzer 

model [7] for aqueous solutions of an electrolyte and a 

nonelectrolyte to model the activity coefficients in water-

electrolyte-amino acid systems. Khoshkbarchi and Vera 

[8, 9] proposed two models for the activity coefficients  

of amino acids in aqueous solutions containing an 

electrolyte.  

The first model [8] is a combination of a short-range 

interaction term represented by the NRTL model [10] or 

the Wilson model
 
[11] and a long-range interaction term 

represented by the Bromley model [12] or the K-V model 

[13]. The second model is based on the perturbation 

theory with a hard-sphere reference system. Both models 

were applied to several water-electrolyte-amino acid 

systems and were shown to be able to correlate the 

experimental data accurately over a wide range of amino 

acid and electrolyte concentrations. 

Pazuki et al. [14] presented a model which is 

combination of long-range interactions and short-range 

interactions. For long range interactions they used 

Khoshkbarchi-Vera [15] model and for short-range 

interactions they used one of the models, Wilson [11],  

the NRTL [10] and the NRTL-NRF
 
[16,17]. 

In modeling
 
of mean ionic activity coefficient ratio of 

electrolytes, experimental data are essential and in fact 

they are some correlations with much or less adjustable 

parameters [5, 15]. Therefore, if the experiment data are 

not available they fail to predict the activity coefficient 

ratio. 

Applications of GP [18,19] to chemical systems have 

included the generation of non-linear dynamic models of 

biotechnological batch and fed-batch fermentations  

[20-22], the identification of complex fluid flow patterns 

[23], the generation of steady-state input-output models 

of a range of industrial chemical process systems [24, 25]. 

One of the important applications of genetic 

programming is in generating input-output empirical 

models [26, 27]. The class of empirical models can be 

divided into two broad categories: (a) models with 

predefined structure (either linear or nonlinear), and 

whose parameters are determined to maximize the 

capacity to predict process data; or (b) black-box models 

with undetermined structure. An example of the first 

category would be a linear model relating a dependent 

variable, y, to a set of n independent variables, ui: 

�
=

=
n

1i

iiuay  

where the coefficients ai are determined to maximize the 

predictive power of the model. Dehghani and Modarress 

[28] studied the application of ANN to the systems 

containing amino acids or peptide +water + one 

electrolyte (NaCl, KCl, NaBr, KBr) and they modeled 

this mixture by using different types of neural networks. 

Their designed artificial neural network (ANN) could 

predict the mean ionic activity coefficient ratio of 

electrolytes in presence and in absence of amino acid in 

different mixtures better than the commonly used 

polynomial equations.  

However ANN can be considered as a black-box 

model in which the number and identity of the relevant 

inputs and the number of layers are the only attributes of 

the structure that are determined by the user. The 

disadvantage of this model is that the user must specify 

the structure of the model in advance, which is in general 

difficult to do. But the main disadvantage of neural 

network approach in general, is that no formal equation is 

obtained, and thus, the resulting model is difficult or 

impossible to analyze. Consequently, great  care  must  be 
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taken with the ANN approach to prevent over-fitting. 

Although application of ANN method may result in  

very accurate root mean square deviation (RMSD), 

considering the inherent disadvantages of ANN method 

we preferred the application of GP in this work. Since 

GP, being an evolutionary method for automatically 

generating nonlinear input-output models, overcomes 

both of the disadvantages mentioned above, therefore 

structured models are obtained, whose complexity is 

optimized.  

When applying GP to automatically generate 

nonlinear MISO (multiple inputs, single output) models, 

the probability of a given model surviving into the next 

generation is proportional to how well it predicts the 

output data. Components of successful models are 

continuously recombined with those of others to form 

new models, similarly to Genetic Algorithms (GAs). The 

GP optimizes the model structure, with a lower level 

nonlinear least-squares algorithm harnessed to perform 

the associated parameter estimation. 

In this work GP was utilized to model and predict the 

mean ionic activity coefficient ratio of the electrolytes in 

all available (water + amino acid + electrolyte) systems. 

The results obtained illustrate the possibilities of an 

alternative and less cumbersome modeling approach 

relying on the application of GP for correlating and 

predicting the activity coefficient. The RMSD of the best 

tree-structure designed for prediction of the activity 

coefficient of electrolytes is 0.0394. 

 

INTRODUCTION  TO  GP 

GP belongs to a class of probabilistic search 

procedures known as Evolutionary Algorithms (others 

include Genetic Algorithm's, Evolution Strategies and 

Evolutionary Programming). These techniques use 

computational models of natural evolutionary processes 

for the development of computer based problem solving 

systems. All evolutionary algorithms function by 

simulating the evolution of individual structures via 

processes of reproductive variation and fitness based 

selection. The techniques have become extremely popular 

due to their success at searching complex non-linear 

spaces and their robustness in practical applications. 

Similar to the GA, the GP is based on simple rules 

that imitate biological evolution. GP is an evolutionary 

method  for  automatically  generating   nonlinear   MISO  

 

 

 

 

 

 

 

Fig. 1: Tree-structure for the model: (a × b + c /d). 

 

(multiple inputs, single output) models. The probability 

of a given model surviving into the next generation is 

proportional to how well it predicts the output data. 

Combining basis functions, inputs and constants creates 

an initial model population, whose complexity is 

controlled by the user. The models are structured in a 

tree-like fashion, with basis functions linking nodes of 

inputs, as in the example in Fig. 1, where the tree-

structure for the model: y = (a × b + c /d ) is shown, 

where y is the dependent variable, a, b, c and d are 

independent variables. Note that the example in Fig. 1 

also illustrates the organization of the tree in terms of its 

root, the basis function at the highest level, which in this 

case is the summation function that sum (a×b) with (c/d). 

It is noted that the basis functions can be those requiring 

two arguments, such as ‘+’ and ‘×’ as in the example, or 

those with only one (e.g., exp(·) or √(·)). Each individual 

model in the population is then fitted to the empirical data 

using nonlinear regression, and then graded according to 

how well it matches the data. 

As shown in Fig. 2, which presents the flow diagram 

for a generic GP, in each generation (iteration) of the 

algorithm, relatively successful individuals are selected as 

“parents” for the next generation and form a reproduction 

pool. A new generation of solutions evolves, using  

one of three possible operators: crossover, mutation and 

permutation.  

Crossover is applied on an individual by simply 

switching one of its nodes with another node from 

another individual in the population (Fig. 2). With a tree-

based representation, replacing a node means replacing 

the whole branch. This adds greater effectiveness to the 

crossover operator. The expressions resulting from 

crossover are very much different from their initial 

parents [18,19]. 

In mutation, a random change is performed on a 

selected  individual  by  substitution,  Fig. 3, this can be a  

+ 

× / 

d c b a 
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Fig. 2: Generic GP scheme [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Parents selected for the crossover operation with 

crossover nodes indicated by dark circles and resulting 

descended tree [19]. 

functional group, an input variable or a constant. 

Mutation affects an individual in the population. It can 

replace a whole node in the selected individual, or it can 

replace just the node's information. To maintain integrity, 

operations must be fail-safe or the type of information the 

node holds must be taken into account. For example, 

mutation must be aware of binary operation node, or the 

operator must be able to handle missing value [18, 19]. 

In contrast, branches of a selected individual are 

randomly switched in permutation. The parameters for 

each new individual in the new generation are determined 

by nonlinear regression, the models are then graded by 

fitness as before, and the procedure is repeated until a 

stopping criterion is attained. In most cases, as in this 

application, the population size, nPop, and the total 

number of generations, nGen, are decided in advance. Other 

tuning parameters that need to be fixed by the user when 

using GPs are pc, pm and pp, the crossover, mutation and 

permutation probabilities. For the random population 

initialization step, used Ntree, the maximum number of 

sub-trees in an initial model, and ptree, the probability of 

creating a sub-tree. 

 

IMPLEMENTATION  OF  A  GP  MODEL  

Specifying of the number of inputs and outputs 

The first step in the implementation of GP is the 

definition of a terminal set. In other words, when 

developing a mathematical model of a process it is 

necessary to supply the input variables that are thought to 

be related to the output. In addition, the algorithm should 

have the ability to generate constants, as it will generally 

be a combination of input values and numeric constants 

that produce the required regression model. Our intensive 

search for experimental data indicated that the only 

available experimental data on mean ionic activity 

coefficient ratio (�
II

± / �
I
±) of an electrolyte in presence 

(�
II

±) and absence (�
I
±) of amino acids in aqueous 

solutions are those reported in table 1. 

The normalized input and format of the scaled output 

data are presented in table 2. As it is shown in table 2, the 

input data for �/k, � and D of amino acid have been 

normalized to shrink their variation range. This 

normalization is necessary due to their large variations, 

which can affect the performance of the model training. 

However for molalities as the input data, the normalization 

was not necessary due to availability of  sufficient  data in  

 + 

 ×  - 

 3  x 

 ×  +  �  2 

 a  3 

 × 
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the studied molality range. Also as table 2 shows the 

cation and anion diameters have limited variation and 

therefore their normalization did not affect the 

performance of the model training. 

 

SPECIFYING  O F THE  OPERATORS 

It is also necessary to define a functional set. This  

is the set of arithmetic operations and mathematical 

functions that the algorithm may use when constructing a 

potential solution to a given problem.  

Typically, the functional set will include arithmetic 

operators such as addition and multiplication, and 

common mathematical functions (such as the square root,  

logarithm or exponential functions). It is important to 

ensure that each functional has the property of closure. 

That is, it must be able to accept and return a numeric 

value when presented with an input. The square root 

function does not have this property if presented with 

negative numbers. Thus, in order to ensure closure in this 

case, the absolute value of the input should be taken 

before evaluation. The operators that we use in this 

implementation reported in table 3. 

The search space of the GP contains all possible models 

that can be constructed from elements in the functional 

and terminal sets. Regardless of the specific pplication, 

an algorithm searches the problem space using simple 

operations involving the copying, recombining and 

random alteration of mathematical expressions. 

 

Creating a database of input-otput variables 

A set of 750 data points was used for model training 

and the remaining 105 data points were used for model 

validation. The training set was used for identification of 

the tree structure of the model in training the GP and for 

the establishment of the candidate set of the most 

expressive input variables leading to smallest error. The 

second set which is the test set, is the 30 % remaining 

fraction and was used to test how well the GP model was 

trained.  

 

The fitness function 
Each individual in nature has some in-born skills that 

help it survive and reproduce. Following Darwinian 

philosophy, mainly the fittest individuals reproduce, 

while individuals that are less successful in coping with 

the challenges of their environment have fewer chances 

to    survive   and   reproduce.    

Table 1: Physical property of amino acids and ions [7]. 

Amino acid � (A°) �/k Dipole moment 

Glycine 4.76 65.40 11.85 

Dl valine 4.22 8.30 10.68 

Dl alanine 4.09 86.40 9.53 

Amino butyric 4.73 83.00 10.87 

Glycylglycine 6.50 170.20 23.09 

Serine 4.83 189.33 10.34 

Electrolyte properties    

Na+ 1.90   

K+ 2.66   

Cl− 3.62   

Br− 3.90   

 

Table 2: Format of input and output data. 

Inputs 

I1 (electrolyte molality) = ms 

I2 (amino acid molality) = mA 

I3(normalized dipole moment of amino acid) = (23.09−D)/ 

(23.09−9.53) 

I4 (normalized �/k of amino acid) = (189.33−�/k)/ (189.33−8.3) 

I5 (normalized size parameter of amino acid) = (6.5−�)/ (6.5−4.09) 

I6 (cation diameter) = �+ 

I7 (anion diameter) = �− 

Output 

O1= �II
± / �

I
± 

 

Table 3: The operators that were used for the basic GP model. 

0 1 2 3 4 5 

+ - × / ^ 
 

 

Table 4: The parameters that were used for the basic GP test. 

Parameter Value 

nGen 1000 

nPop 200 

pc 0.75 

pm 0.15 

pp 0.10 

  

Initial population parameters  

Ntree 5 

ptree 0.3 
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Random selection of genetic operator 

Primary loop  to process 

nGEN generations 
 

Start 

Generate initial population of  
size npop 

Evaluate the fitness of the 

individuals 

Reproduction of a single 

model 
Reproduction of a pair of 

model 

Reproduction of a single 

model 

j < nPOP? 

Secondary loop to process 

nPOP new solution 
 

Termination criterion 

satisfied? 

Creation of next generation of 
models 

Stop 

No Yes 

Yes No 

j =j+1 
j =j+1 j =j+2 

Crossover 
Mutation Permutation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Mutation operation [19]. 

 

In this application, the “environment” of the models is 

the output data-points to be predicted, with the fittest 

models being those that predict them the best. 

In this work accuracy and precision of model were 

evaluated based on RMSD (root mean square error) 

according to Eq. (1): 

( )
21n

1i

2calc
i

exp
i nyyRMSD �

�
�

�
�
�
�

�
−= �

=

                                  (1) 

where 
exp

iy  is the experimental data, 
calc

iy  the 

calculated value by GP model, and n is the number of 

data sets used to training. 

Determination of model str cture 

On the basis of our experiments, we found that with 

the parameters given in table 4 the GP is able to find 

good solutions for our problem. 

Since the results obtained using GPs are probabilistic 

in nature, it is important to study a problem by carrying 

out multiple runs of the algorithm, and analyze the results 

using descriptive statistics before arriving at conclusions. 

Thus, 50 distinct GP runs were done.  
 

CALCULATION  STEPS  FOR  GP  ALGORITHM 

The GP based synthesis algorithm includes the 

following steps: 
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1- The initial population is generated randomly. 

2- Translate every node of a GP code into its 

corresponding actual connection pattern.  It is easy to be 

concluded that the smaller is for the fitness; the better is 

for the GP code. 

3- The operations of reproduction, crossover and 

mutation are performed according to the method defined 

in 2 where the reproduction rate, the crossover rate and 

the mutation rate is set to according to table 4. When the 

operations of reproduction is performed, the competition 

selection method of GP is adopted [19] and there are  

10 % individuals of nowadays generation are selected  

and are sent into the next generation. To ensure the 

randomization of GP algorithm, when the operations of 

crossover and mutation are performed, the stochastic 

selection is adopted in this paper to determine the types 

of the evolution operation (i.e. the operation of node or 

the operation of node property). 

4- The step 2 and 3 are repeated until the fitness does 

not change in the last two generations or the number of 

the maximal generation is reached that means the 

algorithm should be terminated. 

 

RESULTS 

We use GP for modeling of the activity coefficients 

ratio of electrolyte in presence and absence of amino acid 

or peptide for {water + amino acid or peptide + (KCl, 

NaCl, NaBr or KBr)} mixtures. The RMSD of model 

with acceptable error was recorded and the results were 

compared with experimental data, the results are 

presented in table 5. The mean absolute deviations on the 

learning set (7 0% of the database) and on the test set 

(remaining 30 %) were very close and thus confirming 

the high learning ability of the GP. Also in table 5 the 

RMSD obtained for the same systems by application of 

ANN method (Dehghani and Modarress [28]) are 

reported. It is seen that RMSD by GP method are very 

close those of ANN method. However considering the 

disadvantages of ANN, the results obtained by GP 

method in this work are more reliable and meaningful in 

interpretation. 

In order to check the predict ability of GP model, we 

exclude some experimental data of table 6 in some ranges 

of molality from training set data, after training and 

testing of GP, it was validated with experimental data of 

systems  and  fortunately  the trained GP could predict the  

Table 5: Database and errors. 

Systems 
GP Results 

RMSD 

ANN Results 

RMSD [28] 
Reference 

Glycine + NaCl 0.0717 0.0036 [33] 

Glycine + NaBr 0.0992 0.0029 [33] 

Glycine + KCl 0.0699 0.0032 [29] 

Amino butyric + NaCl 0.0584 0.0091 [31] 

Amino butyric + KCl 0.0146 0.0075 [31] 

Amino butyric + NaBr 0.0115 0.0036 [31] 

Amino butyric + KBr 0.0731 0.0048 [31] 

Dl valine + NaCl 0.0373 0.0042 [38] 

Dl valine + KCl 0.0139 0.0021 [38] 

Dl alanine + NaCl 0.0272 0.0032 [37] 

Dl alanine + KCl 0.0178 0.0028 [37] 

Glycylglycine + NaCl 0.0669 0.0036 [30] 

Glycylglycine + NaBr 0.0138 0.0027 [30] 

Glycylglycine + KCl 0.0491 0.0023 [30] 

Glycylglycine + KBr 0.0160 0.006 [30] 

Dl serine + NaCl 0.0176 0.003 [8] 

Dl serine + KCl 0.0131 0.002 [8] 

( ) ( )
21n

1i

calc

i
IIIIexp

i
IIII nRMSD �

�
�

�
�
�
�

�
�
�
��

�
� γγ−γγ= �

=
±±±±

 

 

Table 6: Excluded data from training set. 

System Excluded range 

�-Amino butyric + NaCl mKCl = 0.2, 0.5, 1.0 mol kg−1 

Glycine + NaBr mNaBr= 0.1, 0.2, 1.8 mol kg−1 

Glycylglycine + KBr mNaBr= 0.3, 0.7, 1.3 mol kg−1 

DL valine + KCl mNaBr= 0.2, 0.4 mol kg−1 

 

systems with an acceptable error of RMSD= 0.0394.  

Fig. 3 shows the parity plot of experimental and predicted 

data. 

In the second step in order to check the predict ability 

of the GP we exclude all experimental data of (water + 

Glycylglycine + NaCl) system in all ranges of molality 

from training set data, after training and testing of GP,  

it was  validated  with   experimental   data   of    (water +  

Glycylglycine + NaCl) system and fortunately the 

trained GP could predict the new system of (water + 

Glycylglycine + NaCl) with an acceptable  error  of  0.08. 
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Table 7: Experimental [30] data and predicted result for activity coefficient ratio of 

Glycylglycine in different molality of NaCl and Glycylglycine. 

Predicted II I
± ±� �  Experimental II I

± ±� �  mNaCl (mol/kg) mGlycylglycine (mol/kg) 

0.9825 0.9708 0.1 0.1 

0.9630 0.9472 0.1 0.2 

0.9356 0.9266 0.1 0.3 

0.9100 0.8937 0.1 0.5 

0.8814 0.8675 0.1 0.7 

0.8487 0.8377 0.1 1.0 

0.8211 0.8145 0.1 1.3 

0.8045 0.8014 0.1 1.5 

0.9987 0.9853 0.3 0.1 

0.9870 0.9734 0.3 0.2 

0.9742 0.9601 0.3 0.3 

0.9459 0.9367 0.3 0.5 

0.9247 0.9190 0.3 0.7 

0.9008 0.8934 0.3 1.0 

0.8825 0.8754 0.3 1.3 

0.8721 0.8663 0.3 1.5 

1.0054 0.9925 0.5 0.1 

0.9879 0.9796 0.5 0.2 

0.9754 0.9706 0.5 0.3 

0.9612 0.9520 0.5 0.5 

0.9403 0.9365 0.5 0.7 

0.9214 0.9173 0.5 1.0 

0.9034 0.9024 0.5 1.3 

0.8950 0.8942 0.5 1.5 

1.0029 0.9935 0.7 0.1 

0.9951 0.9853 0.7 0.2 

0.9828 0.9760 0.7 0.3 

0.9626 0.9595 0.7 0.5 

0.9511 0.9467 0.7 0.7 

0.9300 0.9282 0.7 1.0 

0.9168 0.9146 0.7 1.3 

0.9062 0.9071 0.7 1.5 

1.0102 0.9980 1.0 0.1 

0.9954 0.9895 1.0 0.2 

0.9889 0.9837 1.0 0.3 

0.9737 0.9699 1.0 0.5 

0.9621 0.9598 1.0 0.7 

0.9506 0.9445 1.0 1.0 

0.9328 0.9337 1.0 1.3 

0.9259 0.9267 1.0 1.5 

0.0844   RMSD 

 
Experimental data and predicted data for this system are 

presented in table 7. 

 

CONCLUSIONS 

The application of GP to the development of 

prediction models of activity coefficient of amino acids in 

electrolyte solutions has been considered. 

The  results  revealed  that  the  GP   algorithm   could  

generate an accurate input-output model based solely on 

observed data. It is also shown that the GP model can 

predict activity coefficient ratio of an electrolyte without 

using the adjustable parameters which restrict the 

thermodynamics models  only  to  the systems with 

available experimental data. The GP method has the 

added advantage over ANN method that all the effective 

parameters on  behavior  of  the  studied  mixture  can  be 
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included in the input data and therefore the method has 

the capability of predicting the behavior of systems where 

the experimental data are not available or there are 

limitations on experimental measurements. 

A distinct advantage of this method is that no a-priori 

assumptions have to be made about the actual model 

form: the structure and complexity of the model evolve as 

part of the problem solution. Moreover, it would appear 

that GP has potential in the area of data analysis. One 

possible perceived disadvantage of the input-output 

models obtained using GP is that the identified structure 

does not provide detailed phenomenological information 

about the system being modelled (a characteristic that this 

approach shares with other black-box modelling 

techniques, including neural networks). However, in each 

case the final model form clearly indicates the relative 

contribution of each input to the output. 

Based on the properly selected and the training 

procedure of GP, the mean ionic activity coefficient ratio 

(�
II

± / �
I
±) was described fairly. It was demonstrated that 

then GPs are a promising strategy for solving the 

thermodynamic properties in complex systems, such as 

bio-macromolecular systems. Application of this method 

avoids the limitations of conventional thermodynamic 

methods that are tedious and requires determination of 

“parameters”, which are arbitrary in many ways. 
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