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ABSTRACT

Protein Secondary Structure Prediction Evaluation and a

Novel Transition Site Model with New Encoding Schemes

Masood Zamani

University of Guelph, 2017

Advisor:

Dr. Stefan C. Kremer

Rapid progress in genomics has led to the discovery of millions of protein sequences

while less than 0.2% of the sequenced proteins’ structures have been resolved by X-ray

crystallography or NMR spectroscopy which are complex, time consuming, and expen-

sive. Employing advanced computational techniques for protein structure prediction

at secondary and tertiary levels provides alternative ways to accelerate the predic-

tion process and overcome the extremely low percentage of protein structures that

have been determined. State-of the art protein secondary structure (PSS) prediction

methods employ machine learning (ML) techniques, compared to early approaches

based on statistical information and sequence homology. In this research, we develop

a two-stage PSS prediction model based on Artificial Neural Networks (ANNs) and

Genetic Programming (GP) through a novel framework of PSS transition sites, and

new amino acid encoding schemes derived from the genetic Codon mappings, Clus-

tering and Information theory. PSS transition sites represent structural information

of protein backbones, and reduce the input space and learning parameters in the

PSS prediction model. PSS transition sites can be utilized in Homology Modeling



(HM) to define the boundary of secondary structure elements. The prediction perfor-

mance of the proposed method is evaluated by using Q3 and segment overlap (SOV)

scores on two standard datasets, RS126 and CB513, and the latest protein dataset,

PISCES, compiled with very strict homology measures by which each sequence pair

has a similarity below the twilight zone or less than 25%. The experimental results

and statistical analyses of the proposed PSS model indicate statistically significant

improvements in PSS prediction accuracy compared to the state-of-the-art ML tech-

niques which commonly employ cascaded ANNs and SVMs. The proposed encoding

schemes show advantages in extracting sequence and profile information, reducing in-

put parameters and training performances. A successful PSS prediction model can be

utilized in homology detection tools for distant protein sequences and protein tertiary

structure prediction methods to reduce the complexity of the protein structure pre-

diction which has important applications in medicine, agriculture and the biological

sciences.
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Chapter 1

Introduction

1.1 Overview of Proteins

Proteins are the most essential building blocks of all living organisms. A protein is

the endproduct of a biological process by which a fragment of a DNA sequence is

used as a template to produce a linear macromolecule chain of amino acids during

transcription and translation phases. In living cells, DNA contains the blueprint of

genetic information which is transcribed to messenger RNA (mRNA) that contains

the program for synthesizing a protein. mRNAs are converted to linear amino acid

chains during a biological process called translation (Crick et al., 1970). In the next

stage, the linear amino acid chains fold into unique tertiary structures known as

native conformations. The native conformation of a protein is a three-dimensional

structure that the protein adopts at the last stage of a folding process, and the final

conformation has minimum potential energy, not always, but normally.

During a biological process known as folding pathways, the linear amino acid

chain of a protein adopts various intermediate conformations until all atomic forces

are stabilized and forming the native conformation. The functional mechanism and
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interactions of proteins that determine a number of biological phenomena are precisely

related to their structures (Blundell, Bedarkar, Rinderknecht, & Humbel, 1978). The

complexities of protein structures are decisive to their vital roles in all living beings.

Proteins facilitate chemical reactions, regulate cellular processes and carry signals to

and from cells. Also, proteins act as antibodies, small molecules, structural elements

that bind cells, and motor elements which help movements.

The tertiary structure of a protein is determined by using the atomic coordinate

file of the protein. The data file defines three-dimensional (3D) molecular structures

by specifying the positions of each atom in space, typically with X, Y and Z Cartesian

coordinates. Also, if two or more protein chains interact, a quaternary structure is

formed which is a more complex protein structure.

1.2 Computational Methods for Protein Structures

Rapid and staggering advances in genomics have resulted in the identification of

several millions of sequenced proteins in recent years (Bairoch, Apweiler, Wu, Barker,

Boeckmann, Ferro, Gasteiger, Huang, Lopez, Magrane et al., 2005). In contrast less

than 0.2% of the sequenced proteins’ structures have been resolved by experimental

methods which are the most accurate techniques at the present time. The ratio of the

number of sequenced proteins to the number of proteins with known structures during

the recent decade is shown in Figure 1.1. We obtained the data from National Center

for Biotechnology Information (NCBI) and Protein Data Bank (PDB) (Sussman et al.,

1998).

The experimental methods of protein structure determination such as X-ray crys-

tallography (Bragg, Phillips, Lipson et al., 1975; Blundell & Johnson, 1976) and

NMR spectroscopy (Wuthrich, 1986; Baldwin, Weber, St Charles, Xuan, Appella,
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Yamada, Matsushima, Edwards, Clore, & Gronenborn, 1991) require complex proce-

dures which are time-consuming and costly (Metfessel & Saurugger, 1993; Johnson,

Srinivasan, Sowdhamini, & Blundell, 1994). The application of computational meth-

×

Figure 1.1: The growth ratio – (a) sequenced proteins, (b) protein tertiary structures.

ods in protein structure prediction can be an alternative approach to reduce the

gap between the number of sequenced proteins and the number of protein structures

(60m vs. 116k). Unlike experimental techniques, computational methods are capable

of providing fast and inexpensive approaches for protein structure prediction with

regards to the progress that has been made in computational fields in recent years.

Meanwhile, at the present time the outcomes of protein structure prediction by com-

putational techniques using amino acid sequences are limited to short and medium

lengths of protein sequences and the accuracies of the predicted protein structures

should be validated by the results of the existing experimental techniques of pro-

tein structure determination. Moreover, as shown in Figure 1.2 the total number of

unique protein folds are declining and a handful of unique protein folds have been

3



only identified in a few recent years based on CATH and SCOP databases which

contain classified protein folds. The trend of new fold identifications indicates poten-

tial advantages to employ computational intelligence techniques for protein structure

prediction due to the decrease in the number of new patterns that should be learned

by the computational intelligence methods.

Figure 1.2: The growth of unique protein folds defined in SCOP and CATH databases.

It was speculated based on the experimental evidence that the conformation of a

protein can be uniquely determined to a great extent by only the sequence of amino

acids (Anfinsen et al., 1973). The hypothesis has been the foundation and motiva-

tion to develop various techniques of protein structure prediction for several decades.

Protein structure determination from the sequence of amino acids helps greatly to un-

derstand the structure-function relationship. Therefore, by changing the structures

4



of proteins, functions can be added or removed from the proteins, or new proteins

can be synthesized to achieve desired functions. Knowing the tertiary structures and

functions of proteins has a number of important applications in medicine such as

designing drugs and enzymes, agriculture and biological sciences (Chou, 2004; Noble,

Endicott, & Johnson, 2004).

1.3 Importance of Protein Secondary Structure

Although gradual progress has been made in protein 3D structure prediction, the out-

comes generally have not reached the adequate level of structural accuracy compared

to those of the experimental methods of protein structure determination which are

the bases of performance evaluation for the quality of protein tertiary structure pre-

diction (Moult, Fidelis, Kryshtafovych, Schwede, & Tramontano, 2016). In general,

most tertiary structure prediction methods rely on template structures with a high

degree of sequence similarity to a query sequence.

At a structural level, the tertiary structure of a protein can be defined with less

complexity by secondary structures which are formed by the hydrogen bonds be-

tween the amine hydrogen and carbonyl oxygen atoms of a protein’s backbone peptide

bonds. Protein secondary structures are consecutive segments of a protein sequence

and represent the structural patterns of protein tertiary structures, and the secondary

structures are grouped broadly to helices and strands which exhibit distinct geomet-

rical features in form of regular and repetitive folds, and coils which are irregular

regions (Pauling, Corey, & Branson, 1951; Pauling & Corey, 1951b).

It was investigated that secondary structures are formed at the early stage of a pro-

tein’s folding process, and the early formation of secondary structure elements direct

the initial structural framework of the protein’s 3D structure (Goldenberg, Frieden,

5



Haack, & Morrison, 1989). The implication of an initial structural framework is

the main motivation that protein secondary structure (PSS) prediction methods are

utilized in protein tertiary structure modeling techniques to achieve two goals: (1)

reducing the computational cost and complexity of 3D structure modeling, and (2)

having benefits from the fact that protein structures are more preserved than amino

acid sequences. Although homologous proteins have usually higher sequence similar-

ity than non-homologous proteins and consequently structural similarity compared to

non-homologous proteins, there are many non-homologous proteins that have struc-

tural similarities due to the preservation of their essential functions according to

evolutionary divergences.

In de novo methods, where protein 3D structures are modeled from amino acid

sequences, it has been observed that incorporating the information of accurately

predicted secondary structures improves greatly the overall performance (Skolnick,

Kolinski, & Ortiz, 1997; Wang, Kudryashev, Li, Egelman, Basler, Cheng, Baker, &

DiMaio, 2015). Also, protein 3D structure determination techniques based on protein

threading and comparative modeling most often incorporate the information of sec-

ondary structure elements (Fischer & Eisenberg, 1996; Koretke, Russell, Copley, &

Lupas, 1999; Zhou & Zhou, 2004; Su�lkowska, Morcos, Weigt, Hwa, & Onuchic, 2012;

Biasini, Bienert, Waterhouse, Arnold, Studer, Schmidt, Kiefer, Cassarino, Bertoni,

Bordoli et al., 2014). For example, in protein threading, which is an inverse protein

folding, the goal is to find a template structure that is compatible with a given query

sequence (Jones, 1999b). Initially, a database of protein structures is searched for

protein folds whose pseudo-energies are computed to detect the closest match for

the query sequence whose predicted secondary structures are used in the threading

procedure.

Moreover, protein secondary structure prediction is often an important compo-
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nent of a number of computational biology tools for distant homology detections

and multi-sequence alignments (Ginalski, Pas, Wyrwicz, Von Grotthuss, Bujnicki, &

Rychlewski, 2003; Simossis & Heringa, 2005; Hargbo & Elofsson, 1999; Zhou & Zhou,

2005).

1.4 State of Secondary Structure Prediction

The accuracy of protein secondary structure (PSS) prediction is commonly measured

based on a three-state score (Q3) by which the eight types of secondary structures,

having partially structural similarities, are grouped to helices (H), strands (E) and

coils (C). The Q3 scores is computed by the ratio of the number of residues whose

secondary structures are correctly predicted to the total number of residues in an

amino acid sequence. Segment overlap (SOV) is another accuracy score to measure

the quality of prediction at a segment level, and it results in scores that are often a

few percentages lower than Q3 scores (Zemla, Venclovas, Fidelis, & Rost, 1999). The

detailed explanation of PSS evaluation is provided in Chapter 4.

The primary PSS prediction methods were based on two approaches: (1) physico-

and stereo-chemical analyses (Lim, 1974a; Ptitsyn & Finkelstein, 1983; Tanaka &

Scheraga, 1976), and (2) statistics (Nagano, 1973; Chou & Fasman, 1974a; Garnier,

Osguthorpe, Robson et al., 1978; Kabsch, Sander et al., 1983; Gibrat, Garnier, &

Robson, 1987; Garnier, Gibrat, Robson et al., 1996; Kloczkowski, Ting, Jernigan, &

Garnier, 2002).

By the PSS methods based on physico- and stereo-chemical approaches, a set of

extensive rules were derived by using the frequencies of helices and strands observed

in a limited number of globular proteins. The prediction rules were based on the

principles that govern secondary structure formations with regards to local or long-
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range residue interactions. These methods achieved for some time the highest three-

state prediction accuracy (Q3), reaching to 56%, until more protein 3D structures

were resolved by experimental methods.

In statistical approaches, the PSS prediction methods derive statistical informa-

tion from protein sequences and formulate the correlation between sequence com-

position and the three secondary structures by using Bayesian statistics and Infor-

mation theory. In the early methods, the likelihoods of residue pairs in specific

secondary structures were investigated to quantify residue interactions within short

ranges. Then, the residue interactions were combined to compute interacting residue

propensities of secondary structure elements. The prediction accuracy of statistical

PSS methods ranged from 55% to slightly above 60% based on the Q3 score and with

limited number of globular proteins with known 3D structures, approximately from

20 to 40 protein sequences.

The next class of PSS prediction methods was based on sequence homology when

more protein structures resolved by experimental techniques were available. In homol-

ogous PSS prediction methods, a protein database is scanned to detect the homology

between the segments of a query sequence and those of the template sequences. These

methods are based on the hypothesis that short segments of protein sequences with

high sequence similarity can have possibly similar structural folds and consequently

similar secondary structures even if the compared protein sequences as a whole have

low pairwise sequence similarity (Levin, Robson, & Garnier, 1986; Nishikawa & Ooi,

1986). It is based on the fact that structural folds have critical roles in proteins’

functions and during evolutionary divergences the essential functions of proteins are

likely preserved.

Therefore, in homologous PSS prediction methods, short segments of a query se-

quences are searched to identify a set of sequence segments with the highest similarity

8



match to the template segments by using a substitution matrix, and the prediction

is made by a nearest-neighbor technique. In a protein database, all sequences are

scanned by a fixed-length sliding window which moves one residue at a time along

sequences. The homology-based PSS methods achieved an average of 60% prediction

accuracy on a limited number of protein sequences.

Later on, a new wave of PSS prediction methods emerged based on various Ma-

chine Learning (ML) techniques such as artificial neural networks, support vector

machines and hidden markov models (Qian & Sejnowski, 1988; Asai, Hayamizu, &

Handa, 1993; Hua & Sun, 2001). ML-based PSS prediction methods that incorpo-

rated sequence information improved prediction accuracy to an average of 65% which

is higher than those of the previous techniques. However, a significant performance

improvement occurred when ML-based methods incorporated protein evolutionary

information which increased the prediction accuracy slightly to above 70%.

The prediction accuracy of PSS methods improved further with cascaded archi-

tectures, hybrid schemes and consensus approaches which are the state-of-the-art

PSS prediction methods. These modification and alternative techniques resulted in

a prediction accuracy ranging from 70% to slightly above 80% (Rost, Sander et al.,

1993; Rost, 1996; Przybylski & Rost, 2002; Cuff, Barton et al., 2000; Jones, 1999a;

Kim & Park, 2003; Pollastri & Mclysaght, 2005; Martin, Gibrat, & Rodolphe, 2006;

Montgomerie, Sundararaj, Gallin, & Wishart, 2006; Faraggi, Zhang, Yang, Kurgan,

& Zhou, 2012).

However, there are a number of criteria that affect the overall performance of

PSS prediction methods which need to be addressed in order to compare their per-

formances. The conditions that should be considered for unbiased comparisons of

PSS prediction methods are homology, the architectures of the methods, evaluation

schemes, the types of input information, dataset sizes and generalization techniques
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which are discussed in detail in Chapter 2.

1.5 Protein Datasets and Evaluation

The protein Data Bank (PDB) is the single worldwide repository and archive of large

biological molecules’ 3D structures, including proteins and nucleic acids in various

formats and detail (Sussman et al., 1998). Initially, PDB contained only seven protein

chains with known tertiary structures when it was established in 1971, and the number

of the protein structures were increased only to a few dozens during the 1970s.

All protein structure prediction methods, including PSS prediction techniques,

rely directly or indirectly on the protein sequences whose structures are known by

experimental methods of protein structure determination and deposited in the PDB

databases. The early PSS prediction methods which were mostly based on statis-

tical techniques, and the physiochemical and spatial properties of amino acids and

secondary structure formations were modeled with a limited number of protein se-

quences, from 10 to 80 protein chains, whose tertiary structures were known, and the

methods’ performances were consequently validated insufficiently to some degrees due

to the small numbers of available protein structures (Lim, 1974a; Kabsch et al., 1983;

Gibrat et al., 1987).

Thereafter, the gradual increase of protein sequences with known structures, al-

though extremely low at the present time compared to available protein sequences,

has provided a chance for protein structure prediction methods to take the advan-

tage of the available structural information. However, the relations between pro-

teins’ amino acid sequences and structures are very complicated based on the level

of protein sequences’ pairwise similarities. On one hand, studies show proteins with

similar amino acid sequences fold into similar tertiary structures (Zuckerkandl &
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Pauling, 1965; Doolittle, 1981, 1986; Chothial & Lesk, 1986), and most protein se-

quence pairs with more than thirty out of one hundred identical residues were found

to have structural similarities (Sander & Schneider, 1991). On the other hand, struc-

ture alignments have revealed that there are homologous protein pairs with less than

10% pairwise sequence identity (Holm & Sander, 1996; Hubbard, Murzin, Brenner,

& Chothia, 1997). More precisely, most similar protein structure pairs have less than

12% pairwise sequence identity, and the average sequence similarity among all pairs

of similar structures falls into 8% to 10% which defines a region known as the mid-

night zone (Rost, 1997). If pairwise sequence identities increase to 20-35% which was

originally called twilight zone (Doolittle, 1986), sequence alignment methods often

fail to align correctly protein pairs because pairwise sequence identity, the percentage

of residues that are identical between two protein sequences, is not sufficient to define

pairwise homology.

Later on, a length-dependent cut-off technique for significant sequence identity

showed 95% of protein pairs have different structures in the twilight zone. On one

hand, however, based on the length-dependent cut-off approach, over 90% of protein

pairs that had been identified above the cut-off threshold were homologous, which

roughly corresponds to 30% pairwise sequence similarity. On the other hand, less

than 10% of protein pairs were homologous when the cut-off threshold corresponds

to less than 25% pairwise sequence similarity (Rost, 1999). Therefore, the cut-off

threshold corresponding to the pairwise sequence similarity of less than 25%, which

is known as below the “twilight zone”, is a restriction by which we can expect to

identify protein pairs with the least structural similarities. The criteria of a protein

dataset with pairwise sequence similarity below the twilight zone is very important in

general for protein structure prediction methods, and specifically for PSS prediction.

A learning PSS prediction model that incorporates a dataset with higher pairwise se-

quence similarity will be potentially overfitted such that it performs more effectively
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on query sequences that are homologous with training sequences, and therefore, the

prediction does not reflect throughly the method’s performance. The effect of in-

corporating datasets with different levels of homology on the performance of a PSS

prediction method is discussed in Chapter 5.

RS126 (Sander & Schneider, 1991) and CB513 (Cuff & Barton, 1999) are the two

commonly used datasets whose pairwise sequence similarity is below the twilight zone

(25%) and which contain a small and medium number of protein chains, 126 and 513

chains respectively. Due to the increase of protein sequences with known structures

over time, more protein datasets have been compiled such as ASTRAL (Martin et al.,

2006), EVA5 (Lin, Simossis, Taylor, & Heringa, 2005), PROTEUS-2D (Montgomerie

et al., 2006), etc. These datasets may also contain sequences from the two standard

datasets, and in other cases, protein datasets have been referenced by a set of chains’

IDs. More centralized sources of protein databases with different levels of sequence

similarity are protein culling servers such as PISCES (Wang & Dunbrack, 2003),

and such datasets are updated frequently with new protein sequences, and for a

performance comparison, it should be considered that two datasets with the same

label may contain different numbers of protein chains. For an unbiased performance

evaluation of two PSS prediction methods at least the same level of sequence similarity

in the protein sequences used in learning and testing phases are necessary as was

discussed earlier.

A common approach for the evaluation of PSS prediction is an n-fold cross-

validation technique by which the average correlation coefficient values of the three

classes of secondary structures are measured. In this study, we initially employ the

same evaluation technique in the experiments. While these types of experiments give

a measure of performance for individual approaches, we would like to know with

confidence that one method performs better than another. Therefore, for a more
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comprehensive performance comparison, we perform statistical tests and analyze the

distributions of prediction scores. We suggest that future work in this area use sta-

tistical test to compare the performance of different systems.

1.6 Proposed Secondary Structure Prediction Model

In this study, we propose an ab initio PSS prediction model based on ML techniques

and new amino acid encoding schemes in two stages: (1) a novel PSS transition

site prediction model which incorporates the information derived from amino acid

sequences by using a new technique based on a k-means clustering, Information theory

and Ramachandran map (Ramachandran & Sasisekharan, 1968), and (2) a three-state

PSS prediction using the statistical information derived from the PSS transition site

prediction model in the first stage. The prediction model is based on a cascaded ML

technique which is a common and effective architecture among state-of-the-art PSS

prediction methods. An ab initio PSS prediction method incorporates the information

derived from protein sequences and does not use directly the structural information

of proteins.

In the first stage of the proposed PSS prediction model, in addition of PSS tran-

sition site prediction, the PSS transition site model provides the information that is

incorporated in the second stage for secondary structure prediction. For a protein

sequence, PSS transition sites are the locations on the sequence where one type of

a secondary structure element is changed to another type of a secondary structure

element. A detailed explanation of the proposed PSS prediction model is provided in

Chapter 4.

The PSS prediction in two stages has several advantages: (1) the complexity of

the PSS classifier is reduced by simplifying target features, (2) fewer dimensions in
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input vectors of the secondary structure prediction model which reduce the curse of

dimensionality, less trainable parameters and computation, (3) secondary structure

transition sites which represent the overall topology of protein backbones at a sec-

ondary structure level are valuable information used in the PSS prediction model,

and (4) the information of transition sites can be utilized in comparative modeling of

protein structure determination by which a region on a protein sequence is assigned

to a specific secondary structure, however, the extent of the secondary structure in

both sides of the region cannot be determined.

Protein sequences are coded by various numbers and orders of twenty amino acids.

This means that a learning model encounters an enormously large input space when

the model incorporates protein sequences. Amino acid sequences and other sequence

information have been used directly in PSS methods, however such approaches do

not reduce the input space and ignore the intermediate structural information such

as secondary structure transition sites.

The transition sites represent linearly structural information which can be identi-

fied from sequences and reduce the input space from 20l to 2l where l is the length of

a sequence segment defined by a fixed-length sliding window. The proposed PSS pre-

diction in two stages reduces the complexity of secondary structure prediction model

due to less learning parameters and target features.

We evaluated the proposed PSS prediction model with the latest protein database,

PISCES, from a protein culling server (Wang & Dunbrack, 2003). The dataset con-

tains over nine thousand chains and approximately two million residues, and the

sequence identity of every two sequences is less than 25%. The performance of the

proposed two-stage PSS prediction method was compared to the state-of-the-art PSS

prediction methods which commonly employ cascaded ANNs and SVMs. The ex-

perimental results and statistical analyses indicate a significant improvement in the
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overall distribution of prediction accuracy with p-values less than 0.001.

In a standard approach, the performances of PSS methods are measured by the Q3

and SOV scores, and Matthews correlation coefficient (MCC) is computed for the

three secondary structures. Initially, in our experiments, we measured and compared

the performances of the related methods by the common evaluation techniques.

However, we performed additionally a number of statistical tests and analyses

for a more comprehensive comparison of the proposed PSS prediction model with

the other methods in order to explore and analyze the distributions of the methods’

prediction scores. It is recommended that the statistical approach to be adopted as

a more comprehensive comparison technique for the performances of PSS prediction

methods in other studies.

1.7 Thesis Organization

This thesis is arranged as follows. In Chapter 2, we review PSS prediction methods.

Protein secondary structures and the importance of PSS prediction in protein tertiary

structure determinations are illustrated. The common schemes of protein sequence

representations are discussed in detail. The performances, limitations, strengths and

variations of prominent PSS prediction methods are discussed.

In Chapter 3, several computational intelligence techniques, which are artificial

neural networks, support vector machines, genetic programming, and clustering, are

illustrated. These machine learning methods are employed in the proposed protein

secondary structure prediction model, or they are used independently in the experi-

ments for evaluations and comparisons. The concept, structure, learning algorithms

and applications of the methods are explained in detail.

We review, additionally, protein structures and some related subjects such as the
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different types, geometries and properties of secondary structures in a computational

context, and the techniques that are used for secondary structure assignments. Amino

acid encoding is an important step in ML methods for protein secondary structure

prediction. We explain a number of amino acid encoding schemes. Lastly, two com-

mon evaluation techniques which are used in secondary structure prediction methods

are discussed.

Our proposed two-stage protein secondary structure prediction model is illustrated

in Chapter 4. The structure, components, data representations and prediction phases

of the proposed model are described in depth and with exemplary figures and data.

In Chapter 5, we illustrate the various levels of experimental setups, and the exper-

iments that are performed in this study. A number of common amino acid encoding

schemes are introduced including the proposed amino acid encoding schemes. We

explain our new approach which is based on substitution matrices for the evaluation

of encoding schemes. The proposed Codon encoding scheme is evaluated further for

PSS prediction by using different support vector machine architectures, and the ef-

fectiveness of the proposed encoding scheme is compared to those of commonly used

amino acid encoding schemes.

The second group of experiments that are conducted in this study are related to

the proposed GP model and a new technique to encode protein sequences by using

clustering, Information theory and Ramachandran plot. The efficiency of clustering

and performance of the GP prediction model in PSS prediction are compared to those

of two commonly used machine learning methods which are artificial neural networks

and support vector machines.

The third group of experiments are related to the proposed two-stage PSS predic-

tion model. The final set of the experiments address the four aspects of the proposed

two-stage PSS prediction model: (1) incorporating the information of PSS transition
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sites, (2) the sizes of protein datasets, (3) the performance of PSS transition site

model, (4) evaluation techniques and statistical analyses.

The proposed two-stage model is evaluated initially without incorporating PSS

transition sites with two common datasets with small and medium sizes, and the

conventional approach is used to generalized the results. In addition, we use the latest

nonhomologous dataset with a very large size and performed a number of statistical

tests for the performance evaluation.

In Chapter 6, the summary and contribution of this study are pointed out, and we

outline the future work that can be conducted potentially to improve the performance

and efficiency of the PSS prediction model developed in this thesis.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, we mainly review protein secondary structure (PSS) prediction meth-

ods. Initially, protein secondary structures and the importance of PSS methods in

protein 3D structure modeling are briefly explained. The commonly used techniques

of protein sequence representations are discussed in detail.

The representation of protein sequences is the first step in all PSS prediction

methods which has significant impact on overall prediction performances regardless

of the methods’ designs and learning parameters. In general, PSS prediction methods

are grouped in four categories whose performances, limitations, and strengths are

illustrated and compared in Section 2.2.2. In addition, PSS prediction methods with

different architectures and those methods based on hybrid and consensus schemes are

reviewed, and the performances and advantages of the methods are explained.

We discuss a number of common variations among PSS prediction methods and

challenges in PSS prediction. Lastly, we point out a common difference among PSS
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methods which has an impact on the evaluation and comparison of PSS prediction

methods, and it is related to experimental setups and materials.

2.2 Secondary Structure Prediction Methods

Protein secondary structure (PSS) prediction is a fast and inexpensive way of decoding

the tertiary structures of proteins which are essential to understand the biological

functions and mechanism of proteins. PSS prediction is an alternative approach to

defining guiding points for modeling proteins’ 3D conformations primarily from their

amino acid sequences.

A promising PSS prediction method can be utilized to reduce the complexity

of tertiary structure prediction methods, and help interpreting empirical data ob-

tained by experimental methods for protein structure determination when accurate

or complete structural information is not available. Protein secondary structures are

the spatial patterns observed in protein 3D structures with regards to the hydrogen

bonds among adjacent or distant residues, and these patterns are grouped mainly in

three types which are helices, strands, and coils. Hydrogen bonds are formed between

amide hydrogens and carbonyl oxygens as shown in Figure 2.1. A detailed review of

protein secondary structures is provided in Chapter 4.

2.2.1 Early PSS Prediction Methods

The early PSS prediction methods were based on single-residue statistics that aimed

to find the correlation of certain amino acids with an α-helix, and the concept was

improved over time to explore the preference of all amino acids that have significant

roles in an α-helix or β-strand formation (Szent-Gyorgyi, Cohen et al., 1957; Prothero,
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Figure 2.1: An schematic overview of a β-sheet formed by two beta-strands which are

connected by the hydrogen bonds of distant residues denoted to Ri and Rk (i, k =

1, · · · , n).
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1966; Periti, Quagliarotti, & Liquori, 1967; Finkelstein & Ptitsyn, 1971; Chou &

Fasman, 1974b; Lim, 1974b; Chou, Fasman et al., 1978; Garnier et al., 1978).

For instance, in the Chou & Fasman method, the propensity values of residues and

the empirical rules of helix formations were computed and formulated respectively

from limited protein sequences with known structures. Then, regions with higher

possibilities of helical formations were predicted as follows (Chou & Fasman, 1974b):

1. Propensity values of helix and strand, pα and pβ respectively, are assigned to

all residues in a sequence. The propensity values are computed based on the

2. If the pα values of four out of six consecutive residues are higher than 1.0 then

the residues are grouped and temporarily marked as a helix forming region.

3. Each detected helical region is extended from both directions until the average

pα values of four consecutive residues is less than 1.0.

4. For each identified region that has more than five residues if the average pα is

greater than the average pβ within the region, then it is labeled as a helix.

A drawback for the aforementioned class of PSS methods was that the correlation

information was extracted from a limited number of proteins with known structures.

Therefore, the reported prediction accuracy at the time did not reflect a decisive eval-

uation of the methods’ performances. A decade later when more protein structures

became available, it was discovered that the stated three-state accuracy (Q3) had

been overestimated, and the accuracy scores reached at most 56% (Kabsch et al.,

1983).

An improvement to PSS prediction emerged when the correlations of amino acid

preferences for particular secondary structures were extracted from the segments of

protein sequences. An amino acid segment is defined by a number of consecutive
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residues which is usually from 11 to 21 residues. Then, the likelihoods of the middle

residues in amino acid segments are evaluated for participating in a particular sec-

ondary structure (Ptitsyn & Finkelstein, 1983; Gibrat et al., 1987; Schneider, 1989;

Garnier et al., 1996). The three-state prediction scores of the methods based on

the information of amino acid segments were improved, in average slightly over 60%,

compared to those of the methods based on the preference of a single residue for

particular secondary structures.

There are two common drawbacks for the methods based on single or multi-

ple residue information: (1) the overall Q3 scores are unacceptably low, specifically

low prediction accuracy for β-strands which range from 28% to 48%, slightly better

than random secondary structure assignments, and (2) the short lengths of predicted

strands and helices (Rost & Sander, 2000). These problems originate from the facts

that distant residue interactions play important roles in secondary structure forma-

tions in which these long-range contacts are not captured sufficiently even with the

information of neighbouring residues in amino acid segments.

A major improvements in PSS prediction accuracy emerged when protein evo-

lutionary information was incorporated (Levin, Pascarella, Argos, & Garnier, 1993;

Solovyev & Salamov, 1994; Rost et al., 1993). It has been discovered that multi

sequence alignments of homologous proteins contain the information of long-range

residue contacts.

The underlying fact for the improvement is that if two protein structures are

similar, the mutation of one or two residues at two distant locations occurs with

residues that preserve the physicochemical properties of the original residues, and

consequently preserving the protein structure (Lichtarge, Bourne, Cohen et al., 1996).

This phenomenon is enforced by evolutionary pressure, otherwise mutations would

cause structural changes that are destructive.
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As a result, searching for evolutionary relations reveals the residues that are func-

tionally important with regards to the relation between the function and structure

of a protein. Protein evolutionary information is more decisive by two observations:

(1) all pairs of homologous protein sequences have similar structures if they have at

least 35% identical pairwise residues over one hundred aligned residues (Sander &

Schneider, 1991; Rost, 1999), and (2) a majority of protein pairs with similar struc-

tures have less than 15% pairwise sequence similarity (Rost, 1997). Therefore, the

level of pairwise sequence similarity which is considered in a PSS prediction method

is decisive to the performance evaluation and generalization of the learning method.

2.2.2 Recent PSS Prediction Methods

In a general scheme, protein secondary structure methods fall into four categories:

1. Stereo- and physico-chemical properties of amino acids

2. Statistics and Information theory

3. Sequence homology

4. Machine Learning (ML)

In protein secondary structure methods based on the stereo- and physico-chemical

properties of amino acids, residues in protein sequences are represented by their phys-

iochemical properties and empirical rules that govern the formation of α-helix and

β-strand are defined based on the various grouping and orders of amino acid proper-

ties such as mass, hydrophobicity, hydrophilicity, charge, etc (Lim, 1974a).

In statistical approaches based on Information theory and Bayesian statistics the

correlation between the amino acid sequence and secondary structures of a protein
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are formulated. In other words, these methods compute the preference of each amino

acid for a given secondary structure element (Garnier et al., 1978; Gibrat et al., 1987;

Garnier et al., 1996; Kloczkowski et al., 2002).

The third group of protein secondary structure methods assign the secondary

structures of a sequence based on sequence homology. By these methods, a protein

database is searched for detecting the homology between the fragments of a target

sequence and the sequences of a protein database. These methods are based on the

hypothesis that short segments of protein sequences with distant homology can have

possibly similar secondary structures (Nishikawa & Ooi, 1986; Levin et al., 1986).

All regions (short segments) of protein sequences are searched to identify a set of

amino acid segments with the highest similarity match to a target segment by using

a substitution matrix.

In a protein database, all sequences are scanned by a fixed-length sliding window

which moves one residue at a time along sequences. The segments that have a total

sequence similarity greater than a predefined threshold are noted in a matrix n×m
where n is the length of a target sequence and m is the number of secondary structure

states. The elements of the matrix at each column are decreased or increased by a

certain percentage based on the periodicity of each secondary structure to prevent

possibly an under or over prediction outcome due to the unbalanced numbers of

observed secondary structures. Under or over prediction is referred to a prediction

result which is often biased toward a specific secondary structure due to uneven

distribution of the three types of secondary structures. Finally, in the matrix a

column with a maximum value defines the secondary structure of a residue in each

row.

The last category of protein secondary structure methods are based on ML tech-

niques which employ artificial neural networks (ANNs) (Qian & Sejnowski, 1988;
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Holley & Karplus, 1989; Rost & Sander, 1994a; Kneller, Cohen, & Langridge, 1990;

Zhang, Mesirov, Waltz, & Cohen, 1992; Jones, 1999a; Chen & Chaudhari, 2007),

support vector machines (SVMs) (Hua & Sun, 2001; Nguyen, Rajapakse et al., 2003;

Guo, Chen, Sun, & Lin, 2004), and hidden markov models (HMMs) (Asai et al., 1993;

Karplus, Sjölander, Barrett, Cline, Haussler, Hughey, Holm, Sander et al., 1997; Lin

et al., 2005).

2.2.3 PSS prediction based on Statistics and Information

theory

The early developments of PSS prediction methods were based on the statistical anal-

ysis of protein databases and Information theory (Shannon, Weaver, Blahut, & Hajek,

1949). By using Information theory, one can compute the information contained in a

set of symbols which have different probabilities a priori. The information I which an

event y carries on the occurrence of an event x, or a measure of statistical constraint

between two events x and y, is formalized as the following (Robson, 1974):

I(x; y) = log
p(x|y)

p(x)
(2.1)

where p(x) is the probability of event x and p(x|y) is the conditional probability of

x, knowing event y has happened. If events x, y are independent, I(x; y) is equal to 0

according to Equation (2.1). The value of I(x; y) will be greater or less than 0 if the

occurrence of event y supports or does not support the occurrence of x respectively.

In a protein sequence with n residues, event x=Si is defined as one of the common

secondary structures that a residue at location i adopts, and the formation of a

secondary structure depends on event y=Rj which is defined as the type of the residue

at location j. Ideally, Si is dependent on all residues in a protein sequence. The

information of event Si associated to a residue at the location i is formalized as
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follows:

I(Si;R1, R2, . . . , Rn) = log
p(Si|R1, R2, . . . , Rn)

p(Si)
(2.2)

= I(Si;Ri) + I(Si;Ri−1|Ri) + I(Si;Ri+1|Ri)

+I(Si;Ri−2|Ri−1, Ri) + I(Si;Ri+2|Ri+1, Ri)

+I(Si;Ri−3|Ri−2, Ri−1, Ri) + . . .

where xi is referred to the three secondary structures (helix (H), strand (E) and coil

(C)). Thus, the ith residue is assigned to a secondary structure that has the highest

information value. The information term formulated in Equation (2.2) is computed

by expanding it to the sum of n+1 simpler pieces of information. Additionally, in

Equation (2.2) the terms that are dependent on the combinations of more than three

residues are only limited to three residues since the values of the statistical information

of the terms with the combination of more than three residues will be equal or close

to zero.

Moreover, it was observed that the type of a residue, e.g. at the ith location, has

a significant role on the secondary structures of up to eight consecutive residues in

both directions (N and C-termini) of the residue. Therefore, the left-hand information

term of Equation (2.2) can be simplified as follows:

I(Si;Ri−8, Ri−7, . . . , Ri+7, Ri+8) (2.3)

where Si is the secondary structure of the ith residue located in the middle of an

amino acid segment. If the information term I is computed from a sequence segment

with less than sixteen residues, it results in neglecting some significant information

related to the potential effects of neighbouring residues. Also, the interactions of two

residues that are located farther than eight residues from each other are considered

insignificant (Robson & Suzuki, 1976).
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Moreover, if the information term I is expanded to simple information terms which

are dependent only on the combination of a single residue, the number of parameters

that are required to compute the simplified information term I is equal to 20×17×3

where 20 is the number of amino acids, 17 is the number of residues in a selected

sequence segment and 3 is the number of secondary structure states.

2.2.4 PSS prediction based on Machine Learning

Machine Learning (ML) techniques have been proved to be capable of solving many

problems in the fields of engineering and science. Hence, a significant achievement in

PSS prediction has occurred by employing ML methods. In this section, we outlined

a number of important methods using various ML schemes.

Artificial Neural Networks (ANNs)

In the ML category, early study of PSS prediction was based on a fully connected Mul-

tilayer Perceptrons using the Backpropagation (BP) learning algorithm (Rumelhart,

Hinton, & Williams, 1986). Artificial Neural Networks (ANNs) have been applied for

learning of “text to speech” where strings of words and phenoms are the input and

output of the neural networks respectively. Likewise, in the context of protein sec-

ondary structure, amino acid sequences (strings) and their corresponding secondary

structures are the input and output of the neural networks. In this approach, protein

sequences are split into a set of amino acid segments by moving a fixed-length sliding

window, one amino acid at each time, along a sequence. The amino acids in a segment

are the inputs of the neural network (Qian & Sejnowski, 1988).

Moreover, the inputs are encoded from symbolic representations to numeric values

in order to be processed by a neural network. The output of the neural network is
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one of the three classes of protein secondary structure corresponding to the central

residue of an input segment. A common encoding scheme encodes each amino acid or

a spacer symbol by a 21-dimensional orthogonal vector (Swanson, 1984). The start

and end of a protein sequence are marked by a spacer symbol. Each dimension (unit)

corresponds to a spacer or one of the twenty amino acids if the unit is set to 1 and

the rest of the units are set to 0. The overall prediction accuracy of the method based

on the three-state score, Q3, was approximately 64%.

Although, the proposed technique improved the prediction accuracy, it could not

detect effectively the periodicity of the α-helices and β-strands. A number of modifi-

cations to the inputs of the neural networks were proposed that improved slightly the

prediction of regular secondary structures such as adding one real value to represent

the hydrophobicity of the central amino acid (Kneller et al., 1990), and four extra

units to the orthogonal binary vector (Sasagawa & Tajima, 1993) for the symbols

B, X, Z, and chain breaks which are assigned to certain residues according to the

dictionary of protein secondary structures (Kabsch & Sander, 1983).

In addition, a parallel hybrid model using a Genetic Algorithm (GA) (Holland,

1992) and an ANN was proposed which had the advantages of a robust search for

exploring the parameter space of the neural network and selecting optimal neural net-

work topologies (Vivarelli, Giusti, Villani, Campanini, Fariselli, Compiani, & Casadio,

1995). By the hybrid approach it has been shown that the performances of neural

networks with various architectures and different values of adjustable parameters are

only slightly different. In other words, the experimental results indicate there is a

limitation to improving the prediction accuracy of the neural networks with different

topologies and learning algorithms (Dongardive & Abraham, 2015) if the inputs of

the neural networks are only limited to amino acid sequences as described.

Meanwhile, a more complex hybrid PSS model based on three predicting compo-
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nents was proposed as follows (Zhang et al., 1992): (1) a memory-based reasoning

component which is based on the concept of a homology-based method. Using a dis-

tance function, it identifies the nearest-neighbour segments which are homologous to

the query segment from all available training sequences, (2) a statistical component

that computes the probability of a secondary structure for a central residue in a target

amino acid segment, and (3) a feed-forward neural network.

In the method, for the central residue of a query segment each predicting com-

ponent generates three scores related to the three secondary structures. A combiner

module which is also a neural network takes n×9 scores as inputs to perform the final

prediction where n is the number of residues (sliding window’s length) in a query

segment. The hybrid model has improved the overall Q3 score up to 66%. However,

a common drawback of the earlier protein secondary structure (PSS) methods was

the sole use of local information which is referred to the order and type of a prede-

fined number of adjacent residues in a protein sequence that affect the formation of

secondary structures, specifically helices, as a whole.

The performance evaluation of PSS prediction methods based on various statisti-

cal and neural network approaches indicates that only using the local information of

amino acid sequences is not enough to improve the classification accuracy even with

different neural network topologies, learning parameters and various inputs. In fact, a

prediction method that uses solely the local information of amino acid sequences can-

not sufficiently capture the correlation information among residues and consequently

hinders further improvements to classification performance.

A major breakthrough in PSS prediction was achieved when protein evolutionary

information was incorporated with cascaded neural networks such PHD (Rost et al.,

1993; Rost, 1996; Przybylski & Rost, 2002) and JNET (Cuff et al., 2000). In the

study, two tiers of neural networks were employed for processing inputs. In the first
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tier, the sequence-structure network whose inputs are the occurrence frequencies of

amino acids are computed for each sequence through a fast homology search such

as BLAST (Altschul, Gish, Miller, Myers, Lipman et al., 1990; Altschul, Madden,

Schäffer, Zhang, Zhang, Miller, & Lipman, 1997) in a protein database. In the second

tier, the inputs of the structure-structure network are the outputs of the first neural

network.

The outputs of the first neural network are three real values representing the ten-

dency of each central residue to be in the secondary structures: strand, helix and coil.

A central residue is located in the middle of an amino acid segment which is defined

by a sliding window that moves by one residue at each time along a protein sequence.

The first network learns sequence to structure information which is the correlation

between the secondary structure of the central residue and the types of neighbour-

ing residues within a sliding window while the second network learns structure to

structure information which is the correlation between the secondary structure of a

central residue and the secondary structures of adjacent residues within the sliding

window. Unlike local information, correlation information is referred to the location

and type of residues that are not necessarily adjacent and have decisive roles in the

formation of secondary structures, specifically for β-sheets that are mostly dependent

on long-range residue interactions in a protein sequence.

The frequencies of residues from a multi-sequence alignment are computed as

follows. For example, let’s assume a multi-sequence alignment is generated with

nine sequences homologous to a target sequence and the ith residue in the target

sequence is the amino acid “D”. If the ith amino acid of the target sequence is aligned

with the amino acids “KEDDEDDKE” at the ith column of the multi-sequence

alignment as shown in Figure 2.2, the computed frequencies of the amino acids “D”,

“E”, “K” are equal to 0.5, 0.3 and 0.2 respectively in the example. The cascaded
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Figure 2.2: An example of a multi-sequence alignment to compute the frequencies of

amino acids at location i on a target sequence by using template sequences.

neural network approach was tested on the dataset RS126 (Sander & Schneider, 1991),

and an overall Q3 score of above 70% was achieved using a 7-fold cross-validation

technique. The dataset is one of the standard datasets for the evaluation of the

PSS prediction method in which every two sequences with more than 80 residues

have a pairwise similarity of less than 25%. The length-dependent cutoff defined by

homology-derived secondary structure of protein (HSSP) (Sander & Schneider, 1991)

filters out the sequences with a significant pairwise sequence similarity which are

homologous proteins and prospectively with structural similarities.

The cut-off rule for limiting sequence similarity is important since profile informa-

tion derived by alignment procedures for a training sequence can be also obtained for

a test sequence if the two sequence have a significant homology. Also, to improve pre-

diction accuracy, the sequence homology of sequences in an alignment with a target

sequence should cover a wide range from 30% to 90%. Alternatively, global informa-

tion can be incorporated with the neural networks such as, amino acid composition,

lengths of sequences and the distance of a central residue to C and N-termini.
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PSS prediction methods that use evolutionary information from multi-sequence

alignments are faced with two challenges: (1) the compilation of alignments is compu-

tationally expensive and it requires powerful computing systems, and (2) the predic-

tion accuracy relies on the divergence of sequences in an alignment due to the evidence

that suggests including sequences with low sequence similarity increase prediction ac-

curacy in comparison to choosing only sequences closely related to a query sequence.

In other words, if protein profiles are generated from multi-sequence alignments that

include solely protein sequences with high sequence similarity, a PSS method that

incorporates the profiles does perform well only on query sequences that have high

sequence similarity with protein sequences from which the profiles are derived.

PSIPRED (Jones, 1999a) is an alternative method that employs two cascaded

neural networks and it does not require multi-sequence alignment procedures which

overcomes the challenges related to sequence alignments. The method searches pro-

tein databases for sequence homology by PSI-BLAST (Altschul et al., 1997) which is

more efficient to detect distant homology compared to the standard Smith-Waterman

method (Smith & Waterman, 1981).

The advantage of the PSI-BLAST search is that new profiles of sequences are

simultaneously generated from multi-sequence alignments (MSAs) while searching a

protein database. Therefore, in each iteration, an MSA is formed by using the newly

generated profile. In PSIPRED, for a target sequence a position-specific scoring

matrix (PSSM) is generated after three PSI-BLAST iterations. An element a ij of the

PSSM is the log-likelihood that the amino acid i is at position j of the MSA. Thus,

the PSSM contains 20×n entries where 20 represents the twenty amino acids and n

is the length of the target sequence.

The PSIPRED method was evaluated on 187 protein sequences with 3-fold cross-

validation technique and the 21 target sequences of the third critical assessment of
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methods of protein structure prediction (CASP) (Moult, Hubbard, Bryant, Fidelis,

& Pedersen, 1998), and an average Q3 score of 76% was reported.

Although profiles generated by PSI-BLAST search increase the performance of a

prediction method, a redundant database can negatively change prediction outcomes.

In such a case, if repetitive sequences are incorporated in an intermediate profile, ran-

dom sequences are matched and consequently the search method generates incorrect

results.

A drawback of prediction methods using short segments of adjacent amino acids

is that the methods are not able to intertwine the information of local amino acids

from short segments with that of distant amino acids from the entire sequence. In

order to incorporate, in certain degree, the correlations among local and nonlocal

amino acids, bidirectional recurrent neural networks (BRNNs) were interconnected

in a special neural network topology by SSpro (Baldi, Brunak, Frasconi, Soda, &

Pollastri, 1999; Pollastri, Przybylski, Rost, & Baldi, 2002; Pollastri & Mclysaght,

2005; Mirabello & Pollastri, 2013).

The model consists of a standard feed-forward neural network and two similar

recurrent networks at the left and right of the standard neural network. A segment

of amino acids for whose central residue the prediction is performed is fed to the

middle neural network, and at a time t, the inputs of the two recurrent networks are

their outputs at time t-1. In this way, the recurrent neural networks at left and right

sides interpreted, as wheels, make the correlations among amino segments of an entire

sequence from c-terminus to n-terminus, and in other words, incorporate long range

information.

The entire model is trained by the Backpropagation algorithm through time.

SSPro method performance was tested using BLAST and PSI-BLAST profiles and

the latter showed a better performance. In the method, all protein sequences were
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extracted from the protein data bank (PDB) (Sussman et al., 1998) and after apply-

ing redundancy and homology checks, 1180 sequences were selected for training. The

train models were tested on RS126 (Rost et al., 1993), EVA (Cuff & Barton, 1999)

and the CASP dataset which consist of 126, 223 and 40 sequences respectively. SSPro

showed a relative performance improvement with an average Q3 score of 77%.

PORTER is a computer program based on the SSpro method which has been

developed as an automated server with more precise coding of input profiles from

multi-sequence alignments and updated when new protein sequences with known

structures become available (Pollastri & Mclysaght, 2005). In addition to protein

evolutionary information, the relative solvent accessibility (RSA) of amino acids has

been also observed to be effective when incorporated in a PSS prediction method,

and informative about protein structures. RSA is the degree to which a residue in a

protein is accessible to a solvent molecule and indicates a fingerprint of the overall

topology of a protein structure (Rost & Sander, 1994b).

In the SABLE method (Adamczak, Porollo, & Meller, 2005), the RSA information

in the form of real values or two classes (exposed if RSA>25% and buried if RSA≤
25%) was obtained in two ways to examine its effect on a PSS prediction method

: (1) the RSAs computed from experimental data, and (2) the RSAs acquired by

an RSA prediction method. In SABLE, cascaded neural networks with two hidden

layers are used in two stages, similar to the neural network architecture in the PHD

methods. However, the outputs of two hidden layers are returned to themselves

through designated hidden layers called context units.

The context units act as a temporal memory for prior states of internal units,

and the connection weights of context units are not adjusted during training since

the outputs of context units were designated to add various degrees of excitations

to hidden layers based on training sequences that were presented at earlier times.
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The experimental results indicated the prediction accuracy of RSAs increased the

previously obtained Q3 and segment overlap scores by 3% to 5%.

Support Vector Machines (SVMs)

In the next group of PSS prediction methods based on ML approaches, support

vector machines (SVMs) were employed with various designs. For instance, a PSS

prediction method based on binary SVMs was examined to improve the prediction

performance (Hua & Sun, 2001). In the study, secondary structure prediction was

performed in two phases. Initially, six binary SVM classifiers were trained based on

the two consensus schemes:

1. One-against-all (OAA).

2. One-against-one (OAO).

By the first scheme, three binary classifiers were constructed denoted as (H/∼H),

(E/∼E) and (C/∼C). Each binary classifier was trained to classify one secondary

structure versus the two other secondary structures. For example, the classifier

(H/∼H) discriminates helices versus strands and coils. By the second scheme, three

binary classifiers are also constructed denoted as (H/E), (H/C) and (E/C). In the

scheme, each binary classifier distinguishes one type of a secondary structure from

another type of a secondary structure. For example, the classifier (H/E) classifies a

helix against a strand.

As described earlier, training data was prepared similarly to the methods based

on neural networks. Initially, amino acid sequences were segmented by a fixed-length

sliding window and the amino acids defined by the window at each time were encoded

as inputs, and the prediction was performed for the central residue of an amino acid

segment.
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In order to conduct a three-state classification, in the second phase tertiary clas-

sifiers were constructed by various combinations of aforementioned binary classifiers.

For example, using OAA or OAO scheme, the prediction was performed by computing

the outputs of all three binary classifiers for a target residue. The output of a binary

classifier with the largest positive distance to optimal separating hyperplane (OSH)

determined the predicted secondary structure of the residue.

More complex tertiary classifiers were constructed by cascading binary classifiers

from the two binary classification schemes based on a directed acyclic graph (DAG).

For example, if a cascaded tertiary classifier employs two binary classifiers (H/∼H),

(E/C) in the first and second tiers respectively, when the OSH value of classifier

(H/∼H) is negative, the final prediction is determined by the OSH value of classifier

(E/C), and if the OSH value of classifier (H/∼H) is positive, the central residue is

assigned to a helix.

In protein secondary structure prediction, the length and configuration space of

protein sequences are very large, and it has been shown that choosing the radial basis

function (RBF) as a kernel function results in a better performance than that of the

other kernel functions in high dimensional spaces. The SVM-based PSS prediction

method was evaluated by protein profiles derived from multi-sequence alignments, and

average Q3 of 71%, 73% and segment overlap (SOV ) of 74%, 76% were achieved on

the datasets RS126 and CB513 (Cuff & Barton, 1999) respectively a using seven-fold

cross-validation technique.

The experimental results indicate a performance improvement compared to those

of the PSS prediction methods employing cascaded neural networks. The overall

prediction accuracy was increased due to the aggregation of all prediction from the

tertiary classifiers using a consensus technique.

Another variation of SVM-based PSS prediction techniques is SVMpsi (Kim &
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Park, 2003). The prediction method employed the combinations of tertiary SVM

classifiers based on DAG schemes and incorporated PSI-BLAST profiles. The method

was evaluated on RS126 and CB513 sequences using a seven-fold cross-validation tech-

nique, and an average Q3 of 76% and segment overlap (SOV ) of 73% were achieved

respectively.

Moreover, the method resulted in an average Q3 of 73% and segment overlap

(SOV ) of 72% when the multi-sequence alignment profiles of the datasets were used

in the experiments. The experimental results indicate a higher Q3 score, approxi-

mately 3%, compared to those of SVM-based prediction methods incorporating multi-

sequence alignment profiles.

Alternatively, multi-class SVMs and cascaded multi-class SVMs were studied ad-

ditionally for PSS prediction (Nguyen et al., 2003). In a multi-class SVM method,

three discriminant functions are constructed to perform a three-state classification

which is contrary to the classification that is performed by binary SVMs (Weston &

Watkins, 1999; Crammer & Singer, 2002). In (Nguyen et al., 2003), cascaded SVMs

were employed separately for both binary and multi-class SVMs in two stages. In the

first stage, the inputs of SVMs were the information of amino acid segments defined

by a fixed-length sliding window, and the outputs of the SVMS were combined and

represented to the SVMs in the second stage.

The cascaded SVM models were more effective at capturing the contextual vari-

ations among the residues and their long-range interactions. The experimental out-

comes showed using a multi-class SVM with multi-sequence alignment profiles on

RS126 sequences increased approximately 0.5% the average Q3 compared to those of

binary classifiers combined with a DAG model. Also, the average Q3 increased by

2% if the architecture of the prediction model is enhanced from a multi-class SVM to

cascaded multi-class SVMs with PSI-BLAST profiles.
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Hidden Markov Models (HMMs)

Protein secondary structure prediction has been also studied using Hidden Markov

Models (HMMs) (Asai et al., 1993; Karplus et al., 1997). In the studies, the eight

secondary structures defined by DSSP are grouped in helix, turn, strand and coils,

and four HMMs are defined with a number of hidden states and their state transition

connectivities. The topology of each HMM model is based on the empirical rules

governing on the four classes of the defined secondary structures. For example, a

helical scondary structure is formed by at least three consecutive resides, and there-

fore, the HMM structure related to a helix contains three hidden states with state

transition loops on them. Each HMM corresponds to one of the secondary structures

and is separately trained by the Baum-Welch algorithm and then the four HMMs are

combined (or connected to an initial state) for an overall prediction.

In the model, observations are amino acid sequences and the hidden states that

lead to maximum probability for observed sequences determine the predicted sec-

ondary structures. To prepare training data for the four HMMs, training sequences

are segmented according to the start and end of their labeled secondary structures.

The amino acid segments with similar secondary structures are grouped in four sets

and used separately to train the HMMs. In the method, an observed symbol is one

of the twenty amino acids.

In order to capture more effectively the relations among neighbouring amino acids,

an output (possible observation) symbol can be represented by two amino acids.

Therefore, the number of output symbols increases to 400. If the number of output

symbols is increased, it adds more complexity due to the increase of training parame-

ters related to emission probabilities. Nonetheless, based on the experimental results

using a two- or three-letter scheme for output symbols improves prediction accuracy

if available sequences are enough to evaluate two- or three-letter correlations. The

38



HMM model was evaluated by a protein dataset that consists of 120 sequences with-

out incorporating alignment profiles. The jackknife estimation technique was used

for generalization and it achieved an average Q3 of 66%. The jackknife or “leave one

out” procedure is a cross-validation technique which is usually used if a dataset does

not contain a sufficient number of samples.

Constructing a PSS prediction technique based on the HMM method highly de-

pends on a defined HMM topology, the number of states and their connectivities, and

it has a great impact on the performance of the HMM model. Using an evolutionary

computation such as Genetic Algorithm (GA) helps exploring different HMM topolo-

gies and improving structure prediction (Won, Prügel-Bennett, & Krogh, 2004; Won,

Hamelryck, Prügel-Bennett, & Krogh, 2007). In PSHMM (Won et al., 2007), initially

four block-HMMs, linear, self-looped, forward-jump and zero, and the genetic oper-

ators for the modifications of the block-HMMs are defined. Then, a GA is applied

on a population of HMMs which are composed of randomly generated and connected

block-HMMs.

In PSHMM, the average Q3 scores of 68.3% and 75.1% were reported by incorpo-

rating single and multiple sequence information on the 2230 sequences of the SAB-

Mark dataset. In an alternative approach, the OSSHMM method constructs various

HMM topologies and explores an optimal HMM model based on an automated selec-

tion of HMM topologies (Martin, Gibrat, & Rodolphe, 2005a; Martin et al., 2006).

In the method, without any prior knowledge a simple HMM with three components,

each including only one state, related to three secondary structures is constructed.

The initial HMM size is increased by adding progressively states and parameters,

and a statistical information criterion and a symmetric distance measure are used to

compare different HMMs and select an HMM which performs well on a dataset.

The OSSHMM method achieved average Q3 scores of 67.9% and 75.5% with single
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sequences and multi-sequence alignments profiles respectively on 2524 sequences of

the ASTRAL dataset using a 4-fold cross-validation technique. Moreover, a hybrid

methods that consists of a neural network and an HMM has been studied to be

effective for PSS prediction (Lin et al., 2005).

In YASPIN, similar to PSS prediction methods that employ cascaded-neural net-

works, a prediction is performed in two steps by a single-layer feed-forward neural

network at the first stage and an HMM at the second stage. The neural network has

seven outputs corresponding to seven types of secondary structures predicted for the

central residue of a segment window with 15 residues. In the second stage, the neural

network outputs are used in a single HMM to perform a final three-state structure

prediction.

A new aspect in the method is that a helix structure is defined by three classes

(labels) corresponding to the start, middle and end positions in the helix and similarly

for a strand structure. In this way, with the assumption of the correct predictions of

start and end positions, the fragmented positions in the middle can be corrected. The

experimental results on the 4256 sequences of PDB25 dataset indicate a comparable

performance compared to well examined predicting methods such as PHD, SSPro and

PSIPRED methods.

Consensus and hybrid schemes

A number of PSS prediction models employ multiple techniques to improve the pre-

diction performances. The k-nearest neighbour techniques with neural networks were

shown to be effective for PSS prediction (Yi & Lander, 1993; Salamov, Solovyev et al.,

1995; Salamov & Solovyev, 1997). As discussed previously, in the k-nearest neighbour

technique the secondary structure of a central residue in a target segment is deter-

mined by searching all segments of training sequences which are homologous to the
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target segment.

In this way, k training segments that have the highest sequence similarity with a

target segment are selected. A scoring system based on the local environment scoring

method is used to measure sequence similarity (Bowie, Luthy, & Eisenberg, 1991). By

the local environment scoring method, initially every residue in the training sequences

is assigned to an environment class which is determined by three features, the solvent

accessibility, polarity and secondary structure.

In the method, three types of secondary structures and six types of polarity/solvent

accessibility are considered, and therefore, a residue in every position is assigned to

one of the eighteen environmental classes. Using Bayesian statistics and environmen-

tal sequences, represented by environmental classes, the score of a residue Ri to be

observed in a structural environment E j is calculated as follows:

score(Ej, Ri) = log10

(
p(Ri|Ej)

p(Ri)

)
(2.4)

where p(Ri) is the probability of residue Ri observed in any structural environment.

In this way, a 18×20 environment scoring matrix is constructed and each element of

the matrix is computed by Equation (2.4). Next, the 3D structure profile of a target

sequence is constructed based on the scoring matrix. The 3D structure profile is a

table with n rows and 18 columns where n is the length of the target sequence and

each column corresponds to one of the 18 environment classes. A training sequence is

scored by using the 3D structure profile of a target sequence, and the score measures

the similarity of the two sequences.

Similarly, k segments with highest similarity to a target segment are determined

and the most observed secondary structure in k neighbouring segments is assigned to

the central residue of the target segment. Moreover, instead of choosing the maxi-

mum observed secondary structure as a prediction, alternatively the total numbers

41



of the three secondary structures in k neighbouring segments are computed, and the

prediction is represented as a triplet.

In (Yi & Lander, 1993), the prediction performance was evaluated by 110 protein

sequences with a 3-fold cross-validation technique. In this way, the output of the

k-nearest neighbour method, which is a triplet corresponding to the central residue

in a segment, was incorporated to a neural network for training. Therefore, the input

units of the neural network are equal to 3×l where l is the length of the sliding window.

In addition, the k -nearest neighbour method was also investigated by incorporat-

ing evolutionary information from multi-sequence alignments (Salamov et al., 1995).

In the study, instead of computing only the single homology score of a segment q in the

training database and a target segment p, the homology scores of the segment q with

all homologous segments of the segment p, derived from the multi-sequence alignment

of the target sequence, are computed and the average of the homology scores deter-

mines the final homology score of the two segments p and q. The proposed nearest-

neighbour technique achieved an average Q3 of 72% using protein evolutionary infor-

mation from multi-sequence alignments and a jackknife estimation technique on the

RS126 dataset. The prediction accuracy is 4% higher than that of the similar method

using single sequences.

Moreover, PSS prediction has been improved by incorporating directly the in-

formation of protein structures. As a consensus approach, the PROTEUS tech-

nique (Montgomerie et al., 2006) employed three prediction methods based on neural

networks and structural alignments of homologous sequences with known structures

to predict the secondary structure of a target protein as follows: (1) a BLAST search

is performed for the target sequence to find homologous sequences, (2) three pre-

dictions are performed separately by the three PSS programs, JNET (Cuff et al.,

2000), PSIPRED (Jones, 1999a) and TRANSSEC (Montgomerie et al., 2006), and
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the three predictions are given to a jury system, which is also a neural network, to

determine the final prediction of the three programs, (3) a multi-structure alignment

is performed with the homologous sequences, and based on the alignment a 3D to

2D mapping is performed by a homology modeling to assign secondary structures as

accurate as possible to the target sequence, and (4) the secondary structures obtained

from the jury system and 3D to 2D mappings are aggregated for final prediction.

By the PROTEUS method, a Q3 score of 79.1% was reported by using 100 se-

quences chosen randomly from the PROTEUS-2D dataset. In PROTEUS, the ac-

curacy of 3D to 2D mappings relies on homologous sequences detected by a BLAST

search. A mapping accuracy between 75% to 80% can be obtained if sequence simi-

larities are between 25% to 40%.

SPINE (Dor & Zhou, 2007) is another PSS prediction technique based on a con-

sensus technique. The SPINE method employs two separate sets of cascaded neural

networks which have been used for three-state residue solvent accessibility (RSA)

and three-state secondary structure predictions. The outputs of the two separate

cascaded neural networks are integrated based on a voting scheme. The architecture

of SPINE is the extended model of the commonly used two-stage neural networks

proposed in the PHD method. The SPINE method was evaluated by incorporating

the PSI-BLAST profiles of the CB513 dataset, in addition to 7 amino acids’ proper-

ties, and an average Q3 score of 76.7% was reported using a 10-fold cross validation

technique.

A protein backbone can be represented by a set of dihedral angles which are com-

puted by using the coordinates of C α, C and N atoms as explained in Chapter 4.

A dihedral angle is formed with two intersecting planes. For instance, by four con-

secutive atoms A, B, C and D in a 3D space, atoms A, B and C, and atoms B, C

and D form two intersecting planes whose dihedral angle θ can have a value within

43



[−180,+180]. It has been previously studied that dihedral angles of a protein back-

bone are in certain ranges with regards to the types of local structures, and therefore,

the values of a dihedral angle pair (φ,ψ) are not chosen randomly. The dihedral an-

gle property has been used to predict discretized dihedral angles of protein structures

from protein sequences (Zimmermann & Hansmann, 2008; Kountouris & Hirst, 2009).

The SPINEX method (Faraggi et al., 2012) is based on the fact that the prediction

of dihedral angles of a protein backbone can improve PSS prediction. In contrary to

previous studies based on a multi-state approach that predicted discretized dihedral

angles (Zimmermann & Hansmann, 2008), the SPINEX method employs 10 cascaded

neural networks whose topologies are similar to SPINE’s in two levels, and it predicts

the real-value dihedral angles of a protein backbone. The SPINEX method improved

three-state secondary structure prediction to 85% when it was trained with 2640

sequences from the PISCES dataset and tested on 16 protein chains (Bradley, Misura,

& Baker, 2005) whose lengths are between 49 to 88 residues.

2.3 Summary

PSS prediction from the information of protein sequences is a fundamental problem in

the research areas related to protein structure determinations, and it poses common

challenges as follows:

• The enormity and high dimensionality of a protein sequence’s space in which

twenty types of amino acids are linked in various orders and numbers.

• The tradeoff of sequence homology. This means that if the pairwise sequence

similarity of the datasets is more than 25%, i.e. over the twilight zone (Rost,

1999) as explained in Section 1.5, the PSS prediction results are biased toward
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homologous sequences in experiments. Otherwise, by setting the pairwise se-

quence similarity threshold to less than the twilight zone for all sequences in a

dataset, the prediction performance is decreased due to the collection of non-

homologous sequences, although, it results in a more accurate estimation of the

generalization performance (especially on sequence and structure types that are

not represented in the training set).

• It has been shown that many sequences with sequence similarity below the

twilight zone have similar structures as mentioned earlier.

In general, the performances of PSS prediction methods are varied in different

aspects such as using the information of single residues or sequence segments, pro-

tein profiles, amino acid encoding schemes, secondary structure assignments, quality

of 3D structures, lengths of sequences, the sizes and sequence similarity levels of

datasets, hybrid techniques, and consensus schemes. For PSS prediction methods,

the aforementioned criteria in the experimental setups make objective comparisons

of the performances difficult or in some cases impossible.

In Table 2.1, a number of PSS prediction methods whose experimental setups are

different than those of the proposed PSS prediction model in this study and among

themselves are listed with the brief descriptions of their differences and mismatches

in experimental setups. PSS prediction has been greatly improved with the use of ML

techniques, and therefore, it is justifiable to adopt a hybrid approach to aggregate

the strengths of different techniques for improving PSS prediction accuracy. How-

ever, there is not a PSS prediction method that performs uniquely well for all types

of secondary structures and quality of predicted secondary structures with different

datasets.

Lastly, in this chapter, we explained various types of PSS prediction methods that

have been developed over several years, and examined the methods’ performances.
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A number of approaches of protein representations and evaluations were discussed

which are the essential introductions to Chapters 4 and 5 in which our proposed

PSS prediction model, new amino acid encoding schemes and their corresponding

experiments and performances are discussed. In the next chapter, we provide an

overview of the principles of a number of important learning methods and protein

structures which are the main components of the PSS prediction methods discussed

in this chapter and the proposed PSS prediction model in Chapter 5.
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Table 2.1: Examples of PSS methods whose results were exempted for performance

comparison due to different experimental setups as explained in Section 2.3.

# Outlines of different experimental setups in PSS prediction methods

1

Training set: cullPDB (6128 seq.), test set: (272 seq.), 30% sequence similarity, 8

classes (Zhou & Troyanskaya, 2014).

2

Training set: (ASTRAL40-1.73), test set: (ASTRAL40-1.75), sequence

similarity≤40% (Bettella, Rasinski, & Knapp, 2012).

3

Training set: cullPDB (5534 seq.), test sets: CB513, (CASP10/11 228 seq., un-

specified sequence similarity), 8 classes, PSI-BLAST profiles (Li & Yu, 2016)

4

A consensus approach with 17 prediction methods (Wei, Thompson, & Floudas,

2012).

5

Training set: (Chou 244 seq.), test set: (Chou 201 seq.), sequence similarity≥35%,

8-state (Chen, Chen, Zou, & Cai, 2009).

6

Training set: (undefined:knowledge based training ), test set: (4 sequences) (Bin-

gru, Wei, Zhun, & Huabin, 2009).

7

Training set: (dunbrack 1763 seq.), 3-fold cross-validation, sequence

similarity≥30% (Madera, Calmus, Thiltgen, Karplus, & Gough, 2010).

8

Training set :(6048 seq.), 5-fold cross-validation, sequence similarity≥30% (Leman,

Mueller, Karakas, Woetzel, & Meiler, 2013).

9

Training set: (cullPDB), test sets (RS 126 seq., CB 513 seq.), 8-state, sequence

similarity≥30% (Wang, Zhao, Peng, & Xu, 2011).

10

Training set:(PSIPRED), training set: (CASP8), unspecified sequence similar-

ity (Babaei, Geranmayeh, & Seyyedsalehi, 2010).

11

Training set: (cullPDB 5600 seq.), test sets: CB513, (CASP10/11 228 seq.), un-

specified sequence similarity, PSI-BLAST profiles (Wang, Peng, Ma, & Xu, 2016).

12

Training set: cullPDB (7522 seq.), test set (1630 seq.), sequence similarity≥25%.

Dividing the dataset to low/high resolution, no low resolution set in training,

PSI-BLAST profiles (Mirabello & Pollastri, 2013).

13

A consensus approach with 100 BRNN, using structural similarity (Magnan &

Baldi, 2014).

14

Traning set: (EVA 2713 seq.), test set : (125 seq.), unspecified sequence similar-

ity (Green, Korenberg, & Aboul-Magd, 2009).

15

A consensus approach with 4 structure prediction methods (Qu, Sui, Yang, &

Qian, 2011).

16

Training set: (1425 seq.), test sets: (CASP9/10 195 seq.), unspecified sequence

similarity (Spencer, Eickholt, & Cheng, 2015).
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Chapter 3

Background

3.1 Introduction

In the previous chapter, we introduced the problem of protein secondary structure

prediction and a number of techniques that have been developed for protein secondary

structure prediction, especially state-of-the-art methods based on ML approaches. In

this chapter, we will explore other ML approaches in order to improve performance

further especially in the context of more appropriate test sets and metrics, and all the

pieces that are required to do secondary structure prediction and evaluate it well. We

review several machine learning (ML) techniques which are: artificial neural networks,

support vector machines, genetic programming, and clustering.

The ML methods are employed in the proposed protein secondary structure predic-

tion model or used independently in the experiments for evaluations and comparisons.

The concept, structure, learning techniques and applications of the ML techniques

are explained in some details. In addition, we discuss protein structures and some

related subjects such as the different types, geometries and properties of secondary

structures in a computational context, and the techniques that are used for secondary
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structure assignments. Amino acid encoding is an important step in ML methods for

protein secondary structure prediction. We explain a number of amino acid encod-

ing schemes. Lastly, two common evaluation techniques which are used in secondary

structure prediction methods are discussed.

3.2 Artificial Neural Networks

In this thesis, we employ Artificial Neural Networks (ANNs), in a number of ex-

periments such as the evaluation of common amino acid encoding schemes (Sec-

tion 5.2.2) and the proposed protein secondary structure (PSS) prediction technique

(Sections 5.3, 5.4 and 5.5) which are explained in detail in Chapter 5. In addition, we

employ ANNs to construct independent PSS prediction models in order to compare

the performance of the proposed PSS prediction model with those of state-of-the-art

PSS prediction methods that commonly employ cascaded ANNs. Therefore, in this

section the fundamental aspects of ANNs which are related to designs and learning al-

gorithms are discussed. In addition, we review a number of important neural network

architectures and applications in different classes of problems.

ANNs are one of the important field of studies in computational intelligence which

have been applied successfully to a number of scientific, financial and engineering

problems such as optimizations, classifications, controls, pattern recognitions, and

data mining. ANNs are mathematical models inspired by the biological nervous

systems (McCulloch & Pitts, 1943).

By the mathematical definitions, the main components of ANNs are artificial

neurons, connection weights and activation functions. The weights correspond to the

biological synapses which are the means of inputs to a neuron. An activation function

which computes the weighted sum of the inputs of an artificial neuron is the simplified
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representation of a biological neuron’s function which has nonlinear and dynamical

properties.

In a simple form, the output O of an artificial neuron is computed by a step

function f which is a hard-threshold activation function as follows:

net =
n∑

i=1

wi · xi − θ (3.1)

O = f(net) =

⎧⎪⎨
⎪⎩

1 net ≥ 0

0 otherwise

(3.2)

where n is the number of inputs to the neuron. xi, wi are the neuron’s ith input and

connection weight respectively, and θ is a threshold. net is the sum of weighted inputs

of neuron i which is marginalized by threshold θ. An early ANN model was a single

layer of neurons which is called perceptron. Perceptrons cannot solve problems which

have linearly-inseparable spaces. A common ANN architecture is called a Multilayer

Perceptron (MLP) which has three types of interconected neuron layers which are

input, hidden and output.

In MLPs, information flows in a forward direction, from the input layer to hidden

layer and from the hidden layer to the output layer, and such a neural network

architecture is called a feed-forward ANN. A feed-forward ANN that employs a step

function as an activation unit is limited to binary function approximations. Most

neural networks employ differentiable functions such as the Logistic function which is

a commonly used activation function in feed-forward ANNs for continuous function

approximations, and it is defined as follows:

O = f(net) =
1

(1 + e−net)
(3.3)

An important process for the training of ANNs is the adjustments of connection

weights which are achieved by a learning algorithm. In perceptrons, for a neuron k
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at time t a simple rule is used for weight adjustments as follows:

wi(t+ 1) = wi(t) + η(dk − ok(t)) · xi (3.4)

where xi, wi are the ith input and weight of neuron k. η is a learning rate which

adjusts the learning speed. dk, ok(t) are the target and actual outputs of neuron k

respectively at time t. The common learning algorithm for feed-forward ANNs which

employ the Logistic function is called Backpropagation (Rumelhart et al., 1986).

The algorithm is based on the gradient decent method, and it computes the partial

derivative of a neural network’s error with respect to each connection weight (Werbos,

1990). The error function and weight adjustment are defined as follows:

E =
1

2

∑
(ti − ai)

2 (3.5)

Δwij = −η · δE
δwij

(3.6)

where wij is the weight between the neurons i, j, and η is a learning rate. ai is

the actual output of an output neuron i and ti is a target value for neuron i. By

the Backpropagation method, a network’s error is propagated from output layer to

hidden layer(s) and from hidden layer(s) to the input layer, and in each step weight

adjustments are performed.

In order to compute the error of a feed-forward ANN, inputs are propagated from

the input layer to the output layer. In a feed-forward ANN that employs the logistic

function, the output of neuron i from layer k + 1, ai(k + 1), is computed as follows:

neti =
n∑

j=1

wij · aj(k) − bi (3.7)

ai(k + 1) = f(neti) =
1

(1 + e−neti)
(3.8)

where bi is the bias (activation threshold) of neuron i, and aj(k) is the output of

neuron j from layer k. Neuron j is connected to neuron i, and wij is their connection

weight. neti is the sum of weighted inputs of neuron i marginalized by bias bi.
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After the outputs of a feed-forward ANN are calculated, the errors are propagated

to the network in backward order, and in each layer weight and bias modifications at

time t+ 1 are calculated as follows:

Δwij(t) = −η · δi · aj + α · Δwij(t− 1) (3.9)

wij(t+ 1) = wij(t) + Δwij(t) (3.10)

bi(t+ 1) = bi(t) − η · δi (3.11)

where wij is the connection weight from neuron j to neuron i and aj is the output

of neuron j. Δwij(t) is the magnitude of the weight adjustment at time t, α is a

momentum rate, and δi is the error value of neuron i. If neuron i is in an output

layer, δi is calculated as follows:

δi = ai(1 − ai)(ti − ai) (3.12)

whereas for neuron i in a hidden layer, δi is calculated as follows:

δi = ai(1 − ai)
n∑

k=1

δk · wki (3.13)

where wki is the connection weight from neuron k to neuron i and n is the number of

neurons in a hidden or input layer. To evaluate the prediction accuracy of an ANN,

the root-mean square error (RMSE) of the outputs of the neural network is computed

as follows:

RMSE =

√∑n
i=1(ti − oi)2

n
(3.14)

where oi, ti are the actual and target outputs of neuron i, and n is the number of

neuron in an output layer.

There are some variations of ANN architectures which have been developed for

different applications, and these ANNs employ different nonlinear activation functions
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and learning algorithms. Recurrent neural networks (RNNs) are one of the state-of-

the-art ANN for nonlinear time series and temporal pattern classifications (Chambers

& Mandic, 2001). In RNNs, the outputs are returned to the input layer.

The Self-organizing Map (SOM) is another ANN which can learn the distribution,

categorization and topology of inputs (Hecht-Nielsen, 1989). A SOM is a grid of dis-

crete points which are connected to input neurons. For each connection a weight is

associated to measure the strength of the connection. A Radial Basis Function (RBF)

network is a feed-forward ANN with three layers, and it uses a linear activation func-

tion for the output layer and a nonlinear function for the hidden layer. RBFs classify

data by using hyperplanes, and unlike MLPs, RBFs are guaranteed to converge and

learn faster.

Moreover, Deep Neural Networks (DNNs) are other variations of artificial neural

network techniques based on Deep Learning whose robust performance has been eval-

uated in a number of important applications such as pattern recognitions (Cireşan

& Meier, 2015). Deep learning methods learn feature hierarchies with features from

higher levels of the hierarchy that are formed by the composition of lower level fea-

tures. In other words, a deep learning model learns features without a prior knowledge

at multiple levels of abstraction and enables a system to learn complex functions which

map the input to the output directly from data (Bengio, 2009).

Lastly, there is not an ANN to be the best model for solving all problems, and each

type of ANNs is a suitable solution for certain classes of problems. In a general term, it

has been investigated that for static- and time-dependent optimization problems, the

average performance of every two algorithms among all possible problems is identical

which is known as No Free Lunch (NFL) theorem (Wolpert & Macready, 1997).

53



3.3 Support Vector Machines

In this study, we employ Support Vector Machines (SVMs), in a number of exper-

iments such as the evaluation of the proposed codon encoding scheme in protein

secondary structure prediction (Section 5.2.4). We compare the performances of our

proposed Genetic Programming (GP) prediction model with those prediction meth-

ods based on one-tier SVMs (Section 5.3). In addition, we employ SVMs to construct

an independent secondary structure prediction model in order to compare the perfor-

mance of the proposed prediction model with those of state-of-the-art PSS prediction

methods that commonly employ cascaded SVMs (Section 5.5). Thus, the fundamen-

tal aspects of SVMs which are the architectures and learning algorithms are discussed

in this section. In addition, we review an important feature of SVMs which is the

kernel technique.

SVMs are a set of related methods based on the principles of statistical learning

theory. The pioneering study on SVMs was on hand-written digit recognitions for

US postal services (Schölkopf, Burges, Vapnik, Uthurusamy et al., 1995). There-

after, SVMs have been applied for a number of problems such as pattern recognition,

text categorization, time series and bioinformatics. In general, SVMs are used for

classification and regression problems.

In statistical learning theory, a learning machine chooses a function from a set

of functions that minimizes a predefined risk known as empirical risk which depends

on the training set and the complexity of the class of the function. However, it was

shown that bound on the risk cannot be easily computed, and it does not measure

the quality of an acquired solution(Vapnik & Chapelle, 2000). The limitations were

resolved by introducing a concept to control the risk known as margin. In this way,

the class of functions selected for the learning technique is a hyperplane with an

assumption that an input space is separable as shown in Figure 3.1(a). A hyperplane
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Figure 3.1: (a) A hyperplane which divides an input space into two separate classes.

(b) Various hyperplanes which separate an input space.

that separates an input space is called the decision surface. In a problem, there are

a number of hyperplanes that can separate the input space shown in Figure 3.1(b).

The best hyperplane can be selected by imposing bound on the margin which is the

minimum distance between a point in the input space and a decision surface. Thus,

in an input space, the separation of input points is increased by choosing a wider

margin.

In other words, a risk (error) is minimized by maximizing the margin’s width.

Therefore, the complexity of this class of functions is controlled by the margin. More-

over, the input points which have minimum distances from the decision surface are

called support vectors which are on two hyperplanes that are parallel to the decision

surface as shown in Figure 3.1(a). Therefore, SVMs can be formulated as a binary

classifier and defined as follows:

f : X → Y , X ∈ Rn , Y = {−1,+1} (3.15)

By the definition, input points belonging to class A are assigned to +1, and those

belonging to class B are assigned to −1. Therefore, the aim is to estimate function
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f as follows:

f(xi) = sign(w · xi + b) , i = 1, · · · , n , xi, w ∈ Rm, b ∈ R (3.16)

where sign is the signum function. n, m are the number of input samples and the

dimension of input space respectively. As shown in Figure 3.1, input point xi on a

decision surface satisfies w ·xi + b = 0. Point xi on hyperplane #1 or on the right side

of the hyperplane satisfies w · xi ≥ +1, and likewise, if point xi is on hyperplane #2

or on the left side of the hyperplane, it satisfies w · xi ≤ −1. Therefore, a constraint

can be defined as follows:

yi · (w · xi + b) ≥ +1 , yi ∈ {−1,+1} , i = 1, · · · , n (3.17)

which satisfies all input points, except for the points between hyperplanes #1,#2.

Meanwhile, the distance between two points xi, xj on hyperplanes #1 and #2 is

equal to

|w · xi + b|
||w|| +

|w · xj + b|
||w|| =

| + 1|
||w|| +

| − 1|
||w|| =

2

||w|| , i, j = 1, · · · , n (3.18)

where 2
||w|| is the complete margin. Next, the aim is to find a hyperplane to maximize

2
||w|| or to minimize

min
{w,b}

1

2
||w||2 (3.19)

subject to

yi · (w · xi + b) ≥ +1 , i = 1, · · · , n (3.20)

The parameters of a hyperplane solution with the constraints is computed based

on quadratic programming optimization technique using Lagrange function and La-

grange multipliers, αi ≥ 0. The Lagrangian function of a given function f(x, y) with

constraint g(x, y) = 0 is defined as follows:

∂f = α · ∂g or ∂L = 0 where L(x, y, α) = f(x, y) − α · g(x, y) (3.21)
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Therefore, according to Equations (3.19), (3.20) and (3.21) Lagrangian function

L(w, b, α) is defined as follows:

L(w, b, α) =
1

2
||w||2 −

n∑
i=1

αi · (yi · (w · xi + b) − 1) (3.22)

The function L is at minimum where ∂L
∂w

= 0, ∂L
∂b

= 0, and based on Equation (3.22)

the following equations are derived as follows:

n∑
i

αi · yi = 0 , w =
n∑
i

αi · xi · yi (3.23)

Also, according to Equation (3.21), αi = 0 for points that do not satisfy Equation

(3.20) which means

αi · (yi · (w · xi + b) − 1) = 0 (3.24)

By replacing w from Equation (3.23) in Equation (3.22), function L(w, b, α) is rede-

fined as follows:

max
α

n∑
i=1

αi − 1

2

n∑
i,j=1

αi · αj · yi · yj · (xi · xj) (3.25)

subject to

n∑
i=1

αi · yi , α ≥ 0 (3.26)

where function L is maximized based on the dual variable αi. Using Equations (3.23)

and (3.24), function f(x) = sign(w · x+ b) and b are formulated as follows:

f(x) = sign(
n∑

i=1

αi · yi · xi · x+ b) (3.27)

b =
1

|I|
∑
i∈I

(yi −
n∑

j=1

αj · yj · xi · xj) (3.28)

where I is a set of all points whose αi �= 0.

57



In real world problems, input spaces are not always linearly separable as shown

in Figure 3.2(a). Therefore, a solution based on hyperplanes may be practically

impossible. A solution for a linearly inseparable space with n dimensions is to map

data points to a higher dimensional space with m dimensions in which the transformed

points are linearly separable as shown in Figure 3.2(b).

Figure 3.2: (a) A linearly inseparable space. (b) Mapping of a linearly inseparable

2D space to a linearly separable 3D space.

However, it is not easy to find a transform (mapping) function. According to

Equation (3.27), the dot-product of every two points xi, xj in an input space needs to

be computed, in addition of computing f(xi) · f(xj) where f is a transform function.

The computation becomes even more costly when the number of input samples and

the dimensions of original and transformed spaces are very high. For example, by

using a simple transform function f(x1, x2) = x21 + x22 +
√

2x1 · x2, 15 dot-products

need to be computed for every two points.

A kernel function was introduced to overcome the increasing computation prob-

lem (Cortes & Vapnik, 1995). By the kernel function approach, for every two points

xi, xj, the dot-product of f(xi) ·f(xj) is not computed in a higher dimensional space.

There are different types of kernel function such as linear function k(xi, xj) = xTi · xj
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and sigmoidal function k(xi, xj) = tanh(γ(xTi · xj) + δ) where γ > 0.

In addition, the dot-product of xi · xj can be replaced by a kernel function in

Equation (3.27) which means it is not needed to know directly a mapping function.

A research area in SVMs is to know whether a kernel function corresponds to an exact

dot-product of two points in a mapped space with a higher dimension.

An extension to SVM technique is soft margin SVMs which are less restrictive

SVMs. Soft margin SVMs allow points that do not satisfy constraints defined in

Equation (3.20) by using slack variables. A slack variable represents the distance of a

point, located in the margin area of its opposite class label, from the hyperplane that

includes the support vectors of the class label similar to the point’s. By soft margin

techniques Equations (3.19) and (3.20) are reformulated as follows:

min
{w,b}

1

2
||w||2 + C

n∑
i=0

εi (3.29)

subject to

yi · (w · xi + b) ≥ 1 − εi , i = 1, · · · , n (3.30)

which minimizes the sum of errors. εi is an error corresponding to a slack variable

and C is a cost coefficient to control an overfitting problem. There are two techniques

for a multi-class classification with n labels by using SVMs, one-against-all and one-

against-one which require n and n(n−1)
2

SVMs respectively, and then the classification

results of SVMs are generalized by a voting scheme.

3.4 Genetic Programming

In this study, we propose a protein secondary structure (PSS) prediction model based

on a Genetic Programming (GP) technique (Koza, 1992). We compare the perfor-

mances of the proposed GP prediction model with those prediction methods based
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on ANNs and SVMs (Section 5.3). In addition, we employ the GP technique in our

proposed two-stage PSS prediction model (Sections 5.4 and 5.5). In order to pro-

vide a better overview of the experiments which will be described in Chapter 5, the

fundamental aspects of GPs which are related to designs and learning algorithms are

discussed in this section.

GP is an evolutionary computation technique which is an extensively studied field

in Machine Learning (ML). GP is a heuristic search and optimization algorithm. The

distinct features of GP make it a powerful technique for a range of classification and

regression problems (Oltean & Dioşan, 2009).

The advantage of GP to other ML techniques is the flexibility that enables GP

to be adaptable to the conditions of various problems. In GP, solutions are repre-

sented as variable length programs which do not require prior knowledge and logic

as required by expert systems and artificial neural networks. The representation of a

problem as a set of variable length programs instead of a specified length is the great

advantage of GP, and the representation is considered as a superset of other possible

ML representations (Koza, 1992).

The mechanism of GP is inspired from the theory of natural evolution, and the

aim is to find a solution in the space of possible solutions. In general, GP applications

are based on supervised learning by which training instances as inputs are associated

to correct outputs where a fitness function compares the program’s output with the

desired result. A number of GP applications are also based on unsupervised training

such as in reinforcement learning systems (Barto, Sutton, & Anderson, 1983) in which

fitness functions have more roles than comparing the program outputs with desired

targets.

In GP, a primary solution for a problem is represented as a tree. Initially, a

population (generation) of random solutions (individuals) are created according to a
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genotype scheme. To simulate the randomness of natural evolution pseudo-random

numbers are used according to stochastic and probabilistic processes. In a generation,

genetic operators transform the candidate solutions to new solutions. A new solution

(individual) is passed to the next generation if the fitness of the new solution measured

by a fitness function satisfies the conditions that are set for an individual to be a

candidate solution.

A fitness evaluation is basically a mechanism which is provided to a learning

algorithm, and it indicates whether an individual program is allowed to be multiplied

and reproduced or be discarded form the population. In GP, unlike exhaustive and

hill climbing searches, the search technique performed in a solution space is based on

a beam search by which an evaluation mechanism (using a fitness function) chooses

a set of possibly fitter solutions, and the rest of the solutions with lower fitnesses are

discontinued.

In the search, the beam size is a population size which is equal to the number

of individuals. Therefore, guided searches are performed more effectively by GP

methods globally and locally for the exploration and exploitation of a solution space.

In GP, there are three main types of genetic operators:

1. Crossover which swaps the selected genetic materials of two individual programs

as shown in Figure 3.3.

2. Mutation which modifies the specific genetic materials of an individual program

as shown in Figure 3.4.

3. Reproduction which creates the exact copy of a selected individual and places

it into the population.

The structural units of individual programs in GP are terminals and functions. A

function unit performs a defined operation on its inputs which can be terminals or
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Figure 3.3: An example of a crossover operation on two individuals representing alge-

braic functions. The gray subbranches have been swapped between the two parents.

Figure 3.4: An example of a mutation operation on one individual. The gray nodes

have been mutated.

the outputs of other functions. The set of terminals in a GP program are in fact

the inputs of the program. In general, the choice of a function set depends on the

domain of the given problem, and it can consist of arithmetic, boolean, relational,

conditional, and transcendental functions.

An essential part in GP is a selection algorithm which is also called a selection op-

erator. A selection operator is performed on the individuals of a population after their

fitnesses are evaluated. The selection operator determines which individuals of a pop-
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ulations should be selected, kept or replaced in the population. There are a number

of selection methods such as fitness-proportional and tournament selection (Holland,

1992; Goldberg & Deb, 1991).

In Fitness-proportional selection, commonly used in genetic algorithms (GAs) (Hol-

land, 1992), a probability pi is assigned to individual i of a population with size n for

reproduction based on its relative fitness fi in the population as follows:

pi =
fi∑n
j=1 fj

(3.31)

The common selection algorithm in GP is tournament selection. The domain of

competition in tournament selection is a subset of the population. In other words,

each time a predefined number of individuals are randomly selected from the popula-

tion and then the individuals compete and those with better fitnesses are chosen for

reproduction. The number of individuals selected for tournament defines the tourna-

ment size. Selection pressure is high if a large tournament size is chosen, and selection

pressure is low with a small tournament size.

Unlike the fitness-proportional technique, a centralized fitness comparison is not

required between all individuals in tournament selection, therefore the selection tech-

nique is faster and speeds up evolution. The overall run of a GP algorithm is outlined

as follows:

1. Set the numeric parameters of the GP program: population size, maximum

individual size, crossover probability, selection method, and termination condi-

tions.

2. Define functions and terminals.

3. Define fitness function.

4. Choose a selection method.
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5. Initialize the population, randomly generated primary solutions.

6. Calculate a numeric fitness or rating value for every individual.

7. Choose individual/s from the current population based on the selection method.

8. Apply genetic operators on the selected individual/s.

9. Place the result of genetic operations into the new population.

10. Repeat from step 7 if the number of individuals in the new population is less

than the predefined population size.

11. Replace the current population with the new population, and go to step 6 if the

termination conditions (generalization error, maximum generation, maximum

run,...) are not met.

12. Choose the best individual, identified by the best fitness in the population, as

the final solution.

3.5 Clustering techniques

In this study, we propose an encoding scheme for representing amino acid sequences

and protein profiles based on clustering and statistical information. The new encoding

scheme is employed in the experiments that are illustrated in Sections 5.3, 5.4 and 5.5.

In this section, we overview a number of prominent clustering techniques which are

used in unsupervised learning, and aim to provide information that is more descriptive

to the related experiments performed in Chapter 5.

Supervised and unsupervised learning are two main learning techniques in Machine

Learning. In supervised learning, data samples are represented as n pairs of (Xi, yi)
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as follows:

Xi = (xi1, xi2, · · · xim) , i = 1, · · ·n , j = 1, · · ·m (3.32)

where sample Xi is represented as an m-dimensional vector and element xij is called

an attribute whose value can be categorical or continuous. Sample Xi is associated

to yi which is a known class label in the form of a nominal symbol or a numeric value.

Therefore, the aim of a learning algorithm is to map data samples to the correct class

labels.

However, in an unsupervised learning method, the class labels of data are not

known, and the method explores and organizes (categorizes) data samples through

the relations that exist among the attributes of data samples. Clustering is a common

technique for unsupervised learning, and there are a number of clustering techniques

such as hierarchical clustering (Guha, Rastogi, & Shim, 2001), error minimization

clustering (Hartigan & Wong, 1979) and graph-theoretic clustering (Zahn, 1971). In

hierarchical clustering, data are grouped by using two techniques:

1. Agglomerative (bottom-top).

2. Divisive (top-down).

In agglomerative technique, each sample Xi is initially assigned to one cluster.

Then, the clusters are merged by computing the distances of every two clusters. The

two clusters which have minimum distance (the least dissimilarity) among all other

cluster pairs are merged. The distance of two clusters is computed in two ways,

single-link and complete-link, as follows:

d(ci, cj) = min {d(x, y)|x ∈ ci, y ∈ cj} (3.33)

d(ci, cj) = max {d(x, y)|x ∈ ci, y ∈ cj} (3.34)
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where i, j are the number of existing clusters in an iteration, and d(x, y) is the distance

between sample x of cluster ci and sample y of cluster cj. By single link method, the

distance of two clusters is defined by the distance of the two closest samples from

the two clusters. However, the distance of two clusters by complete-link approach is

defined by two farthest samples from the two clusters. Unlike the single-link method,

the complete-link approach induces compact clusters.

In graph theoretic clustering, data samples are represented as a complete graph

G. Each sample is a node of graph G. The dissimilarity or distance of every two

nodes is computed, and the distance is assigned as a weight to their edge. Next, a

minimum spanning tree (MST) is constructed from graph G. Lastly, an edge with the

largest weight, greater than threshold L, is identified and the edge is removed. Thus,

two subgraphs (clusters) are formed. Removing the longest edges from subgraphs is

repeated recursively until there is not an edge with a weight greater than L for all

sub-graphs.

In error minimization clustering, data samples are initially partitioned into several

clusters which are defined randomly or based on a heuristic technique. Next, the total

error of clusters are computed, and then the error is minimized by relocating the

samples among the clusters based on an iterative process. The sum of square error

(SSE) is a common technique for error minimization. The SSE error of k clusters

over n samples (points) is computed as follows:

SSE =
k∑

q=1

n∑
i=1

m∑
j=1

(xij − cqj)
2 (3.35)

where xij is the jth element (attribute) of sample Xi which is an m-dimensional

vector. Also, cqj is the average value of the j th attribute of the elements in cluster

q. The k -means clustering technique is based on error minimization clustering. For

n samples (points), k -means clustering is performed as the following steps:
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1. Define the number of clusters (k) and termination criteria, SSE threshold and

maximum number of iterations.

2. Select randomly k points which are assigned initially to the centers of the k

clusters. The k cluster centers are denoted μ1, μ2,..., μk.

3. For each point Xi in cluster p if the distance between Xi and cluster center

μp, d(Xi, μp), is greater than threshold l, Xi is relocated to cluster q where

d(Xi, μq) ≤ l and p, q = 1, · · · , k.

4. Repeat step 3 for all points located in the k clusters.

5. Compute the means of the attributes of all the points located in the k clusters

and assign them to μ1, μ2, ..., and μk respectively.

6. Compute SSE based on Equation(3.35).

7. If termination criteria (minimum generalization error, maximum iteration,...)

are not met, repeat the clustering process from step 3.

The time complexity of k -means clustering with n samples is linear, O(n), whereas

the time complexity of most hierarchical clustering methods is quadratic, O(n2). In

hierarchical clustering, the number of clusters is defined during the algorithm, and

the cluster results are the same in different runs. However, in k -means clustering, the

number of clusters is determined randomly or based on a heuristic technique at the

beginning, and k -means clustering may result different clusters in each run.

3.6 Protein structures

A protein is formed by a specific number and order of the twenty amino acids (AAs)

which are linked by chemical bonds (Burkowski, 2008). In general, a protein structure
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is categorized in four levels as follows:

1. Primary sequence— a sequence of amino acids which is defined by the alpha-

betical symbols of the twenty amino acids.

2. Secondary structure— a linear chain of common structural motifs which is de-

fined by three structural patterns called α-helix (H ), β-strand (E ) and coil (C )

as shown in Figure 3.5

3. Tertiary structure— a polypeptide chain is represented by the atomic coordi-

nates of backbone and side chains in a 3D space as shown in Figures 3.7 and 3.6.

4. Quaternary structure— two or more interacting polypeptide chains (macro-

molecule) are represented by all atoms in a three-dimensional space.

Figure 3.5: The structure of protein 1K8H represented by secondary structure ele-

ments. The secondary structures helices (H), strands (E), and coils (C) are shown in

three different colours (yellow (E), red (H) and gray (C)).

68



Figure 3.6: The 3D representation of protein 1K8H. Each type of the twenty amino

acids is shown in a specific colour (Sussman et al., 1998).

Figure 3.7: The skeletal formula and three-dimensional structure of the amino acid

Tyrosin. Each type of atoms is shown in a specific colour.
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The tertiary structure of a protein with fewer details can be defined by the di-

hedral angles of the protein’s backbone atoms. A protein’s side-chain atoms are not

included in the representation of the protein’s structure by dihedral angles. A pro-

tein’s backbone consists of a number of peptide bonds which are sequentially linked

and composed of nitrogen (N ), hydrogen (H ), carbon (C ) and oxygen (O) atoms.

A peptide bond is formed by chemical reactions between the carboxyl group (-

COOH) and amino group (-NH2) of two adjacent amino acids as shown in Figure 3.8.

Amino acids that are linked by peptide bonds are called residues. In order to represent

Figure 3.8: (a) A schematic view of a protein’s backbone and the atomic orders. An

amino acid’s side-chain atoms are centered at Cβ atom. A peptide bond is formed

where dihedral angle ω is formed.

the conformation of a protein’s backbone independently from the 3D coordinate sys-

tem, three dihedral angles are computed for each residue. For two adjacent residues

at the locations i, i+1 of a protein sequence with n residues, the dihedral angles of

the residue ri are defined by the order of four atoms as follows:

φ : (N ri , Cri
α , C

ri , N ri+1) (3.36)

ω : (Cri
α , C

ri , N ri+1 , Cri+1
α ) (3.37)

ψ : (Cri , N ri+1 , Cri+1
α , Cri+1) (3.38)

where Cri
α is the α-carbon atom of residue ri to which a functional group (side-chain) is
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linked. A side-chain which has specific chemical and structural properties determines

uniquely the identity of an amino acid. Unlike the dihedral angle ω which is planar,

approximately 180 degrees, the two dihedral angles φ, ψ are observed having various

values from −180◦ to +180◦.

The degrees of φ − ψ dihedral angles are not randomly distributed from −180◦

to +180◦. In fact, the degrees of φ − ψ angles are in certain ranges due to steric

constraints that exist among the atoms of the backbone and side chain. The distri-

bution of secondary structures and energetically preferred ratios of φ− ψ angles can

be illustrated effectively by the Ramachandran map (Ramachandran & Sasisekharan,

1968) in a two-dimensional plot ([φ, ψ] plot) ranging from −180◦ to +180◦ as shown

in Figure 3.9.

In a φ− ψ plot, the distributions of φ, ψ dihedral angles in some regions are less

than those of the other regions due to shorter Van der Waals radiuses, and even

there is not any distribution of the dihedral angles in the rest of plot regions which

are sterically disallowed. Moreover, the core (dense) regions are separated from each

other to some degrees, and each core region corresponds to different types of secondary

structures.

Moreover, the dihedral angles φ, ψ are sufficient to determine the three-dimensional

shape of a protein’s backbone with the assumption that the bond lengths and bond

angles of the atoms do not change and remain fairly constant.

The formation of protein secondary structures had been speculated as certain local

conformational patterns by Pauling and Corey (Pauling et al., 1951; Pauling & Corey,

1951a) several decades ago before the structures of Hemoglobin were experimentally

determined. Protein secondary structures are the most common shapes that the

segments of a protein chain adapt according to the hydrogen bonds detected among

the residues of the segments.
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Figure 3.9: The Ramachandran map ([φ − ψ] plot) of protein 1K8H generated by

Ramachandran server (Kleywegt & Jones, 1996). Plus and asterisk signs denoted for

residues in core regions and outliers respectively.
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In a peptide chain, the carboxyl oxygen of a residue forms a hydrogen bond with

the amino hydrogen of another residue which can be at a close or far distance from

each other along the chain. A helix is one type of protein secondary structure which

is formed by a repetitive elementary structure and called turn. There are three types

of helices as follows (Burkowski, 2008):

• α-helix is the most common helical structure in which each Cα atom has approx-

imately 1.5Å distance from the helix axis. Each residue rotates 100◦ compared

to the previous adjacent residue. Thus, a single turn in a α-helix contains 3.6

residues. More precisely a residue at position i participates in a hydrogen bond

with a residue at position i+4.

• 310-helix is a rare helix found in short segments or at the end of an α-helices.

It has 3 residue per turn which means ith residue forms a hydrogen bond with

i+3th residue.

• π-helix is observed very rarely and it has 4.4 residues per turn. In a π-helix,

ith residue forms a hydrogen bond with i+ 5th residue along a protein chain.

The second type of protein secondary structures are β-strands which are the

stretched segments of a protein chain formed by consecutive bridges. A bridge is

a hydrogen bond between two residues that can be distant from each other along a

protein chain. Two β-strands formed by repeating parallel or anti-parallel bridges

form a ladder, and connected ladders form a β-sheet.

In parallel bridges, the indexes of residues on both sides of each hydrogen bond

increase in the same direction wheras in anti-parallel bridges the indexes increase in

opposite directions. A β-strand is a fully extended (stretched) fragment of a protein

chain which usually consists of 3 to 10 residues (Kabsch & Sander, 1983).
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The third type of protein secondary structures are coils which are irregular struc-

tural patterns. In other words, there are no regular and periodic relations between

the dihedral angles of neighbouring residues in a fragment of a protein’s backbone. A

coil structure is more exposed to the surface of a protein and connects the other two

types of regular secondary structures.

There are a number of methods to assign secondary structures to a protein’s

structure when all atomic coordinates are known, such as STRIDE (Frishman &

Argos, 2004), XTLSSTR (King & Johnson, 1999), P-SEA (Labesse, Colloc’h, Pothier,

& Mornon, 1997), KAKSI (Martin, Letellier, Marin, Taly, De Brevern, & Gibrat,

2005b), SECSTR (Fodje & Al-Karadaghi, 2002) and DSSP (Kabsch & Sander, 1983).

Moreover, a standard technique for secondary structure assignments is the DSSP

method since the assignment technique is used more due to providing annotations for

the Protein Data Bank (PDB) (Berman, Westbrook, Feng, Gilliland, Bhat, Weissig,

Shindyalov, & Bourne, 2000), its applications are in critical assessment of protein

structure prediction(CASP) (Moult, Pedersen, Judson, & Fidelis, 2004) and the eval-

uation of protein structure prediction servers (EVA) (Koh, Eyrich, Marti-Renom,

Przybylski, Madhusudhan, Eswar, Grana, Pazos, Valencia, Sali et al., 2003). The

DSSP method identifies eight secondary structures as follows:

• α-helix (H)

• 310-helix (G)

• π-helix (I)

• β-strand (E)

• Isolated β-bridge (B)

• Turn (T)
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• Bend (S)

• Coil or all other irregular patterns (−).

However, in order to reduce the complexity of protein secondary structure predic-

tion methods, in practice, the the eight secondary structures are regrouped to three

structural classes, helices (H), strands (E) and coils (C). A secondary structure re-

duction is performed based on their structural similarities. The three commonly used

method to reduce the eight states of DSSP to the three states are as follows:

1. PHD (Rost et al., 1993): {H,G, I} → H {E} → E {B,T, S, -} → C

2. JNET (Cuff et al., 2000): {H } → H {E,B} → E {G,I,T,S,-} → C

3. GORV (Kloczkowski et al., 2002) : {H } → H {E} → E {G,I,BT,S,-} →
C

The use of different eight- to three-state reduction methods causes approximately 3%

changes in protein secondary structure prediction accuracy for the same predictions.

In addition, after using a reduction scheme in a prediction method, some further

changes are applied on secondary structure segments as follows (Rost et al., 1993):

1. {B -} → {EE}

2. {B -B} → {CCC}

3.7 Amino acid encoding schemes

Amino acid (AA) encoding is a an important step in Machine Learning methods. A

protein sequence is represented by an alphabet of twenty letters. Therefore, protein
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sequences are converted from nominal symbols to numeric values by an encoding

scheme in order to be processed by ML methods. An AA encoding scheme has a

great impact on the performance of any method. The quality of an AA encoding

scheme depends on the amount of preserved information from a protein sequences

and the dimenstionality of the encoding scheme’s space. AA encoding schemes are

grouped in two types as follows:

• Direct encoding

• Indirect encoding

In a direct AA encoding scheme, each AA in a sequence is assigned to a multi-

dimensional vector. For instance, in an orthogonal encoding which is one type of

direct encoding schemes, an AA is represented by a 20-dimensional vector whose one

element that corresponds to the AA is set to 1 and the rest are 0’s (Swanson, 1984).

The orthogonal encoding alternatively is represented additionally by more dimen-

sions which correspond to spacers (C- or N-terminus), unknown AAs, etc (Qian &

Sejnowski, 1988). The Codon encoding scheme (Zamani & Kremer, 2011) is also a di-

rect AA encoding which is based on genetic codon mappings and uses less dimensions

compared to the orthogonal encoding.

The real values of physical and structural features of amino acids can be also

used for AA encoding such as volume, mass, hydrophobicity (K&D), surface area,

secondary structure propensity. Alternatively, the vectors of encoded AAs can be

represented with fewer dimensions by grouping AAs based on physicochemical and

structural features such as hydrophilicity, hydrophobic, charge, polarity, secondary

structure propensity and exchange (substitution) groups (Taylor, 1986; Wu, Whitson,

McLarty, Ermongkonchai, Chang et al., 1992).

AA direct encoding schemes are suitable for preserving the arrangement of amino
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acids in a sequence and consequently the sequence local information. On the other

hand, AA indirect encoding schemes preserve the global features of AA sequences, and

are suitable for methods using sequences with different lengths. A common indirect

encoding is the n-gram hashing method by which the frequencies of all n-letter AAs

are computed and assigned to the elements of a 20n-dimensional vector (Wu et al.,

1992).

For instance with 2-gram encoding, an AA sequence with any length is converted

to a 400-dimensional vector. Each AA frequency is computed by counting all possible

adjacent AA pairs in a sequence. In order to reduce the dimensions of vectors, AAs

are initially grouped based on their physicochemical properties as explained earlier.

Then, the n-gram encoding is applied for sequences represented by an alphabetic set

which contains less number of letters (Wu & McLarty, 2000).

3.8 Evaluation of secondary structure prediction

An important part in protein secondary structure (PSS) methods is the evaluation of

predicted secondary structures. A common performance measure is the Q3 score, a

three-state score, by which predicted and observed secondary structures are compared

for each residue. The Q3 score measures a prediction accuracy based on a single

residue and regardless of the prediction results of other local residues.

A secondary structure match receives a 1 otherwise 0, and the total Q3 score of a

sequence with n residues is calculated as follows:

Q3 =
qα + qβ + qc

n
× 100 (3.39)

where qα, qβ and qc are the total number of residues correctly assigned to a given

secondary structure for helices, strands and coils respectively. The quality of pre-
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dicted labels (classes) in a binary classification are evaluated with sensitivity, speci-

ficity, positive or negative predictive values, and Mathew’s correlation coefficient mea-

sures (Matthews, 1975).

Similarly, in protein secondary structure prediction, which is based on a three-state

prediction, the prediction measures are computed for predicted secondary structures

using a 3 × 3 confusion matrix (Rost et al., 1993). By the method, two types of Q3

measure are used for each secondary structure as follows:

Qobs.
i =

Aii

bi
× 100 , Qpre.

i =
Aii

ai
× 100 , i = C,E,H (3.40)

where Aii is the total number of all residues observed in class i and predicted in class

i, bi is the total number of residues observed in class i, and ai is the total number of

residue predicted correctly or incorrectly in class i.

An entropy-based information measure is also used to combine all elements of a

3 × 3 accuracy table to a normalized value. The normalized value is equal to 1 if a

prediction is completely correct (Rost et al., 1993). By Q3 scores, the average quality

of predicted secondary structures are measured, and the prediction results may not

indicate the quality of predicted segments of secondary structures in some cases.

Also, Mathew’s correlation coefficient values which are calculated for the three

secondary structures are an accurate way of examining the quality of predicted sec-

ondary structures for each class, whereas qα, qβ and qc counts do not reflect the

prediction quality of helices, strands and coils separately.

Moreover, a segment overlap (SOV ) score is another method to measure secondary

structure prediction. The SOV score measures the segments of predicted secondary

structures (Rost, Sander, & Schneider, 1994). The SOV score captures the correla-

tion of the secondary and 3D structures which is a better similarity evaluation of 3D

structure at the secondary structure level. For a sequence with n residues, the first
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proposed SOV score which is also denoted SOV94 was formulated as follows:

SOV =
1

n

∑
s∈A

[
minov(s1, s2) + δ(s1, s2)

maxov(s1, s2)
× |s1|

]
(3.41)

All secondary structure segments in observed and predicted sequences which have an

overlap, at least one residue position in the same secondary structure, are represented

by set A as follows:

A = {∀s1, s2 : s1 ∩ s2 �= ∅} (3.42)

where s1 and s2 are two segments in observed and predicted sequences respectively.

The weight |s1| is the length of segment s1. minov is the length of an overlap between

the segments s1, s2 in a common secondary structure whereasmaxov is the total extent

of the segments s1 and s2 which is equal to |s1 ∪ s2| − |s1 ∩ s2|. The parameter δ

allows minor variations at the edges (ends) of two segments by adjusting the ratio

to 1. The parameter δ is set to a number smaller than min{minov(s1, s2), |s1|2 }. The

ratio in Equation (3.41) determines the quality of the match between s1 and s2.

An improved segment overlap measure is denoted SOV99 and the score is based

on SOV94 (Zemla et al., 1999). The SOV99 score corrects the normalization of n

and the definition of δ. The SOV99 values can be compared with other prediction

evaluation measures due to the fact that the new normalization procedure bounds

the values within [0,1] which are easily computed in a percentage scale. In SOV99,

the parameter δ is computed as follows:

min {maxov(s1, s2) −minov(s1, s2),minov(s1, s2),
|s1|
2
,
|s2|
2

} (3.43)

In Equation (3.43), the new definition of the parameter δ is considered as an equal

share between predicted and observed segments. The segment overlap score indicates

the correctly predicted segments with regards to observed segments. The accuracy of

correctly predicted segments with regards to all predicted segments denoted SOVpred.
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is computed by assigning s1, s2 to predicted and observed segments as described in

Equations (3.41) and (3.42).

In this chapter, we explained a number of ML techniques and complementary

materials which are either used independently for protein secondary structure pre-

diction and performance comparisons in the experiments conducted in Chapter 5,

or employed in the proposed secondary structure prediction model. The concepts,

structures and learning algorithms of ML techniques such as ANNs, SVMs, Cluster-

ing and GP were explained in detail in order to illustrate the learning procedures of

the ML techniques, and describe the evaluation of the prediction methods’ perfor-

mances. In addition, protein structures were discussed in different structural levels,

including secondary structures. Also, we discussed about a number of amino acid

encoding schemes which are important to transform protein sequences to processable

information in computational biology.
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Chapter 4

Methodology

4.1 Introduction

In this chapter, we illustrate the proposed two-stage secondary structure prediction

model. The structure, components, data representations and prediction phases of

the proposed model are explained in detail. Initially, the first stage of the proposed

model which is related to secondary structure transition site prediction is explained.

Then, the second stage in which protein secondary structure prediction is performed

is described. The proposed protein secondary structure model is also depicted with

example data in order to describe the flow of information and the prediction phases.

4.2 The proposed PSS prediction model

In this study, we develop an ab initio protein secondary structure (PSS) prediction

method based on a hybrid machine learning (ML) technique. In an ab initio PSS

prediction method, the structural information of homologous sequences with known

81



conformations are not directly incorporated by the method. An ab initio PSS predic-

tion method is complementary to other approaches based on two important criteria

as follows:

1. A limited number of proteins with known structures are available compared

to the vast number of amino acid (AA) sequences with conserved sequence

information.

2. A high degree of sequence similarity is required between target and template

sequences in order to incorporate the information of structural templates with

a level of certainty. However, the similarity of many protein sequences that are

compared to template sequences is less than 25% or below the twilight zone

in which the structural similarity of protein pairs is reduced significantly. The

relation between the sequence similarity and structural identity of protein pairs

is explained in detail in Chapter 1.

The proposed PSS prediction method consists of two prediction models which

collaboratively perform a three-state secondary structure prediction for α-helix (H),

β-strand (E) and coil (C) as shown in Figure 4.1. The prediction is performed for a

target protein sequence in two stages:

1. The prediction of secondary structure transition sites.

2. The prediction of secondary structures.

Secondary structure transition sites are locations on a target sequence where sec-

ondary structure changes occur such as a transition from an α-helix to a coil or vice

versa as shown in Figure 4.2. The second prediction model incorporates score vec-

tors for a secondary structure prediction as shown in Figure 4.1. The score vectors
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Figure 4.1: An overall view of the proposed prediction model. The secondary struc-

ture information which is used for computing the statistical information of clusters

is derived from the 3D structures of the sequences in the training set. The detailed

schemes of the two stages are provided in Figures 4.3 and 4.8.

Figure 4.2: Protein secondary structure transition sites where secondary structure

changes occur on a protein structure.
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are generated by clustering, statistical information and PSS transition sites based on

Ramachandran map and Information theory which are explained in details later on.

The secondary structure transition sites of a protein imply important information

about the topology and long-range residue interactions of the protein. The prediction

of secondary structure transition sites can be utilized for the homology modeling of

protein structures when a segment of an amino acid (AA) sequence is defined by

a homology tool to a secondary structure. However, the extent of the secondary

structure on the either ends of the segment cannot be determined.

As explained in Section 3.6, the φ, ψ angles of residues in a protein’s structure

can be depicted by the Ramachandran map. The relation between residues and φ, ψ

angles based on the properties of the Ramachandran map was examined by a number

of protein structure determination methods to estimate dihedral angles.

However, in this study, the Ramachandran map is partitioned empirically to a

predefined number of regions, and the statistical information of the regions and cor-

responding secondary structures are derived and incorporated in the proposed model

for the prediction of transition sites and secondary structures. The relations between

the regions of Ramachandran map and corresponding secondary structures are formu-

lated by using statistical information extracted from protein sequences with known

structures.

The transition site (TS) prediction model is a binary classifier. For the central

residue of an AA segment, the TS model determines whether a secondary structure

transition occurs at the position where the residue is located. As PSS prediction

methods were reviewed in Chapter 2, the experimental results of the state-of-the-art

PSS prediction methods indicate cascaded ML models perform better than one-tier

ML models.

In this study, we employed a two-tier ML architecture in each stage of the proposed
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PSS prediction model. The overall scheme of the TS prediction model in the first

stage is shown in Figure 4.3. AA sequences are initially segmented by scanning a

sliding window of length L along the sequences. For each AA segment, the profile

information of L residues is mapped to a region on the 2D plot by using a feed-

forward artificial neural network (ANN) in a profile-region tier. The number of input

and output units and the information that the neural network in the profile-region tier

incorporates are shown in Figure 4.4. A detailed view of the neural network learning

in a profile-region tier is illustrated in Figure 4.5. In the next step, AA segments are

encoded and clustered by using the Codon AA encoding scheme (Zamani & Kremer,

2012) and the k-means clustering technique (Hartigan & Wong, 1979).

Next, the statistical information extracted from clusters and identified regions

are formulated to triplet weight scores. A triplet weight score is a three-dimensional

vector, denoted by (w1, w2, w3). The ith element of a triplet weight score, wi(s; g), is

the information of pairing the secondary structure s of a residue in region g on the

2D plot. If central residue r in an AA segment is assigned to region gk on 2D plot G

and secondary structure si, weight score wi(si, gk) is computed by Information theory

as follows:

wi(si; gk) = log10

(
p(si|gk)

p(si)

)
, si ∈ {H,E,C} , i = 1, · · · , 3 , k = 1, · · · , n (4.1)

where gk ∈ G is defined by a feed-forward ANN in a profile-region tier, and n is the

number of regions in G. p(si|gk) is the probability of secondary structure si given

region gk. In each cluster, the probabilities p(si|gk), p(si) are computed from protein

sequences with known structures.

Next, L triplet weight scores corresponding to an AA segment are presented to

a feed-forward ANN in a region-transition tier. The outputs of the neural network

determine whether the position of a central residue in the segment is assigned to

a transition site. The type of information that the neural network in the region-
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Figure 4.3: A detailed scheme of PSS transition site model in stage one. The “weight

scores” are computed by using Equation (4.1).

Figure 4.4: A detailed scheme of ANN1 in the profile-region tier. The number 20

represents the frequency values of the twenty types of amino acids that are occurred

for each residue within a sequence segment that is defined by a sliding window of

length L. Each output is a continuous value representing one of the equally divided

regions based on dihedral angles (φ,ψ) on the Ramachandran map.
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Figure 4.5: A detailed learning scheme of ANN1 in the profile-region tier by using a

batch learning technique for all sequences of the training set in one iteration. The

number 20 represents the frequency values of the twenty types of amino acids that

are occurred for each residue within a sequence segment that is defined by a sliding

window of length L. Each output is a continuous value representing one of the equally

divided regions based on dihedral angles (φ,ψ) on the Ramachandran map.

87



transition tier incorporates, and the network’s inputs and outputs units are shown in

Figure 4.6. An overview of the neural network’s learning detail in the region-transition

tier is shown in Figure 4.7.

The inputs and outputs of the neural network in the profile-region tier are pre-

pared as follows. For training sequences, the dihedral angles of the protein struc-

tures are calculated by using the atomic coordinates specified in the PDB (Sussman

et al., 1998). The protein profiles are extracted from the HSSP dataset (Sander &

Schneider, 1991). The secondary structure classes are defined by using the DSSP pro-

gram (Kabsch & Sander, 1983) and assigned to the training sequences based on PHD

scheme (Rost, 1996) as explained in Section 3.6. The Ramachandran map is divided

into equal regions based on dihedral angles (φ,ψ), ranging from −180◦ to +180◦.

In the clustering component, all protein sequences are segmented by a sliding

window of length L, and encoded by the Codon encoding scheme (Zamani & Kremer,

2012), and a k -means clustering is performed on the AA segments that are in a

training set. For a target AA segment, the cluster to which the segment is mapped

is initially identified. Then, the secondary structure information of all AA segments

which are belonged to the identified cluster are passed to the Information theory

component to compute the weight scores of the central residue of the target AA

segment according to Equation (4.1).

The probability terms of Equation (4.1) related to the target AA segment are com-

puted based on the statistical information that are extracted from the AA segments

within the identified cluster. In stage two, a two-tier hybrid ML model is employed

for secondary structure prediction as shown in Figure 4.8. For each residue, three

types of inputs are incorporated in the second stage as follows:

1. Secondary structure probability.

2. Weight scores.
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3. Transition sites.

Figure 4.6: A detailed scheme of ANN2 in region-transition tier. The number 3

represents the three weight scores that are computed by using Equation (4.1) for each

residue within a sequence segment that is defined by a sliding window of length L.

The outputs are two continuous values which represent transition and non-transition

sites.

We use the k -nearest-neighbor method to compute the probability of secondary

structures. By the k -nearest-neighbor method, the AA segments of a cluster (tem-

plates) are compared with the segment of a target segment and scores are assigned

to the template segments based on protein substitution matrices such as point ac-

cepted mutation (PAM) (Dayhoff, Schwartz, & Orcutt, 1978) and blocks substitution

matrix (BLOSUM) (Henikoff & Henikoff, 1992) which are the standard benchmark

tools to measure the protein sequence similarities. Next, the k segments with high-

est similarity scores are selected to compute the probabilities of the three secondary

structures. The probabilities indicate the preference of secondary structures for the

central residue of the target segment.

Theoretically, the three secondary structures are paired in nine ways such as EH,

EC. Therefore, for two adjacent residues r1, r2 positioned in the middle of an AA

segment which is mapped in region g, score vector A is constructed such that each
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Figure 4.7: A detailed learning scheme of ANN2 in the region-transition tier by using

a batch learning approach for all sequences of the training set in one iteration. The

number 3 represents the three weight scores which are computed for the residues

of all sequences in the training set by the “Clustering” and “Information Theory”

components of the transition site (TS) model shown in Figure 4.2.
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element of the vector ai is computed as follows:

ai = (w(s1; g) + w(s2; g)) · p(s1) · p(s2) , i = 1, . . . , 9 (4.2)

where s1, s2 are the secondary structures of residues r1, r2, and probabilities p(s1),

p(s2) are calculated by the k-nearest-neighbor method. In addition, for each residue,

we add the two outputs of the TS model to score vector A. It means a complete score

vector consists of eleven elements. The outputs of the TS model are continuous values

that indicate the likelihood of whether the central residue’s location on a target AA

segment is a transition or non-transition site.

In the second stage, L score vectors are presented to the input of ANN in the

transition-structure tier where L is the length of a sliding window. The type of infor-

mation that is incorporated to the neural network in the transition-structure tier, and

the number of the neural network’s input and output units are shown in Figure 4.9.

The outputs of the feed-forward ANN in the transition-structure tier indicate the pos-

sible presences of secondary structures H, E and C at this intermediate step. Next,

3×L adjacent intermediate secondary structures are the inputs of the GP model in

the structure-structure tier. The neural network’s learning scheme in the transition-

structure tier is illustrated in Figure 4.10.

A number of GP techniques have been developed for classification problems (Eg-

germont, Eiben, & van Hemert, 1999; Gathercole & Ross, 1994; Brameier & Banzhaf,

2001; Loveard & Ciesielski, 2001). The proposed GP method is a combination

of two GP representation based on class enumeration and evidence accumulation

schemes (Loveard & Ciesielski, 2001). A genotype is constructed in the form of

nested “IF” rules as shown in Figure 4.11. In the GP method, the initial genera-

tion is populated with small individuals (simple solutions) which contain one or two

nested “IF” rules that are initialized with random values. The tree representation

of genotypes in GP resembles the structure of a decision tree such as C4.5 (Quinlan,
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Figure 4.8: An schematic ML model for prediction of secondary structures in stage

two.

Figure 4.9: A detailed scheme of ANN3 in transition-structure tier. The numbers

2 and 9 represent the two predicted transition site values and the dimension of the

“score vectors” whose elements are computed by using Equations (4.1) and (4.2)

for each residue within an amino acid sequence segment that is defined by a sliding

window of length L.
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Figure 4.10: The ANN3’s learning scheme in the region-transition tier by using a

batch learning technique for all sequences of the training set in one iteration. The

number 2 indicates the two predicted transition sites from the output of transition

(TS) model as shown in Figure 4.2. The number 9 stands for the dimension of “score

vectors” which are computed by using Equations (4.1) and (4.2) for the all residues

of protein sequences in the training set.
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Figure 4.11: An example of a genotype representation in the proposed GP classifier.

2014). In GP, parent and leaf nodes are conventionally named functions and termi-

nals respectively. The sets of functions and terminals applied in the proposed GP

are shown in Table 4.1. A logical function returns True or False, and an arithmetic

function returns a numeric value. The “B” function accepts three numeric values

a, b, r and if a ≤ r ≤ b, it returns True, otherwise False.

The “C” terminal has a class label c and a weight w. The “S” terminal has two

values l1, l2 which are the indices of locations on an AA segment with length L. For an

AA segment (template), a tree evaluation starts from terminal nodes which are “S”

and “C”. A tree is traversed and evaluated based on a bottom-up approach which is

explained in detail in Chapter 5. An “IF” function updates a certainty vector denoted

Table 4.1: Functions and Terminals

Node Type Symbol

Arithmetic Function ∗, /,−,+
Logical Function IF,B,>,<,>=, <=,=

Terminal C, S

cv, and the function has three arguments which are a logical function and two class

terminals. The vector cv has three elements whose values are determined after a tree
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evaluation is completed.

In an “IF” function, if the conditional argument is True, the ith element of the

vector cv is updated, otherwise the j th element. The i, j values (i, j = 1 . . . 3) are

the class labels of the “C” terminals whose weight values are regarded to update the

element of the vector cv. The conditional branch of an “IF” function is evaluated

prior to the “C” terminals. If an “IF” function is a child node, the winning class’s

label is passed to the parent.

The overall evaluation of the genotype shown in Figure 4.11 is summarized for

amino acid segment s in the following pseudocode section:

GenotypeEvaluation(node, s):

if node is an amino acid segment terminal:

- Calculate distance for s[i,j] and return the distance value.

else if node is a class terminal:

- Return class label and weight values of node[n,m].

else if node is an arithmetic function:

- Call GenotypeEvaluation with the node’s left and right children.

- Apply the node’s arithmetic operation on the returned values of

the node’s children, and return the result.

else if node is a logical function:

- Call GenotypeEvaluation with the node’s children.

- Apply the node’s logical operation on the returned values of

the node’s children, and return a True or False value.

else if node is an IF function:

- Call GenotypeEvaluation with the node’s children.

- Update the certainty vector based on the return values of

the node’s children by using the class label and weight values.
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The genotype (individual) evaluation is performed by using the postfix traversal of

the tree shown with example data in Figure 4.12. S[i,j] represents two locations i, j

in an AA segment S defined by a sliding window of length L. C[n,m] represents class

label n with a weight m. The three elements of vector cv which represent the three

secondary structures are set to 0. For each S[i,j], the intermediate secondary structure

values of AAs that are in location i, j are derived from the output of the first tier in

secondary structure prediction model as shown in Figure 4.8. The output values for

a specified location are real values from 0 to 1, indicating the likelihood of secondary

structures H, E and C. For example, if A(0.2,0.45,0.6) and B(0.7,0.15,0.5) correspond

to locations 1 and 9 respectively for an AA segment S, the euclidean distance of the

two vectors A, B is equal to 0.59 which is the output of node S[1,9]. AA segments are

defined by moving a sliding window which contains a predefined number of residues

along protein sequences. Similarly, the rest of S[i,j] nodes’ outputs are computed. A

typical evaluation of the genotype shown in Figure 4.11 is illustrated with numeric

values that are randomly assigned to the genotype and shown in Figure 4.12. The

entire evaluation of the genotype is organized as the following steps:

1. s[1,9]= 0.59

2. s[3,5]= 0.3

3. 0.59*0.3= 0.177 ← Steps 1, 2

4. s[5,8]= 0.65

5. 0.177 + 0.65 = 0.827 ← Steps 3, 4

6. s[2,11]= 0.1

7. s[6,10] =0.4
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8. 0.1/0.4 = 0.25 ← Steps 6, 7

9. s[4,8] = 0.6

10. 0.827 �∈ [0.25, 0.6] =⇒ B[0.827, 0.25, 0.6] = FALSE ← Steps 5, 8, 9

11. s[9,7]= 0.45

12. s[6,11]= 0.4

13. s[1,3]= 0.2

14. 0.4-0.2 = 0.2 ← Steps 12, 13

15. 0.45 ≥ 0.2 = TRUE ← Steps 11, 14

16. n=2 (class label), m=0.2 (weight)

17. n=3 (class label), m=0.4 (weight)

18. cv(0, 0.2, 0) ← Steps 15, 16, 17

19. n=1 (class label), m=0.1 (weight)

20. cv(0, 0.2, 0.1) ← Steps 10, 18, 19

21. max(0.1, 0.2, 0) = 0.2

In the example, if the order of secondary structure labels for certainty vector cv is

helix (H), strand (E) and coil (C) respectively, the central residue of AA segment S

is classified to secondary structure E after the genotype evaluation.
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Figure 4.12: An example of a genotype representation with sample data in the pro-

posed GP classifier. S[i,j] represents two locations i, j in an AA segment. C[n,m]

represents class label n with weight m. The numeric labels of the nodes indicate the

order of the tree evaluation.

4.3 Summary

In this chapter, we illustrated our proposed two-stage protein secondary structure

prediction model. The two stages of the prediction model were described in detail

which was complemented with schematic views of the model, equations, sample data

representation and the evaluation of the genotypes in the proposed GP model. In

this chapter, we provided the description of the proposed model and its components

which are required for a series of experiments that are performed in Chapter 5.
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Chapter 5

Experiments

5.1 Introduction

In this chapter, we illustrate the various experiments that were performed in this

research. A number of amino acid (AA) encoding schemes are explained including the

proposed AA encoding scheme denoted Codon. We discuss our new technique based

on substitution matrices for the evaluation of AA encodings as a general approach in

machine learning (ML). The codon AA encoding scheme is investigated further for

PSS prediction by using various support vector machine (SVM) architectures, and the

effectiveness of the proposed encoding scheme is compared to that of the commonly

used orthogonal encoding scheme.

The next group of experiments that were conducted in this study are related

to the proposed GP model and a new technique to encode protein sequences by

using clustering and nearest-neighbor techniques. The efficiency of clustering and

performance of the GP prediction model in PSS prediction are compared to those of

two commonly used ML methods which are artificial neural networks (ANNs) and

SVMs.
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The third group of experiments are related to the proposed two-stage PSS predic-

tion model. The last set of the experiments were conducted based on four criteria:

(1) incorporating the information of PSS transition sites, (2) the sizes of protein

datasets, (3) the performance of the PSS transit site (TS) model, (4) evaluation tech-

niques and statistical analyses. The proposed two-stage model is initially evaluated

without incorporating PSS transition sites with two common datasets that have small

and medium sizes, approximately twenty four thousand residues and one hundred and

twenty five thousand residues respectively, and we used the conventional approach to

generalize the results.

Lastly, we used the latest dataset with a very large size, over two million residues,

and recommended an evaluation approach based on a statistical analysis and sequence

similarity for a comprehensive performance evaluation of PSS prediction methods.

5.2 Amino Acid Encoding

Recent technological advancements in high throughput sequencing have provided mil-

lions of DNA and protein sequences. As a result, an imbalance between data acqui-

sition and complementary analytic techniques has been significantly increased. Ma-

chine Learning (ML) is a promising approach for extracting useful rules and patterns

automatically from acquired data and performing more accurately and faster feature

selections, classifications and predictions.

In ML techniques, an important issue is how to encode data in a format suitable

for a computational tool. An encoding method has a profound effect on the applica-

bility and resulting quality of a ML technique. An encoding scheme must preserve the

information which is necessary to solve a problem such that inputs that should gen-

erate different outputs in the problem space must be distinguishable. Moreover, an
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encoding scheme should attenuate noise in the input data and shield the subsequent

processing from extraneous data. In an efficient encoding scheme, groups of input

patterns which are supposed to generate similar output patterns are represented in a

similar, or consolidated way.

By an encoding method, distinguishability and consolidation are problem specific

concepts, which means an important piece of data required to solve one problem can

be noise in another problem (Swanson, 1984; Maetschke, Towsey, & Bodén, 2005;

Zimmermann & Gibrat, 2010). In bioinformatic problems, encoding input patterns

is challenging where data instances vary in sizes from one sample to another and

embody a structural or sequential component.

In this section, we focus on the encoding of protein sequences which are com-

posed of chains of amino acids (AAs) of different lengths. The varying length nature

of protein chains was addressed by using a sliding-window technique or a recursive

network (Pollastri et al., 2002; Qian & Sejnowski, 1988; Rost et al., 1993). However,

every AA within the sliding window or recursive network needed to be eventually

encoded.

We evaluate various amino acid encodings based on their capability to approxi-

mate commonly used substitution matrices via best-trained ANNs. The substitution

matrices such as point accepted mutation (PAM) (Dayhoff et al., 1978) and blocks

substitution matrix (BLOSUM) (Henikoff & Henikoff, 1992) are the standard bench-

mark tools to measure the sequence similarities of protein sequences.

In this thesis, we propose a new AA encoding scheme, codon encoding (Zamani &

Kremer, 2011), and the performance of the proposed encoding scheme was compared

to a number of commonly used AA encoding schemes. The aim was to provide evi-

dences to select confidently the best encoding method. In order to evaluate different

AA encoding methods, we need to develop a benchmark test set. The primary sources
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of protein information are AA sequences which can be used to predict a number of

protein properties such as interactions, disulphide bonds, shape, secondary structure,

etc.

There are many different possible test sets to choose from, but the aim is to select

the most generic test set whose results would be applicable to the largest variety of

ML problems. We selected a test set according to two assumptions: (1) the goal of

any ML approach is ultimately to predict the function of a protein. Most ML methods

that incorporate protein sequences achieve this goal by exploring some aspect of the

problem such the shapes of proteins or their chemical properties, and (2) in related

organisms, biological function tends to be preserved across related proteins, and the

conservation of specific amino acids in the specific locales of a protein is a valid

objective to predict in a comparison of encoding schemes.

Therefore, we decided to base the test set on the substitutability of specific amino

acids in biological organisms and predict specifically similarity matrices which mea-

sure such substitutability.

5.2.1 Substitution Matrices as a Benchmark

Sequence alignments can reveal the underlying relations existing among protein se-

quences such as evolutionary distances, functions and structures. In general, sequence

alignments are performed in two ways: (1) global alignment in which AA sequences

are aligned with regards to the entire length of the sequences. The aligned sequences

could be either originated from the same ancestor or different evolutionary paths and

families, and (2) local alignment in which segments of protein sequences are searched

for similarity and evolutionary information.

In sequence alignments, exploring the evaluation of sequence similarities is accom-

plished by a dynamic programming algorithm which attempts to find the most likely
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alignment between the amino acids of two or multiple sequences (Needleman & Wun-

sch, 1970). The algorithm uses a probability measure based on similarity matrices

and determines the likelihoods of substituting, deleting and inserting symbols in one

sequence until it matches the other.

The mutation data matrices or point accepted mutation (PAM) matrices (Day-

hoff et al., 1978) are one of the standard models of measuring sequence similarities

based on likelihoods in sequence alignment methods. PAM matrices were extracted

from an empirical dataset of 1572 mutations in 71 groups of closely related proteins

and generated by measuring substitution frequencies in sequences aligned by human

experts with 85% similarities or higher. PAM matrices were indexed with a numeric

value such as PAM10 which means the substitution probabilities were derived from

the sequences that have ten mutations in one hundred amino acids. Therefore, large

indices imply more divergence among reference sequences.

An alternative to PAM is blocks substitution matrix (BLOSUM) (Henikoff &

Henikoff, 1992) which can detect protein sequences with higher evolutionary distances.

The BLOSUM matrix was generated as follows: (1) a frequency table was derived from

a database of ungapped blocks by counting the relative frequencies of amino acids and

corresponding substitution probabilities. Each block represents the conserved region

of a protein family, (2) a logarithm of odds matrix for 210 possible substitutions based

on the twenty amino acids is calculated. A log-odds score in BLOSUM represents the

ratio of two amino acids’ frequency of appearance in natural sequences to the two

amino acids if appeared randomly based on their independent frequencies.

The numeric index of a BLOSUM matrix determines the level of similarity among

reference sequences, and higher numbers indicate higher sequence similarity. In BLO-

SUM, the frequencies are calculated from amino acid blocks that are highly conserved

regions, regardless of the evolutionary distances of referenced sequences, whereas mu-

103



tation frequencies in PAM are estimated from the sequences of closely related proteins.

5.2.2 Learning Substitution Probabilities

As explained earlier, our goal is to predict substitution matrices based on the premise

that if an encoding scheme allows a ML technique to effectively predict the likelihoods

of AA substitutions that occur in nature, then the same encoding scheme is expected

to perform well on a number of different ML tasks involving the prediction of pro-

tein structure, composition, function, etc. The likelihoods in substitution matrices

are numerical values as opposed to categorical. Thus, we required a ML regression

method.

In order to keep things simple, we used a multilayer feed-forward ANNs that mea-

sured the effectiveness of each encoding scheme based on the speed of learning and

the generalization error. The neural network consists of one hidden layer, and the

output layer has one output neuron and the number of input layer’s neurons is varied

and depends on the selected encoding scheme. For each encoding scheme, the super-

vised training of the neural network is performed by gradient descent backpropagation

learning algorithm (Rumelhart et al., 1986; Werbos, 1990).

In a training epoch, 210 pairs of encoded AAs are fed to the neural network after

normalizing an input vector to {−1,+1} The output errors are computed according

to the corresponding substitution values of each amino acid pairs from substitution

matrices. A training set is generated by applying each AA encoding on all 210 pairs

of AAs. Next, a feed-forward ANN maps each sample of the training set to the

corresponding entry of a chosen substitution matrix. The substitution matrices used

in this study are BLOSUM50, BLOSUM62, BLOSUM80, PAM120 and PAM250.

Therefore, five neural networks are trained for each AA encoding scheme.

The performance of each neural network is evaluated based on the average root
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mean square error (rmse) in 10 runs since the training of a neural network results a

different final rmse that is achieved by a different number of training epochs in each

run. For each encoding scheme, the training is performed until a stop criterion is

reached. In this experiment, a simple threshold error, as is convention in many ANN

applications, is counter productive to define as a stop criterion since our goal is to

evaluate the effectiveness of a variety of encoding schemes with different expected

performances. Instead, we attempt to identify the convergence of the network which

is defined as a very small reduction in error (or an increase in error) over 5 training

epochs. The stopping criterion is defined specifically as follows:

E(t− 5) − E(t) ≤ ΔE. (5.1)

where E, t are the average rmse and epoch number respectively, and ΔE is set

empirically to 10e− 7.

5.2.3 Evaluation of Encoding Schemes

Amino acid encoding is an important step to apply ML techniques in computational

biology and aims to capture the underlying similarity and differences of amino acid

pairs from symbolic data in a naturally meaningful way like that provided by sub-

stitution matrices. We evaluated fifteen amino acid encoding schemes as described

in Table 5.1. Each amino acid encoding scheme generates n-dimensional vectors in

Euclidean space that correspond to the twenty amino acids (AAs) (Swanson, 1984).

A number of the encoding schemes are applied commonly in the literature such

as orthogonal (Baldi & Brunak, 2001), BLOMAP (Maetschke et al., 2005), polar

distribution (Hu, Pan, Harrison, & Tai, 2004) and physicochemical properties (Lac &

Kremer, 2009), based on the classification of AA conservation (Taylor, 1986). Except

our new proposed encoding scheme #12, the other encoding schemes are based on
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the grouping of various properties of AAs similar to the encoding schemes introduced

in (Wu & McLarty, 2000), (Zvelebil, Barton, Taylor, & Sternberg, 1987).

In the AA encoding schemes, using a few combinations of AA features is worth-

while to examine the efficiency of them in ML applications. The properties range from

AA preferences to form different types of secondary structures, molecular properties

such as formula and molecular weight. A comprehensive list of amino acid features

can be found in the AAindex database(Kawashima & Kanehisa, 2000) which contains

around five hundred features.

In this study, we identified effective encoding schemes by using substitution matri-

ces, as opposed to constructing an encoding scheme specifically designed to compute

substitution scoring matrices (Zimmermann & Gibrat, 2010). Therefore, we aimed

to provide a general assessment of the performance of AA encoding schemes across a

broad class of problems, rather than a specific method to perform optimally on the

scoring matrix problem.

In addition, we proposed a new AA encoding scheme called codon encoding (Za-

mani & Kremer, 2011) according to the genetic codon mapping method that is the

building block of AAs. Each codon is the combination of three naturally selected

nucleotides from the set {A,T,G,C} which create one of the twenty AAs. In addition,

each AA can be derived from multiple codons.

For example, Valine is derived by one of the codons from the set {GTT, GTC,

GTA, GTG}. The codons which form Valine can be represented by a directed graph

as shown in Figure 5.1. The graph consists of four nodes which represent the nucleic

acids {A,T,G,C}, and directed vertices for each successive pair of nucleic acids in one

of the four Valine encodings G→ T,T→ T;G→ T,T→ C;G→ T,T→ A;G→ T,T→
G. Next, the graph is represented in a 4×4 connectivity matrix which is converted

to a 16-dimensional vector of 0’s and 1’s. Similarly, we constructed the graphs of the
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other AAs by their corresponding sets of codons.

Figure 5.1: The graph and 4×4 connectivity matrix representations of the codons

forming the amino acid Valine based on the four nucleotides {A,T,G,C}.

The experimental results indicate that the training accuracies of the encoding

schemes #11, #12, #14 and #15 are better than those of the other encoding schemes

as described in Table 5.1. The four best encoding schemes were identified based on

the average rmse when the termination criterion defined in Equation (5.1) is met.

The four best encoding schemes are compared based on the average rmse and the

number of required epochs for training as shown in Figures 5.2 and 5.3 respectively.

The complete training results of all AA encoding schemes with BLOSUM62, BLO-

SUM80 and PAM250 are shown in Tables 5.2, 5.3 and 5.4 respectively. The training

results of encoding scheme #5 (BLOMAP) is omitted from Tables 5.3 and 5.4 since

the encoded AAs in 5-dimensional vectors for BLOSUM80 and PAM250 were not pro-

vided as the encoded AAs were provided in case of BLOSUM62 matrix (Maetschke

et al., 2005).

Increasing the dimensions of encoding schemes would increase possibly the training

accuracies as shown in Tables 5.2, 5.3 and 5.4. However, the overall result indicates

that the combination of the number of dimensions and the type of selected amino

acid properties greatly affect the approximation of the substitution matrices such
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Table 5.1: The specifications of the fifteen amino acid encoding schemes.

Encoding# Encoding Scheme Description

1 The presences of nine physicochemical properties of AAs are mapped in

a string of 0s and 1s, and converted to an integer (Taylor, 1986).

2 The presences of nine physicochemical properties (Taylor, 1986), and six

physical properties called extra tiny, pentagonal, hexagonal, forked and

crossed are mapped in a string of 0’s and 1’s, and converted to an inte-

ger (Lac & Kremer, 2009).

3 Based on AA preferences to form the secondary structures (β-strand,

α-helix).

4 AAs are represented based on the proposed codon encoding, and each of

the four adjacent 0’s and 1’s is converted to an integer.

5 Based on BLOMAP which converts BLOSUM62 to a 20×5 ma-

trix (Maetschke et al., 2005).

6 AAs are indexed from 1 to 20, and the indexes are represented in 5 bits.

7 The molecular properties of AAs including frequencies, volume, partial

specific volume, hydration and R-group.

8 Information related to AAs’ properties such as exposure to solvent, and

the number of C, H, N, O, S atoms.

9 The 7 attributes of Chou-Fasmann’s propensity values (Chou et al., 1978).

10 The presences of nine physicochemical properties of AAs are mapped in

a string of 0’s and 1’s (Taylor, 1986).

11 The presences of nine physicochemical properties (Taylor, 1986), and six

physical properties called extra tiny, pentagonal, hexagonal, forked and

crossed are mapped in a string of 0’s and 1’s (Lac & Kremer, 2009).

12 The proposed codon encoding scheme represented in a string of sixteen

0’s and 1’s (Zamani & Kremer, 2011).

13 The combination of all AAs’ properties from the three encoding schemes

7, 8, 9.

14 Orthogonal or sparse encoding string (Baldi & Brunak, 2001).

15 The combination of orthogonal (Baldi & Brunak, 2001) and AA polar

distribution (Hu et al., 2004).
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Figure 5.2: The comparison of average rmse for encoding schemes #11, #12, #14

and #15 in 10 runs.
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Figure 5.3: The comparison of average training epochs for encoding schemes #11,

#12, #14 and #15 in 10 runs.
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Table 5.2: The training results of all encoding schemes evaluated by BLOSUM62. The

average of root mean square error (rmse) for each encoding scheme was calculated in

10 runs.
Encoding# Dimension Epoch Ave. rmse

1 1 295 2.504639

2 1 415 2.502990

3 2 175 2.408614

4 4 8910 0.644371

5 5 120 2.286987

6 5 2680 0.580234

7 6 468705 0.350314

8 7 217025 0.900421

9 7 329990 0.253628

10 9 7050 0.693111

11 14 34790 0.023730

12 16 32680 0.021617

13 20 208785 0.282972

14 20 33890 0.022051

15 40 33105 0.021930
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Table 5.3: The training results of all encoding schemes evaluated by BLOSUM80. The

average of root mean square error (rmse) for each encoding scheme was calculated in

10 runs.
Encoding# Dimension Epoch Ave. rmse

1 1 265 2.507192

2 1 410 2.503600

3 2 160 2.390761

4 4 7300 0.742286

6 5 1025 0.868625

7 6 492640 0.368557

8 7 341760 0.844570

9 7 371665 0.229421

10 9 5945 0.678370

11 14 26280 0.018665

12 16 21700 0.016077

13 20 349275 0.195062

14 20 21615 0.015932

15 40 21975 0.015886
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Table 5.4: The training results of all encoding schemes evaluated by PAM250. The

average of root mean square error (rmse) for each encoding scheme was calculated in

10 runs.
Encoding# Dimension Epoch Ave. rmse

1 1 520 1.904371

2 1 1275 1.896692

3 2 235 1.826631

4 4 18695 0.500904

6 5 2845 0.517455

7 6 417180 0.320489

8 7 612020 0.540101

9 7 267385 0.278978

10 9 5475 0.717099

11 14 26590 0.017434

12 16 20020 0.014364

13 20 338070 0.146217

14 20 21745 0.015584

15 40 21470 0.015980
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as encoding schemes #7, #8. Encoding schemes #11, #12, #14 and #15 allow a

more precise approximation of the five substitution matrices based on the number of

training epochs and rmse.

A detailed comparison of the four encoding schemes based on the number of epochs

and rmse error is shown in Figures 5.2 and 5.3. The experimental result indicate that

encoding #12 needs fewer training epochs and leads to a more accurate approximation

of the substitution matrices compared to the other three encodings. Also, encoding

schemes #12, #14 and #15 perform closely when the substitution matrix is derived

from sequences with higher homology such as BLOSUM80. Meanwhile, the perfor-

mance of encoding #12, improves with substitution matrices derived from sequences

with more evolutionary distance such as BLOSUM50 compared to the other three

encodings.

The encoding #12 is a better candidate for applications using sequences with low

similarity. An overall comparison of the four best encoding schemes based on the

average epochs and rmse for all five substitution matrices are shown in Figures 5.4

and 5.5. The experimental results also indicate that increasing the dimension of an

encoding scheme does not necessarily improve the approximation of the substitu-

tion matrices, and meanwhile magnifies “the curse of dimensionality” which is not

preferable such as encoding #14 and #15.

The encoding scheme that differentiated better 210 AA pairs and captured the

similarities of AA pairs is encoding #12. The better performance of encoding #12

can be explained by knowing that each AA is formed based on a set of genetic codons.

Therefore, the different orders and arrangements of the four nucleotides are possibly

important to conserve the information related to the underlying similarities and dif-

ferences among AA pairs. Also, we evaluated the efficiency of a number of amino

acid encoding schemes by the training of artificial neural networks to approximate
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Figure 5.4: The overall comparison of average training epochs for encoding schemes

#11, #12, #14 and #15 on all substitution matrices.
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Figure 5.5: The overall comparison of average rmse errors for encoding schemes #11,

#12, #14 and #15 on all five substitution matrices.
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the substitution matrices.

In addition a new amino acid encoding was proposed based on genetic codon map-

ping concept, and it was compared with a number of commonly used AA encoding

schemes. The experimental results indicate the dimension of an encoding scheme and

selected AA features are important to the efficiency of the encoding performance.

Moreover, we demonstrated an evaluation technique to measure the efficiency of AA

encoding schemes which can help us to choose the correct encoding scheme and pos-

sibly improve the performance of ML methods in bioinformatics.

The codon encoding scheme is one of the components of the proposed protein

secondary structure prediction model which is explained later on in this chapter. The

more meticulous evaluation and statistical analyses of the studied encoding schemes,

in addition to the approximation of various substitution matrices which is the impor-

tant step to achieve, are fulfilled by employing the encoding schemes in computational

problems related to protein secondary structure prediction and comparing their per-

formances and effects which is discussed in Sections 5.2.4 and 5.5.

5.2.4 PSS Prediction using Codon Encoding

In this section, support vector machines (SVMs) are employed to construct protein

secondary structure (PSS) prediction models that incorporate the codon encoding

scheme (Zamani & Kremer, 2011) as discussed in Section 5.2.2. The efficiency of codon

encoding is compared to that of the commonly used orthogonal encoding scheme for

PSS prediction (Zamani & Kremer, 2012). By using orthogonal encoding, a 20-

dimensional binary vector is assigned to an amino acid i such that the ith element of

the vector is set to 1 and all other elements are set to 0.

In the experiments, SVM classifiers are only trained with encoded AA sequences,

and protein profiles are not incorporated in a training to avoid a biased evaluation
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of the two encodings. Initially six binary classifiers are constructed based on the two

consensus models: (1) one-against-all (OAA) which consists of three binary classifiers

as (H/∼H), (E/∼E), (C/∼C), and (2) one-against-one (OAO) which consists of three

binary classifiers as (H/E), (E/C), (H/C). For example, classifier (H/∼H) assigns

positive class labels to the residues in helices and negative class labels to the residues

in strands and coils, and classifier (H/E) assigns positive class labels to residues in

helices and negative class labels to the residues in strands.

Moreover, five tertiary classifiers are constructed with different combinations of

the six binary classifiers as follows (Hua & Sun, 2001):

1. SVM MAX D tertiary classifier which consists of all three binary classifiers

based on the OAA scheme. An AA segment is tested by the binary classifiers,

and the classifier with the largest positive distance to optimal separating hyper-

plane (OSH) determines the predicted secondary structure of the central residue

in the AA segment.

2. SVM TREE1 tertiary classifier which consists of two binary classifiers, one from

the OAA scheme and the other from the OAO scheme. For instance, a sampling

residue is tested by H/∼H and if the OSH value is positive, the residue is

assigned to a helix. Otherwise the residue is tested by the classifier (E/C) and,

similarly, if the OSH value is positive the sampling residue is eventually assigned

to a strand, otherwise to a coil. Similarly, the tertiary classifiers SVM TREE2,

SVM TREE3 are constructed using the classifier (E/∼E, H/C) and (C/∼C,

H/E) respectively.

3. SVM VOTE tertiary classifier which consists of all six binary classifiers and the

secondary structure with the highest number of counts is considered as the final

prediction.

118



4. DAG tertiary classifier which is a directed-acyclic graph and cascades the three

binary classifiers from the OAO scheme (Nguyen et al., 2003). For example, if an

OAO classifier that predicts secondary structure E against secondary structure

H and the prediction result is not secondary structure E, an OAO classifier

which predicts secondary structure H against secondary structure C is used in

the second tier.

5. SVM JURY which counts the number of predicted secondary structures of all

tertiary classifiers from 1 to 4, and the final predicted secondary structure is

the one with the maximum number of votes.

The commonly used protein datasets to evaluate PSS prediction methods are

RS126 (Rost et al., 1993) and CB513 (Cuff & Barton, 1999) which consist of 126 and

513 nonhomologous protein chains respectively. The sequence identity measurement

in the datasets is based on the stringent definition (SD) of sequence similarity by

which sequence alignments whose SD scores are greater than or equal to 5 are con-

sidered to be identical. Moreover, the similarity of each sequence pair is less than

25% when the lengths of the paired sequences reach over 80 residues. A throughout

evaluation of PSS prediction methods relies on the degree of pairwise similarity in

datasets. Otherwise, high pairwise similarity implies an overfitting and a weak gener-

alization of a learning model. We pointed out the limitations related to the homology

issue in a number of studies in Chapter 2.

The dataset RS126 contains approximately twenty four thousand residues with an

average of 185 residues per sequence. The dataset CB513 has 513 non-homologous

sequences which contains over one hundred and twenty thousand residues with an

average of 180 residues per sequence. The tertiary structures of the protein chains in

the datasets were obtained from Protein Data Bank (PDB) (Sussman et al., 1998).

The secondary structures of the protein sequences were determined by the DSSP
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method which is a the most commonly used and standard method for protein sec-

ondary structure assignments (Kabsch & Sander, 1983) as explained in Chapter 3.

In the following experiments, we used the three-state reduction scheme applied in

PHD (Rost, 1996) as follows: (1) I, G and H to H, (2) B and E to E, (3) the rest to

C. Initially six binary SVM classifiers as described earlier in this section were trained

using LibSVM (Chang & Lin, 2011). The binary SVM classifiers incorporate the RBF

kernel function which is efficient for most nonseparable input spaces as follows:

K(xi, xj) = exp(−γ‖ xi − xj ‖2) , γ > 0 (5.2)

where xi, xj are n-dimensional vectors in the input space, and γ is a predefined

parameter. In SVM-based methods for PSS prediction, it has been shown RBF

kernels are robust in generalization and convergence speed (Hua & Sun, 2001; Kim &

Park, 2003). The kernel parameter γ was set to 1
k

where k is equal to the number of

features in input space, and with a sliding window of length l and an n-dimensional

encoding, k is equal to l× n. The generalization parameter C was set experimentally

to 1.5.

In order to make sure that the experimental results of classifiers using the codon

encoding scheme are comparable with those of other PSS prediction methods (Hua

& Sun, 2001; Nguyen et al., 2003), we applied a 7-fold cross validation on the RS126

dataset, and the window lengths were chosen with 11, 13 and 15 residues. Thus,

each binary SVM classifier is trained with six folds and the remaining fold is used

for a validation test. AA segments defined by scanning a sliding window of a fixed

length on the protein sequences are encoded using codon and orthogonal encodings.

If the start and end sections of AA sequences are scanned, a sliding window may not

contain an exact predefined number of residues. Therefore, an extra dimension is

added to both encodings to discriminate the N− and C− terminus. As a result, each

encoded residue is in the form of 17- and 21-dimensional binary vectors using codon
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and orthogonal encodings respectively.

Next, we constructed eight tertiary classifiers (1-6 (Hua & Sun, 2001), 7-8 (Nguyen

et al., 2003)) by various combinations of the trained binary classifiers as outlined in

Table 5.6. Tertiary classifier #2 was built by combining all six binary classifiers

whereas tertiary classifier #8 was built by combining only the three binary classi-

fiers based on the OAO scheme. The overall accuracy of the tertiary classifiers are

measured using Q3 and SOV99 (Zemla et al., 1999) where the latter measures the

segments of correctly predicted secondary structures and the former accounts for cor-

rect prediction of a residue’s secondary structure. In the experiments, the binary

and tertiary SVM classifiers are trained only with AA sequences since we aimed to

evaluate the effectiveness of the classifiers without using additional data such as pro-

tein global and evolutionary information. The experimental results are organized in

two groups: (1) the binary SVM classifiers, and (2) the tertiary SVM classifiers. The

classification performance of the six binary classifiers using various lengths of a sliding

window is shown in Table 5.5.

Table 5.5: The classification results of binary classifiers using codon (cod.) and

orthogonal (orth.) encoding schemes and different window lengths (L) on RS126

dataset (Zamani & Kremer, 2012). For each classifier, the highest classification accu-

racy obtained with a specific sliding window’s length is shown in boldface.

Binary classifier
L=11 L=13 L=15

Cod. Orth. Cod. Orth. Cod. Orth.

C/∼C 71.70 70.80 71.85 71.00 71.85 70.95

E/∼E 79.80 78.75 79.92 78.72 80.25 78.85

H/∼H 76.55 73.90 76.75 74.25 78.15 74.30

C/E 60.20 60.15 60.00 60.05 59.90 60.05

E/H 69.30 68.45 69.05 67.80 69.00 68.00

H/C 71.85 69.90 72.35 70.15 72.60 70.30

The results indicate the performance of binary classifiers varies with different
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lengths of sliding window. The binary classifiers built based on the OAA consensus

scheme performed better than the binary classifiers built based on the OAO scheme

as shown in Figures 5.6 and 5.7.

Figure 5.6: The classification accuracy on binary SVM classifiers using codon and

orthogonal encodings based on one-against-all scheme (Zamani & Kremer, 2012).

The superior performance of the OAA classifiers is possibly due to the higher num-

ber of training instances compared to those of the OAO classifiers. By using the OAA

scheme, the classifier C/∼C results in the lowest classification accuracy whereas using
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Figure 5.7: The classification accuracy on binary SVM classifiers using codon and

orthogonal encodings based on one-against-one scheme (Zamani & Kremer, 2012).
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the OAO scheme the classifier C/E has the lowest performance. In comparison to

the orthogonal encoding, applying the codon encoding improved the prediction per-

formance of all binary classifiers except for the classifier C/E where the performance

of the codon and orthogonal encodings are relatively identical if the sliding window

contains 13 and 15 residues. Thus, it can be concluded that the differentiation of

strand and coil classes is a difficult classification task since the prediction accuracy of

the classifier C/E was lower than those of the other classifiers which incorporate the

same encoding schemes in the experiment. In addition, the maximum classification

performances of the two types of the binary classifier are achieved when the window

sizes are identical regardless of the selected encoding schemes as shown in Table 5.5.

The overall performance of the eight tertiary classifiers using the codon and or-

thogonal encodings is shown in Table 5.6. The tertiary classifiers were constructed

by the binary classifiers that achieved the highest accuracy by specific window sizes

as highlighted in Table 5.5. Using the codon encoding increases the Q3 scores by up

to 2.5% and the SOV scores by up to 3.5% compared to the orthogonal encoding.

The performances of the tertiary classifiers using the codon encoding are compared

to those of structurally similar tertiary classifiers, except the classifiers 4 and 5, using

orthogonal encoding and protein profiles as shown in Table 5.7. The tertiary classifiers

1-5 (Nguyen et al., 2003) and 9-11 (Hua & Sun, 2001) incorporated protein profiles

in the trainings. The tertiary classifiers 4, 5 are multi-class SVM classifiers which

performed better than the cascaded binary SVM classifiers 9-11 (Weston & Watkins,

1999; Crammer & Singer, 2002). The performance of the tertiary classifiers 6-8 using

only the codon encoding are comparable with the other classifiers that incorporated

additionally profile information as shown in Table 5.7. The Q3 scores of the classifiers

6-8 are competitive with those of the classifiers 9-11.

Similarly, the SOV scores of the classifiers 6-8 surpassed the SOV scores of the
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Table 5.6: The classification performance of tertiary classifiers using the codon and

orthogonal encoding schemes on RS126 dataset (Zamani & Kremer, 2012). The clas-

sifier #2 was built by combining the six binary classifiers of OAO and OAA schemes

whereas the classifier #8 was built by combining the three binary classifiers of the

OAO scheme.

# Tertiary classifier
Codon Orthogonal

Q3 (%) SOV (%) Q3 (%) SOV (%)

1 SVM MAX D 67.5 60.3 65.7 57.5

2 SVM VOTE1 66.1 61.7 65.0 57.9

3 SVM TREE1 65.0 60.5 64.0 59.2

4 SVM TREE2 66.2 54.0 64.8 53.1

5 SVM TREE3 65.7 59.7 63.4 56.1

6 SVM JURY 66.1 61.7 65.0 57.9

7 DAG 67.1 62.3 64.9 59.5

8 SVM VOTE2 66.8 61.7 64.9 59.5

Table 5.7: Overall comparison of various tertiary classifiers using protein profiles

and AA encoding on RS126 dataset (Zamani & Kremer, 2012). The classifiers #2

and #7 incorporated orthogonal and codon encodings respectively and were built by

combining the binary classifiers of the OAO scheme.

# Tertiary classifier Q3(%) SOV (%) Profile AA encoding

1 SVM MAX D 70.4 59.0 � Orthogonal

2 SVM VOTE1 70.1 58.3 � Orthogonal

3 DAG 70.1 58.3 � Orthogonal

4 VW 70.5 57.1 � Orthogonal

5 CS 70.4 56.5 � Orthogonal

6 SVM MAX D 67.5 60.3 − Codon

7 SVM VOTE2 66.8 61.7 − Codon

8 DAG 67.1 62.3 − Codon

9 SVM TREE1 68.0 69.5 � Orthogonal

10 SVM TREE2 67.5 69.1 � Orthogonal

11 SVM TREE3 66.8 68.6 � Orthogonal
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classifiers 1-5. Lastly, the dimension of the codon encoding scheme is less than that

of the orthogonal encoding scheme. Using an encoding with fewer dimensions is an

advantage in high-dimensional input spaces and reduces training time. In the ex-

periments, we aimed to solely evaluate the efficiency of the codon encoding scheme

according to local information. The training of SVM classifiers with the codon en-

coding resulted a competitive classification performance in comparison to the similar

SVM classifiers’ using protein profiles and the orthogonal encoding.

The codon encoding implicitly incorporates partial protein evolutionary informa-

tion since the encoding is based on the genetic codon mappings at the DNA level

prior to the AA formations which has a domain with less dimensional complexity

compared to that of the twenty AAs. In Section 5.3, the efficiency of the codon en-

coding scheme in protein secondary structure prediction is examined further using

larger protein datasets such as CB513 (Cuff & Barton, 1999).

5.3 GP-based PSS Model using Clustering

In this section, we propose an evolutionary computation model for protein secondary

structure (PSS) prediction which applies a new encoding technique for encoding

amino acid (AA) sequences by using clustering (Zamani & Kremer, 2015b). The

performance of the proposed GP-based model is compared to those of feed-forward

artificial neural networks (ANNs) and support vector machines (SVMs) which incor-

porate separately AA sequences and clustering information. In the aforementioned

methods, we adopted a 1-tier architecture for the three multi-class prediction models,

and additional information such as proteins’ profiles and structures is not incorpo-

rated with the classifiers in the learning and evaluation processes to measure solely

the performance of the applied GP model and the effect of the information derived
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from clustering. We use the information of proteins’ profiles in the experiments which

are performed in the next sections. Moreover, the structural information of proteins is

not incorporated directly in the experiments since our proposed secondary structure

prediction model is based on an ab initio prediction scheme.

Genetic programming (GP) (Koza, 1992) is an evolutionary computing technique

which has been successfully applied in a number of optimization problems. The great

advantages of evolutionary methods are the exploitation and exploration of a search

space which are crucial for exploring a high dimensional search space with many local

minima. In the GP model, a genotype (tree) is represented as one or multi-nested

“IF” rules as shown in Figure 4.11, and the sets of logical and arithmetic functions,

and terminals are shown in Table 4.1.

The logical functions return true or false, and the arithmetic functions return

numeric values. The “B” function has three arguments a,b,r, and if r is within [a,b],

the function returns true, otherwise false. The “C” terminal has two parameters c, w

which are a class label and the weight of the class label respectively. The “S” terminal

has two indices l1, l2 which are the indices of locations on an AA segment with length

L.

For a given sequence segment, a tree evaluation starts from the leaf nodes “S”,

“C”. An individual tree is traversed and evaluated by using a bottom-up technique

as is explained in detail later on. An “IF” function has three arguments which are

a logical function and two “C” terminals, and updates a certainty vector denoted

cv. Certainty vector cv has three elements whose values are updated during a tree

evaluation. In an “IF” function, if the conditional argument is true, the ith element

of cv is updated, otherwise the jth element. The indices i, j are class labels of the “C”

terminals whose weight values are used to update cv. The first argument (conditional

branch) of an “IF” function is evaluated prior to “C” terminals. If an “IF” function
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is a child node, the label of a winning class is passed to the parent.

The node types of the trees should be preserved by the genetic operators when

genetic operators are applied on a population, otherwise the outcome would be a tree

with incorrect grammar. An “IF” function can be changed to a “C” terminal and vice

versa. A mutation operator can change the indices l1, l2 of an “S” terminal to numeric

values within [1,L]. However, the l2 index, 50% of the time is changed to a number

within [1, 20] where the upper bound number corresponds to the twenty amino acids.

Thus, there are two scenarios for evaluating an “S” terminal: (1) if indices l1, l2 are

within [1, L]. The residues located at the positions l1, l2 of an AA segment are identi-

fied and their evolutionary distance is defined by using a substitution matrix (Henikoff

& Henikoff, 1992), (2) if index l2 is within [1, 20], the evolutionary distance of the AA

with the index l2 and residue located at the position l1 of the sequence segment is

defined using a substitution matrix. Moreover, similar to the mutation, the recombi-

nation of two trees must preserve the node types of the branches which are swapped

to avoid generating trees with incorrect syntax.

In the experiments, the performances of PSS classifiers are measured by using the

two standard protein datasets which are RS126 (Rost et al., 1993) and CB513 (Cuff

& Barton, 1999). The description of the datasets that contain protein sequences with

pairwise similarity of below 25% were explained previously in detail in Section 5.2.4.

As was mentioned earlier, a learning model that uses high similar sequences can be

limited to a weak generalization and an overfitting issue. We investigate the perfor-

mance of a PSS prediction model trained by using sequences with higher pairwise

identity in Section 5.5. Similarly, the 3D structures of the protein sequences were

extracted from Protein Data Bank (PDB) (Sussman et al., 1998), and the secondary

structures of the protein sequences were defined by the DSSP program (Kabsch &

Sander, 1983).
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Moreover, there are various methods for the eight- to three-state reduction. In

the experiments, the three-state reduction scheme is based on the PHD secondary

structure assignment (Rost, 1996). The experiments were performed in two parts:

(1) the ANN, SVM and GP classifiers are evaluated by using AA sequences, (2) the

performance of the three classifiers are examined by using the information extracted

from a clustering technique. Initially, AA sequences are segmented by moving a sliding

window of a fixed length along the sequences. The AA segments are encoded by using

the codon encoding described in Section 5.2. A 5-fold cross validation technique is

used throughout the experiments. We set a window length of 11 residues which is

chosen based on the experimental results in previous sections. Thus, the ANN and

SVM classifiers have 11 × 17 input units. An additional dimension was added to the

codon encoding which corresponds to the end and beginning of a sequence.

The proposed GP-based classifier incorporates the entire section of an AA seg-

ment, however, the residues whose positions defined by “S” terminals participate in

an evaluation process as explained earlier in this section. In the experiments, a feed-

forward, multilayer ANN is employed which has two hidden layers and three output

units in the output layer corresponding to three secondary structures H, E and C. The

SVM classifier is a multiclass SVM (Tsochantaridis, Joachims, Hofmann, & Altun,

2005). In the GP classifier, tournament selection (Goldberg & Deb, 1991) is used. In

the tournament selection, n individuals are randomly chosen from a population, and

n is the tournament size.

In the experiments, two individuals are chosen each time to reduce the compu-

tational complexity. The individuals in a selection pool compete and the winner,

fittest individual, is passed to the next generation. The population size which is set

to 64 was chosen based on the available computational resources. In each generation,

the mutation operator is applied to all selected individuals, and 85% of the time the

129



fittest individual is selected after the crossover operator is applied on the individuals

in the selection pool. In the remaining 15% of the time, the mutated individuals

are passed directly to the next generation. In this way, the search strategy allows

both the exploitation and exploration of the solution space and keeps the track of the

genetic diversity in the population.

In the second part of the experiments, after AA segments are encoded to a set

of numeric vectors, we use the k-means clustering algorithm to cluster the segments.

The clustering technique is applied on the segments that are selected for a training set.

Ten cluster centers were chosen experimentally as the predefined number of clusters.

In each cluster, the probabilities of the three secondary structures are calculated based

on the central residues of the AA segments within the cluster. For an AA segment,

the distance between the segment and the centers of the clusters are calculated and

the segment is assigned to the closest cluster.

After identifying the clusters of each segment, the central residue of the segment

is represented to the classifiers by three probabilities. Therefore, the number of input

units in the ANN and SVM classifiers is equal to 3×l where l is the length of an sliding

window. In the GP classifier, as explained earlier, the output of an “S” terminal is

computed based on the evolutionary distance of two identified residues.

However, when an AA segments is represented by the probabilities derived from

clusters, 3-dimensional vectors are assigned to the residues located at the positions

l1, l2, and then the Euclidean distance of the vectors is computed as illustrated in

Section 4.2. However, if AA segment s is in cluster c and index l2 does not define a

position on segment s, then the probability values related to amino acid k at position

l1 in cluster c are assigned to index l2 where k is equal to l2. The performances of the

three PSS prediction methods were initially evaluated by using AA sequences and the

experimental results are shown in Tables 5.8 and 5.9.
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Table 5.8: The performance of PSS classifiers evaluated by using amino acid sequences

from dataset RS126 (Zamani & Kremer, 2015b).

Method
Q3(%)

SOV99(%)
Ave. Max.

ANN 61.7 63.5 60.4

SVM 62.5 64.6 61.3

GP 63.7 65.8 62.1

Table 5.9: The performance of PSS classifiers evaluated by using amino acid sequences

from dataset CB513 (Zamani & Kremer, 2015b).

Method
Q3(%)

SOV99(%)
Ave. Max.

ANN 62.2 64.1 63.2

SVM 63.4 65.3 62.9

GP 65.0 66.9 64.5

The performances of the PSS prediction methods that are evaluated by using

clustering information are shown in Tables 5.10 and 5.11. The second column in

the tables include two Q3 scores: (1) the average Q3 score is calculated from the

prediction results of each classifier by using a 5-fold cross-validation technique, and (2)

the maximum Q3 score is the highest prediction accuracy that each classifier achieves

in five folds. The training of the GP classifier is performed in 10 runs, and the trained

GP model that achieves the highest Q3 score is selected for a validation test. The

last column shows the SOV score which is computed when the maximum Q3 score

is achieved in a run. As was previously discussed, incorporating AA properties and

proteins’ global and evolutionary information improves the prediction performance.

However, the additional information is not included in order to measure the effect of

clustering information in the experiments.

The performance of the classifiers are higher when dataset CB513 is used based on
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Table 5.10: The performance of PSS classifiers evaluated by using clustering infor-

mation derived from dataset RS126.

Method
Q3(%)

SOV99(%)
Ave. Max.

ANN 63.9 65.7 63.1

SVM 64.6 66.2 63.5

GP 65.1 67.3 64.8

Table 5.11: The performance of PSS classifiers evaluated by using clustering infor-

mation derived from dataset CB513.

Method
Q3(%)

SOV99(%)
Ave. Max.

ANN 64.2 66.3 64.5

SVM 65.1 67.8 65.0

GP 66.4 69.0 67.1

the prediction scores. The results indicate the PSS classifiers capture the patterns of

various AA combinations, which contribute the formation of secondary structures, if

the classifiers are trained with a higher number of sequences. On average, the predic-

tion scores of the GP classifier is 3% higher than those of the ANN and SVM models.

In addition, the prediction accuracy of the classifiers that incorporate clustering in-

formation are 2% higher than those of the similar classifiers which incorporated AA

sequences.

The difference between the average and maximum Q3 scores is based on two

causes: (1) various internal parameters of the classifiers in different runs, e.g. weights

in ANNs, randomly generated genotypes in the GP method, (2) the random selection

of training instances to balance the number of class labels to prevent overfitting of a

specific class label in a training. Although, the Q3 and SOV scores are interpreted

differently and not related, the maximum Q3 scores are higher than SOV scores
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as usual. However, the average Q3 scores are close to SOV scores based on the

experimental results.

The experimental results indicate the proposed PSS prediction model based on GP

outperformed the feed-forward multilayer ANN and multi-class SVM classifiers. Also,

the classifiers that incorporated statistical information from clustered AA segments

performed on average 3% higher than the similar classifiers using AA sequences. In

addition, the number of input units in a classifier is reduced if the information derived

from clusters are represented to the classifiers.

5.4 Two-stage PSS Model and Information The-

ory

In this section, we propose a two-stage PSS prediction model based on a hybrid

Machine Learning technique (Zamani & Kremer, 2015a). The two-stage prediction

model incorporates protein profiles and statistical information which are extracted

from protein sequences by using a k-means clustering and Information theory. The

performance of the proposed PSS prediction method is compared to those of two-tier

feed-forward ANNs and SVMs which incorporate protein profiles. As was discussed in

Chapter 2, PSS prediction performance was improved by using cascaded architectures,

consensus techniques, and protein evolutionary information (Hu et al., 2004). In the

consensus technique, a voting scheme is applied to the outcomes of multiple PSS

prediction methods which may have different or similar designs.

In this study, the aim is to examine individually the performances of the two-

stage PSS model and two cascaded PSS classifiers based on ANNs and SVMs which

are used as a benchmark. The two-stage PSS prediction model employs multilayer

feed-forward ANNs and a genetic programming (GP) method. The overall scheme of
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the two-stage prediction model is shown in Figure 5.8.

Figure 5.8: An overall scheme of the two-stage PSS prediction model. CLUST repre-

sents the component of k-means clustering.

In the first stage, the profiles of an amino acid (AA) segment are mapped to a

region on the Ramachandran plot (2D-plot) (Ramachandran & Sasisekharan, 1968)

by a feed-forward ANN. An AA segment consists of a predefined number of residues,

and it is defined by moving a sliding window along sequences. A score vector is

constructed for the central residue of an AA segment based on the identified region

on the 2D-plot and statistical information derived from clusters and Information

theory. A score vector represents the preferences of the two middle residues of an

AA segment for adapting all two possible combinations of the three-state secondary

structures in a region on the 2D-plot. The construction of a score vector is explained

in detail in Section 4.2.

In the second stage, a feed-forward ANN maps the score vectors of an AA seg-

ment to all intermediate (likelihood) three-state secondary structures. Next, the GP

method determines the final secondary structure prediction based on the intermedi-

ate three-state secondary structures of the AA segment. The design, training and

evaluation of the proposed GP model are explained in detail in Sections 3.4 and 5.3.

Moreover, we used the dataset RS126 (Rost et al., 1993) and a 5-fold cross vali-

dation technique was used throughout the experiments in this section. AA sequences
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were encoded by using the Codon encoding method (Zamani & Kremer, 2011) before

applying a k-means clustering on the dataset. The description of the dataset, the

encoding scheme and clustering are provided in details in Sections 5.2 and 5.3.

In the first stage, the dihedral angles of protein backbones were calculated from

atomic coordinates defined in the PDB (Sussman et al., 1998). The protein pro-

files were extracted from the HSSP dataset (Sander & Schneider, 1991). Initially,

we determined the eight classes of protein secondary structures by using the DSSP

program (Kabsch & Sander, 1983) and reduced them to three classes based on PHD

scheme (Rost, 1996) as explained in Section 3.6. The Ramachandran plot is divided in

four regions which means dihedral angles φ, ψ are grouped in the ranges of [−180, 0],

[0, 180]. Then, a feed-forward ANN was employed to map the profiles of AA segments

to one of the four defined regions in the 2D-plot. The ANN has two output units and

20×l inputs where l is the length of an AA segment which was set to eleven residues.

In the clustering component denoted CLUST, AA sequences are segmented and

encoded, and then they are clustered. For an AA segment, the distance between the

segment and the centers of the clusters are calculated and the segment is assigned

to the closest cluster. Ten clusters were used in the experiments, and the number of

clusters was chosen experimentally based on initial outcomes. Initially, for a target

segment that is assigned to a cluster, a set of AA segments similar to the target

segment is identified in the cluster by using a nearest-neighbour technique (Salamov

et al., 1995). Then, score vectors are constructed for the target segment according to

Equations (4.1) and (4.2).

In the second stage, a feed-forward ANN is employed, and it incorporates the score

vectors of AA segments. The neural network has 9× l input units where l is equal to

the length of an AA segment. In the GP model, a two-tournament selection (Goldberg

& Deb, 1991) is used such that the winner (fittest individual) is selected for the next
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generation. The population size which is equal to 64 was chosen based on the available

computational resources. In each generation, the mutation operation is applied on

all selected individuals, and the crossover rate was chosen 85% in the selection pool

as explained in Section 5.3.

In the GP classifier, as explained in Section 5.3, the return value of an “S” terminal

is computed based on the Euclidean distance of two 3-dimensional vectors that are

assigned to the residues located at the positions l1, l2 of an AA segment. The experi-

mental results of the proposed multi-stage classifier are compared to those of two-tier

PSS classifiers which commonly employ ANNs and SVMs. The PSS prediction meth-

ods that were selected in this study are based on the cascaded ML architectures,

similarity on the applied generalization technique, and the training and test datasets.

The performance of the three classification models are represented in Table 5.12. The

columns CH , CE, CC represent the correlation coefficient values of the prediction

results for the three secondary structures H,E,C.

Table 5.12: The comparisons of the three PSS classifiers using RS126 dataset. MGP

denoted for the multi-stage GP classifier.

Method Q3(%) CH CE CC SOV(%)

ANN (Rost, 1996) 70.8 0.60 0.52 0.51 73.5

SVM (Hua & Sun, 2001) 71.2 0.61 0.51 0.52 74.6

MGP 74.5 0.67 0.54 0.56 76.9

The experimental results indicate the proposed multi-stage classifier improves 3%

the Q3 score and 2% the SOV score in comparison to those of two-tier classifiers

that employ ANNs and SVMs. The Q3 score obtained from the GP classifier is the

maximum accuracy observed in 10 runs. In addition, the correlation coefficient values

indicate helices are predicted more accurately than coils and strands. In this study,

the goal was to represent the prediction results that are obtained from stand-alone
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methods which use the cross-validation technique. Therefore, a higher prediction

accuracy could be achieved by using PSS classifiers that employ consensus techniques

such as web-based PSS prediction servers (Mirabello & Pollastri, 2013).

Moreover, using two different datasets for a training and a test, or dataset that

are compiled with less restrictive similarity rules were excluded in the study because

these choices could result in classifiers which are biased toward the PSS prediction of

closely related sequences rather than those of distant sequences. As was mentioned

previously, a learning model that incorporates highly similar sequences can be limited

to a weak generalization and an overfitting problem. The performance of a PSS

prediction model incorporated with sequences that have higher pairwise identity than

twilight zone (25%) is examined in Section 5.5.

As shown in Table 5.12, the experimental results indicate our proposed hybrid

PSS prediction model outperforms cascaded ANN and SVM classifiers. Also, in the

proposed method, we used the properties of Ramachadran plot and incorporated

statistical information, which were derived by using clustering and Information theory,

in the classification process. In addition, the number of required input units of a

classifier in the second stage is reduced by using the score vector scheme.

5.5 Two-stage PSS Model and Transition Sites

In this study, we developed the two-stage PSS prediction model proposed in Sec-

tion 5.4. The extended two-stage ML model predicts secondary structures through

a novel framework of PSS transition sites (Zamani & Kremer, 2016). PSS transition

sites are locations on AA sequences when one type of secondary structure is changed

to another type of secondary structure as shown in Figure 4.2. The the overall scheme

of the two-stage PSS prediction model is shown in Figure 4.1.
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In this section, we mainly discuss the experiments that were performed by using

the two-stage PSS prediction model which consists of a novel framework of PSS tran-

sition sites and the PSS secondary structure prediction model as shown in Figures 4.3

and 4.8. The proposed model is illustrated comprehensively in Section 4.2. The per-

formance of the proposed method is compared to the state-of-the-art cascaded ML

methods which commonly employ ANNs and SVMs. The evaluation is performed in

two steps: (1) PSS transition site prediction, (2) PSS structure prediction.

A common generalization technique to evaluate the performances of PSS classifiers

is based on an n-fold cross-validation technique where n is the number of partitions.

By this approach, protein datasets that contain a few hundred protein sequences

are chosen with regards to computational costs. As a result, the overall prediction

accuracy calculated in this way is affected by two restrictions: (1) a small number of

partitions, and (2) datasets with relatively small sizes.

In addition, a comprehensive evaluation of a PSS prediction method relies on the

degree of similarity between the training and test sequences which means the identity

of every two sequences is required to be less than the “twilight zone” which is 25%.

Otherwise, it results in an overfitting and a weak generalization of the method’s per-

formance in case of distant sequences. We pointed out the aforementioned limitations

in a number of studies in Chapter 2.

In this study, we selected a very large set of the latest nonhomologous protein

sequences, PISCES (Wang & Dunbrack, 2003) which contains approximately nine

thousand chains and two million residues, and the identity of every sequence pair is

less than 25%. In addition, the statistical significance of the experimental results are

measured by a Wilcoxon rank-sum nonparametric test (Wilcoxon, Katti, & Wilcox,

1970) since the distribution of Q3 scores from the experimental results when is exam-

ined by using the Shapiro-Wilk normality test (Shapiro & Wilk, 1965) does not follow
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a normal distribution. Evaluating a PSS prediction method by using the statistical

test and analyzing the distribution of Q3 scores provide a more comprehensive way

of the method’s performance, and we suggest the statistical evaluation technique to

be adopted in other studies related to PSS prediction techniques.

Moreover, each statistical test is performed on five hundred test samples. A test

sample contains five thousand residues which are selected randomly from the portion

of the dataset that is assigned for a validation test. Initially, the prediction perfor-

mance of the proposed two-stage classifier which did not incorporate PSS transition

site was compared to those of two-tier ANN and SVM classifiers. The comparison of

the prediction performance based on Q3 scores is shown in Figure 5.9.

In order to examine the performance effectiveness of PSS transition sites on the

proposed classifier, the prediction performance of the classifier without transition sites

is compared to that of the classifier with transition sites. The distribution of Q3 scores

from the prediction results of the two classifiers are shown in Figure 5.10.

The experimental results and statistical analyses indicate that the distribution

of Q3 scores by the proposed two-stage prediction model without using PSS transition

sites is approximately 3.5% and 2.5% higher than those of the two-tier ANN and SVM

classifiers respectively, and the p-values of the statistical tests are less than 0.001 by

the Wilcoxon rank-sum test as shown in Figure 5.9.

The distribution of Q3 scores is increased in overall 6% with a p-value that is

less than 0.001 by the Wilcoxon rank-sum test when the proposed two-stage classifier

incorporates the information of PSS transition sites as shown in Figures 5.9 and 5.10.

In addition, incorporating the information of transition sites reduces the number of

Q3 scores that are considered outliers in the distribution. The distribution of Q3

scores of the cascaded SVM classifier consists of fewer outlier scores than that of the

two-tier ANN classifier as shown in Figure 5.9.
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Figure 5.9: The performance of the proposed multi-stage PSS prediction model

(MGP) and 2-tier ANNs and SVMs on dataset PISCES.

140



MGP_TS MGP

65
70

75
80

Distrubution of Q3 scores

Prediction Models

Q
3 

%

Figure 5.10: The performance of the proposed PSS prediction model using transition

sites (MGP TS), and without transition sites (MGP) on dataset PISCES.

141



Figure 5.11: PSS transition sites (TS) prediction: by transition site (TS) model, and

from the predicted secondary structures of two-tier ANNs and SVMs.
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Figure 5.12: PSS transition sites (TS) prediction identified from the predicted sec-

ondary structures of the proposed multi-stage model with the transition site compo-

nent (MGP TS), and two-tier ANNs and SVMs.
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Moreover, the performance of PSS transition site (TS) prediction model is com-

pared with those of the proposed PSS classifier and the cascaded ANN and SVM

classifiers in two steps: (1) PSS transition sites are identified from the predicted sec-

ondary structures of the three classifiers, and (2) the identified transition sites are

compared to those directly predicted by the TS prediction model as shown in Fig-

ures 5.11 and 5.12. The distribution of transition site scores predicted directly by

the TS model is approximately 3% and 4% higher than those identified from the PSS

prediction of the two-tier SVM and ANN classifiers respectively, and the p-values

of the statistical tests are less than 0.001 by the Wilcoxon rank-sum test as shown

in Figure 5.11. The distribution of prediction scores from the experimental results

does not follow a normal distribution when it is examined by using the Shapiro-Wilk

normality test (Shapiro & Wilk, 1965) as was mentioned earlier. In addition, the dis-

tribution of transition site scores identified from the PSS prediction of the proposed

two-stage PSS prediction model increases approximately 9% with the p-value that is

less than 0.001 due to the improvement in the performance of the prediction model

when it incorporates the information of transition sites as shown in Figure 5.12. The

summary of all statistical results, including the distribution of Q3 and transition site

(TS) scores, are shown in Tables 5.13 and 5.14.

5.5.1 Pairwise Sequence Similarity in Protein Datasets

As we explained previously, the pairwise identity of protein sequences is an important

criterion that should be considered for the learning and performance comparison of

PSS prediction techniques. In other words, the selected PSS prediction models should

incorporate at least a set of protein sequences with the same level of similarity. In

order to investigate the effect of identity criterion, we compared the prediction perfor-

mance of a two-tier ANN model which incorporates separately two protein datasets
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Table 5.13: The distribution summary of Q3 and transition site (TS) scores. Lower

and upper whiskers denoted by LW and UW. Lower and upper hinges denoted by

LH and UH respectively. Median is denoted by MED. Number of lower and upper

outliers denoted by #OL.

# Prediction Model Score Type LW LH MED UH UW #OL

1 MGP Q3% 68.4 72.0 73.4 74.8 79.0 7, 1

2 NNs Q3% 65.0 68.4 69.6 70.8 74.2 9, 8

3 SVMs Q3% 66.2 70.0 71.2 72.6 76.0 4, 2

4 MGP TS Q3% 72.6 76.6 78.0 79.4 82.4 2, 0

5 TS TS% 53.0 57.6 59.2 60.8 65.4 2, 1

6 NNs TS% 49.0 53.6 55.4 57.0 61.4 0, 0

7 SVMs TS% 52.2 55.8 57.1 58.4 62.2 4, 3

8 MGP TS TS% 59.4 63.6 64.8 66.4 70.4 1, 1

Table 5.14: The summary of Wilcoxon statistical tests. The null hypothesis (H0)

is that the protein secondary structure (PSS) or transition site (TS) prediction dis-

tribution of the two tested prediction models are similar. Otherwise, the prediction

distribution of the first prediction model is on the right of the prediction distribution

of the other prediction method. Letter “X” indicates H0 is rejected for the corre-

sponding statistical test.

# Prediction Models Prediction Type
Wilcoxon Test

H0 p-value

1 MGP & NNs PSS X < 10−3

2 MGP & SVMs PSS X < 10−3

3 MGP TS & NNs PSS X < 10−3

4 MGP TS & SVMs PSS X < 10−3

5 MGP TS & MGP PSS X < 10−3

6 TS & NNs TS X < 10−3

7 TS & SVMs TS X < 10−3
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from a protein culling server (Wang & Dunbrack, 2003) that contain sequences with

25% and 50% identity. The performance comparison of the prediction model with

two datasets that have different level of homology are shown in Figure 5.13. The

experimental results indicate the median of Q3 scores’ distribution is approximately

3% higher than that of the same prediction model when it incorporates a dataset

with lower identity.

Figure 5.13: The distribution of Q3 scores derived from different level of sequence

identity.

Lastly, in this study, we used a large nonhomologous dataset and performed sta-

tistical tests on the experimental results. We strongly recommend the approach for

a comprehensive performance evaluation in PSS prediction unlike using the conven-
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tional cross-validation technique and datasets with relatively small sizes. The ex-

perimental results and statistical analyses indicate significant improvements in the

performance of the proposed PSS prediction model compared to those of the cas-

caded ML techniques which commonly employ ANNs and SVMs. The information of

PSS transition sites represent the topological property of protein backbones, and they

can be also utilized for protein structure determination based on homology modeling

and computational techniques. Moreover, we investigated the impact of a protein

dataset’s similarity on the outcome of PSS prediction, and the identity criterion

should be considered while comparing the performances of PSS prediction methods.

The proposed PSS prediction model can be further examined by employing different

ANN architectures, protein profiles and PSS assignment schemes.
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Chapter 6

Conclusions and Future work

6.1 Protein Structure Determination

Proteins are made up from the twenty types of amino acids which are connected by

peptide bonds in linear orders. A polypeptide chain was described in four categories

as the primary, secondary, tertiary and quaternary, after the structure of the first

globular protein was elucidated (Linderstrøm-Lang, Boyer, Lardy, & Myrbäck, 1959).

It was demonstrated that a protein’s primary structure contains all the structural

information to fold into a unique three-dimensional structure (Anfinsen et al., 1973).

In addition, in many biochemical experiments, it has been observed that many vi-

tal biological functions such as transport and storage, immune protection, coordinated

motion, enzymatic catalysis which are carried out by proteins are very closely related

to their unique tertiary structures (Laskowski, Watson, & Thornton, 2003; Travers,

1989; Bjorkman & Parham, 1990). Therefore, resolving proteins’ tertiary structures

from primary structures has potentially a large number of important applications in-

cluding in synthesizing enzymes, drug designs for treatments, and agriculture (Chou,

2004; Noble et al., 2004).

148



At the present time, the most accurate protein structure determinations are exper-

imental methods such as X-ray crystallography (Bragg et al., 1975; Blundell & John-

son, 1976) and nuclear magnetic resonance (NMR) spectroscopy (Wuthrich, 1986;

Baldwin et al., 1991). However, these mainly experimental techniques are costly,

time consuming and require very complex procedures (Metfessel & Saurugger, 1993;

Johnson et al., 1994).

The percentage of proteins whose tertiary structures have been resolved exper-

imentally to sequenced proteins has reached currently to less than 0.2%. This gap

is increased constantly by identifying new protein sequences in a very high multi-

tude due to rapid advances in large sequencing projects such as the Human Genome

Project (Fleischmann, Adams, White, Clayton et al., 1995). Meanwhile, it has been

shown that the number of unique structural folds from protein whose structures have

been verified by experimental methods have been significantly declining in the last

seven years.

Moreover, as alternative approaches for protein structure determination, a num-

ber of computational methods have been proposed with regards to the capabilities of

the computational methods, and significant progress has been achieved in the com-

putational fields in the last two decades. However, protein structure determination

from amino acid sequences has remained the most fundamental problem in computa-

tional biology, and despite progress that has been made, protein structure prediction

by computational methods has not reached a satisfactory level due to the extremely

large input space of protein sequences.
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6.2 Protein Secondary Structure Prediction

Protein secondary structures are linearly connected folds by which a protein struc-

ture can be represented with less detail while preserving the important part of the

structural information. Protein secondary structure prediction methods have been

utilized in protein structure prediction to reduce the complexities of tertiary struc-

ture prediction. Protein secondary structures are formed at the early stage of the

protein folding pathway, and the secondary structure elements have decisive roles in

the native conformation of a protein (Goldenberg et al., 1989).

In addition, the other advantage of using the information of protein secondary

structures is evidenced by the fact that protein structures are more preserved than

amino acid sequences since there are many nonhomologous proteins with similar struc-

tures. The preservation of structures is the basis upon which protein secondary

structure prediction has served as an important complementary stage in a number of

bioinformatic programs ranging from distant homology detections to multi-sequence

alignments (Ginalski et al., 2003; Simossis & Heringa, 2005; Hargbo & Elofsson, 1999;

Zhou & Zhou, 2005).

In addition, protein secondary structure prediction is used in protein structure

determination methods based on protein threading and comparative modeling by

which the correct identification of fold templates is the core functionality of the meth-

ods (Fischer & Eisenberg, 1996; Koretke et al., 1999; Zhou & Zhou, 2004; Su�lkowska

et al., 2012; Biasini et al., 2014). Moreover, the applications of accurately predicted

secondary structures have improved significantly protein structure determination in

de novo protein structure determination methods (Skolnick et al., 1997; Jones, 1999b;

Wang et al., 2015). Protein secondary structure prediction methods are grouped in

four classes as follows:
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1. Statistical.

2. Based on stereo- and physico-chemical properties.

3. Based on sequence homology.

4. Machine Learning (ML).

In the early PSS prediction methods based on statistical methods, the likelihood of

residue pairs in specific secondary structures are computed to quantify the interactions

of the residue pairs within short ranges (Nagano, 1973; Chou & Fasman, 1974a).

Moreover, other statistical approaches commonly are based on the techniques that

formulate the correlation between sequence compositions and the different types of

secondary structures by using Bayesian statistics and Information theory (Garnier

et al., 1978; Kabsch et al., 1983; Gibrat et al., 1987; Garnier et al., 1996; Kloczkowski

et al., 2002).

In PSS prediction methods based on stereo- and physico-chemical characteristics, a

number of extensive prediction rules are derived by using the frequencies of secondary

structures observed in proteins with known structures, and basically the principles

that govern secondary structure formations are expressed by the prediction rules (Lim,

1974a; Ptitsyn & Finkelstein, 1983; Tanaka & Scheraga, 1976).

In PSS prediction methods based on sequence homology, the secondary structures

of a query segment are estimated generally from the segment templates with known

tertiary structures which have the highest similarity with the query segment, and

the similarity of segment pairs are measured by using a substitution matrix. These

methods are based on the speculation that the short segments of protein sequences

with low similarity can possibly have similar secondary structures (Levin et al., 1986;

Nishikawa & Ooi, 1986).
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The latest PSS prediction methods are based on ML techniques which employ

artificial neural networks, support vector machines and hidden markov models (Qian

& Sejnowski, 1988; Asai et al., 1993; Hua & Sun, 2001). ML-based PSS predic-

tion methods lead to higher prediction performances than those of statistical and

sequence homology methods, and three-state prediction accuracies have reached to

above 70% by adopting cascaded architectures and incorporating protein evolution-

ary information. By the alternative approaches of PSS prediction methods which

cascaded architectures, hybrid designs and consensus schemes have adopted, the pre-

diction accuracies have been improved further, and the reported prediction accuracies

range from 70% to slightly above 80%.

In PSS prediction methods, there are several criteria which make a comparison

challenging. The criteria that should be considered for a performance comparison

are the similarity of datasets, the architectures and designs of PSS prediction meth-

ods, evaluation schemes, the types of input information, dataset sizes, generalization

techniques and statistical hypothesis testing which have been explained further in the

previous chapters. The prediction accuracy of a PSS prediction method cannot be

used simply as a basis to compare the performance of the method with another PSS

prediction method because the aforementioned criteria should be matched, at least

to some degree, between the two prediction methods for an unbiased comparison.

Otherwise, the PSS prediction methods are compared with different restrictions and

experimental setups, and such a comparison may not be throughly informative about

the actual performances of the two chosen methods as it was discussed in Section 5.5.1.

Lastly, encoding amino acid sequences from alphabetic representation to numeric

values is an important step in many bioinformatic problems including PSS prediction

since the information of sequences should be preserved after the encoding. For a

protein sequence, using direct encoding each residue is assigned to a numeric multi-
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dimensional vector which preserves the arrangement of local residues, whereas in

indirect encoding the global frequencies of two or more adjacent residues are pre-

served.

6.3 Experiments and Summary of Results

In this thesis, we developed several techniques, specifically: protein protein encoding

schemes, a PSS transition site prediction method, and a PSS prediction model. A

series of experiments have been performed in progressive steps to examine the per-

formances of the proposed techniques separately and evaluate thoroughly the overall

performance when the proposed techniques are aggregated as a PSS prediction sys-

tem. The summary of the contributions of this work, the proposed techniques, and

the experiments performed in this thesis are categorized as follows.

6.3.1 Codon Encoding Scheme

Initially, we developed the novel codon encoding scheme which is a direct amino

acid encoding scheme based on the genetic codon mappings. Next, we introduced

a generalized technique to evaluate amino acid encoding schemes which commonly

are used in PSS prediction methods based on ML techniques. The codon encoding

scheme has been compared to fourteen encoding techniques with different schemes and

dimensions by using the proposed evaluation technique. The codon encoding that we

developed outperformed the other encoding schemes for learning five commonly used

substitution matrices with regards to the learning speed and accuracy (Zamani &

Kremer, 2011)[“Amino acid encoding schemes for machine learning methods”].
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6.3.2 Secondary Structure Prediction and Codon Encoding

In addition, the performance and effectiveness of the codon encoding scheme have

been compared to those of the commonly used orthogonal encoding when the two

encoding techniques are used for secondary structure prediction. In the study, we

constructed a number of binary and tertiary support vector machines (SVMs), eval-

uated the performances of the two encoding schemes, and compared them to the

prediction results of several studies that employed similar PSS prediction models

based on SVMs.

The prediction models that incorporated the codon encoding scheme outperformed

the PSS prediction models that incorporated the orthogonal encoding, and in some

cases comparable prediction results with those PSS prediction models that incorpo-

rated protein profiles. The outcomes reconfirmed the effectiveness of the new gener-

alized technique that we developed in Section 6.3.1 for the evaluation of amino acid

encoding schemes (Zamani & Kremer, 2012)[“Protein Secondary Structure Prediction

Using Support Vector Machines and a Codon Encoding Scheme”].

6.3.3 An Evolutionary PSS Model using Clustering

In this study, we also proposed a new protein secondary structure prediction method

based on a genetic programming (GP) technique. The evolutionary PSS model incor-

porates a new encoding technique which we developed based on the k-means clustering

technique. The performance of the GP model is compared to those of feed-forward

artificial neural networks (ANNs) and support vector machines (SVMs). The perfor-

mances of the three prediction methods were examined by two sets of experiments.

Initially, the prediction methods were represented by sequence information. Then, the

three prediction methods incorporated the statistical information derived from clus-
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tered sequences. The protein sequences were encoded by using the codon encoding

scheme prior to the clustering.

According to the experimental results, our novel GP-based prediction model in-

creased the three-state prediction accuracy approximately from 2% to 3% compared

to the other two prediction models employing ANNs and SVMs. Also, the new predic-

tion model incorporated statistical information performed on average 3% higher than

the similar prediction models using amino acid sequences. Moreover, the number of

input units is reduced if the statistical information derived from clusters are repre-

sented to the three prediction models (Zamani & Kremer, 2015b)[“Protein secondary

structure prediction using an evolutionary computation method and clustering”].

6.3.4 Two-stage PSS Model and Score Vectors

In this experiment, we extended the proposed GP-based PSS prediction method to a

new two-stage PSS prediction model which is cascaded with ANNs. In the first stage,

encoded protein sequences are clustered, and protein profiles are mapped to regions

which are defined based on a Ramachandran map. Then, the identified regions and

statistical information derived from clustered sequences are formulated by a novel

approach to construct score vectors based on Information theory.

The score vectors are incorporated in the second stage for predicting secondary

structures. By using score vectors like we have done in this work, fewer input units are

required in comparison to incorporating protein profiles. Therefore, our score vector

scheme reduces the number of learning parameters and computational complexity in

the second stage. The performance of the two-stage prediction model has been com-

pared to the state-of-the-art PSS prediction method based on ML techniques which

commonly employ cascaded feed-forward ANNs and SVMs. The experimental results

indicated on an average 3% higher prediction accuracy for our new method compared
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to those of the current best approaches using cascaded ANNs and SVMs (Zamani &

Kremer, 2015a)[“A multi-stage protein secondary structure prediction system using

machine learning and information theory”].

6.3.5 Transition Site Framework and PSS Prediction

In the last experiments, we developed the two-stage PSS prediction model explained

in Section 6.3.4 through a novel framework of PSS transition sites. Transition sites are

the locations on a protein backbone where one secondary structure element ends and

another secondary structure element starts. In the first stage, we extended a second

tier of a feed-forward ANN to perform transition site prediction. The information of

determined transition sites are added to their corresponding score vectors, and PSS

prediction is performed in the second stage.

The performance of our two-stage prediction model with PSS transition sites is

compared to the state-of-the-art ML methods which commonly employ cascaded

ANNs and SVMs. The evaluation is performed in two steps: (1) PSS transition

site prediction, (2) PSS structure prediction. The statistical analyses were performed

on the experimental results indicate significant improvements. The distribution of

three-state prediction scores by the two-stage prediction model without using PSS

transition sites is approximately 3.5% and 2.5% higher than those of the two-tier

ANN and SVM predictors respectively.

The distribution of the three-state scores is increased an overall 6% with p-values

less than 0.001 when our two-stage prediction model incorporates the information of

PSS transition sites. Also, the distribution of transition site scores identified from the

predicted secondary structures of the two-stage prediction model increased approxi-

mately 9% with p-values less than 0.001 compared to those of the other (previously top

performing) prediction models (Zamani & Kremer, 2016)[“Protein secondary struc-
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ture prediction through a novel framework of secondary structure transition sites and

new encoding schemes”].

6.3.6 Protein Dataset’s Similarity

As discussed in the previous chapters, two important criteria for comparing the per-

formances of two PSS prediction methods are the similarity of protein datasets and

the evaluation technique used for the prediction outcomes. In Section 5.5.1, we inves-

tigated the effect of two different levels of datasets’ similarity on the performance of

a PSS prediction method. In addition, we used a very large dataset which contains

protein sequences with pairwise identity of less than 25%, and the dataset is the most

recent compilation from PISCES (Wang & Dunbrack, 2003).

The commonly used evaluation of PSS prediction is based on computing the aver-

age correlation coefficient of the three secondary structures by using a cross-validation

technique. In our experiments, we initially measured and compared the performances

of the PSS prediction methods by the common aforementioned evaluation technique.

However, we also extended our tests beyond the normal standard and performed, ad-

ditionally, a number of statistical tests and analyses based on a Wilcoxon rank-sum

nonparametric test (Wilcoxon et al., 1970) for a more comprehensive comparison of

the proposed prediction model with the other PSS predictors. It is important to note

that the level of statistical rigor performed in this study has not been employed pre-

viously in the field of PSS prediction. Our proposed evaluation approach based on

the statistical tests and analyses distinguishes the distributions of prediction scores

achieved by different PSS prediction methods in a statistically sound manner used in

most other domains where performance comparisons are required. By showing that

it is possible to apply these statistical techniques and obtain statistically meaningful

results, and we have set a new standard for performance evaluation which we hope
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will be adopted for a more comprehensive evaluation of PSS prediction methods in

other studies.

6.4 Contribution

Protein structure determination from amino acid sequences is one of the most complex

problems in computational biology, and it has a number of important applications

such as synthesizing enzymes and drug designs for treatments. Any computational

technique such as a robust protein secondary structure prediction method that can

be utilized as complementary tools with the aim of reducing the complexity, costs

and time of protein structure determination is crucially important. Protein struc-

ture prediction can be also incorporated in homology detection and multi-sequence

alignment tools since protein structures which are represented by less complexity as

secondary structures are more preserved than protein sequences.

In this thesis, we developed a new evaluation framework to examine the per-

formance of an amino acid encoding scheme which is an important step in solving

protein structures in methods based on Machine Learning approaches (Section 6.3.1).

In addition, we developed two new amino acid encoding schemes based on the ge-

netic codon mapping, clustering, information theory and Ramachandran map, and

the performance improvements of incorporating the encoding schemes have been ex-

amined in PSS prediction (Sections 6.3.1, 6.3.2, and 6.3.3). Moreover, in this study,

we developed a protein secondary structure prediction method that performs better

than the previous methods. The experimental results and statistical analyses indicate

our novel two-stage PSS prediction model derives useful information from protein se-

quences and profiles, and performs statistically better than the leading state-of-the-

art approaches. In addition, protein secondary structure transition sites represent
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the topology of protein backbones, and transition site prediction can be utilized in

comparative modeling or computational methods of protein tertiary structure deter-

mination to identify the boundary of secondary structure elements (Sections 6.3.4

and 6.3.5).

In addition, we have developed a testing and evaluation methodology that is more

meaningful in terms of both generalization to non-homologous proteins and also sta-

tistical rigour. It is recommended that our new evaluation approach be applied in all

future protein secondary structure studies for a more comprehensive comparison and

evaluation which is based on the distributions of the prediction scores (Section 6.3.5

and 6.3.6).

6.5 Future work

The performance of the proposed protein secondary structure prediction model can be

improved potentially by constructing hybrid schemes that consist of different machine

learning techniques and data representations. The two-stage secondary structure pre-

diction model can be examined with more complex neural network architectures such

as Recurrent Neural Networks and Deep Neural Networks. The prediction model can

be incorporated with other protein profiles such as PSI-BLAST, and different schemes

of protein secondary structure assignments, GORV and JNET. In addition, design-

ing a parallel scheme for the proposed GP technique can reduce the computational

complexity and speed up the learning process.
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