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Infiltration is a vital phenomenon in the water cycle, and consequently, estimation of infiltration rate is important for many
hydrologic studies. In the present paper, different data-driven models including Multiple Linear Regression (MLR), Generalized
Reduced Gradient (GRG), two Artificial Intelligence (AI) techniques (Artificial Neural Network (ANN) and Multigene Genetic
Programming (MGGP)), and the hybrid MGGP-GRG have been applied to estimate the infiltration rates. +e estimated in-
filtration rates were compared with those obtained by empirical infiltrationmodels (Horton’s model, Philip’s model, andmodified
Kostiakov’s model) for the published infiltration data. Among the conventional models considered, Philip’s model provided the
best estimates of infiltration rate. It was observed that the application of the hybrid MGGP-GRGmodel and MGGP improved the
estimates of infiltration rates as compared to conventional infiltration model, while ANN provided the best prediction of in-
filtration rates. To be more specific, the application of ANN and the hybrid MGGP-GRG reduced the sum of square of errors by
97.86% and 81.53%, respectively. Finally, based on the comparative analysis, implementation of AI-based models, as a more
accurate alternative, is suggested for estimating infiltration rates in hydrological models.

1. Introduction

Infiltration can be defined as the process by which water
enters the surface of Earth [1]. It leads to the entrance of
water into the soil, thereby catering to groundwater recharge
and subsurface runoff. In essence, the infiltration phe-
nomenon is among the most crucial processes of water cycle.
Furthermore, estimates of infiltration capacity of soil is
required in the design of efficient irrigation systems, esti-
mation of evapotranspiration, groundwater recharge, sur-
face runoff, effective rainfall, crop water requirement, and
transport of chemicals in surface and subsurface water [2].
As a result, modelling and prediction of infiltration rates is
an inevitable part of hydrological modelling. For instance,
Morel-Seytoux [3] reviewed the importance of infiltration in
large-scale hydrologic modelling. Furthermore, Šraj et al. [4]
pointed towards the impact of the estimation of infiltration
rates on the runoff hydrograph, which plays a vital role in

watershed modelling and water management. Similarly,
Wen et al. [5] demonstrated the implication of excessive
infiltration on watershed models. Finally, these studies
demonstrated why an accurate estimation of time-depen-
dent infiltration is important in hydrological modelling.

Owing to the wide applications of the infiltration rate, its
estimation has gained significant attention from researchers.
Over the years, various infiltration models have been pro-
posed by the researchers for the estimation of infiltration
rates.+ey includemodels that have physical, semiempirical,
and even empirical formulations. Despite the development
of several models, no single model exists that outperforms
other ones universally. +e suitability of infiltration model
for a particular site depends on the type of soil and field
conditions [1]. In this regard, many comparative studies
have been conducted to assess the suitability of various
infiltration models for different soil types under varying field
conditions. Mishra et al. [6] conducted one of the most
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comprehensive analyses on suitability of infiltration models
for different soils. Similarly, the methodology used to model
infiltration rate has a significant impact on the estimation of
infiltration. Deep and Das [7] compared various optimi-
zation algorithms to estimate the parameters of infiltration
models. Nonetheless, the application of different optimi-
zation techniques can only move the solution from local
optimum parameters towards global optimum parameters,
while they cannot increase the flexibility of infiltration
models to mimic actual infiltration rates. Haghiabi et al. [8]
employed a dimensionless form of infiltration data to es-
timate infiltration parameters accurately. However, Zakwan
[9] suggested that such transformation may not necessarily
improve the accuracy of infiltration equations. Finally, Chen
et al. [10] utilized genetic algorithm to improve the estimate
of Green-Ampt infiltration model under a rainfall condition.

Recent applications of computational techniques in water
resource engineering have widened the scope further [11–21].
With the advancement in the computational method and
modelling approaches, the application of these approaches
has provided a viable alternative towards the estimation of
infiltration rates also. Kumar and Sihag [22] applied Gene
Expression Programming (GEP) to model infiltration rates.
Moreover, Dewidar et al. [23] proposed the application of
fuzzy logic to estimate the infiltration rates. In addition, Patle
et al. [24] employed a multiple linear regression model to
predict time-dependent infiltration values based on several
soil properties such as bulk density, silt, sand percentage, and
moisture content. Furthermore, Sihag et al. [25] exploited the
support vector machine (SVM) for modelling infiltration
rates in sandy soil. Also, Pahlavan-Rad et al. [26] compared
the performance of Multiple Linear Regression (MLR) and
Random Forest Tree in depicting the spatial variation of
infiltration rates and reported the superiority of Random
Forest Tree over MLR. Recently, Sepahvand et al. [27] utilized
several data-driven models to predict infiltration rates. +eir
investigation revealed the superiority of neural networks over
other data-driven techniques such as model tree, Gaussian
process, and regression analysis. According to the recent
studies, considering time as the exclusive state variable in
empirical models should be revisited in favour of better in-
filtration predictions, while the AI-based models were found
to have a better performance in comparison with the con-
ventional infiltration models. +erefore, despite previous
efforts in improving the estimation of infiltration rates, fur-
ther studies are needed to explore these issues.

+e present study aims to compare the performances of
different infiltration methods. Additionally, it attempts to
assess the capability MGGP and of the novel hybrid MGGP-
GRG to model the infiltration process. In a bid to seek for a
better time-dependent infiltration model, the performances
of theMGGP-basedmodels were compared with those of the
conventional models, regression techniques, and commonly
used neural network.

2. Materials and Methods

2.1.Data. In the present study, the infiltration data reported
by Sihag et al. [28] were utilized. +e data were divided into

training and testing data sets. To be more precise, 75% of the
data were used for training, while the rest of the data were
exploited to test the obtained results. Table 1 summarises the
data sets used in the present paper.

Figure 1 shows the observed infiltration data at the same
time duration. Also, it illustrates that the infiltration rate
may be dependent on other factors (soil properties, such as
bulk density and sand percentage) apart from time. +e
infiltration data set, which was obtained from the literature
[28], belongs to the infiltration observations carried out at
Davood Rashid and Honam regions in Lorestan Province
and the Kelat region in Ilam Province in Western Iran.

2.2. Conventional InfiltrationModels. +ere are a number of
infiltration models available in the literature. Brief de-
scription of some of the commonly used infiltration models
considered in the present study is as follows.

(1) Horton’s Model

Horton [29] proposed an empirical equation, which is
presented in the following equation, for exponential decay of
the infiltration rate after analysing several infiltrometer data
sets:

f � fc + f0 − fc( 􏼁e
− kt

, (1)

where f is the infiltration capacity at any time t from the start;
fc is the final or ultimate infiltration capacity occurring at
t� tc; f0 is the initial infiltration capacity at time t� 0; andK is
Horton’s decay coefficient.

(2) Philip’s Model

Philip [30] proposed an infinite series solution of
Richard’s equation to drive a relationship between the cu-
mulative infiltration (F) and soil properties. It is presented in
the following equation:

F � st
0.5

+ Kt . (2)

By differentiating the above equation, the infiltration rate
may be represented as

f �
1
2

st
− 0.5

+ K . (3)

(3) Modified Kostiakov’s Model

Kostiakov [31] observed the temporal variation of in-
filtration into soil and proposed a time-dependent infil-
tration model, invariantly known as Kostiakov’s model. +e
major limitation of Kostiakov’s model is that it approached
to zero final infiltration rates rather than toward constant
final infiltration rates and infinite infiltration rates at the
start. Smith [32] modified Kostiakov’s [31] equation to in-
clude the constant term fi. +e modified version is shown in
the following equation:

f � (ab)t
b− 1

+ fi. (4)

+e parameters of different infiltration models were
obtained by minimizing the sum of square of errors using a
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nonlinear optimization tool. +us, the objective function
becomes

Min SSE � 􏽘
N

i�1
fobsi

− festi
􏽨 􏽩

2
, (5)

where fobs is the observed infiltration rate and fest is the
estimated infiltration rate at any time t.

2.3. Multiple Linear Regression. MLR has been widely used
in water resource engineering [17, 33]. It has also been
applied to estimate the infiltration rate [25]. In accordance
with MLR, infiltration rate can be expressed as

f � c1t + c2S + c3D + c4, (6)

where c1, c2c3,c4, and c5 are coefficients, f is the infiltration
rate in cm/min; t is time in minutes; S is the percentage of
sand; D is the density in g/cm3.

2.4. Generalized Reduced Gradient (GRG). GRG is a gradi-
ent-based nonlinear optimization technique [34]. Earlier,
Zakwan et al. [1] and Muzzammil et al. [35] suggested that
GRG technique is superior to the conventional graphical
method for estimating infiltration parameters and rating
curve parameters. In accordance with GRG, the infiltration
rate can be expressed as

i � c5t
c6S

c7D
c8 , (7)

where c5,c6, c7 , and c8 are coefficients.
In the present study, GRG solver embedded in Microsoft

Excel was used to estimate the infiltration rate based on
minimizing the sum of square of errors. Detailed

explanation on working of GRG technique is available in the
literature [17, 36].

2.5.ArtificialNeuralNetwork. ANN is one well-documented
AI model. It has been used for solving various problems in
water resources and hydrological modelling [37, 38]. Gen-
erally, ANN has a few layers, whose neurons store data. +e
neurons in each layer (input, hidden, and output layers) are
connected with neurons in the previous and next layers,
whereas there is no connection between neurons in a typical
layer [39]. +e flexible architecture of ANN basically fa-
cilitates the estimation of a relationship between input and
output data [40]. In this study, a feed-forward ANN was
exploited to predict the rate of the infiltration. +e con-
trolling parameters of ANN were set as those used in the
previous studies [41].

2.6. Multigene Genetic Programming. MGGP is a modified
version of genetic programming (GP), which is classified as
an AI technique [42]. Not only does it utilize genetic al-
gorithm as its search engine but also it works as a flexible
estimator without the need to know the shape of a prediction
model under investigation [43]. In essence, MGGP follows a
similar solving approach as GP using a tree-like structure,
while it enables the use of more than one gene, i.e., tree, in
each individual. +is characteristic benefits MGGP in the
light of developing estimation models when the relation
among involved variables is complicated to study. As a
result, a typical MGGP solution consists of a set of equations,
each associated with one gene, which is algebraically sum-
med up using weighting coefficients. +ese coefficients are
calibrated inMGGP, while a term invariantly called as bias is
also added to the final solution. +e terms comprising the

Table 1: Training and testing data used.

Data Count Infiltration rate (cm/min) Sand (%) Density (g/cm3)
Training 116 0.080–1.560 6.00–38 0.08–1.56
Testing 38 0.080–1.480 6.00–38.00 0.08–1.48
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Figure 1: Observed infiltration data.
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final solution of MGGP help in improving its flexibility in
capturing the relationship between input and output data.

In this study, an open-access code of MGGP was
exploited. +is code was adopted form the literature [44],
while it was used in previous studies for other purposes [20].
It minimizes the root mean square of errors between the
estimated and observed values of the normalized infiltration
rates. Additionally, the MGGP parameters were selected
from previous studies [20, 43]. Since each run of MGGPmay
result in a unique equation, more than 100 runs of MGGP
were considered for developing the relation between the
infiltration rates and other variables involved. +e common
number of MGGP runs in the literature is 50 [20, 45], while
the double number of runs, i.e., 100, was taken into account
to make sure that the best relation was achieved.

2.7. Hybrid MGGP-GRG Technique. +e hybrid MGGP-
GRG was first proposed for developing stage-discharge

relationships in the literature [20]. In this technique, MGGP
and GRG are used in two successive steps to find the best-fit
model. Figure 2 depicts the flowchart of the hybrid MGGP-
GRG for estimating infiltration rates. As shown, MGGP is
initially operated to search for the best-fit form of equation
to the data, while the GRG technique is utilized to optimize
the coefficients of the equation obtained by MGGP. Hence,
this hybrid technique not only benefits from the powerful
capability of MGGP for seeking an accurate prediction
model, but also uses GRG to enhance the performance of the
estimation model.

2.8. Performance Evaluation Criteria. +e performance of
infiltration models and soft computing techniques was
compared based on several criteria, which are presented in
the following equations [28, 46]:

normalised rootmean square(NRMSE) �

������������������

􏽐
N
i�1 fobsi

− festi
􏼐 􏼑

2
/N

􏽱

fobsmax
− fobsmin

,

Wilmott Index(WI) �
􏽐

N
i�1 fobsi

− festi
􏼐 􏼑

2

􏽐
N
i�1 fobsi

− f
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + festi
− f

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2,

mean absolute square(MAE) �
1
N

􏽘

N

i�1
fobsi

− festi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

mean absolute relative square(MARE) �
1
N

􏽘

N

i�1

fobsi
− festi

fobsi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

maximumabsolute relative square(MXARE) � max
fobsi

− festi

fobsi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡, for i � 1, . . . , N

Nash Sutcliffe criterion(NSE) � 1 −
􏽐

N
i�1 fobsi

− festi
􏼐 􏼑

2

􏽐
N
i�1 fobsi

− f􏼐 􏼑
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(8)

where fobs is the observed infiltration rate, fobsmax
and fobsmin

are the maximum and minimum observed infiltration rates,
fest is the estimated infiltration rate at any time, and f is the
mean of the observed infiltration capacity. Nash criterion
has been widely used as an indicator for goodness of fit,
while its value ranges from 0.0 to 1.0. +e higher values of
NSE indicate a better agreement between measured and
estimated data. Similarly, WI values close to unity represent
the best-fitted model. However, SSE, NRMSE, MAE, MARE,
and MXARE should be as low as possible for the model with
highest accuracy.

2.9. SensitivityAnalysis. In a bid to determine howmuch the
results achieved by a typical model are sensitive to each input

parameter, a sensitivity analysis can be conducted [47]. In
this study, the parentage of the sensitivity analysis (SA) of
the infiltration rate in respect of each input parameter (time,
sand percentage, and density), which were selected based on
Sihag et al.’s [28] study, is computed using [48]

SAi �
IRmax xi( 􏼁 − IRmin xi( 􏼁

􏽐
N
i�1 IRmax xi( 􏼁 − IRmin xi( 􏼁􏼂 􏼃

× 100, (9)

where IRmax(xi) and IRmin(xi) are the minimum and
maximum infiltration rate determined by considering the
variation of the input parameter (xi) when each one of other
input parameters are set as their average values. +e more
the SA percentage for a specific input variable, the higher the
model is sensitive to that variable.
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2.10. Reliability Analysis. +e reliability analysis is basically
conducted to investigate the overall consistency of a pre-
diction model. For this analysis, the relative error for each
data point is achieved by the estimation model and com-
pared with a threshold. +en, the number of cases, which
have an equal or lower relative error than the threshold
specified, is divided by the total number of points. Finally,
the aforementioned ratio in the percentage would be the
reliability metric, which demonstrates how reliable the
prediction model performs in accordance with the desirable
threshold. In this study, the reliability analysis was carried
out for all methods used for predicting the infiltration rate,
while the threshold was selected to be 20% based on the
literature [49].

3. Results and Discussion

Accurate estimation of infiltration rate plays a vital role in
various aspects of watershed hydrology. +e present work
focuses on improving the estimates of the infiltration rate
through application of different soft computing approaches.
+e infiltration rates estimated by these techniques were
compared with those approximated by the conventional
infiltration models (Horton’s model, modified Kostiakov’s
model, and Philip’s model). In the conventional infiltration
model, the observed infiltration rates and time were used as
input data in accordance to model equations to obtain the
estimated infiltration rate. On the other hand, inMLR, GRG,
ANN, MGGP, and the hybrid MGGP-GRG models, the
observed infiltration rates, time, sand percentage, and
density were used as the input variables to obtain the es-
timated infiltration rates.

3.1. Comparison of the Conventional Infiltration Models.
Table 2 presents the model parameters obtained in the
training phase for the three conventional infiltrationmodels.
For the test phase, these parameters were used to estimate
the infiltration rate based on equations (1), (3), and (4).

+e results of different approaches considered in the
present study were compared with respect to four criteria for
both train and test data. +is comparative analysis is shown
in Table 3. In this comparison, the same data divisions were
considered for all methods. +e metrics used for comparing
different infiltration models are given in Table 3. Based on
Table 3, it may be observed that the performance of Horton’s
model was the worst for both training and testing parts of
data. +e modified Kostiakov’s model improved the esti-
mates of the infiltration rate by almost 4% and 10% as
compared to those of Horton’s model during training and
testing, respectively.+e performances of Philip’s model and
modified Kostiakov’s model were almost comparable.

3.2. Comparison of the Conventional Models with Soft Com-
puting Approaches. A perusal of Table 3 reveals that the
technique used to model infiltration rates influences the
estimates of the infiltration rate considerably. It can be
observed that MLR provides the worst estimates of infil-
tration rates, which may depict the nonlinear nature of the
infiltration process. +e conventional models provide
slightly better predictions of infiltration rates as compared to
those obtained by MLR. Application of GRG solver further
improves the estimate of infiltration as equation (7) involves
a higher nonlinearity and more number of parameters as
compared to equations (1)-(4). Before the application of

Start

Produce an initial population randomly

Apply a regression model to calculate
gene coefficients for each individual 

Create a new generation using genetic operators

Check the fitness function
for each individual?

No

Yes

End

Define an objective function
to optimize the coefficients

of the MGGP model

Run the GRG algorithm
for the defined

optimization problem

The MGGP model is obtained

The MGGP-GRG model is achieved

MGGP

GRG

Figure 2: Flowchart of the hybrid MGGP-GRG for estimating infiltration rates.
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MGGP and the hybrid MGGP-GRG model, the observed
infiltration rates were normalized as
i � (fi − fmin)/(fmax − fmin), where i,fmin, and fmax are
the normalized, minimum, and maximum discharges of the

ith observation. +e normalized infiltration rate obtained
from MGGP and the hybrid MGGP-GRG model are pre-
sented by the following equations, respectively:

i �
0.01731 tanh(psqroot(t))

cos(exp(s))
− 3.651 sin(sin(s + d)) − 0.3395psqroot

psqroot(t)

s + d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−
0.02371 tanh(cos(d))

cos(exp(s))

− 2.778 cos(sin(s + d)) + 4.863,

(10)

i �
0.01723 tanh t

0.4595
􏼐 􏼑

cos(exp(s))
− 3.624 sin(sin(s + d)) − 0.3395psqroot

psqroot(t)

s + d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−
0.02399 tanh(cos(d))

cos(exp(s))

− 2.7507 cos(sin(s + d)) + 4.8255,

(11)

where psqroot(t) �

�
t

√
t> 0

0 t≤ 0􏼨 .

Figures 3–10 present the relative error plots obtained
from different conventional infiltration models and com-
putational techniques during training and testing. +ese
figures also compare different methods based on MARE and
MXARE for both train and test data. Although the relative
error plots of the conventional infiltration models and other
computational techniques (MLR, GRG, MGGP, and the
hybridMGGP-GRG) followed a similar sequence, the nature
of relative error plots of ANN followed a different pattern
during both training and testing. It may also be observed
from Figures 3–10 that the relative errors achieved by ANN
are the least as compared to others. On the other hand,
relative errors obtained by Horton’s infiltration model were
the highest as compared to others. Furthermore, the AI-
based models (ANN, MGGP, and the hybrid MGGP-GRG),
which consider three independent variables (t, s, and d)
instead of one variable (t), achieved much better MARE and

MXARE in comparison with the empirical models during
the training and testing phases. According to Figures 3–10,
ANN and the hybrid MGGP-GRG resulted in the first and
second best MARE and MXARE values, whereas MLR and
Horton’s model yielded to the first and second worst MARE
and MXARE values for the train and test data.

Figures 11 and 12 depict the comparison between the
observed and estimated infiltration rates obtained by the
best-fit model (ANN and the hybrid MGGP-GRG) and the
worst-fit model (Horton’s model). It may be observed from
Figure 11 that the infiltration rates estimated by ANN almost
fit the observed data during training phase. On the other
hand, the infiltration rates predicted by Horton’s model
deviated significantly from the observed data. +e perfor-
mance of the hybrid MGGP-GRG was better than that of
Horton’s model but poorer than that of ANN. During the
testing phase, the estimates of the hybrid MGGP-GRG and
ANN were almost identical as shown in Figure 12. +e

Table 2: Parameters obtained for the conventional infiltration models.

Models Calibrated parameters
Horton Fc (cm/min)� 0.080 f0 (cm/min)� 0.535 k� 0.046
Modified Kostiakov a� 1.699 b� 0.464 fi� 0.081
Philip s (cm/min0.5)� 1.585 K (cm/min)� 0.061 —

Table 3: Comparative statistics for fit of model to the observed infiltration data.

Methods
Training phase Testing phase

SSE
(cm2/min2) NRMSE WI MAE

(cm/min) NSE SSE
(cm2/min2) NRMSE WI MAE

(cm/min) NSE

Conventional
models

Horton 4.645 0.135 0.610 0.123 0.236 1.650 0.149 0.636 0.127 0.319
Modified
Kostiakov 4.485 0.133 0.613 0.118 0.263 1.474 0.141 0.686 0.119 0.392

Philip 4.482 0.133 0.616 0.117 0.263 1.474 0.141 0.687 0.119 0.392
MLR 4.710 0.202 0.136 0.123 0.242 1.668 0.210 0.150 0.128 0.312
GRG 3.943 0.184 0.124 0.104 0.352 0.837 0.148 0.106 0.101 0.655

AI-based models
ANN 0.097 0.020 0.996 0.018 0.984 0.380 0.071 0.954 0.051 0.843
MGGP 0.838 0.057 0.962 0.059 0.862 0.487 0.081 0.938 0.071 0.798

MGGP-GRG 0.836 0.057 0.962 0.059 0.862 0.483 0.081 0.938 0.070 0.801
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Figure 3: Relative error plots for Horton’s model for the training and testing data.
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Figure 4: Relative error plots for modified Kostiakov’s model for the training and testing data.
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Figure 5: Relative error plots for Philip’s model for the training and testing data.

Complexity 7



MARE = 0.556
MXARE = 2.828

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

Re
la

tiv
e e

rr
or

 (c
m

/m
in

)

20 40 60 80 1000
Number of data

(a)

MARE = 0.510
MXARE = 2.099

–1

–0.5

0

0.5

1

1.5

2

2.5

Re
la

tiv
e e

rr
or

 (c
m

/m
in

) 

10 20 30 400
Number of data

(b)

Figure 6: Relative error plots for the MLR model for the training and testing data.
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Figure 7: Relative Error plots for the GRG model for the training and testing data.
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Figure 8: Relative error plots for the ANN model for the training and testing data.
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Figure 9: Relative error plots for the MGGP model for the training and testing data.
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Figure 10: Relative error plots for the hybrid MGGP-GRG model for the training and testing data.
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Figure 11: Estimated versus observed infiltration rates during the training phase.
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Figure 12: Estimated versus observed infiltration rates during the testing phase.
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Figure 13: Results of the sensitivity analysis based on (a) ANN and (b) MGGP.
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estimates obtained by Horton’s model during the testing
phase were again significantly different from the corre-
sponding observed values. Hence, Figures 11 and 12 obvi-
ously demonstrate how much the infiltration estimations
can be enhanced by considering other variables involved in
the process in addition to time, while they clearly indicate
the better performances of AI-based models in comparison
with those of the available empirical equations.

Figure 13 depicts the results of the sensitivity analysis,
which was conducted for ANN and MGGP. As shown, time
has the highest SA percentage (SA� 91.98%) for ANN,
which implies that the infiltration rates predicted by ANN
are mostly sensitive to time in comparison with other two
input variables (sand percentage and density). +is
achievement is in agreement with the fact that the empirical
models (such as Horton’s and modified Kostiakov) used for
estimating infiltration rates rely only on time. On the other
hand, MGGP-based model, which yielded a lower accuracy
for predicting infiltration rates than ANN, was found to be
more sensitive to sand percentage than to time.+erefore, as
infiltration rates may be affected by time based on the
physical background of the problem statement, the results of
the sensitivity analysis also indicate that ANN estimated
infiltration rates better than the MGGP-based model.

+e reliability analysis was carried out for the train and
test data separately. +e results of this analysis are presented
in Figure 14. As shown, ANN achieved the highest per-
centages of reliability for both the train and test data.
Furthermore, the reliability percentages obtained by MGGP
and the hybrid MGGP-GRG were higher than those of
empirical model, MLR, and GRG. Finally, the reliability
analysis conducted in this study reveals the improvement
made by the AI models over other data-driven methods
available in the literature for predicting infiltration rates.

+e structure of the equations developed by the conven-
tional infiltration models, MLR and GRG, are known in ad-
vance of applying these methods. On the other hand, ANN,
MGGP, and the hybrid MGGP-GRG are highly nonlinear
techniques with greater degrees of freedom and complexity
and, therefore, provide better estimates of the infiltration rate.

However, more precise results are obtained by ANN, MGGP,
and the hybrid MGGP-GRG at the expense of higher com-
putational efforts. +ese machine learning tools require a
considerable number of runs, unlike the conventional models
andMLR inwhich a single attempt is sufficient for determining
the model output. Based on the comparative analysis con-
ducted in this study, ANN certainly yielded to the best esti-
mates of infiltration rates. However, the estimates obtained
from the hybridMGGP-GRGwere also comparable, especially,
for the test data. Furthermore, unlike ANN, the hybridMGGP-
GRG model provided explicit equations for predicting infil-
tration rates, which can be implemented in a typical hydro-
logical modelling or preferred in practice by engineers, which
may be counted as an advantage of this AI-based technique.

4. Conclusions

In the present study, published infiltration data was used to
assess the performances ofMGGP and the hybridMGGP-GRG
technique in modelling the infiltration rates of soil. +e esti-
mated infiltration rates were compared with those obtained by
the conventional models (Horton’s model, Philip’s model, and
modified Kostiakov’s model). It was observed that application
of the hybridMGGP-GRG andMGGP improved the estimates
of infiltration rates as compared to the conventional infiltration
model by over 80%. On the other hand, ANNprovided the best
estimates of infiltration rates. In addition to the accuracy
improvement, the application of ANN, MGGP, and the hybrid
MGGP-GRG increased the complexity of modelling equations.
Future studies may focus on the comparison of the hybrid
MGGP-based models with the other machine learning ap-
proaches, while applying the explicit infiltration models de-
veloped by either MGGP or the hybrid MGGP-GRG in
hydrological models is anticipated in favor of assessing their
performances in practice.

Data Availability

+e data used in this study are available in the related
literature.
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